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We show how the Wess-Zumino terms of the different branes in string theory can be embed-
ded within double field theory. Crucial ingredients in our construction are the identification
of the correct brane charge tensors and the use of the double field theory potentials that
arise from dualizing the standard double field theory fields. This leads to a picture where
under T-duality the brane does not change its worldvolume directions but where, instead,
it shows different faces depending on whether some of the worldvolume and/or transverse
directions invade the winding space. As a non-trivial by-product we show how the different
Wess-Zumino terms are modified when the brane propagates in a background with a non-
zero Romans mass parameter. Furthermore, we show that for non-zero mass parameter the
brane creation process, when one brane passes through another brane, gets generalized to
brane configurations that involve exotic branes as well.
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1 Introduction

Branes as extended objects in string theory are described by world-volume actions that
typically consist of kinetic terms (such as Born-Infeld actions) related to the propagation
in ten-dimensional space-time and a Wess—Zumino-type term that contains the pull-back of
the space-time field coupling to the brane and additional world-sheet fields. For instance,
for a D(p — 1)-brane with world-volume ¥, this coupling is of the form

SWZ = /Zp [e}—zc]p-form ’ (11)

where F» is the (abelian) field strength of the world-volume gauge field (corresponding
to open fundamental strings ending on the brane) and C represents all Ramond-Ramond
potentials.

As T-duality (and also U-duality) acts on the space-time potentials in the theory, one
can use this to determine the spectrum of branes in various dimensions along with the
space-time potentials they couple to [1-12]. T-duality leaves the string coupling constant
gs invariant and therefore it is often useful to group branes together in T-duality multiplets
at fixed order of non-perturbative behaviour in gs. With this we mean that the mass of the
brane scales as g; @ for various natural numbers o = 1,2, .... The case a = 1 corresponds to
D-branes while the higher « cases correspond to NS-branes and more exotic branes [3,10].



While the organisation of branes according to T-duality is well-understood, one typically
writes separate world-volume actions for each of them. In the present paper, we shall strive
to give a unified description of their Wess—Zumino terms for the various types of branes
with the same g @ for each «, thereby extending and systematizing previous work [13-16].
An important ingredient of our work will be the employment of the double field theory
formalism (DFT) [17-25].

In DFT, the T-duality symmetry O(D, D) is made manifest as a space-time symme-
try at the cost of doubling the number of space-time coordinates. The doubled set of
coordinates are denoted by XM = (2™, %,,) with 2™ sometimes referred to as momen-
tum coordinates and Z,, as winding coordinates. The indices m take D different values
and XM forms a 2D-dimensional fundamental representation of O(D, D). The doubling
of coordinates is a spurious operation and one must impose the O(D, D) invariant section
constraint

™Yoy @ oy =0 (1.2)

when acting on any pair of fields on the doubled space. Here, n™¥ denotes the O(D, D)-
invariant metric of split signature.

The section condition (1.2) can be solved explicitly by ‘choosing a section’, i.e., by
making a maximal choice of coordinates among the X on which the fields may actually
depend. This could be done, for instance, by requiring that nothing depends on the winding
coordinates Z,,. In this way one goes back to the usual space-time formulation. However,
O(D, D) acts on the coordinates X™ and will therefore transform one choice of section
into another.

Writing down Wess—Zumino terms in DFT requires not only to consider an embedding
of the brane in doubled space-time together with appropriate space-time fields in the dou-
bled space-time but also a choice of section. The picture we shall develop in the present
paper is that, while T-duality in standard string theory often changes the dimensionality of
a brane, one should think of the brane in DFT as an object of fixed dimensionality in the
doubled space. The ‘apparent’ dimensionality of a brane is then determined by the overlap
of the embedded brane with the solution to the section constraint. In other words, one
can use O(D, D) to rotate world-volume directions out of section and thereby decrease the
apparent dimensionality of the brane (or the other way around). In this way, the world-
volume integral in (1.1) is of fixed dimension for all branes of fixed type g;®. One can also
use T-duality to rotate some of the ‘standard‘ transverse directions into the winding space
with the effect of creating isometry directions in the usual momentum space. This is for
example the view we take on relating the NS5-brane to the Kaluza—Klein monopole.

Using this philosophy, we can write a master Wess—Zumino term for all branes with
fixed a. The particular choice of a given brane can be implemented by fixing a ‘brane
charge’ as will be more transparent when we write down the various Wess—Zumino terms.
The type of brane charge depends on the dimensionality (in doubled space) of the brane
along with the DFT potential it couples to. In this work we will only deal with DFT
potentials that have a standard brane representative in ten dimensions in their U-duality
orbit. In table 1, we summarise the various DFT potentials for the different values of «



o Potential Object

1 C, (spinor) D-branes

9 DMNPQ _ p[MNPQ] NS-branes

3 | ErmnNa (gamma-traceless tensor-spinor) | exotic branes containing S-dual of D7
4 Fl\th My = F[Ll... Mo] (self-dual) exotic branes containing S-dual of D9
4 FMiMa,NiN2 (4 2)-tensor) exotic branes

4 FMuM7Nu (7 1)-tensor) exotic branes

Table 1: Double field theory potentials at order g; ¢ for « = 1,...,4. BPS branes only
couple to the longest weight components of these potentials [9,11]. The last two potentials
do not have a standard brane representative in ten dimensions in their U-duality orbit and
will not be considered in this work.

that couple to branes. The O(D, D) representations of these potentials can be derived
using F1; [26]. They can also be extracted from [27-29]. Describing gauge-invariance can
require the introduction of additional O(D, D) representations [28,29] that partially follow
from Ej; [30,31] and completely from its tensor hierarchy algebra extension [31-33].

Our analysis here is restricted to writing Wess—Zumino terms for « > 0; the case
a = 0 of the fundamental string and the Kaluza—Klein wave is excluded here since it is not
possible to write a Wess—Zumino term preserving Lorentz symmetry on the world-volume
and O(D, D) symmetry at the same time. The standard fundamental string sigma model
consists of the kinetic term (Nambu-Goto) involving the metric g,,, and the Wess—Zumino
coupling to the two-form B,,. Combining the two into the generalised metric Hy;n of
DFT mixes these two terms. One can write the equations for the string and the particle
as a duality equation [19] but the action for this necessarily breaks Lorentz symmetry on
the world-sheet. For this reason and because of the existing literature [19,34] we begin our
analysis with @ > 0. For a > 2 branes we shall also restrict mainly to a linearized picture
for simplicity as this already brings out the most important features of our analysis.

This paper is structured as follows. In Section 2 we first construct T-duality covariant
and gauge invariant Wess—Zumino terms for the T-duality orbits of D-branes for the full
O(10,10) DFT. We also discuss the effect of a non-zero Romans mass parameter. In
Section 3 we do the same for the NS5-branes. Next, in Section 4 we define charges and
schematically write the covariant Wess-Zumino terms for T-duality orbits for the branes
with g2 and g;*. Here, we restrict ourselves to linearized O(10,10) DFT. In Section 5 we
make some concluding remarks. For the convenience of the reader we have included three
appendices. In Appendix A we summarize our notations and conventions. In Appendix
B we provide some details of how to derive the gauge transformation of a particular DFT
potential. Finally, in Appendix C we provide the Scherk-Schwarz ansatz for the NS-NS field
DMNEL which incorporates Romans mass parameter in DFT. We show that the chosen
ansatz leaves no dependence on the dual coordinate in the 7-form field strength.



2 D-brane Wess—Zumino terms in DFT

In this section we construct Wess—Zumino (WZ) terms for D-branes in DFT. In particular,
in the first subsection we consider the case of vanishing Romans mass, while in the second
subsection we discuss the effect of turning on such mass parameter. In both subsections,
before studying D-brane WZ terms in DFT, we will first review how to construct a gauge
invariant WZ term for a D-brane coupled to supergravity in ten dimensions.

2.1 Massless type IIA and type 11B

The Ramond-Ramond (RR) potentials that are sources of D(p — 1)-branes are p-forms
Cp, with p even in type IIB and odd in massless type IIA supergravity. We consider a
democratic formulation, in which both the electric and magnetic potentials are included.
In particular, in type ITA the potentials C'; and C5 are dual to C; and C3, while in type
IIB Cg and Cg are dual to Cy and C5y, while Cy is self-dual. On top of this, we also have
a potential Cg in ITA and CYp in IIB, that are sources for D8 and D9-branes respectively.
We begin with the case of zero Romans mass; massive supergravity will be treated in
Section 2.2.

We first review the standard construction of D-brane WZ terms [35-38]. Let H3 = dBs
be the field strength of the Neveu—Schwarz (NS) 2-form Bs. Hs is gauge-invariant with
respect to 0 Bo = dX¥1. The field strengths of the RR potentials are

Gp+1 = de + Hs A Cp_g 501, = d/\p_1 + H3 A /\p_g , (2.1)

where we have also shown the gauge transformations, with gauge parameters A, that leave
these field-strenghts invariant. The RR fields defined in this way are invariant under the
gauge transformations with parameter ;. In order to write a gauge-invariant W7 term,
one introduces a world-volume 1-form potential b1, and writes its field strength as

Fp = dby + By, (2:2)

where By denotes the pull-back of the ten-dimensional NS 2-form to the world-volume of
the brane.! In order for F to be gauge-invariant, b; has to transform under the gauge
parameter Y1 by a shift equal to the opposite of its pull-back on the world-volume:

by = -1 . (2.3)

The resulting gauge-invariant WZ term for a brane with charge ¢ is given by

q/ e"2NC = q/ drg e (&2 N Clgy o, - (2.4)
) b

P P

!Everywhere in the paper we will denote any supergravity potential and its pull-back with the same
letter. Given that we mainly deal with brane effective actions, we assume that this will not cause any
confusion. Capital Roman letters refer to space-time fields (or their pull-backs) and small letters to world-
volume fields.



In this expression, the integral is over the world-volume coordinates €%, a =0,...,p — 1,
and one has to expand ¢”2C in forms of different rank and pick out all terms that are
p-forms. To prove gauge invariance, one first integrates by parts the term that arises from
the d\ part of the variation of C'. Next, one can show that up to a total derivative this
contribution cancels against the Hs A A terms. To prove this cancelation, one needs to use
the fact that eq. (2.2) implies

dFes = Hs | (2.5)

where H3 = dB> is the pull-back on the world-volume of the NS 3-form field strength.

The aim of this section is to write down the WZ term for D-branes in a DFT-covariant
way. In order to construct the DFT-covariant WZ term, we first review how the Ramond—
Ramond potentials are described in DFT as a chiral O(10,10) spinor C, [27,39]. The
0(10,10) Clifford algebra is given by

0 1
{Tm, T} = 2nun NMN = (1 0) , (2.6)

It can be realised in terms of fermionic oscillators as
{T, I} = {I™1T"} =0, {Th,, "} = 26, . (2.7)

The split of indices here corresponds to an embedding of GL(10) C O(10,10). We should
think of this as choosing the solution to the section condition in terms of the usual mo-
mentum coordinates . We also observe that

[ma-mp F[ml . Fmp] =T™ ... (2.8)

as all the gamma matrices with GL(10) upstairs indices anti-commute. More details on
the O(10, 10) spinors are collected in Appendix A.

Using the relation (I'")T = T',, one observes that the anticommutators (2.7) realise
a fermionic harmonic oscillator.? The spinor representation is then constructed from the
Clifford vacuum |0) satisfying

I'n0) = 0 for all m. (2.9)
By taking the conjugate of this equation we also conclude that
Or™ =0 for all m. (2.10)

One then writes the RR DFT potential as?

1 mi...m
¢ = Zacml...mpr e p|0>7 (211)

2The creation and annihilation operators are not normalised canonically but this normalisation is more
convenient for writing conventional O(10, 10) spinor bilinears.

3In this paper we always denote the DFT potentials with the same letter as the corresponding 10-
dimensional potentials. From the index structure and the expressions in which these potentials occur it is
always clear whether one is referring to the former or the latter. We therefore assume that this notation
does not lead to confusion.



which encodes the Ramond-Ramond potentials C), of both the type IIA and type IIB
theory, depending on whether one sums only over odd p or over even p, corresponding
to a fixed chirality of C. In this paper we fix the chirality of C to be positive, hence one
recovers the right sums by imposing that in the ITA case the chirality of the Clifford vacuum
is negative and in the IIB case it is positive. A T-duality transformation corresponds to
flipping the chirality of the Clifford vacuum.

We now discuss the gauge transformations of C. Defining a dressing by the NS 2-form
through the Clifford element

lp rmpn 1 1
Sp=e 2P = SpdSE! = S 0m Byl T TY = < Hopp I, (2.12)

where @ = TM@); with the solution to the section condition (1.2) that ™ = 0, one can
write the gauge transformation as®

6C = PN+ SpdSZIN (2.13)
where the gauge parameter
10
A=) axml,,_mprml---mﬂm (2.14)
p=0

is a spinor of opposite chirality compared to C. The gauge-invariant DFT RR field strength

is then
10

G =JC + SpdSz'C ="

p=0

1
HGml...mPle'"mplm : (2.15)

It is a spinor of opposite chirality compared to C'. This field strength is also invariant
under the ¥; gauge transformations of By due to (2.12).

We want to use this notation to derive the form of the WZ term of a D-brane effective
action in DFT. We will first derive the WZ term for the 9-brane in IIB, and we will then
determine all the other effective actions by T-duality. The world-volume of the D9 coincides
with the ten-dimensional space-time with (momentum) coordinates ™. This means that
the world-volume coordinates £* can be chosen to coincide with the coordinates . We
will only write the brane action in such adapted coordinates.” In view of (2.4), we also
have to include the world-volume gauge field b,, in the discussion. Similarly, we define
its field strength as in eq. (2.2), in terms of which we define the gauge-invariant Clifford
algebra element on the world-volume

1 mi1n
Sy = 2/mn T (2.16)

“The DFT RR potential C is related to the RR potential x of [27] by eq. (C.1). A more detailed analysis
of the relation between the two bases in given in appendix C.

5Not using this kind of static gauge would require also introducing a doubled world-volume with asso-
ciated section constraint.
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Figure 1: D-branes in doubled space. All branes have a ten-dimensional world-volume and
the intersection of this with the ten physical momentum dimensions gives the apparent
dimensionality of the world-volume. T-duality along an isometry direction can move part
of the ten-dimensional world-volume between momentum and winding directions.

Acting with Sx on C one obtains an expression whose gauge transformation is
§(SF'C) = S7'6C = SZ'IN+ SF' SpdS5' A = (S7')N) (2.17)

upon using the relation

SFdSzt = SpdSyt . (2.18)

that is a consequence of eq. (2.5). Relation (2.17) shows that S]__-lC varies into a total
derivative just like (2.4). We note that by the analysis of [40], we can extend the operator
@ = TM9y; to range over the full doubled space which is here achieved trivially by the
choice of section @™ = 0.

Using these variables, we can rewrite the Wess—Zumino term (2.4) for the case p = 9
as

Swy = /dlof Q157'C (2.19)
where

A q

Q1o = 2T0<0|F0 g . (2.20)

As already mentioned, in this expression the world-volume coordinates coincide with the
coordinates ™. We want to show that the other D-branes arise from the action of T-
duality on this expression. The effect of T-duality is to rotate the charge of the brane so
that its world-volume starts invading the & space. This is what we are going to discuss in
the following.

To understand to what extent (2.19) can also be used for the other D(p — 1)-branes
we consider the effect of a T-duality transformation along a world-volume direction of the
D9-brane, leading to a D8-brane. We will be describing the T-duality in a way where we
still think of the momentum directions =" as the physical ones and keeping the form of
C as in (2.11) but rather transform the brane by acting on its charge. If the T-duality
transformation is performed along the 9-direction, say, then the brane no longer extends
along the momentum direction z” but rather along the winding direction #g. This is shown
in Figure 1. For T-duality Zg is an isometry direction, which also follows from the strong
constraint. Let us denote the charge obtained after T-duality by Qq. It equals

— q —
Qo = s (0T T = Gyl (221)



which shows how T-duality acts on the charges. This transformed charge has the property
that

@95]_:10 - [6}—2 A O]Q—form on world-volume (222)

and so projects to the correct RR potential that is appropriate for describing the WZ term
of a D8-brane. While the charge (2.20) is invariant under the SO(1,9) of the momentum
directions, the charge Qg is only invariant under its subgroup SO(1,8).

The WZ term obtained by T-duality of (2.19) is thus given by

Swz = / d"¢QyS7'C = / d°¢Qy S5 C. (2.23)

This integral is initially over ten dimensions. But, as argued above, the direction xg that
is now part of the ten world-volume directions is an isometry and hence nothing in the
integral depends on it. We can thus perform this integral and, for a proper normalisation,
simply obtain the correct nine-dimensional world-volume integral for the D8-brane.

The overall picture following from these considerations is that the general D-brane
Wess—Zumino term is given by

Sl — / 4 Q,57'C (2.24)

and thus always involves an integral that is formally ten-dimensional. It is understood here
that @p consists of the O(10,10) gamma matrices that characterise the intersection of the
ten-dimensional world-volume with the ten physical momentum directions. We must think
of any D-brane as a 9-brane, where some of its world-volume directions have invaded the
winding space. The information of how many directions are momentum and how many are
winding is carried by the charge ),, and T-duality acts on this charge.

2.2 Massive type ITA supergravity

We now return to the issue of allowing the Romans mass to be different from zero in type
ITA supergravity. The Romans mass modifies the field strengths (2.1) and their gauge
transformations as follows [41]:

Gpi1 = dCy+ HyACp_o+me P2 6Cy = dN\p—1 + H3 A Np_z +mE1 Ae P2, (2.25)

where we recall that X1 is the gauge parameter of By. As a consequence, the gauge-invariant
WZ term takes the modified form

/ (€7 A C+mby A (e — 1)), (2.26)

where gauge-invariance requires the inclusion of the additional Chern—Simons term [42,43],
and fo = db; is the field-strength F5 of b; without the inclusion of By. The Chern—Simons
term has the property that

d (bl A fi(efz - 1)> =el—1=)" %fﬁ“. (2.27)

2 E>1



We want to recast the above expressions within DFT. The closure of the gauge trans-
formations (2.13) actually allows for a mild violation of the strong constraint [40]. The
procedure is similar to a generalised Scherk—Schwarz mechanism, in which the RR DFT
potential becomes [40]

c 0+%53j1r1|0>. (2.28)

Here, we have introduced a mild linear Z; dependence; the choice of Z; is completely
arbitrary and nothing depends on choosing this particular direction. The field strength
associated with this is then

G = JC + SpPSz'C + mSp|0). (2.29)

This field strength is gauge-invariant if the RR potentials C' also transform with a Stiickel-
berg shift under the By gauge parameter Y1 as [40]

520 = mSBEum’0> . (230)
This can be seen by
05G = md(SpE,I™)|0) + mSpdSE' Sp,I™|0) — mSpd,E,IT"[0) =0  (2.31)

upon using the identity
SpdSy' Sy = —@Sk (2.32)

together with @%,,I'"™ = 9,2, ™I, Equations (2.29) and (2.30) reproduce the transfor-
mations (2.25).
The WZ term (2.26) can then be written in DFT by replacing S]__-IC' in (2.24) by

1 1
-1 -1 a a
SC — S7C +m—2n CES] 1)!ba1fa2a3 c++ fay 10, T - T(0) (2.33)

where n = 21,

3 NS-brane WZ terms in DFT

In this section we discuss how the NS5-brane WZ term and its T-dual partner branes
are written in DFT. As in the previous section, we first discuss the massless IIA and IIB
theories, and we then discuss the WZ term in the massive IIA theory.

3.1 Massless type ITA and type IIB

We first write down the WZ term of the NS5-brane in supergravity, for both the massless
ITA and IIB theory, as done in [7]. The NS5-brane is electrically charged under the 6-
form potential Dg, which is the magnetic dual of the NS 2-form potential By. The gauge
transformation of Dg in the massless ITA theory is given by

6D = d=Z5 4+ Ao Gg — Ay NGy + Ay AN Go (3.1)

10



and the corresponding gauge invariant field strength reads
H; =dDg — Ci NG +C3 NGy — Cs NGy . (3.2)
In the IIB theory, the gauge transformation is given by
0D =d=5 + M NG5 — A3 ANGs + A5 AGy (3.3)
and the field strength reads
H; =dDg — Co NGs +Cs NGz — Cs NGy . (3.4)
To show the gauge invariance of H7 in both theories one has to use the Bianchi identities
dGpy1 = —H3 A Gpy (3.5)

which follows from eq. (2.1). To construct the WZ term, one introduces the world-volume
potentials c,—1, whose gauge invariant field strengths are

gp = dcp—1 + Cp + HzANcp_3 (3.6)
satisfying the Bianchi identity
dgp = Gp+1 — H3 A gp_g . (37)

Again, as in the previous section, in these expressions it is understood that all the su-
pergravity fields are pulled-back to the six-dimensional world-volume of the NS5-brane.
In order for the world-volume field-strengths G to be gauge invariant, the world-volume
potentials have to shift by the opposite of the pull-back on the world-volume of the RR
gauge parameters,

5Cp_1 = _>\p—1 . (3.8)

We now want to use these ingredients to construct gauge-invariant WZ terms. One
finds that the WZ term for the NS5-brane in the ITA theory is given by

/[DG—gl/\Cs—i-gg/\Cg—gs/\Cl] . (3.9)
Similarly, the WZ term in the IIB theory reads
/[DG —GoCs+GaNCy— Gy NCo] . (3.10)

In this latter expression one needs the auxiliary 0-form Gy, that is not the field-strength of
any world-volume potential but satifies the Bianchi identity

Gy = G4 (3.11)

which is a particular case of eq. (3.7) and whose solution is simply Gy = Cp. In the I1IB
case the world-volume fields are a vector ¢; and its dual c3.

11



We wish to discuss what happens to this brane under T-duality. If the T-duality is
along the world-volume, this maps the NS5-brane of one theory to the NS5-brane of the
other theory. On the other hand, if the T-duality is along a transverse direction, the NS5-
brane of one theory is mapped to the KK monopole of the other theory. This generalises if
one keeps performing T-dualities in transverse directions. In particular, a further T-duality
leads to the 53 brane of [44], and proceeding this way one obtains the non-geometric branes
53 and 53. Denoting with 53 and 53 the NS5-brane and KK monopole, this is summarised
by the chain

59 < 53 ¢ 53 ¢+ 53 <> 5y . (3.12)

We want to reproduce this behaviour under T-duality from a DFT formulation of the WZ
term of the NS5-brane. In order to achieve this, we first discuss how the Dg potential can
be seen as a particular component of a DFT potential.

The O(10,10) potential that contains Dg is the field DMNP® in the completely anti-
symmetric representation with four indices. In particular, Dg is the potential that results
from contracting the component with all upstairs indices D™*? with the ten-dimensional
epsilon symbol. The other components D™, D™" .. Dy, ppg and Dyyppg correspond in-
stead to the mixed-symmetry potentials D71, Dgo, Dg3 and Dig 4, associated to the 53,
5%, 5% and 5‘2l brane respectively, together with the potentials Dg, Dg 1, D1g2 and Dqo.5
As shown in [28], the action for the potential DMNP@ arises from dualising the linearised
DFT action, but this can only be achieved if one also introduces the additional auxiliary
potentials DM¥ (with indices antisymmetrised) and D. The fields DMNP Q and D appear
in the Ey; while DM¥ is only part of its tensor hierarchy extension. The field equations
contain all these potentials via the field strengths

MNP _ 8QDQMNP 4+ 39IM pN P :
HM = oyDNM L M p | (3.13)

that are invariant under the gauge transformations
MNP =RMNP M=NP
SDMNPQ _ 5, Z2RMNPQ | 45M=NPQ]

SDMN — gpEPMN 4 9plMzN] (3.14)
6D = 9y =M

We now want to see whether one can add to the field strengths in eq. (3.13) non-linear
couplings to the RR potentials. More precisely, we want to add to HMN* and HM the
terms GT'MNPC and GTM(C, and to the gauge transformations of DMNFPQ  DMN and D
the terms GTMNPQ )\ GTMN X\ and GA.” Tt turns out that this is impossible: there is no set
of coefficients for these terms that gives a gauge invariant field strength. The terms that

SHere and in the rest of the paper all mixed-symmetry potentials belong to irreducible representations
of SL(10,R). This means that for instance D71 is the traceless part of D™"P,, while Ds is its trace, and
similarly for the other cases. The potentials coming from traces of the DFT potential do not couple to
branes.

"The conventions for the O(10, 10) spinor bilinears are discussed in Appendix A.

12



cannot be cancelled are the ones in which either GG or A are hit by a derivative carrying a
non-contracted index. This means that, because of the section condition, such terms vanish
as long as the corresponding index is upstairs. The outcome of this analysis is that one can
only write down gauge invariant couplings to the RR potentials for the field strength with
all upstairs indices H™"P, which gives the field strength H7 of Dg by contraction with an
epsilon symbol. This is consistent with the fact that only for Dg the dualisation procedure
works at the full non-linear level.

Keeping in mind the analysis above, we can write down the gauge transformations of
DMNPQ

SDMNPQ — gpmRMNPQ 4 GPMNPQ )\ (3.15)
and study how the field strength
HMNF — 9o DOMNP L GrMNP (3.16)
transforms.® Using the Bianchi identity for G,
JG = —SpPSz' G, (3.17)

which can be derived using eq. (2.32), one can prove, as anticipated, that the variation
of HMNP vanishes up to terms in which the index of the derivative is a free index. In
Appendix B we show that for the components D™"P? and H™" eqs. (3.15) and (3.16)
reproduce egs. (3.1) and (3.2) in the ITA case and (3.3) and (3.4) in the IIB case.

We now want to use these results to write WZ terms. To do this, we want to get the
DFT equivalent of the analysis performed at the beginning of this section. First of all, we
observe that once one identifies the six world-volume directions with six of the z’s, there
remains an O(4,4) subgroup of O(10,10) that rotates the transverse directions in DFT.
More precisely, the brane breaks O(10,10) to O(6,6) x O(4,4). The O(10,10) gamma
matrices decompose as

Ly = (Fa, '), (3.18)

where I'4 are the O(6,6) gamma matrices, I'* is the O(6,6) chirality matrix and Iy, are
the O(4,4) gamma matrices. The RR spinor C' belongs to the spinor representation 512g
which decomposes as

5129 = (85,325) & (8¢,32¢) . (3.19)

The conjugate 512 representation decomposes instead as
512¢ = (85,32¢) @ (8¢,325) . (3.20)

The world-volume potentials describing the D-branes ending on the NS5-brane collect in
the spinor ¢4 in the 512, transforming as

Sc=—A\. (3.21)

8Given the analysis above, there is no need to consider the parameter Z¥NT  the potential and

its variation in HM™F because for the component H™"P these terms vanish due to the section condition.

D]\/IN
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One can define a gauge-invariant world-volume field strength G as

G =dc+C+ SpPSz'c, (3.22)
where @ = I'*9,. The field strength G satisfies the Bianchi identity

9G = G — SpPSz'G . (3.23)

One can now try to write down the DFT fields that occur in the Wess—Zumino term using
the transverse gamma matrices as

DMNPQ | grMNPQo (3.24)
whose gauge transformation is
5 <DMNPQ + CFMNP@(J) = GrMNPQ) L GryNPQgy | GrYNPQG. A1) | (3.25)
Integrating by part the second term we get up to a total derivative
GTVMNPQY _ 9 GTRTMNPQ) _ gg@GT MNPy L GrYNPQgG 951y (3.26)

Using eq. (3.23) one can show that the second term cancels with the first and the last term
up to terms containing a derivative with respect to a free index. Similarly, the third term,
which also contains a derivative with respect to a free index, does not cancel. We therefore
must impose that these terms vanish. Decomposing the index of the derivative in upstairs
and downstairs indices of GL(10,R), this happens either because of the section condition if
the free index is upstairs, or because the free index corresponds to an isometry direction if
the index is downstairs. In the case of the NS5-brane we clearly are in the former situation,
because as we already mentioned this corresponds to the component D4,
We now write the WZ term of the NS5-brane as

Swz = / &€ Qi polDMNTQ 1 GriNPecy (3.27)

Although the expression appears to be covariant under O(4,4), we should remember that
it is only gauge invariant for the charge component Q54 with all indices down, corre-
sponding to the NS5-brane. In particular, expanding the bilinear in a way analogous to the
analysis in Appendix B one can show that this expression gives either eq. (3.9) or (3.10),
according to the choice of the chirality of the Clifford vacuum. If one performs a T-duality
along a world-volume direction, this apparently does not do anything to eq. (3.27), but this
is actually not true, because T-duality is flipping the chirality of the Clifford vacuum, so
that the NS5-brane of one theory is mapped to the NS5-brane of the other theory. In what
follows we will discuss what happens if one instead performs a T-duality transformation
along the transverse directions.

Starting from the charge Q554 and T-dualising along ¢, one ends up with the charge

Qmap?. This corresponds to the WZ term for the potential Dﬁmﬁq, but using eq. (3.15)
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one can show that the WZ term (3.27) is no longer gauge invariant, and more precisely
the non-vanishing terms in its gauge variation contain derivatives with respect to ¢, which
is no longer zero using the section condition because § is now a downstairs index, i.e., the
derivative is with respect to a coordinate x. This means that one has to assume that the
27 is an isometry direction, and if one does that, then eq. (3.27) with this charge gives
the gauge invariant WZ term for the KK monopole. It is important to observe that from
the point of view of our analysis there is no difference between the KK monopole with
one isometry along 29 and the NS5-brane with transverse coordinate Zg. The condition
that the 27 is isometric, which means that the fields do not depend on such coordinate,
is equivalent to the condition that for the rotated NS5 the coordinate z¢ is no longer a,
transverse coordinate because is is replaced by Z4, on which nothing depends because of the
section condition. This can be generalised if more than one index of the charge is upstairs.
All upstairs indices correspond to isometry directions for the brane. The final outcome of
this analysis is that in general we can interpret any o = 2 brane as an NS5-brane where
some of the transverse directions have invaded the Z space.

3.2 Massive type ITA supergravity

We now finally come to the issue of the Romans mass Gy = m. We first discuss how the
gauge transformation of Dg gets modified and how this induces additional couplings in the
WZ term. Then we will move on to discussing how this is realised in DFT. When m # 0,
the gauge transformation of the 6-form potential Dg becomes

6Dg = d¥s5 + Gehog — Ga ANy + Ga AN — Go A —mAANB2 —mE  AC NP2, (3.28)

where the field strengths G are defined in eq. (2.25). The gauge invariant field strength is
given by

H; =dDg — Gg ACy + Gy A C3 — Gy ACs 4 Gy Cr +mC AeP2 . (3.29)

Furthermore, one finds that the world volume gauge invariant field strengths are given by
(here b is the world-volume vector, the one that occurs in Fo = db; + Bs)

G1 = dcog + C1 + mby,
1 1
Gs =dcy + Hz cg+ Cs — §mb1 N By — §mb1 A Fo, (330)

1 1 1
g5:dC4+H3Acz+C5+émblAB§+6mblABQAf2+6mb1Af§.

The gauge transformations of the world-volume fields with respect to the bulk gauge pa-
rameters are given by

(500 = —)\0 s

1
dcg = — Ao + §m21 ANby, (3.31)

1 1
504:—)\4—§m21/\b1/\32—émEl/\ln/\]:z-
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One can check that with these rules the field strengths in eq. (3.30) are gauge invariant.
We find that, in order to obtain a fully gauge invariant WZ term, one has to consider also
the world volume 6-form potential cg whose gauge transformation reads

1 1 1
dcg = —Ag + gmzl Abt A 322 + Emzl ANbi A By AN Fo + ﬂmzl Aby A f22 . (3.32)

Formally, one can show that this transformation is exactly the one that would make the
field strength

1
Gr = deg + Hy \ ey + Cr — omby A [BS + B2 A Fy + By A F2 4+ F3 (3.33)

gauge invariant.”
Putting everything together, we find that a gauge invariant WZ term is given by

/[Dﬁ—g1/\C’5+g3/\C’3—g5/\C'1—mc/\632—mc/\e]:2] . (3.34)

To show gauge invariance, one has to use the Bianchi identities
dG =G — H3 NG —me 2 (3.35)

which can be proven by direct computation from egs. (3.30).

We now want to recover these results in DFT. In Appendix C we show that the field
strength HMNP in the presence of the Romans mass arises from a generalised Scherk-
Schwarz ansatz as in eq. (C.11). The final result is eq. (C.13), which can be written, after
performing the field redefinition of (C.1) as

HYNP — gy DOMNP L GPMNPG L T MNP 5510y (3.36)

which reproduces eq. (3.29). The gauge transformation of the potential DMNPQ g
SDMNPQ _  ,=RMNPQ | GrMNPQ )
— mATMNPRG 10y — mEgpCTEMNPR gL 10) | (3.37)
reproducing eq. (3.28).

To write down the NS5 WZ term for m # 0, we need the DFT expression for the
world-volume field strengths in eq. (3.30). One finds

G=dc+C+SpPSp'e
3 1 N—
+mbal Y ¥ (S(N Z gl o) ) 0) (3.38)
N=0 n=1

9This is only formal because in 6 dimensions this field strength vanishes identically.




where with SgL) we mean the term at order n in the expansion of S in terms of B (and
similarly for Sr). The world-volume field strength G satisfies the Bianchi identity

9G = G — SpPS3'G — mSx|0) . (3.39)

Using these results, one finally finds the following expression for the WZ term:
Shp" = /d6§ QuixpoDVNTQ 4 GrINPRC — imer NP5, 1 Sp)j0)] . (3.40)

Starting from this action with charge Qynp4, corresponding to the NS5-brane in the pres-
ence of a Romans mass parameter, one can obtain the other WZ terms in the T-duality
orbit precisely as discussed in the massless case.

4 WZZ term for other exotic branes in DFT

In the previous two sections we have shown how the WZ terms of D-branes and NS-branes
can be written in a DFT-covariant way. The WZ term is contracted with a charge, and
T-duality corresponds to a rotation of the charge in DFT. We have seen how for the case of
D-branes a rotation of the charge gives a rotation of the embedding coordinates in double
space. As a result, we can think of any D(p — 1)-brane as a D9-brane in which 10 — p
world-volume coordinates invade the tilde space and thus become isometry directions. In
the case of NS-branes, T-duality along the transverse directions also rotates them in tilde
space, and thus for instance a KK monopole can be thought of as a NS5-brane with one
direction along .

In this section we discuss additional branes, that are the S-dual of the D7-brane and the
S-dual of the D9-brane in the type IIB theory. In the first subsection we discuss the S-dual
of the D7-brane. This brane has a tension scaling like g§3, and it is related by T-duality
to a chain of exotic branes as discussed in [45]. In the second subsection we discuss the
branes related by T-duality to the S-dual of the D9-brane.

4.1 « = 3 branes

In the IIB theory there is one brane with tension proportional to g;3, namely the 7-
brane that is the S-dual of the D7-brane, and that we denote as a 73-brane following the
nomenclature of [3]. This brane couples to an 8-form potential Eg, transforming with
respect to the gauge parameters of the potentials Cy and Dg, and this leads to a gauge-
invariant WZ term that couples to the corresponding world-volume potentials, that are
the 1-form c¢; and its dual 5-form ds [45]. All other BPS branes with tension g;3 can
be obtained by T-duality, and they are all exotic. The corresponding mixed-symmetry
potentials can be derived using the universal T-duality rules of [46], and the outcome is
that the full @« = 3 T-duality family is given by

Eg Ego Egs FEgg Egg
E9o1 E9a1 Ege1 Fosg1 (4.1)

Er022 Eio42 Froe2 Eios2 FEio,10.2
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in the type IIB theory and reads

Eg1 FEg3 kg5 Egrz
Eo11 E931 Eos1 Eor1 Egg1 (4.2)

Ei032 Eios2 Eior2 Eio2

in the type ITA theory.

From the point of view of DFT, all the above potentials are contained in the SO(10, 10)
representation given by an irreducible chiral tensor-spinor EM¥ | antisymmetric in the vec-
tor indices M and N, and with « labelling the 512 spinor components.'? The irreducibility
of the representation corresponds to the gamma-tracelessness condition

Ly EMN = 0. (4.3)

In [29] it was shown that this DFT potential is the exotic dual [47] of the DFT RR potential
C. As for the RR potential, one can decompose the tensor-spinor EM¥ in terms of the
10-dimensional potentials in eq. (4.1) or (4.2), introducing the Clifford vacuum |0) which
is annihilated by the gamma matrices I';,. To get all the space-time potentials, one has to
decompose each vector component of EMYN as in eq. (2.11), so that one gets

mime __ _Mi...Mmio ni..n
E =€ E EmS---m107n1~~~on p|0>
p
mi __ _Mi...Mm1o § ni...n
FE q = € Emg...mm,nl---"pvqr p‘0> (44)
p

_ _mi..m10 ni..np
Eqq =€ E EM1---mlo,N1---np7Q1qu ‘O>
p

As in the case of the RR potentials, the chirality of the potential is fixed, and the chirality
of the Clifford vacuum is the same as the potential in the IIB case and opposite in the ITA
case.

To get the WZ term for the branes charged under this potential in DFT, we first
have to determine its gauge transformation with respect to the gauge parameters and field
strengths of the o = 1 and o = 2 potentials. We will do this schematically to explain
how the analysis of the previous section can be performed in this case as well. We write
the gauge transformation with respect to the gauge parameters ZMNPQR and =MNP of
DMNPQ and the gauge parameter A of C as

SEMN — (2. YMNG + (H -T)MN) | (4.5)

0The decomposition of the tensor-spinor EMY with respect to GL(10,R) gives not only the potentials
in (4.1) or (4.2), but also additional potentials that we do not list because they do not contain components
that are connected by T-duality to components of the potential Fs. From a group theory viewpoint, these
representations correspond to shorter weights of the tensor-spinor representation [9,11]. The contribution
of these potentials is also ignored in eq. (4.4), because we will use that equation always contracted with
the brane charge, that automatically projects it on the components for which it is correct. One can also
check that eq. (4.4) restricted to these components satisfies eq. (4.3).
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where the products schematically denote all possible contractions that give the right index
structure and that are gamma-traceless. These transformations should in principle be such
that the field strength

KM =oyEMN +(D-DYMG 4+ (H-T)MC (4.6)

is gauge invariant, where again the expressions are schematic. What one finds is that
actually one can only impose gauge invariance for the IIB component Fg, while for all the
other components in IIB and all the components in ITA the section condition is not enough
to make the variation of the field strength vanish. This can be understood by looking at
the index structure in eq. (4.4): one gets terms with non-vanishing coefficient containing
derivatives with respect to the indices n and ¢, and clearly only in the case in which none
of these indices is present, which is the case of Fg, one gets gauge invariance. Otherwise
one has to impose that these indices correspond to isometry directions.

Following the same reasoning as in the previous section, one can write down a gauge
invariant WZ term for Fg in DFT. In this case the world-volume is eight-dimensional,
and the brane breaks O(10,10) to O(8,8) x O(2,2). Denoting with a,b,... = 0,....,7 the
world-volume directions, one introduces a world-volume potential d**°® with five indices,
that transforms as a shift with respect to the pull-back on the world-volume of the gauge
parameter of DMNPQ  We will not explicitly determine the terms containing the world-
volume potentials, and we schematically write the WZ term of the S-dual of the D7-brane
as

ST, = /d8§ QuuE"N +.] . (4.7)

The charge Q5 is a tensor-spinor, with the vector indices antisymmetric and along the
transverse directions. As in the case of the NS5-brane, although this expression is formally
0O(2,2) covariant, it is only gauge invariant for the charge Q5 that projects on the com-
ponent Eg of EMY with all the eight indices along the world-volume. This is the charge
of the 73-brane.

We can now analyse what happens if one performs a T-duality transformation. If one
performs a T-duality along a world-volume direction, say the direction a, the vector indices
of the charge are not modified, while the spinor part changes as in the RR case, resulting
in the new charge Q. . = I'*Qy5. This corresponds to the ITA brane charged under the
potential Ejg 1, which is the 6:())0’1). The a direction is an isometry direction. If, instead,
one performs a T-duality transformation along a transverse direction, say the direction 7,
then one has to consider both the action of T-duality on the vector and spinor indices,
resulting in the charge I'"*Qy;". From eq. (4.4) one deduces that this corresponds to the
ITA potential Eg 1 1, and the brane is 7%1’0).

By iteration, one finds all the other @« = 3 branes by T-duality starting from the
Ts-brane. This is summarised in figure 2, where one moves horizontally performing T-
dualities along the world volume and vertically performing T-dualities along the transverse
directions.
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O:())0,7) _ 1£())0,6) _ 2&0,5) _ 3:())0,4) _ 4:())0,3) _ 5£())0,2) _ 6i())0,1) _ 7§0’0)

Oélj) _ 1:())1,6) _ 2%1,5) _ 3i()’1,4) _ 4:(31,3) _ 5:(),172) _ 6%1,1) _ 7i()’l,O)

0&2,7) _ 1:(32,6) _ 2&2,5) _ 3;(‘)2’4) _ 4§’2,3) _ 5:(32,2) _ 6&2’1) _ 7;(‘)2’0)

Figure 2: Branes with g;2 with all T-dualities that act between them. The horizontal lines
represent T-dualities which act on the branes in the D-brane-like way, while the vertical
T-dualities act in the five-brane-like way. The first number in brackets in superscripts
denotes the number of cubic directions and the second denotes the number of quadratic
directions [3,10]. To make the pattern in the figure more transparent, the 7s-brane is

denoted with 7:(,)0’0) .

4.2 « =4 branes

The prime example of an o = 4 brane is the S-dual of the D9-brane. In the nomenclature
of [3], one denotes this brane as a 94-brane, that couples to the potential Fjg. The other
branes in the same T-duality orbit are (9 — n)(™0)-branes, where n is even in the IIB case
and odd in the ITA case. These branes couple to the potentials

Fio, Froz22, Fio4.4, Flo66, Flo88, F10,10,10 (4.8)
in the type IIB theory and

Fioa1 Fio3s Fio55 Fror,7 Fio9,9 (4.9)

in the type ITA theory [48].

The potentials in egs. (4.8) and (4.9) combine in the SO(10,10) field Fas, . ar,, sat-
isfying a self-duality condition. It is more useful to think of this self-dual ten-form as a
symmetric irreducible bi-spinor F,z. Using again fermionic Fock-space notation we can
then write!!

F= ™m0 B gmnpa gl O TE0) @10) , (4.10)
p

where the number of n and ¢ indices is the same because of the irreducibility of the
representation and we have used two separate chiral vacua on the right-hand side since we
are dealing with a bi-spinor. If the Clifford vacuum has the same chirality as F' one gets
the IIB potentials in eq. (4.8), while if the two chiralities are opposite one gets the IIA
potentials in eq. (4.9).

1This is not a complete parametrisation of the bi-spinor F' but it contains the potentials that are related
to the S-dual of the D9-brane.
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As in the a = 3 case, we want to write down the WZ term for the 94-brane in DFT. We
first schematically review the structure of the WZ term in the IIB case. The potential Fjg
varies with respect to the parameter Ay of the RR 2-form potential Cy, and with respect to
the parameter =7 of Eg. Therefore, the WZ term contains the world-volume potentials ¢;
and ey, that transform as a shift with respect to the pull-back of the corresponding gauge
parameters, and satisfy a duality condition on the ten-dimensional world-volume. This is
precisely the analysis that was performed and generalised to all dimensions in [48].

One can write down the gauge transformation of Fys, . ar, in DFT in a way analogous
to eq. (4.5), and then find out that if one tries to construct a DFT field strength analogous
to eq. (4.6), this will only be gauge invariant for the component Fjy. Again, the reason
is that the gauge transformation of the putative field strength contains derivatives with
respect to the indices n and ¢ in eq. (4.10), which do not vanish after imposing the strong
constraint. This means that for all the mixed-symmetry potentials in eqgs. (4.8) and (4.9)
one can only write down a gauge invariant WZ term after imposing that these directions
are isometries. Without writing down explicitly the extra terms that make the WZ action
gauge invariant, the WZ term for the 94-brane in DFT is

S9 — /dl%é[F +.., (4.11)

where the charge @) is a symmetric irreducible bi-spinor and the double-bar means Majorana
conjugation on both spinors. To project on the component Fig of F', this charge is made
of the symmetric tensor product of two Clifford vacua.

The 94 brane is space-filling, so one can only perform T-dualities along world-volume
directions. In particular, by T-dualising along the direction 9, the charge is rotated to

Q=T"erQ . (4.12)

Plugging this into eq. (4.11) one finds that this projects on the IIA potential Fig 1 1, thus
giving the WZ term for the 810 -brane of the type IIA theory. All the other WZ terms
are also obtained by further T-dualities.

The DFT potentials in the last two lines of table 1 correspond to o = 4 mixed-symmetry
potentials whose T-duality orbits of branes only contain exotic branes. The analysis per-
formed in this section can in principle be applied to these cases as well, but one finds that
there is no charge that can give a gauge-invariant WZ term if no isometries are imposed.
The same applies to all the other T-duality orbits of exotic branes with higher values of «.

5 Conclusions

In this paper we gave the explicit expressions for the WZ terms of different branes when
embedded into DFT. In ordinary field theory the WZ terms of standard (p—1)-branes
are part of effective actions that describe the dynamics of the moduli of the corresponding
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brane solutions in type IIA or type IIB supergravity. It would be interesting to see whether
the DFT WZ terms we constructed in this paper are part of DFT effective actions that
describe the dynamics of the moduli of certain brane solutions of DFT. Some of these
solutions have been investigated in the literature [49-51] where metrics in doubled space
are given. Calling our transformation of the brane as in Figure 1 ‘active’, the equivalent
viewpoint in those papers could be called ‘passive’ as it changes the solution of the section
constraint but keeps the brane in place.

The Wess—Zumino terms we have presented in this paper were in coordinates where
the world-volume was identified directly with some of the doubled target space coordinates
and thus in static gauge. Relaxing this gauge choice would require also introducing a
doubled world-volume in order to have a consistent breaking of O(10,10) to O(p+ 1,p +
1) x O(9 — p,9 — p), with an associated section constraint on the world-volume to reduce
to the eventual (p + 1)-dimensional world-volume. While writing the brane actions in
such a language appears more covariant from a T-duality point of view, we have restricted
in this paper to the simpler gauge-fixed formulation and leave an investigation without
gauge-fixing for the future.

One of the results of this paper, apart from the embedding of brane WZ terms into DFT,
is that we constructed the coupling of several exotic branes to a massive IIA background.
This resulted into a deformation of the results obtained for a massless background involving
the Romans mass parameter m. We first derived our results, using ordinary spacetime
potentials, for the D-branes and the NS5-brane in the IIA theory. !> Next, upon making
an approriate field redefinition, we embedded these results into DF'T deriving the massive
DFT couplings for the & = 1 and a = 2 branes. We only gave schematic results for the
branes with o = 3 and o = 4 that could involve a non-zero Romans mass parameter in the
ITA case as well.

It is well-known that the massive couplings in the brane WZ terms have an interpreta-
tion in terms of the anomalous creation of branes [53,54]. For the massive DO-brane, this
was pointed out in [55]. The WZ term in this case is given by

Smassivo DO—brane ™ / mbl ; (51)

where b; describes the tension of a fundamental string. As explained in [55], the presence
of this term implies that, if a DO-particle crosses a D8-brane, characterized by the Romans
mass parameter m, a stretched fundamental string is created, starting from the DO-brane, in
the single direction transverse to the D8-brane. Using the notation of [56] this intersecting
configuration is given by'?

DO: xX|—-—————————
D8: X |XXXXXXXX-— (5.2)
F1:. x|-———————— X

12The massive coupling of the D2-branes was given in [42]. We expect that the results for the NS5-brane,
after making some field redefinitions, are equivalent to the results obtained earlier in the literature [52].

13Each horizontal line indicates the 10 directions 0,1, ---9 in spacetime. A x (—) means that the corre-
sponding direction is in the worldvolume of (transverse to) the brane.
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A similar situation arises for massive NS5-branes in the type ITA theory. In that case
there is an additional coupling to a worldvolume 6-form cg that describes the tension
of a D6-brane. The strength of this coupling is proportional to m and appears in the
worldvolume action as

Smassive NS5—brane ™~ /mC6 . (53)

Thus, crossing a massive NS5-brane through a D8-brane a D6-brane stretched between
them is created. The corresponding intersecting configuration can be depicted as

NSH: X | X XX XX ————
D8: X |XXXXXXXX-— (5.4)
D6: X | XXXXX———X

By T-duality we can also obtain a process involving exotic branes from this. As an
example, consider two T-dualities on the last two directions in the (NS5, D8)— D6 config-
uration above. This leads to

530 X | Xxxxxx——Q®
D8: X |XXXXXXX—X (5.5)
D6: X |XXXXX——=X-—

The ® directions denote the special isometry directions of the exotic 53 brane. This shows
that exotic branes can also naturally appear in brane creation processes, as could be ex-
pected from the DFT analysis of this paper.

Let us also comment that these brane creation processes can be characterised in terms
of certain root geometries in Fy; [26]. Each of the individual branes appearing in the
processes above can be thought of as 1/2-BPS branes and these can be associated with
single real roots of E11 [5,57,58]. Therefore there are two real roots 31 and 3 corresponding
to the branes passing through each other and a third real root 83 corresponding to the
brane that is created in this process.

For instance, in the example (5.4) these roots could be chosen as

51 = (17273747576767 6747272) (NS5)
By = (1,2,3,4,5,6,7,8,5,1,4) (D8) (5.6)
Bs =(1,2,3,4,5,6,6,6,3,1,3) (D6)

Examining the roots for all the cases above leads to the following geometry of these
three roots, described by the matrix of their inner products

2 =2

Bi-Bj=1-2

0
2 0] . (5.7)
0 0 2

Therefore, the first two roots form an affine SL(2) system [59] while the last root is an
SL(2) orthogonal to it. This geometry is not sufficient to completely characterise the brane
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creation system: In all known examples the root (3 is moreover invariant under those (Weyl
group) U-dualities that keep the original branes in place and this characterises 33 uniquely.
It would be interesting to understand how this configuration leads to space-time solutions
of supergravity or of the Ej; equations proposed in [26,60].
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A Spinors of SO(10,10)

In this appendix we briefly summarise the notations we use for spinors of SO(10, 10)
throughout the paper. We denote with « and & the indices of the two chiral spinor
representations 5125 and 512¢. We take the SO(10, 10) gamma matrices I'™ in the Weyl

basis,
M 0 PM aB
M <(rM)d6 ( 0) ) . (A1)
They satisfy the Clifford algebra
0 I
{TM TN} = 2pMN =2 <H 0> . (A.2)

We also introduce the charge conjugation matrix A satisfying
AN @y)TA=Ty . (A.3)

This matrix is antisymmetric and has the form

A:<Agﬁ A(;ﬁ.) . (A.4)
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We choose a Majorana basis, in which all the Gamma matrices are real, and as a conse-
quence all the spinors can also taken to be real. In the basis we are using, the chirality

matrix is defined as
I 0
r, = <0 —H) . (A.5)

Splitting the fundamental SO(10,10) index of I'y; under GL(10,R) as TM = ('™ T,),
with m =0, ..., 9, we take these matrices to satisfy

T =1, . (A.6)

As a consequence, the matrix A can be constructed as

1

A:2—5

(T% —To)(Tr —Ty)---(T9 —Ty) . (A7)
The matrices A and I'y, commute, stemming from the fact that one can impose a Majorana
condition on Weyl spinors. To summarise, we take all the spinors to be real and chiral.
Given two generic chiral spinors 1 and ¢, one can construct the real bilinear

O, = VT AT, 00, (A.8)

If ¥ and ¢ have the same chirality, this is non-zero only for even n, while if they have
opposite chirality it is non-zero only for odd n. Moreover, from the antisymmetry of A and
eq. (A.3) we deduce the Majorana-flip properties

EPMan(Zs = _arMn--.erl/} ) (Ag)

which is non-trivial only if the spinors have the same chirality and n is even or the spinors
have opposite chirality and n is odd.

By looking at the Clifford algebra (A.2), one can see that the Gamma matrices I'" and
I';,, are proportional to the creation and annihilation operators of a fermionic harmonic
oscillator, and one can therefore construct a Majorana spinor representation by declaring
the Clifford vacuum |0) to be annihilated by the gamma matrices T'y,:

I'nl0) =0 forallm=0,...,9 . (A.10)

The spinor module is then generated by the I'"’s acting on |0). To construct a chiral
representation, we take the Clifford vacuum to be chiral, and we only act with an even
number of creation operators to construct a spinor of the same chirality of the vacuum, or
an odd number of creation operators to construct a spinor of opposite chirality. This can
be summarised as follows:

1 mi...m
Y= Z awmy..mpr b p‘0>7

peven

1
p=> H¢m1,,,mprm1---mp\o>, (A.11)

podd
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where i and ¢ have same and opposite chirality with respect to the vacuum, respectively.
The conjugate spinor is defined from a conjugate vacuum (0|, that is annihilated by
= (Pm)T7

ojr™ =0, (A.12)

as

_ 1
p=yTA=(0]A)" s, T (A.13)
p

where again the sum is either over p even or over p odd. We normalise the vacuum such
that
(0jo)=1 . (A.14)

B Gauge transformation of DMVKL

In this appendix we explicitly show that the gauge transformations (3.1) in the type ITA
theory and (3.3) in the type IIB theory follow from eq. (3.15), where the two different
options arise from the different choice of the chirality of the Clifford vacuum. We first
consider the case of the type ITA theory, in which both the field strengths G,4+1 and the
gauge parameters \,_; are even forms, and thus can be written as

3
1
G=Y o Gncama, T20),
=1
" (B.1)
1
A= Ay, T 20(0).
p=0 P

The sum has been truncated to include at most 6-forms because this is the highest rank
that can occur in eq. (3.15). Plugging these expressions into (3.15), one gets that the term
GT'™"P4 ) in the gauge trasformation of the component D™"? of the potential DMNP® ig
given by

GI™Pa ) = (B.2)
P(2P K miy...m2 mnpq 17'Nn1...N2q—2
O|p§_: Sap)iag — gyt Lo T TR D2 0) Gl oy A2

The only contributions come from p + ¢ = 3, that is

mn, 3 p(2p 1) DT
Grmneay — O\Z TN )|P0...F9 DA |0V Gl o A y.me
2° mnpgmsi...me 6! 6!
= ae <Gm1m6)\ - ﬁGml...m4)\m5m6 + melmQAmS"'m(s)' (B3)
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To show that this reproduces the transformation (3.1) up to an overall constant, we
recall that a differential p-form w® is defined as

1
w(p) — mel...mpd$m1 A Adx™ . (B4)

The wedge product of a p-form and a g-form is defined as

1
( ) A w( ) p'q (p)ml...mpw(q)nl...npdﬂfml Ao Adx™e . (B‘5)

The components of the product of such forms then read

(@ A w@) _ 9! e

mi..ng p!q! [ml...mpw(q)nl...np} . (B.G)

From this, by contracting with an epsilon symbol, it follows that eq. (B.3) coincides with
eq. (3.1).

The same analysis can be repeated for the type IIB case. A T-duality transformation
changes the chirality of the Clifford vacuum, and mantaining the same chirality for G and
A implies that the forms G,41 and A,—; in (B.1) now have odd rank.

To conclude this appendix, we briefly discuss the gauge transformation of the dual-
graviton potential D"""P, that arises from T-duality along q. We consider this in the type
ITA theory. One writes

GI™™ \ = (B.7)
p(2p—1)
mi...m mn ny...N2g—
0‘p§; 25 2p 2q — 2) I‘O . ..I‘g M 2 T Pq n--n2q 2‘O>Gm1...m2p)\n1...n2q,2~

There are two subtleties one faces when writing the explicit form of the above expression in
terms of p-forms in 10 dimensions. The first one is the non-zero trace part I'""P,, = I'"™",
which however will vanish upon contracting with the KK5 charge @,n,? in the Wess-
Zumino term. Since the KK5 monopole must be encoded by the same amount of degree
of freedom as the smeared NS5-brane, the trace part of its charge should vanish, i.e.,
Qmnp?” = 0. This allows one to replace I'""P, by I'"""PI', and always drop the trace part
from any further expressions. The same is true for the other non-standard branes of the
T-duality orbit. The second subtlety comes from the fact that the generalized field strength
Hrnp is gauge invariant for the KK5-monopole only when an isometry direction is present,
which we will always assume in what follows. The isometry direction will be chosen to be
along 2”. Taking all this into account we obtain that the A-dependent part of the gauge
transformation of D™"Pqy reads

3 yp(2p=1)

Z42p—1 )7 —2p)!

p=1

Dmn

mi...Mm —1Nni... n7—
! L szml---m2p719)\n1---n772p9’ (B'S)
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where none of the small Latin indices is allowed to take the value m = 9. The Hodge dual
of the above tensor is the mixed symmetry potential D7 1) with components defined as

5Dm1...m69,9 = €my...mgmnp9 5Dmnp9‘ (Bg)

Using non-coordinate notation this can be written as a 6-form with two additional indices
as follows

5D(6)9,9 = —3L9G(2) A Lg)\(6) + LgG(4) A Lg)\(4) — 3L9G(6) AN Lg/\(z). (B.lO)

Similarly, one can write the transformations of the gauge potentials that couple to the
53 and 53 branes thereby introducing 2 and 3 isometry directions, respectively. The first
term of the gauge transformation of the potentials, given by M=y, NPQ, always gives the
deRahm differential of the corresponding gauge parameter upon Hodge dualization.

C Romans mass in DFT and the a = 2 potential

In this appendix we show that the ansatz of [40] given in eq. (2.28) can be extended to the
DFT potentials DMNPQ and DMN to get the field strength H™"P in the presence of the
Romans mass parameter. The RR DFT potential x introduced in [27] and used in [40] is
related to the DFT potential C' defined in this paper by

x=Sz'C . (C.1)
In terms of y, the field strength G reads
G = Spdx (C.2)

and the gauge transformation of x with respect to the RR parameter A is given by

x =9\ . (C.3)
The gauge transformation and field strength of DMNF® given in eqs. (3.15) and (3.16)
become in terms of the potential x (up to a redefinition of the gauge parameter EMNPQR)
5DMNPQ — aRERMNPQ _ YFMNPQaA (04)

and '
HMNP _ aQDQMNP L xTMNPgy (C.5)

respectively. One can derive what the field redefinition (C.1) means in terms of the 10-
dimensional p-form potentials. This can be simply obtained by plugging the mode expan-
sion into (C.2) and (C.3), thereby obtaining

Sx=d\+dox G=eP2ay | (C.6)

14 As discussed in section 3, we should remember that only the component H™"? is gauge invariant.
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where now x denotes any redefined p-form RR potential. Similarly, eqs. (C.4) and (C.5)
in the ITA case lead to the transformation rule

0Dg = d=5 — dX\g x5+ dAs x3 — dAg X1 (C?)
and the gauge invariant field strength

H7 =dDg — dx1 x5 +dxs x3 —dxs x1 - (C.8)

We are only interested in the ITA case because we want to generalise these expressions to
the case m # 0, but the analogous expansion in the IIB case is obvious.

In the basis of [40], the Romans mass is introduced by means of the generalised Scherk-
Schwarz ansatz [40]

NP m .
X(l‘,l‘) = X($) + 53)1F1|0> ) (CQ)
As a result all field strengths are modified as follows:
G = SpP = Sp(Px +ml0)) (C.10)

We want to make a similar ansatz for DMNPQ that is we want to add a term linearly
dependent on Zi, in such a way that implementing this ansatz together with (C.9) we
get a field strength H™"P independent of ;. This actually can only be achieved if one
also includes a linear dependence on #; for the potential DM¥ . Indeed, by looking at
eq. (3.13) one can notice that once such violation of the section condition is allowed, this
term contributes to H™"P.

The final outcome is that one should use the ansatz

IA)MNPQ(x,j) — DMNPQ(g) 4 %571(%4 PIpMNPQ,
DMN (3 7) = %mom TICMN,y | (C.11)
Plugging this ansatz together with (C.9) into the field strength
HMNP — 5o D@MNP | 3M HNP] | SpMNFP e (C.12)

one finds that the component H™ does not depend on Z; and in particular is derived
from
HMNE — 9o DOMNP o T MNFP gy 1 omxTMNF o) (C.13)

We can now use the analysis of the previous appendix to expand (C.13) in terms of the
10-dimensional RR potential. The result is

Hy = dDgs —dx1 x5 +dxs x3 — dxs x1 +2mxr . (C.14)
This field strength is gauge invariant with respect to the gauge transformations

0Dg = d=5 — dX\g x5 + dAy C3 —dXy x1 +mxs X1 — 2mAg,
Ix =d\+dX x+mX . (C.15)

Finally, if one rewrites these expressions in terms of the RR potentials C used in this paper,
one recovers egs. (3.29) and (3.28).
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