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Abstract 

Humans can learn abstract concepts that describe invariances over relational patterns in data. One 

such concept, known as magnitude, allows stimuli to be compactly represented by a single 

dimension (i.e. on a mental line), for example according to their cardinality, size or value. Here, 

we measured representations of magnitude in humans by recording neural signals whilst they 

viewed symbolic numbers. During a subsequent reward-guided learning task, the neural patterns 

elicited by novel complex visual images reflected their pay-out probability in a way that suggested 

they were encoded onto the same mental number line. Our findings suggest that in humans, 

learning about values is accompanied by structural alignment of value representations with neural 

codes for the concept of magnitude.   
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The ability to learn rapidly from limited data is a key ingredient of human intelligence. For 

example, on moving to a new city, you will rapidly discover which restaurants offer good food 

and which neighbors provide enjoyable company. Current models of learning propose that 

appetitive actions towards novel stimuli are learned tabula rasa via reinforcement (1), and these 

models explain the amplitude of neural signals in diverse brain regions during reward-guided 

choices in humans and other animals (2–4). However, reinforcement learning models learn only 

gradually, and even when coupled with powerful function approximation methods, exhibit limited 

generalization beyond their training domain (5), leading to the suggestion they are ill-equipped to 

fully describe human learning (6). By contrast, cognitive scientists have ascribed human 

intelligence to formation of abstract knowledge representations (or “concepts”) that delimit the 

structural forms that new data is likely to take (7–9). Indeed, real-world data can often be described 

by simple relational structures, such as a tree, a grid or a ring (7), and humans may infer relational 

structure through probabilistic computation (10) and understand new domains by their alignment 

with existing relational structures (11). However, these models are often criticized for failing to 

specify how concepts might be plausibly encoded or computed in neural circuits (12). A pressing 

concern, thus, is to provide a mechanistic account of how relational knowledge is encoded and 

generalized in the human brain (13). 

 

The current project was inspired by recent observations that the representational geometry of 

human neural signals evoked by symbolic numbers respects their relative cardinality (14, 15). In 

scalp M/EEG signals, neural patterns evoked by Arabic digits vary continuously with numerical 

distance, such that multivariate signals for “3” are more similar to those for “4” than “5”. Number 

is a symbolic system that expresses magnitude in abstract form (16–18) and so we reasoned that 
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continuously-varying neural signals evoked by numbers might be indexing a conceptual basis set 

that supports one-dimensional encoding of novel stimuli. In the domain of reward-guided learning, 

a compact description of the stimulus space projects data into a single dimension that runs from 

“bad” to “good”. Here, thus, we asked humans to learn the reward probabilities associated with 

novel, high-dimensional visual images, and measured whether the stimuli come to elicit neural 

patterns that map onto one-dimensional neural codes for numerical magnitude. 

 

Whilst undergoing scalp EEG recordings, human participants (n = 46) completed two tasks: a 

numerical decision task and a probabilistic reward-guided learning task. In the numerical task 

participants viewed rapid streams of ten Arabic digits (1 to 6) and reported whether numbers in 

orange or blue font had the higher (n = 22) or lower (n = 24) average (Fig. 1A). Using 

representational similarity analysis (RSA) (19) we replicated the previous finding (14, 15) that 

patterns of neural activity across the scalp from ~100ms onwards were increasingly dissimilar for 

digits with more divergent magnitude, i.e. codes for “3” and “5” were more dissimilar than those 

for “3” and “4” (Fig. 1A, green line). This occurred irrespective of task framing (report higher vs. 

lower average) and category (orange vs. blue numbers), suggesting that neural signals encoded an 

abstract representation of magnitude and not solely a decision-related quantity such as choice 

certainty (14). The reward-learning task was based on the multi-armed bandit paradigm that has 

been used ubiquitously to study value-guided decision-making (20). Participants learned the 

reward probabilities associated with six unique novel images (colored donkeys; Fig. 1A), which 

paid out a fixed reward with a stationary probability (range 0.05-0.95). These probability values 

were never signaled to the participant but instead acquired by trial and error 
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Fig. 1. Task design and RSA results. (A) Humans performed two tasks during a single EEG recording 

session. In the numerical decision task, participants viewed a stream of ten digits between 1 and 6, deciding 

whether the blue or orange numbers had the highest/lowest average. In the bandit task, participants 

learned about the reward probabilities of six images (bandits) and were asked to choose between two 

successive bandits to obtain a fixed reward. Numbers below each frame show ISI in ms. (B) RSA revealed 

a numerical and value distance effect from ~100 ms after stimulus onset. Inset shows magnitude model 

RDM. Shaded area represents SEM. (C) Averaged full RDM from 350-600 ms for numbers (1-6) and 

bandits (b1-b6). Upper left and lower right quadrants show representational similarity for numbers (N) 

and bandits (B) respectively, i.e. within-task RDM; lower left/upper right quadrants show cross-validated 

similarity between numbers and bandits (CV), i.e. between-task RDM. (D) Cross-temporal cross-validated 

RDM revealed a stable magnitude representation that was shared between the two tasks. (E) This effect 

was robust to the elimination of any single number/bandit pair. Correction for multiple comparisons was 

performed with cluster-based permutation tests, Pcluster < 0.005. 
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learning in an initial learning phase. In the test phase, we asked participants to decide between two 

successive donkeys to obtain a reward, and estimated trial-wise subjective probability estimates 

for each bandit by fitting a delta-rule model to choices (1). Throughout these phases, the bandits 

were never associated with numbers in any way. 

 

Next, we used RSA to examine the neural patterns evoked by bandits, ordered by their subjective 

reward probability. We found that multivariate EEG signals varied with subjective bandit ranks, 

with bandits that paid out with nearby probabilities eliciting more similar neural patterns (from 

~100ms onwards; Fig. 1B, blue line). Our key question was whether there was a shared neural 

code for numerical magnitude and reward probability. We found that this was the case. For 

example, EEG signals elicited by digit “6” were more similar to those evoked by the most valuable 

bandit, and number 1 predicted the bandit least likely to pay out, with a similar convergence for 

intermediate numbers and bandits (Fig. 1C). Cross-validation of neural signals elicited by all 

numbers (1 to 6) and bandits (inverse ranks 1-6) was stable and reliable from 300-650 ms post-

stimulus, as demonstrated by cross-temporal RSA (Fig. 1D) (21). This cross-validated pattern 

remained robust to the removal of any one of the six number/bandit pairs (Fig. 1E) or exclusion of 

the diagonal elements (Fig. S1A) and was more consistent within than between participants (Fig. 

S1B). 
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Fig. 2. Neural network simulations. (A) Schematic depiction of network structure and training. The network 

was first trained to classify inputs 𝑥" fed into units 𝑋$  (lower blue circles). Inputs 𝑥" consisted of 6 stimuli 

that either exhibited gradual increasing dissimilarity or were shuffled as a control (stimulus RDMs shown 

next to examples of 𝑥" and 𝑥%). After convergence, the model was trained on new input 𝑥% that were fed 

into a separate input stream 𝑋& (lower green circles). Inputs 𝑥% were different to 𝑥" but exhibited the same 

similarity structure. (B) Loss plotted over the course of training (left panel) and retraining (right panel) 

for the test (red) and shuffled control (blue) conditions. Learning was faster during training for control 

stimuli, but retraining was faster when 𝑥" and 𝑥% exhibited shared similarity structure. (C) Loss for 

control simulations where W2 were shuffled between training and retraining, suggesting successful 

transfer depends on structure encoded in W2. (D) Mean loss for first 1000 cycles after retraining. (E) 

Cross-validation RSA on hidden unit activation for all stimuli in 𝑥" and 𝑥% after retraining. Hidden unit 

activations exhibit shared similarity structure only when W2 remains unshuffled and 𝑥" and 𝑥% share 

structure. 
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To explore how these representations might be learned and generalized at the mechanistic level, 

we turned to a simple computational tool, a feedforward neural network (22). Unlike handcrafted 

probabilistic models, neural networks are not constrained to make inferences over structure, but 

structured representations may emerge naturally in the weights during training (12, 23). Here, as a 

proof of concept, we confronted the network with two different stimulus sets in turn that (like our 

numbers and bandits) shared the same similarity structure. We then asked if the shared structure 

facilitates retraining on the second set after learning the first (Fig. 2A). The network was first 

trained on inputs 𝑥' arriving at input units 𝑋$, and after convergence, retrained on inputs 𝑥% fed 

into units 𝑋& (where 𝑋$	and 𝑋& are separate input modules that project to a common hidden layer 

H). Inputs 𝑥% were 6 random vectors constructed to have the same continuously-varying similarity 

structure as the bandits, whereas inputs 𝑥" consisted of either a different set of 6 random vectors 

with the same second-order structure, or a shuffled control. Relearning on 𝑥% proceeded faster 

when inputs shared a common structure with 𝑥" (Fig. 2B-D) and RSA conducted after retraining 

revealed reliable cross-validated patterns of activity in the hidden units for this condition alone 

(Fig. 2E), mirroring the result from the human neural data.  

 

Our participants were all numerate adults with an intact sense of magnitude, and thus an equivalent 

“shuffled” control was unavailable for the human data. Nevertheless, building on past work that 

has described choice biases in numerical cognition and economic decisions (24), we asked whether 

individual differences in the mental number representation explained variance in the neural codes 

elicited by the bandits. We previously observed that participants overweighted larger magnitudes 

during the numerical decision task (14), e.g. numbers “5” and “6” had disproportionate impact on 
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averaging judgments, and this finding was replicated in the current data (Fig. 3A). Human choices 

were best fit by a power-law model in which participants averaged and compared distorted 

numerical values 𝑥) with 𝑘 = 2.04 ± 1.11 (𝑘 > 1: t(45) = 12.47, P < 0.001). Turning to the neural 

data, we generated candidate representational dissimilarity matrices (RDMs) under the assumption 

that distance in neural space can like-wise be non-linear and best described by a distortion of the 

form 𝑥). We found that in both tasks the best fitting RDM was parameterized by 𝑘 > 1 [numerical: 

𝑘 = 1.73 ± 0.82, t(45) = 14.34, P < 0.001; bandit: 𝑘 = 1.72 ± 0.85, t(45) = 13.65, P < 0.001] (Fig. 

3B). Moreover, estimated distortions for behavior and EEG in the numerical task were highly 

correlated, suggesting that they were driven by shared distortions in neural magnitude coding. To 

assess whether a distortion in the number line was also associated with choice behavior in the 

Fig. 3. Psychometric and neurometric distortions. (A) Choice probabilities in the numerical task were 

modelled with a psychometric model that transformed input values into a decision value with exponent k. 

Participant’s responses were best modelled by a distortion parameter k > 1. (B) Distribution of estimated 

k for behavior in the numerical task and neural RDMs for both tasks. All measures were best described by 

k > 1. Estimated distortions for behavior and EEG in the numerical task were highly correlated. (C) Choice 

distortions from the numerical task explained variance in the neural RDMs of the bandit task after 

partialling out choice behavior in the bandit task using competitive GLM (Pcluster < 0.005). 
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bandit task, we predicted neural patterns in the bandit task from the choice distortions in the 

numerical task (after partialling out choice distortions estimated from the bandit task itself). 

Individual differences in warping of the number representation continued to explain variance in 

the neural bandit representation (Fig. 3C). This implies that humans used their intrinsic sense of 

magnitude when forming neural representations for the bandits in one-dimensional probability 

space. 

 

Recent work has suggested that during categorization, posterior parietal neurons in the macaque 

monkey are strikingly low-dimensional, as if the parietal cortex were engaging in a gain control 

process that projected stimulus features or timings on a single axis (25–27). Indeed, focusing on 

centro-parietal electrodes, we observed a univariate positivity that varied with the magnitude of 

both numbers and reward probabilities (Fig. 4A-B). This signal resembles a previously described 

EEG signal, known as the CPP, that has been found to scale with the choice certainty in perceptual 

(28) and economic tasks (29). However, we note that in our numerical task the CPP followed an 

approximately ascending pattern from lower to higher numbers regardless of task framing or color 

category, and that the cross-validation effect persisted even after the CPP had been regressed out 

of the data (Fig. S2). This suggests that (a) the CPP in our task may represent a notion of 

magnitude, not a certainty signal; and (b) that this signal is not the sole driver of our multivariate 

findings. Nevertheless, to understand the dimensionality of the number and bandit representations 

(and the subspace in which they aligned), we used two dimensionality reduction techniques, 

singular value decomposition (SVD) and multidimensional scaling (MDS). First, using SVD, we 

systematically removed dimensions from the EEG data and recomputed our number-bandit cross-

validation scores. We found that probabilistic reward learning was supported by a low-dimensional 
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neural magnitude code, with reliable effects persisting when all but 2 eigenvectors were removed 

Fig. 4. Dimensionality of magnitude representation. (A) Regression coefficients associated with numbers 

1-6, independent of task framing (report highest/lowest) or category (blue/orange). Grey shaded area 

shows time of greatest disparity between signals (Kruskis-Wallis, PFDR < .01). Scalp map inset shows 

response amplitude for digit 6 during identified time window. Colored shading represents SEM. (B) 

Equivalent analysis for bandits b1-b6 in the bandit task. Scalp map shows activation for highest subjectively 

valued bandit (b6). (C) Cross-validation after dimension reduction using SVD in each task. Each cell 

contains the p-value indicating the significance of the pairwise t-test comparing average cross-validation 

effect in the 350-600 ms time window under different dimensionalities of the data. Reduction to one 

dimension significantly reduced the size of the effect. (D) Multi-dimensional scaling (MDS) revealed two 

principal axes that describe the data: a magnitude axis approximately following the number/bandit order 

(along the black arrow) and a certainty axis distinguishing inlying (e.g. 3,4) from outlying (e.g. 1,6) 

numbers or bandits. 
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from the data but attenuated when only a single dimension was retained in the EEG data. Statistical 

comparison suggested that within the 350-600 ms period for which significance was observed, the 

2D and full (high-dimensional) solutions led to equivalent cross-validation but the reduction to 1D 

significantly reduced the effect (Fig. 4C). Secondly, we used MDS to visualize the first dimensions 

of the concatenated number/bandit data. This disclosed an axis pertaining to magnitude (Fig. 4D) 

and another for certainty along which, especially for the bandits, the large (or best) and small (or 

worst) items diverged from the others. In other words, the numbers and bandits align principally 

along a single magnitude axis but with an additional contribution from a second factor encoding 

choice certainty. 

 

Together, these observations suggest that an abstract neural code for magnitude forms a “scaffold” 

for learning about the reward probabilities associated with novel stimuli. Rather than encoding 

stimulus value in an unstructured value function or lookup table (as is common in RL models), our 

data suggest that humans project available stimuli onto a one-dimensional axis that runs from 

“bad” to “good”.  This neural axis is aligned with the mental number line, suggesting that humans 

recycle an abstract concept of magnitude to encode reward probabilities. Learning a structured 

representation of value will have the benefit of allowing new inductive inferences, such as inferring 

transitive preferences among economic goods without exhaustive pairwise comparison, and 

facilitate read-out in downstream brain areas, related to the notion of a ‘common currency’ (30). 

Although the spatial resolution of EEG is limited, our univariate data point to the parietal cortex 

as one locus for the low-dimensional projection of value, where neural signals for magnitude have 

previously been proposed to provide a conceptual bridge between different metrics such as space, 

time and number (16, 17, 31, 32).  
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