
Spec-QP: SpeculativeQuery Planning for Joins over
Knowledge Graphs

Madhulika Mohanty

Indian Institute of Technology, Delhi

Hauz Khas, New Delhi, India

madhulikam@cse.iitd.ac.in

Maya Ramanath

Indian Institute of Technology, Delhi

Hauz Khas, New Delhi, India

ramanath@cse.iitd.ac.in

Mohamed Yahya
∗

Bloomberg

London, United Kingdom

yahya.mohamed@gmail.com

Gerhard Weikum

Max Planck Institute for Informatics

Saarland Informatics Campus, Germany

weikum@mpi-inf.mpg.de

ABSTRACT
Knowledge Graphs (KGs) have become ubiquitous in organisa-

tions. They provide a unified and structured model to store the

data as well as facilitate effective search to fulfill many complex

information needs. One of the ways to query these KGs is to use

SPARQL queries over a database engine. Since SPARQL follows

exact match semantics, the queries may return too few or no

results. Recent works have proposed query relaxation where the

query engine judiciously replaces a query predicate with similar

predicates using weighted relaxation rules mined from the KG.

However, the space of possible relaxations is potentially too large

to fully explore and users are typically interested in only top-k
results, so such query engines use top-k algorithms for query pro-

cessing. Nevertheless, they still process all the relaxations, many

of whose answers do not contribute towards top-k answers. We

propose Spec-QP, a query planning framework that speculatively

determines which relaxations will have their results in the top-k
answers. This reduces the computational overheads and gives

faster response times with good precision over top-k results. We

tested Spec-QP over two database engines, PostgreSQL and Vir-

tuoso, with two datasets – XKG and Twitter – to demonstrate the

efficiency of our planning framework at supporting relaxations

in query engines.

1 INTRODUCTION
Knowledge Graphs (KGs) such as YAGO [34], DBPedia [2] and

Freebase [5] are typically stored as RDF triples of ⟨s p o⟩ where
s is the subject, o is the object and p is the predicate. These

RDF KGs are queried using the SPARQL query language, that,

at its core consists of triple patterns. For example, the following

SPARQL query asks: “Which singers also write lyrics and play

guitar and piano?”.

SELECT ?s WHERE{
?s ‘rdf:type’ <singer>.
?s ‘rdf:type’ <lyricist>.
?s ‘rdf:type’ <guitarist>.
?s ‘rdf:type’ <pianist>

}
where ?s is a variable to be bound in each of the four triple

patterns and to be returned as a result.

∗
Work done while at the Max Planck Institute for Informatics.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Original Relaxations
<singer> <vocalist>,<jazz_singer>, <artist>
<lyricist> <writer>
<guitarist> <musician>, <instrumentalist>
<pianist> <percussionist>

Table 1: Example relaxations

An exhaustive list of such singers in the KG can be computed,

but users who issue such queries typically want only the top-k ,
ranked results. Ranking of SPARQL query results has been stud-

ied before in [9, 12, 23] and they typically make use of scores for
each triple in the KG

1
. However, a problem that users sometimes

face when they issue such queries is low recall. That is, the KG
may not have k results to return (in some cases, the KG may

have zero results if one or more of the triple patterns do not

have a match). In these cases, it is desirable to relax the query

by replacing one or more of the triple patterns, while ensuring

that the query still reflects the original information need. For

example, a possible relaxation of the query above is to change the

triple pattern ⟨?s ‘rdf:type’ <singer>⟩ to ⟨?s ‘rdf:type’
<vocalist>⟩. Previous works have dealt with doing these re-

laxations automatically and ranking the corresponding results

[10, 18, 31, 42]. In this paper, we address the problem of efficiently
evaluating these relaxed queries.

Query Processing. Processing queries and their relaxations to

return top-k results is computationally expensive. For example,

assuming that every triple pattern in the above query has relax-

ations as shown in Table 1, would lead to a total of 48 unique

queries (that is, original query, query with one relaxation, query

with two relaxations, etc.). A naive method would compute the

results to each query, sort the results by score and return the

top-k .
Since the user is looking for only top-k answers, the naive

method can be improved upon by using top-k operators. They

can compute results from all relaxations simultaneously, but

in a way that drastically reduces wasteful computations. The

following two top-k operators can be employed for achieving

this: Incremental Merge [35] (to process the relaxations for a

given triple pattern) and Rank Join [19] (to compute (partial)

join results in sorted order). However, this method still results in

wasted resources, since not all relaxations contribute a result to

the top-k .

1
The scores could be based on confidence values, popularity, etc.

Series ISSN: 2367-2005 61 10.5441/002/edbt.2019.07

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.07

Approach and contributions. In this paper, we propose a specu-
lative approach for pruning the space of possible relaxations for

a given query. We make use of precomputed statistics about the

distribution of scores of the matches to triple patterns in order

to speculate on the requirement of relaxations for each triple

pattern in order to get top-k results. This precomputed metadata

is an approximation of the score distribution of the answers from

the corresponding triple pattern and not the actual scores. This

is like computing histograms, or simpler. Each of these statistics

can be computed in one pass as part of the statistics collection

phase of any database system that does cost-based optimization

of queries.

When a user enters a query, we estimate the top answer scores

that can be achieved using the possible relaxations. This estima-

tion is done using the score distributions and the join cardinality

estimates. We then prune those relaxations which are unlikely to

contribute triples to the top-k answers based on the top score es-

timates. This results in reduced computation and faster response

times. Also, the amount of search space traversed is reduced

by pruning unnecessary relaxations and this, in turn, leads to

reduction in memory requirements. The runtime reduction com-

bined with reduced memory requirements leads to an overall

improvement on memory consumed over time. This is especially

beneficial for servers where the total resource consumption per

query is important, as it is inversely proportional to the achiev-

able throughput. Or equivalently, the cost of running the server

for a given load is proportional to the cost per query and this

improvement implies that the server can run the service with

lesser budget in terms of money. Note that our work is orthogonal
to any query engine as it can be deployed on top of any existing
RDF-specific database engine.

Our main contributions are summarized as follows.

i. A model for the score distribution of individual triple pat-

terns.

ii. A technique to estimate the scores of answers to a query

using the above model and using it to predict the presence of

answers from each triple pattern’s relaxations in the top-k .
iii. Pruning the space of relaxations to achieve significantly

faster response timeswhilemaintaining high accuracy, thereby

aiding cost-effective exploration of KGs.

iv. Thorough experimental evaluation of the proposed technique

over two database engines – PostgreSQL and Virtuoso – with

two real world datasets to demonstrate its efficiency over the

baseline.

Organisation. The rest of the paper is organised as follows:

section 2 introduces useful definitions and explains the top-k
operators based query processing approach. Section 3 outlines

Spec-QP, the proposed speculative approach to query planning

and its execution. Section 4 discusses the experimental results.

Section 5 lists the related work and finally section 6 concludes

the paper with future work directions.

2 PRELIMINARIES
This section introduces some preliminary definitions that will be

used henceforth.

Definition 2.1. Knowledge Graphs (KGs)
Given a set of entities E and predicates P, a triple t is a tuple

t =⟨s p o⟩ such that, t ∈ E× P× E, s ∈ E, p ∈ P and o ∈ E. Here,
s is called the “subject”, p is the “predicate” and o is the “object”

of the triple t . Each triple is associated with a score, denoted by

S (t). These scores represent confidence values or popularity of

the triples as previously studied in [9, 12, 23]. A set of such tuples

can be represented as a graph, which we call a Knowledge Graph,

KG ⊆ E × P × E.

Definition 2.2. Triple pattern query
A triple pattern is of the form q =⟨SPO⟩, where S, P and O could
either be entities or predicates from the KG or variables. Vari-

ables are always prefixed with a question mark. A triple pattern

matches any triple in the KG having the same values in the des-

ignated field. The variables are then bound to the corresponding

values in the triple. A triple pattern query is a set of triple patterns,

Q = {q1,q2, ...qn }.

Definition 2.3. Answer for a Triple pattern query
Given a triple pattern queryQ and a KG, an answer for the query,

denoted by A, is a mapping of the variables in Q to values in

the KG such that the application of this mapping to each triple

pattern qi ∈ Q, denoted A(qi), results in a triple in the KG. The

set of all the answers to a query is denoted by the set, A. That is,

A(qi) = {A(qi) : A ∈ A} (1)

Definition 2.4. Score of an answer
The relative score of a triple t which matches the triple pattern q
is denoted by S (t |q) and is computed as follows:

S (t |q) =
S (t)

max

ti ∈A(q)
(S (ti))

(2)

The value ranges between 0 and 1. The score of an answer

A to a query Q is the aggregation of the relative scores of the

triples resulting from applying the answer mapping to each triple

pattern qi in the query. That is,

S (A|Q) =
∑
qi ∈Q

S (A(qi) |qi) (3)

The triple and answer scores have been studied previously in

[10, 18, 31, 42].

Definition 2.5. Weighted relaxation rule
A weighted relaxation rule r is a triple r = (q,q′,w) which im-

plies that triple pattern q can be relaxed to q′, and w ∈ [0,1]

denotes the reduction in scores of the triples matching the re-

laxed triple pattern. Automatic computation of relaxations and

the corresponding weights have been studied in [10, 42].

For example, ⟨?x ‘rdf:type’ <singer>⟩ could be relaxed to
⟨?x ‘rdf:type’ <vocalist>⟩with a weight of 0.8, i.e., r = (⟨?x
‘rdf:type’ <singer>⟩, ⟨?x ‘rdf:type’ <vocalist>⟩, 0.8).

Definition 2.6. Relaxed Query
Given a query Q and a relaxation r = (q,q′,w), we say that r
applies toQ if q ∈ Q. The result of applying r toQ is a new query

Q′ = (Q \ q) ∪ q′ called the relaxed query. The relaxed query so

obtained can further be relaxed by relaxing any of Q′ \ q′ triple
patterns. The score of an answerA obtained through relaxation r
applied to a query Q is equal tow ×S (A|Q′).The score is reduced
further for each subsequent relaxation in a similar manner. Since

the same answer could be obtained from multiple relaxed queries,

the score of an answer A with respect to the original query and

a space of possible relaxations is defined as the maximum score

obtained through any (relaxed) query,

S (A) = max

Q′
(w × S (A|Q′))

, wherew = 1 for the original query, Q.

62

2.1 Non-Speculative Query Processing
(NSpec-QP)

Incr. Merge

q1 q'1 q''1 q2 q'2 q3 q'3

Rank Join

Rank Join

Top-k

Incr. Merge Incr. Merge

Figure 1: Query plan generated by NSpec-QP for the query
Q = {q1,q2,q3}. One incremental merge operator is re-
quired for each triple pattern and its relaxations. A rank
join operator takes in two sorted lists and produces a
ranked list of (partial) answers from the join.

As mentioned in the Introduction, we can compute results

from all relaxations simultaneously using two top-k operators:

Incremental Merge [35] and Rank Join [19]. The execution strategy
is essentially a variant of the Fagin’s NRA algorithm [11]. It

computes the exact top-k as it computes all applicable relaxations.

It has been used by systems supporting relaxations such as TriniT

[42].

Given the query Q = {q1,q2,q3}, and the relaxations, r1 =
(q1,q

′
1
,w1), r2 = (q1,q

′′
1
,w2), r3 = (q2,q

′
2
,w3) and r4 = (q3,q

′
3
,w4),

Figure 1 shows the query plan generated using this approach. In-

cremental Merge is used to efficiently scan the list of matches to

a triple pattern and all its relaxations to output only one merged

list sorted in descending order of scores. Each of the three incre-

mental merge operators in the example takes as inputs the sorted

lists of matches
2
for each triple pattern, q1, q2 and q3 and their

relaxations, each multiplied by their relaxation weights. Each

of them outputs a combined sorted list of triples for each triple

pattern along with its relaxations. The rank join computes a join

of the two sorted inputs in an incremental manner until enough

results have been produced, while minimising the number of an-

swers read from each list to get top-k answers. This helps avoid

computing the entire join and then sorting over it. The inputs

for Rank Joins are either the outputs of Incremental Merges or

Rank Joins. Both operators use priority queues for already seen

answers and maintain upper bounds to estimate scores of other

answers that can be obtained by reading further into the lists

at any given point. This avoids accessing entire lists of (partial)

answers and aids early termination.

However, the top-k operators still process relaxations from

all the triple patterns, many of which do not contribute triples

towards the top-k answers. Our technique aims to eliminate this

inefficiency.

2
Recall that each triple is associated with a score.

3 SPEC-QP – THE SPECULATIVE
FRAMEWORK FOR OPTIMIZING QUERY
PLANS

We propose Spec-QP, a speculative query planning framework

which speculates the useful relaxations for a query. It uses a pre-

dictor to predict whether the relaxations of a triple pattern in a

query are likely to be required for producing the top-k answers.

We eliminate the relaxations for those triple patterns which are

predicted to be not required. The predictor uses an expected score

estimator to estimate the expected scores at given ranks for a

(relaxed) query and then, predicts the requirement of relaxations

of a triple pattern for getting top-k answers based on the esti-

mates. The estimator is based on precomputed statistics about

the distribution of the scores for triple pattern matches. We first

describe the estimator and then give details of the speculative

planning approach.

3.1 Expected score estimator
The expected score estimator is based on order statistics and

estimates the expected scores at given ranks for the original as

well as relaxed queries. These are used by the query planner to

predict the presence of answers from a relaxation in top-k .
Them matching triples for a triple pattern, qi , have scores rep-

resented by the independent and identically distributed (i.i.d.) ran-

dom variablesXi1,Xi2, ...,Xim , each with a common distribution,

fi (x). Here, fi (x) is the probability distribution for the scores

of the answers for a triple pattern (or relaxation), qi , from the

KG . The cumulative distribution function (cdf) is represented by

Fi (x). The set {Xi1,Xi2, ...,Xim } is a sample of sizem taken from

the distribution Fi (x). The set of the observed values of answer

scores {xi1,xi2, ...,xim } of random variables {Xi1,Xi2, ...,Xim } is

called a realization of the sample. Xi (1) ,Xi (2) , ...,Xi (m) are ran-

dom variables resulting from arranging the values of each of

Xi1,Xi2, ...,Xim in increasing order, and Xi (j) is called the jth

order statistic.

Given these random variables and their distributions, we need

to estimate the score distribution for the answers of the query,

Q. XQ1,XQ2, ...,XQn are the random variables representing the

scores of the n answers to the query, Q (possibly composed of a

single triple pattern). XQ (1) is the first order statistic correspond-

ing to the lowest scoring answer among all the n answers of Q,
and XQ (n) is the n-th (or largest) order statistic corresponding to

the highest scoring answer (ranked 1). A relaxed answer would

appear in top-k only when its expected highest score (XQ ′ (n′))

amongst its n′ answers exceeds the expected kth highest score

of the original query (XQ (n−k+1)
3
). In order to compute the ex-

pected value at a given rank, we use the result given in [7]:

For i.i.d. random variables,X1,X2, ...,Xm each with a common

distribution, f (x), the expected value of ith order statistic, X (i)
can be approximated as E (X (i)) ≈ F−1 (i

m+1) where F (x) denotes
the cdf andm is the size of the sample.

Using this, the expectation of XQ (i) can be approximated as

E (XQ (i)) ≈ F−1Q (i
n+1) where FQ (x) denotes the cdf of the scores

for the answers to the query, Q and n is the no. of answers of Q .

We now give the details of the construction of the probability

density function (pdf) of these random variables.

3
Note that it is n − i + 1 and not i since the nth order statistic represents the

highest value with rank 1.

63

3.1.1 Score Distributions for the matches to Triple Patterns:
For every triple pattern qi in the KG, we store the following

4 precomputed statistics about the scores σ i
of the matching

triples:

• mi : the total number of triples matching the triple pattern.

• σ ir : the score of the answer at rank r where r represents
the rank within which 80% of the score mass is contained

for the triple pattern matches.

• Sir : the cumulative score of the answers over all the ranks

1 through r .
• Simi

: the cumulative score of the answers over all the ranks

1 throughmi .

We now estimate the score distribution for answers to triple

pattern qi .
4 fi (x) and Fi (x) are used to denote the pdf and cdf

respectively.

The pdf can be modelled as a 2-bucket histogram in the fol-

lowing way:

fi (x) =
Simi
− Sir

Simi

1

σ ir
for 0 ≤ x < σ ir

Sir

Simi

1

1 − σ ir
for σ ir ≤ x ≤ 1

This pdf gives us the following cdf:

Fi (x) =ax for 0 ≤ x < σ ir

bx + c for σ ir ≤ x ≤ 1

where

a =
Simi
− Sir

Simi

1

σ ir
and b =

Sir

Simi

1

1 − σ ir

and c =
Simi
− Sir

Simi

−
Sir

Simi

σ ir

1 − σ ir

Our technique depends on statistical estimates – specifically,

what the score of the kth result is for a specific (original) query.

This estimate can be made as accurate as possible, provided suffi-

cient space and time are available. At one extreme, we can assume

uniform distribution for the score of a triple pattern and at the

other, we could consider every single data point (the actual dis-

tribution). In particular, if we had every single data point as a

single-bucket histogram, that would then give us 100% accuracy

on the kth score. But this would be no different from actually

computing the result. Our solution of 2-bucket approximation

strives for the sweet spot on this spectrum and is based on the

fact that even though datasets are different, their score distribu-

tions typically follow a power law distribution – a “fat” head, and

a “long” tail. The narrow and tall bucket represents the interval

which has 80% of the score mass. The longer bucket represents

the long tail having only 20% of the score mass.

3.1.2 Score Distribution for the Triple Pattern Query: The
score of an answer for the triple pattern query is the sum of

the scores of the individual triples in the answer. Since each

triple is contributed by one triple pattern in the query and we

have estimates for their scores, we can estimate the scores for

answers to the query using the following approach.

4
Note that the ranks will not be explicitly reflected here, it is just the distribution of

the answer score values from which each score in {Xi1, Xi2, ..., Xim } is assumed

to be independently sampled.

Input: The query Q = {q1,q2, ...qn }.
Output: The query plan, QP
QP← {{Q1}}, where Q1 = Q
fQ (x) ← f1 ∗ f2 ∗ .. ∗ fn (x)

Get EQ (k) from “expected score estimator”.

for qi ∈ Q do
q′i ← top-weighted relaxation for qi
Q′ ← Q − {qi } ∪ {q′i }
fQ′ (x) ← f1 ∗ f2 ∗ ... ∗ f

′
i ∗ .. ∗ fn (x)

Get EQ′ (1) from “expected score estimator”.

if EQ′ (1) > EQ (k) then
QP = {{Q1} − {qi }, {qi }}

end
end
return QP

Algorithm 1: PLANGEN generates the query plan.

Let us assume our triple pattern query, Q ={q1,q2}. {X11, X12,

..., X1m } represents them triples matching q1 and {X21, X22, ...,

X2m′ } represents them
′
triples matchingq2. The scores for triples

matching these triple patterns have the distributions f1 (x) and
f2 (x) respectively, as defined earlier. The scores of Q’s n answers

are represented by the random variablesXQ1,XQ2, ...,XQn . Each

of these is a sum of two random variables, one from {X11, X12, ...,

X1m } and another from {X21,X22, ...,X2m′ }. The pdf for the sum

of the random variables is given by the convolution of the two

individual pdfs, f1 ∗ f2 (x). Hence, the pdf for the scores of the
answers to the query is given by the convolution of the pdf’s

of the scores for matches to the constituent triple patterns. The

resulting pdf is a multi-piece-wise linear function. Given the

number of results in the combined distribution, n =m12, we can

estimate σ 12

r , S12r and S12n using the expected score computation

from order statistics. This again results in a two-bucket histogram

for the distribution of the scores of the answers to the query. For

the computation ofm12, we use the estimates for join selectivity
5
,

ϕ12 asm12 =m ∗m
′ ∗ ϕ12. For three or more triple patterns, we

repeat the above process the required number of times to get the

final histogram representing the score distribution for answers

to the query.

3.1.3 Score prediction. Once we have constructed the pdf and
cdf representing the scores for the answers of a given query, we

can estimate the expected score, XQ (n−i+1) at a given rank i as

E (XQ (n−i+1)) ≈ F−1Q (n−i+1n+1) where FQ (x) denotes the cdf of the

query answer scores and n is the no. of answers for Q. Given
these estimates for scores at various ranks, we now generate the

query plan.

3.2 Query Planning
Query Plan: Given a query Q, a query plan consists of subsets

of triple patterns Q1,Q2,,Qs where

i. each Qi consists of one or more triple patterns from Q,
ii. the Qi’s are pairwise disjoint, and
iii. the union of Qi’s equals Q.

For example, a query plan for the queryQ = {q1,q2,q3}, will be
{{q1,q3}, {q2}}. The singletons correspond to the triple patterns

which require relaxations.

5
Traditional database systems use multiple heuristics to estimate join selectivity.

For the purpose of this work, we have taken exact join selectivity values.

64

q1
q3 q2 q'2

top-k

Incr. Merge

Rank Join

Rank Join

Figure 2: Query Plan when Q = {q1,q2,q3} and only q2’s re-
laxations are predicted to be in top-k . Only q2 requires an
incremental merge. q1 and q3 are joined using a rank join
over the sorted answer lists for each of them. One rank
join is required to join these results.

3.2.1 Query plan generation. The key task in the planning ap-

proach is to identify the triple patterns whose relaxations do not

contribute towards the top-k answers. We save on computations

over such triple patterns by never processing their relaxations.

For each triple pattern, only the top-weighted relaxation has the

highest top score due to normalization of scores as per Definition

2.4, i.e, the top score from each relaxation is equal to its weight.

Hence, we need to check only the top-weighted relaxation for

each triple pattern for its potential to contribute answers towards

top-k .
Given a query Q and the score distribution for each triple

pattern, the query plan is generated as outlined in Algorithm

1. PLANGEN first predicts the requirement of relaxations for

each triple pattern. For prediction, the query planner uses the

“expected score estimator” described in Section 3.1, which gives

estimates of the expected scores at kth rank for the original

query, EQ (k) and top rank for the highest weighted relaxed query,
EQ′ (1) (for a given triple pattern at a time). If the topmost score

from the relaxed query obtained by relaxing a given triple pattern

exceeds the kth score from the original query, it predicts that the

triple pattern’s relaxations are required. Note that our estimator

takes into account join score distributions and join cardinalities

for estimating the expected score for a given query.

The query plan, QP returned by PLANGEN will have at most

one subquery, Q1 of size > 1, called the “join group” (non-relaxed

triple patterns), the rest will be only singletons (triple patterns

to be relaxed).

3.2.2 Query Execution. Given a speculative query plan QP =
{Q1,Q2, ..,Qs} with s subsets generated by the speculative query

planner, we execute it in the following manner.

(1) The join group, Q1 is executed as (left-deep) rank joins

over the answer lists (sorted by score) for each triple pat-

tern. Note that, none of the triple patterns in this group

are relaxed.

(2) The singletons are processed by Incremental Merge oper-

ator for each.

(3) Rank joins are performed over the join group and single-

tons.

Figure 2 illustrates this approach for the queryQ = {q1,q2,q3},
when we predict that only q2 needs to be relaxed. The query plan

to be executed is {{q1, q3}, {q2}}. We use a rank join to compute

the join between sorted lists of matches for q1 and q3 and require
incremental merge only for q2 and its relaxations. One rank join

is required to join these results. The equivalent NSpec-QP plan for

this query will be {{q1}, {q2}, {q3}}, i.e., all triple patterns occur as
different subsets and each of them are processed by incremental

merges followed by rank joins over all these incremental merges

(refer Figure 1).

4 EXPERIMENTAL EVALUATION
This section discusses the experimental evaluation performed for

demonstrating the performance of the speculative planner.

4.1 Setup
Baseline. We compare Spec-QP with the NSpec-QP system

(refer Section 2.1) which involves Incremental Merges for relax-

ations and Rank Joins for joins. It processes all the relaxations and
outputs the true top-k . Existing works which focus on optimized

computation of top-k joins without relaxations or on determining

relaxations for user queries are orthogonal to our work. The scor-

ing scheme used by the existing systems supporting relaxations

do not use fine-grained scores (scores for individual triples). For

our setting, NSpec-QP is the closest baseline to the best of our

knowledge. We have not shown comparisons with the naive

method (i.e., compute answers to all combinations of relaxations

and then sort them to get top-k) because it is obvious that it is
the most inefficient technique.

Datasets. We have evaluated over the following two datasets:

i. Extended Knowledge Graph (XKG)[42]:

a. Format: RDF format dataset consisting of YAGO2s triples

and “textual” content triples constructed from Clueweb by

using OpenIE techniques and Named Entity Disambigua-

tion (NED). The triple scores for YAGO2s triples are equal

to the number of inlinks into the subject. Triple score for

Clueweb data is equal to the number of times a particular

triple was encountered during extraction.

b. Size: XKG has about 105 million triples.

ii. Twitter:

a. Format: Constructed from trending tags over the month

of April 2017 using Twitter Streaming API. The triples are

of the form: ⟨tID,hasTaд,T ⟩ where tID is the unique ID

for a tweet containing term T . The score for each triple

is equal to the number of retweets for the tweet in that

triple.

b. Size: 18 million unique triples.

Queries and relaxations. The evaluation queries and relax-

ations for the datasets are as follows:

i. XKG: We evaluated on 65 queries which were manually con-

structed so as to have non-empty result sets. Each query had

2-4 triple patterns and each triple pattern had at least 10

relaxations. The relaxations were obtained using the scheme

outlined in [42].

ii. Twitter: A query over this dataset queries for IDs of those

tweets which have all the queried terms. For example, the

following query queries for IDs of all those tweets which con-

tain the terms ‘#intoyouvideo’, ‘#ariana’ and ‘dangerous’:
SELECT ?s WHERE{

?s <hasTag> <#intoyouvideo>.
?s <hasTag> <#ariana>.

65

k XKG Twitter
10 0.7 0.72

15 0.88 0.78

20 0.91 0.8

Table 2: Precision over each dataset.

?s <hasTag> <dangerous>
}
The testset of 50 queries was constructed manually using

combinations of most frequent tags and terms. Each query

had either 2 or 3 triple patterns, with each triple pattern

having at least 5 relaxations. The relaxations were gener-

ated using the co-occurrence frequencies i.e. the relaxation

weight,w for the relaxation, r = (⟨?s <hasTag> <T1>⟩,⟨?s
<hasTag> <T2>⟩,w) will be equal to:

w =
#tweets_havinд_T1_and_T2

#tweets_havinд_T1

For example, a possible relaxation for <#intoyouvideo> is
<video>.

Note that the number of results decrease on increasing the

number of triple patterns in a query. Due to this, we have re-

stricted our testsets to have only 2-4 triple patterns’ queries with

non-empty result sets. Also, even though each triple pattern has

at least 5-10 relaxations, relaxing only one or two triple patterns

alone generates about 100 additional answers. Our planner aims

to be able to predict the useful relaxations.

Metrics. We measure the following metrics for each query to

demonstrate the quality and efficiency of our technique:

i. Quality:

a. Precision: The fraction of true top-k results (of NSpec-QP)

in the top-k results of Spec-QP. Note that precision and

recall have identical values in our setup, because they

have the same denominator k .
b. Prediction accuracy: The number of queries for which we

could identify all and only correct relaxations.

c. Score error: The average of absolute error for Spec-QP vs.

NSpec-QP top-k scores, i.e.,

1

k
∑
i=1..k

����score
NSpec−QP
i − score

Spec−QP
i

����
We also note the standard deviation.

ii. Efficiency:

a. Runtimes: We measure the time taken to plan and execute

each query.

b. Memory used: We measure the total no. of answer objects

created as it directly corresponds to the amount of search

space traversed to arrive at top-k answers. This number

includes all the intermediate answer objects encountered

by Incremental Merges and Rank Joins.

System setup. The experiments were conducted on a Dell

Blade server with 24 Intel(R) Xeon(R) CPU E5-2420 @ 1.90GHz

processors and 32GB RAM. The database engine was used to

retrieve the matches for triple patterns in sorted order. Each

query was evaluated using both the techniques- NSpec-QP and

Spec-QP, over two database engines, postgresql-9.5 and Virtuoso,

for three values of k , namely 10, 15 and 20. To have a warm cache,

we conducted 5 consecutive runs for each query and considered

the average of the last 3 runs for each technique.

4.2 Quality evaluations
We first discuss the quality of results obtained by Spec-QP and

then provide the statistics for runtimes and memory consump-

tions. Note that the quality of results will be the same over any
database engine as it depends only on the accuracy of our specula-
tive technique.

4.2.1 Precision. The precision values for the datasets are

given in Table 2. The precision is about 0.7-0.9 for both the

datasets, i.e., about 80% of the answers belonged to true top-k .
Also, since the answers are sorted according to the scores, the

answers outside the true top-k appeared at lower ranks. That

is, for a query having a precision value of 0.8 for k=10, top-8

answers belonged to the true top-10.

4.2.2 Prediction Accuracy. A detailed analysis of the number

of queries for which we could predict the correct relaxation(s)

over each dataset is given in Table 3. Each query required some

triple patterns to be relaxed to generate top-k answers. The pre-

diction accuracy is at least 70% for all types of queries over XKG

and queries requiring 3 relaxations over Twitter. As the value for

k was increased, queries increasingly required relaxations to gen-

erate sufficient answers. For Twitter, most of the queries required

all triple patterns to be relaxed. This is due to the absence of suf-

ficient triples corresponding to each term and fewer relaxations

(predicate is not relaxed) for each triple pattern. Nevertheless,

we were able to identify the requirement of all the relaxations in

such a scenario.

4.2.3 Average score error. To judge the quality of approximate

results returned by Spec-QP, we computed the score deviations

of the approximate answers at each rank given by Spec-QP from

the true top-k . The average score deviations for various values
of k are given in Table 4. The percentages in brackets show the

average percentage deviation from the original scores. Note that

the maximum possible score for an answer to a 2 triple pattern

query can be 2, for a 3 triple pattern query, it will be 3 and so

on.
6

XKG. Even though k=10 has lowest precision, the score de-

viations from true top-k answers are low (about 0.1 for 2 triple

pattern queries). That is, for a query with 2 triple patterns if the

actual answer at a given rank has a score of 1.5, the score of the

approximate answer would be about 1.4. The deviations are even

lower (only about 0.01) for higher values of k and tolerable for

achieving faster runtimes.

Twitter. There is only one 2 triple pattern query that required

both triple patterns to be relaxed but had a wrong speculation

of relaxations for all values of k . However, its score deviation is

constant over all values of k as it has only 11 results (including re-

laxations). The deviations are only 0.5 for 3 triple pattern queries

with k = 10, which is only 16% deviation from the original scores.

The deviations for higher values of k are very low being only 6%

in the best case. For k=20, for a query with 3 triple patterns if the

actual answer at a given rank has a score of 2.5, the score of the

approximate answer is about 2.32.

4.3 Efficiency evaluations
The average runtimes and memory values over PostgreSQL and

Virtuoso for XKG grouped by the number of triple patterns in

6
This is because the maximum score for a matching triple for each triple pattern

can be 1.

66

Dataset XKG Twitter

k 10 15 20 10 15 20

queries requiring 1 relaxation 5(6) 5(5) -(-) - - -

queries requiring 2 relaxations 21(30) 22(26) 18(19) 1(2) 1(2) 1(2)

queries requiring 3 relaxations 12(18) 16(19) 27(31) 35(48) 38(48) 39(48)

queries requiring 4 relaxations 7(11) 14(15) 14(15) - - -

Table 3: Prediction accuracy for various values of k grouped by the number of triple patterns requiring relaxations in the
queries to generate true top-k results. The number indicates the number of queries for which Spec-QP could identify all
and only these relaxations. The numbers in brackets show the total number of such queries.

Dataset XKG Twitter

k

#TP

2 3 4 2 3

10 0.1(5%)±0.1 0.2(8%)±0.3 0.1(3%)±0.2 0.16(8%)±0.0 0.5(16%)±0.5

15 0.08(4%)±0.08 0.1(3%)±0.2 0.01(1%)±0.04 0.16(8%)±0.0 0.32(10%)±0.3

20 0.07(4%)±0.06 0.07(2%)±0.1 0.01(1%)±0.03 0.16(8%)±0.0 0.18(6%)±0.1

Table 4: Avg. score deviations for the approximate top-k from the true top-k grouped by the number of triple patterns
(#TP) in the queries. The percentages in brackets show avg. percentage deviation from the score of the true answer at that
rank.

the queries and the number of relaxations required by them have

been given in Figures 3 and 4 respectively. The graphs for Twitter

are given in Figures 5 and 6.

4.3.1 Runtime comparisons. It is evident from the runtime

graphs (refer Figures 3 and 5) that Spec-QP is faster than NSpec-

QP in all cases. It avoids unnecessary computation of all relax-
ations when only few relaxations are capable of giving top-k
answers. Most of the queries require only 2 or 3 relaxations

(Refer Table 3) to produce top-k answers and Spec-QP either

identifies the correct relaxation(s) or gives good quality approx-

imate results. Also, fewer the number of relaxations required,

faster is Spec-QP over NSpec-QP. For k=15 and k=20, the gain

margin lowers but Spec-QP is still faster than NSpec-QP. This is

because on seeking more answers, the original query is insuffi-

cient to get top-k answers and needs multiple relaxations. It is

especially prominent for XKG queries with 4 triple patterns; for

k=15 and k=20, none of the queries could get top-k answers with

less than 3 relaxations. The difference in the runtimes however

clearly demonstrates the savings achieved by eliminating the

requirement of even 1 relaxation. In particular, Spec-QP outper-

forms NSpec-QP by a factor of upto 1.5 for queries with 3 triple

patterns.

Note that the key optimization for sorted access, in any data-

base engine, is to use ordered index scans. This is what Post-

greSQL does too. Also, even if the underlying database system

is further optimized for sorted results, both techniques would

benefit and therefore the gains of Spec-QP over NSpec-QP would

be of the same order. PostgreSQL is faster than Virtuoso as it

uses indices intensively for optimized retrieval. We have shown

results over Virtuoso to demonstrate the practical applicability

of our technique over any quad store.

4.3.2 Memory requirement comparisons. We measured the

total number of answer objects created as it directly corresponds

to the amount of search space traversed to arrive at top-k an-

swers. This number includes all the intermediate answer objects

encountered by the incremental merges and rank joins.

The memory comparison graphs are given in Figures 4 and

6 for XKG and twitter respectively. We found that NSpec-QP

consumes the most memory for all the cases. This is because it

traverses a significant amount of the search space, consisting

of the original query and all its possible relaxations, in order to

compute the top-k . Spec-QP consumes upto 2-3x less memory to

compute top-k answers as it prunes a significant amount of the

search space. The savings by Spec-QP is achieved by eliminating

the need for processing relaxations of triple patterns which do

not contribute triples towards top-k answers. This is particularly

evident for the cases where the queries with 3 triple patterns

require only 1 or 2 relaxations. The memory requirements reduce

by a factor of 2.5 over both the datasets.

4.4 Discussion and remarks
We showed that Spec-QP prunes unnecessary relaxations and has

faster response times over the baseline for various values of k . It
predicts the correct relaxations 70-80% of the time with good ap-

proximations for answers outside top-k . Our technique depends

on statistical estimates – specifically, what the score of the kth

result is for a specific (original or relaxed) query. Our solution

of 2-bucket approximation strives for the sweet spot between

assuming a uniform distribution and the actual distribution (ev-

ery single data point in individual buckets of the histogram), and

is built on the fact that even though datasets are different, their

score distributions typically follow a power law distribution – a

“fat” head, and a “long” tail.

The strategic pruning of relaxations using our model also

reduces the search space traversed and in turn, the memory

requirements for each query. Spec-QP is especially useful for

servers where the total resource consumption per query is in-

versely proportional to the achievable throughput. The cost per

query determines the cost of running the server for a given load.

For instance, the queries having 3 triple patterns have 1.5x faster

response times and 2.5x less memory requirements resulting in

an overall 4x gain. This implies that the server can run the service

with 4x less money. Hence, Spec-QP provides cost-efficient sup-

port for flexible querying using relaxations over SPARQL query

67

1
0

50

100

150

200

250

300

Ru
nt

im
es

 in
 se

co
nd

s

19.9 12.6

131.2

82.8

#TP=2

0 1 2
No. of triple patterns relaxed

9.8
36.9

21.6
0.7

18.8 13.3

151.2

191.8 201.7

42.2

101.7

152.4

#TP=3

1 2 3

57.4
35.2

21.126.3 20.0 20.2

269.9
302.7

265.3

121.9

187.8
219.2

#TP=4

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(a) Runtimes for k=10.

1
0

50

100

150

200

250

Ru
nt

im
es

 in
 se

co
nd

s

19.0 12.8

132.3

83.5

#TP=2

0 1 2
No. of triple patterns relaxed

7.5
37.0

17.4
0.1

18.8 14.6

122.7

201.8 196.1

33.2

102.6

151.8

#TP=3

3

31.9 27.5

273.8

225.1

#TP=4

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(b) Runtimes for k=15.

1
0

50

100

150

200

250

Ru
nt

im
es

 in
 se

co
nd

s

18.9 12.4

135.3

82.7

#TP=2

0 1 2
No. of triple patterns relaxed

7.3
38.3

17.9
0.1

19.9 14.2

126.0

192.5 199.0

33.1

97.2

153.4

#TP=3

3

32.2 28.2

274.4

226.2

#TP=4

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(c) Runtimes for k=20.

Figure 3: Runtimes comparisons over XKG queries for k=10, 15 and 20 grouped by the no. of triple patterns (#TP) in the
query and the number of relaxations required. All the legends in the graphs for efficiency have ‘NS’ for NSpec-QP and ‘S’
for Spec-QP.

engines. This, in turn, aids effective exploration of knowledge

graphs by new users.

5 RELATEDWORK
Top-k query processing
FRPA [13] and Hash Rank-Join (HRJN*) [20] represent the state-

of-the-art relational rank-join algorithms. HRJN* has been shown

to perform well in practice, however, FRPA showed that it was

not instance-optimal for a variant of the rank join problem that

they considered. HRJN[21] is based on ripple join algorithm. It

maintains two hash tables in-memory for storing the input tu-

ples seen so far, the stored input tuples are used for finding join

results. These results are then given as inputs to a priority queue,

which outputs them in the order specified by the ranking func-

tion. Nested Loops Rank Join (NRJN) [19] is similar to HRJN

except that unlike HRJN it does not store input tuples, but rather

follows a nested-loop strategy. Pull/Bound Rank Join (PBRJ) [33]

is an algorithm template that generalized previous rank join algo-

rithms and provided tight upper bounds. DRJN [8] is an efficient

algorithm for computing rank joins in distributed systems. This

body of work is orthogonal to our problem.

Theobald et. al. [37] dealt with top-k query evaluation for

joins over multiple index lists with pruning providing probabilis-

tic guarantees. It uses histograms and dynamic convolutions to

predict the top-k . Our case, however differs in that we consider

68

1
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

No
. o

f M
em

or
y

ob
je

ct
s

459.8k

209.6k

459.8k

209.6k

#TP=2

0 1 2
No. of triple patterns relaxed

332.7k

808.8k 756.8k

13.7k

362.1k 373.4k
276.2k

765.6k 810.3k

7.3k

348.7k
530.8k

#TP=3

1 2 3

1239.9k
1057.8k

612.6k
484.9k 497.7k 539.5k

1147.0k

1638.4k

1125.8k

409.3k

1112.7k

815.7k

#TP=4

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(a) Memory for k=10.

1
0

200000

400000

600000

800000

1000000

1200000

No
. o

f M
em

or
y

ob
je

ct
s

459.8k

209.6k

459.8k

209.6k

#TP=2

0 1 2
No. of triple patterns relaxed

209.6k

721.1k

548.4k

0.7k

317.3k
409.9k

221.8k

753.5k 801.3k

0.7k

328.9k

554.0k

#TP=3

3

884.2k

592.3k

1240.3k

941.5k

#TP=4

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(b) Memory for k=15.

1
0

200000

400000

600000

800000

1000000

1200000

No
. o

f M
em

or
y

ob
je

ct
s

459.8k

209.6k

459.8k

209.6k

#TP=2

0 1 2
No. of triple patterns relaxed

209.5k

702.0k
588.6k

0.7k

323.5k
395.3k

204.1k

532.8k

819.5k

0.7k

148.9k

566.8k

#TP=3

3

891.7k

554.9k

1241.1k

933.9k

#TP=4

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(c) Memory for k=20.

Figure 4: Memory comparisons over XKG queries for k=10, 15 and 20 grouped by the no. of triple patterns (#TP) in the
query and the number of relaxations required. All the legends in the graphs for efficiency have ‘NS’ for NSpec-QP and ‘S’
for Spec-QP.

graph structured data and also, support multiple relaxations. The

IO-Top-k [4] deals with top-k query evaluation with pruning

using sorted access (SA) scheduling. Other works include top-

k processing over xml data [36] and for data distributed over

multiple nodes [44].

Top-k queries on graphs
Only few works address the problem of top-k processing over

RDF graphs. The SPARQL-RANK framework proposed by [27]

makes use of different index permutations used in native triple-

stores for fast random access and early termination. Another

framework introduced byWang et al. [41] used MS-tree-based fil-

tering and pattern-matching functions to evaluate top-k answers.

The work in [43] uses an approach similar to HRJN[21] for com-

puting top-k star joins. However for RDF data, SPARQL-RANK

showed experimentally that it outperformed HRJN. The perfor-

mance gain was attributed to the unsorted nature of numerical

attributes present in indexes build by RDF engines. QUARK-X

[25] proposes using extra indexes and metadata to process top-

k queries on RDF graphs. All of these works however do not

optimize over possible relaxations.

Query Reformulation in IR
Various strategies have been proposed to reformulate queries in

IR over documents. These include measures of query similarity

[3], or using summary information included in the query-flow

graph [1]. Another approach by Hristidis et. al. [16] relies on

69

1
0

10

20

30

40

50
Ru

nt
im

es
 in

 se
co

nd
s

5.0 2.9

24.9

11.3

#TP=2

0 1 2
No. of triple patterns relaxed

17.5 15.2 17.5

1.2
5.0

11.7

53.8 53.3 52.9

3.1

18.5

35.9

#TP=3

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(a) Runtimes for k=10.

1
0

10

20

30

40

50

Ru
nt

im
es

 in
 se

co
nd

s

4.7 3.5

24.0

11.0

#TP=2

0 1 2
No. of triple patterns relaxed

12.4
16.2 17.6

1.0
5.5

11.3

44.7

54.2 51.8

3.1

18.8

34.8

#TP=3

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(b) Runtimes for k=15.

1
0

10

20

30

40

50

Ru
nt

im
es

 in
 se

co
nd

s

4.9 2.9

22.7

10.9

#TP=2

0 1 2
No. of triple patterns relaxed

13.1 15.1 17.4

1.0
5.1

11.5

43.6

52.5 51.1

3.1

18.2

34.6

#TP=3

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(c) Runtimes for k=20.

Figure 5: Runtimes comparisons over Twitter for k=10, 15 and 20 grouped by the no. of triple patterns (#TP) in the query
and the number of relaxations required. All the legends in the graphs for efficiency have ‘NS’ for NSpec-QP and ‘S’ for
Spec-QP.

suggesting keyword relaxations by relaxing those which are least

specific based on their idf score. These reformulations can be

used as relaxations for our setting.

Faceted Search (Many answers problem)
A related optimization problem is the one encountered when we

have many-answers, i.e. those where given an initial query that

returns a large number of answers, the objective is to design an ef-

fective drill-down strategy to help the user find acceptable results

with minimum effort [22, 26, 32]. We solve a related problem,

where we try to solve both empty-answer and many-answers

problem in an efficient manner by generating additional scored

answers using relaxations.

Query Relaxation in relational databases
Query relaxation in relational databases is quite common. The

work [24] relaxes joins and selections in relational databases by

suggesting alternative queries based on the “minimal” shift from

the original query. Another work [40] suggests user ranking of

the query edges so as to generate relevant differential queries

withminimum deviation. “WhyNot” queries are studied in [6, 38],

where, given a query Q that did not return a set of tuples S that

the user was expecting to be returned, they design an alternate

70

1
0

200000

400000

600000

800000

1000000

No
. o

f M
em

or
y

ob
je

ct
s

272.1k

90.8k

358.2k

91.0k

#TP=2

0 1 2
No. of triple patterns relaxed

945.9k

796.8k

920.6k

2.5k

166.3k

485.9k

1013.2k 1013.5k 1022.4k

2.6k

238.0k

555.3k

#TP=3

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(a) Memory for k=10.

1
0

200000

400000

600000

800000

1000000

No
. o

f M
em

or
y

ob
je

ct
s

272.1k

90.8k

358.2k

91.0k

#TP=2

0 1 2
No. of triple patterns relaxed

618.3k

865.6k
926.3k

0.2k

190.6k

462.8k

783.2k

1052.4k 1015.4k

0.2k

250.3k

525.9k

#TP=3

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(b) Memory for k=15.

1
0

200000

400000

600000

800000

1000000

No
. o

f M
em

or
y

ob
je

ct
s

272.1k

90.8k

358.2k

91.0k

#TP=2

0 1 2
No. of triple patterns relaxed

638.4k

796.9k

922.4k

0.2k

166.3k

483.4k

748.9k

1020.9k 1020.1k

0.2k

238.0k

557.2k

#TP=3

Postgres-NS
Postgres-S
Virtuoso-NS
Virtuoso-S

(c) Memory for k=20.

Figure 6: Memory comparisons over Twitter for k=10, 15 and 20 grouped by the no. of triple patterns (#TP) in the query
and the number of relaxations required. All the legends in the graphs for efficiency have ‘NS’ for NSpec-QP and ‘S’ for
Spec-QP.

query Q’ that (a) is very similar to Q, and (b) returns the missing

tuples S, however the rest of the returned tuples should not be too

different from those returned by Q. The paper [28] relaxes one

constraint at a time and is interactive. It also tries to minimize

the cost by suggesting low cost relaxations which lead to non-

empty answers. DebEAQ [39] first tries to debug why the query is

returning empty answer and then tries to relax it with minimum

change to the original query. It is also limited only to property

graphs.

Query Relaxation over graphs
The closest to our works are those which deal with relaxations

over graphs. The work in [15, 29–31] considers query relaxation

for conjunctive regular path queries. Users are allowed to spec-

ify query predicates which can have approximations and/or re-

laxations (using APPROX and RELAX operators respectively)

during query time. The system then computes the approxima-

tions/relaxations with their relative evaluation costs to support

query rewriting. Another work [17] computes approximate an-

swers using a Bayesian network to rank and score relaxed queries.

Two algorithms are described in [18]. The first algorithm is based

71

on best-first strategy and relaxed queries are executed in order.

They prune relaxations which do not give new results. The other

algorithm executes the relaxed queries as a batch and avoids

the unnecessary execution cost. The idea of Maximal Succeed-

ing Subqueries (MSSs) is exploited in [14] using Lattice-based

and Matrix-based approaches to minimally refine the user query.

The scoring scheme used by these existing systems supporting

relaxations however, do not use fine-grained scores (scores for

individual triples) as in our case. TriniT [42] proposes the notion

of eXtended Knowledge Graphs (XKG) with fine-grained scores

for triples and allows relaxations for queries over them. It uses a

technique similar to NSpec-QP to evaluate the queries.

6 CONCLUSION AND FUTUREWORK
We have proposed Spec-QP, a strategy for top-k query processing

in a scenario where a query can have multiple relaxations. To

achieve this, we have used a speculative approach for pruning

the relaxations which are not likely to contribute answers to the

top-k results. The speculation is based on precomputed statistics

about the distribution of scores for triple pattern matches. The

relaxations of triple patterns predicted to not contribute towards

top-k answers are not processed, thereby reducing top-k compu-

tations and leading to faster response times and reduced memory

requirements.

We have experimented over two real world datasets – XKG

and Twitter – to show that Spec-QP is a cost-efficient technique

for supporting relaxations. This is especially useful for servers

in aiding exploratory querying over knowledge graphs by new

users without an exponential increase in the budget. We also

demonstrated the practical usability of our technique by imple-

menting it over two popular database engines – PostgreSQL and

Virtuoso. As future work, we would like to support more compli-

cated relaxations for the queries like replacing a triple pattern

with a chain of triple patterns, etc. Another orthogonal area of

work is to find meaningful and useful relaxations for a given

triple pattern.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their valuable comments and helpful suggestions. The first author

was partially supported by the Student Exchange program under

Indo-GermanMax Planck Center for Computer Science (IMPECS)

and funds from Max Planck Institute for Informatics (MPI-INF)

over an internship. Shewould also like to thank the alumni donors

of the CS&E department at IIT Delhi for supporting her research.

REFERENCES
[1] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, and Aristides Gionis.

2010. An optimization framework for query recommendation. In WSDM.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-

niak, and Zachary G. Ives. 2007. DBpedia: A Nucleus for a Web of Open Data.

In ISWC.
[3] Ricardo A. Baeza-Yates, Carlos A. Hurtado, andMarcelo Mendoza. 2004. Query

Recommendation Using Query Logs in Search Engines. In EDBT Workshops.
[4] H. Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald, and Gerhard

Weikum. 2006. IO-Top-k: Index-access Optimized Top-k Query Processing. In

VLDB.
[5] Kurt D. Bollacker, Robert P. Cook, and Patrick Tufts. 2007. Freebase: A Shared

Database of Structured General Human Knowledge. In AAAI.
[6] Adriane Chapman and H. V. Jagadish. 2009. Why not?. In SIGMOD.
[7] H.A. David and H.N. Nagaraja. 2004. Order Statistics. Wiley.

[8] Christos Doulkeridis, Akrivi Vlachou, Kjetil Nørvåg, Yannis Kotidis, and Neok-

lis Polyzotis. 2012. Processing of Rank Joins in Highly Distributed Systems. In

ICDE.
[9] Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, Marcin Sydow, and Gerhard

Weikum. 2009. Language-model-based ranking for queries on RDF-graphs. In

CIKM.

[10] Shady Elbassuoni, Maya Ramanath, and Gerhard Weikum. 2011. Query Relax-

ation for Entity-Relationship Search. In ESWC.
[11] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation

algorithms for middleware. J. Comput. Syst. Sci. 66, 4 (2003).
[12] Azam Feyznia, Mohsen Kahani, and Fattane Zarrinkalam. 2014. COLINA:

A Method for Ranking SPARQL Query Results through Content and Link

Analysis. In ISWC.
[13] Jonathan Finger and Neoklis Polyzotis. 2009. Robust and efficient algorithms

for rank join evaluation. In SIGMOD.
[14] Géraud Fokou, Stéphane Jean, Allel Hadjali, and Mickaël Baron. 2015. Co-

operative Techniques for SPARQL Query Relaxation in RDF Databases. In

ESWC.
[15] Riccardo Frosini, Andrea Calì, Alexandra Poulovassilis, and Peter T. Wood.

2017. Flexible query processing for SPARQL. Semantic Web 8, 4 (2017).
[16] Vagelis Hristidis, Yuheng Hu, and Panagiotis G. Ipeirotis. 2010. Ranked queries

over sources with Boolean query interfaces without ranking support. In ICDE.
[17] Hai Huang and Chengfei Liu. 2010. Query Relaxation for Star Queries on RDF.

In WISE.
[18] Hai Huang, Chengfei Liu, and Xiaofang Zhou. 2012. Approximating query

answering on RDF databases. WWW 15, 1 (2012).

[19] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. 2003. Supporting

Top-k Join Queries in Relational Databases. In VLDB.
[20] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. 2004. Supporting

top-k join queries in relational databases. VLDB J. (2004).
[21] Ihab F. Ilyas, Rahul Shah, Walid G. Aref, Jeffrey Scott Vitter, and Ahmed K.

Elmagarmid. 2004. Rank-aware Query Optimization. In SIGMOD.
[22] Abhijith Kashyap, Vagelis Hristidis, andMichalis Petropoulos. 2010. FACeTOR:

cost-driven exploration of faceted query results. In CIKM.

[23] Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Maya Ramanath, and

Gerhard Weikum. 2008. NAGA: Searching and Ranking Knowledge. In ICDE.
[24] Nick Koudas, Chen Li, Anthony K. H. Tung, and Rares Vernica. 2006. Relaxing

Join and Selection Queries. In VLDB.
[25] Jyoti Leeka, Srikanta Bedathur, Debajyoti Bera, and Medha Atre. 2016. Quark-

X : An Efficient Top-K Processing Framework for RDF Quad Stores. In CIKM.

[26] Chengkai Li, Ning Yan, Senjuti Basu Roy, Lekhendro Lisham, and Gautam

Das. 2010. Facetedpedia: dynamic generation of query-dependent faceted

interfaces for wikipedia. In WWW.

[27] Sara Magliacane, Alessandro Bozzon, and Emanuele Della Valle. 2012. Efficient

Execution of Top-K SPARQL Queries. In ISWC.
[28] Davide Mottin, Alice Marascu, Senjuti Basu Roy, Gautam Das, Themis Pal-

panas, and Yannis Velegrakis. 2013. A Probabilistic Optimization Framework

for the Empty-Answer Problem. PVLDB 6, 14 (2013).

[29] Alexandra Poulovassilis. 2018. Applications of Flexible Querying to Graph

Data. In Graph Data Management, Fundamental Issues and Recent Develop-
ments.

[30] Alexandra Poulovassilis, Petra Selmer, and Peter T. Wood. 2016. Approxima-

tion and relaxation of semantic web path queries. J. Web Sem. 40 (2016).
[31] Alexandra Poulovassilis and Peter T. Wood. 2010. Combining Approximation

and Relaxation in Semantic Web Path Queries. In ISWC.
[32] Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar, and Mukesh K.

Mohania. 2008. Minimum-effort driven dynamic faceted search in structured

databases. In CIKM.

[33] Karl Schnaitter and Neoklis Polyzotis. 2010. Optimal algorithms for evaluating

rank joins in database systems. ACM Trans. Database Syst. (2010).
[34] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a

core of semantic knowledge. In WWW.

[35] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. 2005. Efficient and

self-tuning incremental query expansion for top-k query processing. In SIGIR.
[36] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. 2005. An Efficient and

Versatile Query Engine for TopX Search. In VLDB.
[37] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. 2004. Top-k Query

Evaluation with Probabilistic Guarantees. In VLDB.
[38] Quoc Trung Tran and Chee-Yong Chan. 2010. How to ConQueR why-not

questions. In SIGMOD.
[39] Elena Vasilyeva, Thomas Heinze, Maik Thiele, and Wolfgang Lehner. 2016.

DebEAQ - debugging empty-answer queries on large data graphs. In ICDE.
[40] Elena Vasilyeva, Maik Thiele, Christof Bornhövd, and Wolfgang Lehner. 2014.

Top-k Differential Queries in Graph Databases. In ADBIS.
[41] Dong Wang, Lei Zou, and Dongyan Zhao. 2015. Top-k queries on RDF graphs.

Inf. Sci. 316 (2015).
[42] Mohamed Yahya, Denilson Barbosa, Klaus Berberich, Qiuyue Wang, and

Gerhard Weikum. 2016. Relationship Queries on Extended Knowledge Graphs.

In WSDM.

[43] Shengqi Yang, Fangqiu Han, Yinghui Wu, and Xifeng Yan. 2016. Fast top-k

search in knowledge graphs. In ICDE.
[44] Hailing Yu, Hua-Gang Li, Ping Wu, Divyakant Agrawal, and Amr El Abbadi.

2005. Efficient Processing of Distributed Top-k Queries. In DEXA.

72

	Spec-QP: Speculative Query Planning for Joins over Knowledge GraphsMadhulika Mohanty, Maya Ramanath, Mohamed Yahya, Gerhard Weikum

