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Abstract
Complete security proofs for quantum communication protocols can be notoriously involved, which
convolutes their verification, and obfuscates the key physical insights the security finally relies on. In
such cases, for themajority of the community, the utility of such proofsmay be restricted.Here, we
provide a simple proof of confidentiality for parallel quantum channels established via entanglement
distillation based on hashing, in the presence of noise, and amalicious eavesdropper who is restricted
only by the laws of quantummechanics. The direct contribution lies in improving the linear
confidentiality levels of recurrence-type entanglement distillation protocols to exponential levels for
hashing protocols. The proof directly exploits the security relevant physical properties:measurement-
based quantumcomputationwith resource states and the separation of Bell-pairs from an
eavesdropper. The proof also holds for situationswhere Eve has full control over the input states, and
obtains all information about the operations and noise applied by the parties. The resulting state after
hashing is private, i.e. disentangled from the eavesdropper.Moreover, the noise regimes for
entanglement distillation and confidentiality do not coincide: confidentiality can be guaranteed even
in situationswhere entanglement distillation fails.We extend our results tomultiparty situations
which are of special interest for secure quantumnetworks.

1. Introduction

Secure and private quantum communication is a concept of fundamental importance for emerging quantum
technologies. The secure generation of a secret key for the encryption of classical data has received enormous
attention in recent years [1–7], and is believed to be one of the key applications of quantum information science.
Security has been shownunder evermore general assumptions, finally arriving at device-independent proofs
where the devices for secret key expansion are not trustworthy [8–10]. However, while establishing
entanglement between two remote parties served as key ingredient inmany security proofs ofQKD,most
existing proofs are not established by sharpening this intuition, i.e. they follow amore convoluted, tedious, and
less straightforward route [2, 11–13].

Here we consider the problemof confidential or secure transmission of quantum information via quantum
channels, equally important asQKDbut far less studied. This task is closely related to the confidential generation
ofmaximally entangled, distributed quantum states. Both are essential ingredients of quantumnetworks
[14–16], quantumkey agreement protocols [17–19], and distributed quantum computation [20]. In an
idealized, noiseless situation a secure quantum channel, studied in [21–23], may be established in terms of
teleporation [24]using a perfect Bell-pair. The situation turns out to be far less straightforward in a noisy
scenario.Nevertheless, it was shown that private entanglement is feasible when considering noisy channels and
perfect operations [25, 26], as well as noise in local operations for independent and identically distributed (i.i.d.)
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[27] and non i.i.d. [28] situations. The latter works consider the recurrence-type entanglement distillation
protocols (EDPs) [25, 26], which probabilistically increase the fidelity and factor out any eavesdropper with a
linear rate of convergence in terms of initial states.

Hashing protocols [29–36] are one-way EDPswhich overcome these limitations. They are deterministic and
converge exponentially fast in terms of initial states towards several copies of amaximally entangled state. This
enables for several confidential quantum channels in parallel, crucial for big quantumdata transmission [37]
andwhich is in contrast to recurrence-type EDPs.

In this paperwe provide a proof of confidentiality for hashing protocols in a noisy settingwhere the
eavesdropper has full control over all the initial states. Since the confidentiality of recurrence-type EDPs [25, 26]
has been shown in similar scenarios [28], this alone is not too surprising, even though hashing enables for
exponential confidentiality levels rather than linear ones. Nevertheless, due to the simplicity of the
confidentiality proof we clearly identify the relevant elements of physical properties fromwhich the formal claim
follows: the purity of the target state for noiseless entanglement distillation protocols and theway one deals with
noise inmeasurement-based quantum computation (MBQC)with resource states.We emphasize that both are
not exploitable in a noisy gate-based implementation aswe illustrate later. The interest of using such
characteristics, arguably, goes beyond the direct cryptographic statement they are implying.What ismore, we
identify a regime of noise where privacy, or equivalently confidentiality, is feasible, whereas distillation is not.
Furthermorewe show that hashing establishes privacy evenwhen the eavesdropper is providedwith
information regarding all noise processes occurring inAlice’s and Bob’s laboratory, which is one step towards
device independence for protocols with a quantumoutput.

Early security proofs forQKD [7] rely on fault-tolerant quantum computation to reduce the problemof
proving security to a noiseless setting, and utilize quantum randomhashing [29] to verify the successful
generation of entanglement. In contrast, our approach eliminates the necessity of fault-tolerant quantum
computation by exploiting physical properties ofMBQCwith resource states, andwe use hashing as an active
tool to establish high-fidelity entangled pairs via entanglement distillation rather than verifying them.Other
works [1, 4, 6] also use the existence of (one-way)EDPs.However, earlier works [1, 6, 7] lack a full treatment of
thefinite size setting, crucial for realistic regimes [11]. In contrast, here we analyze thefinite size performance of
hashing and explicitly provide confidentiality levels also in non-i.i.d. scenarios.

EDPs aim at distilling entanglement from a noisy ensemble of bi- ormultipartite quantum states via local
operations andmeasurements. Hashing protocols [29–36] form a specific subset of those protocols, which rely
on the concept of likely subspaces [38], used in information theory, and universal hash functions [39], typically
applied in the context of privacy amplification. Their operation is usually described on a large, noisy ensemble
(called initial states) and one distills in the asymptotic limit a fraction of systems in amaximally entangled state,
see appendix A formore details. However, it was shown that hashing via quantum gates fails in the presence of
noise [40]. This drawback is overcome bymeasurement-based quantum information processing [41]. There, the
desired quantumoperation is realized via Bell-measurements between the input quantum state and the input
qubits of a resource state, referred to as read-inmeasurements. Consequently the only source of noise within this
computational approach is due to imperfect resource states and noisy Bell-measurements (which can be
accounted for by an increased level of the noise acting on the resource state, see [40]). Ameasurement-based
implementation of the hashing protocol, see appendix A.2, is capable of distilling entanglement for local
depolarizing noise (LDN) up to 7% acting on each qubit of the resource state [40]. This is due to an observation
made in [42]: LDN acting on the input qubits of the resource state can virtually bemoved to the initial states.
Furthermore, LDNnoise acting on the output qubits of the resource state can be assumed to act afterwards, since
it commutes with the read-inmeasurements. These observations provide insights how one deals with LDN in
MBQCwith resource states, a physical characteristic which is not directly usable in quantum circuits, see
appendix A.2.More precisely, for gate-based implementations the situation ismore complex and difficult to
formalize in a useful way, since noise introduced by quantum gates gets highly correlated on propagating noise
through the entire circuit.

In amultipartite setting, ameasurement-based implementation of the hashing protocolmight turn out to be
very useful for large scale quantumnetwork architectures which rely on e.g. GHZ states [43].

In this paperwewill use the terms confidential, secure, privacy, private states and private entanglement.
Thereforewewant to clarify their relationship and their distinction before using them.

A communication channel, either classical or quantum, is referred to as confidential if an eavesdropper can
not obtain any information regarding the data being transmitted. Nevertheless, the eavesdroppermight change
the data during transmissionwithout being detected. Thereforewe refer to privacy as the ability of two (ormore)
parties to establish a confidential communication channel. A communication channel is considered to be secure,
if it is confidential and authenticated, where authenticated heremeans that the eavesdropper can not alter the
data without being detected by the parties. In the quantum casewe call a state private if it can be used to establish
a confidential quantum channel, i.e. a state which is entangled betweenAlice and Bob but not entangledwith the
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eavesdropper. The termprivate statewas already introduced in the context ofQKD for generating classical keys
from states with bound entanglement [44] and computing secret key capacities of quantum channels [45]. For
that purpose [44, 45] consider additional systems, known as shield systems, to decouple an eavesdropper from
maximally entangled states to generate a secure key between two parties. However, privacy or private states as we
consider here, refer to the ability of establishing a confidential quantum channel without the notion of shield
systems. The entanglement of such a state is then referred to as private entanglement.

For full formal definitions, proofs and supportive informationwe refer to the supplementalmaterial.
However, the confidentiality proof of hashing is self-contained in themain text.

2. Results

Weconsider two categories of players: protocol participants and Eve, the eavesdropper, fromwhich the
participants request their initial states r( )n used for entanglement distillation. The former, connected via classical
authenticated channels, wish to distillm copies of a certain state jñ∣ . In the bipartite setting, the state jñ∣ might
correspond to a perfect Bell-pair [29]whereas in themutlipartite setting to a specificmultipartite state [30–36] .
The latter distributes the initial states via noisy quantum channels and has full control over them. In particular,
Evemight be fully entangledwith all initial states, which corresponds to themost general scenario how initial
states can be distributed.

Hashing in its original form assumes initial states of tensor product form, i.e. r r= Ä( )n n where ρ is a density
operator of amulti-partite quantum state and n is asymptotically large. Furthermore, entanglement distillation
will only be feasible if the entropy of the initial states is sufficiently low, see e.g. [29] for bipartite hashing.

To accommodate these requirements, we propose the following protocol: First the participants agree on a
number of desired output systemsm and a confidentiality level ε. From these values they compute the number of
systems nwhich are necessary tomeet both conditions, assuming theworst case entropy for the initial states.
Then, the participants request n+kn systems fromEve subject to entanglement distillation. They apply a local
twirling operationwhich ensures that the systems are diagonal within the respective basis (for the bipartite
protocol they twirl towardsWerner form). Next, they sacrifice kn systems for parameter estimation in order to
estimate the actual fidelity F relative to jñ∣ for each system.Depending on their estimate F , they either abort the
protocol because thefidelity is outside [ ]F F,min max or they continuewith ameasurement-based implementation
of the hashing protocol. Finally they outputm systems.When generalizing to arbitrary initial states the protocol
will be prepended by a symmetrization step.

To formalize our confidentiality criterionwe recall some basic terminology introduced in [28].We start with
the definition of the noiseless idealmap  , which takes as input the initial states and outputs, depending on
parameter estimation, either the asymptotic state of the hashing protocol, j jñá Ä∣ ∣ m, or some output state, s^

PE.
For example, in a bipartite setting j jñá = ñáÄ Ä∣ ∣ ∣ ∣B Bm m

00 00 where ñ = ñ + ñ∣ (∣ ∣ )B 00 11 200 . The idealmap
 abstracts the entanglement distillation protocol for an initial state ρ as a process: internally it runs the real
protocol for initial state ρ to its very endwhich succeedswith probability rp , and depending on parameter
estimation, it either replaces the final state with its asymptotic state, or it outputs whatever state was reached by
the protocol, s^

PE. This approach to define ideal functionality stems fromwell-established ideas inQKD [46].
Formally we define

 y y j j s sÄ ñá = ñá Ä Ä ñá + - Ä ñár r
Ä ^( )(∣ ∣ ) ∣ ∣ ∣ ∣ ( ) ∣ ∣ ( )p pid ok ok 1 fail fail , 1E

m
E f fPE PE

where yñ∣ PE is a purification of the initial state ρ provided by Eve and rp denotes the probability of the protocol
succeeding for initial state ρ. The system f distinguishes the accepting from the aborting branch.

To analyze confidentiality taking into account realistic noisy scenarios, we define the noisy idealmap a,
whereα characterizes the level of noise, as   =a a◦ , where a denotes the noise process acting on the
output qubits of the resource states of hashing.

Wefirst clarify the noise processes we assume to act on the resource states of themeasurement-based
implementation of hashing, whichmotivate our definition of the ideal noisymap.We observe that there are a
number of dominating sources of noise: noise on the resource states, noise on the read-in Bellmeasurements,
and noise on the initial states subject to entanglement distillation.

For the noise acting on the resource states we assume i.i.d. LDN. This is physically reasonable due to the
observations in [47], which shows that i.i.d. LDNprovides an accurate approximation of noise acting on
resource states if these states get generated locally via entanglement distillation.

The resource states for themeasurement-based implementation of hashing consist only of input and output
qubits, see appendix A.2 for further details.We denote the noise acting on the input qubits and output qubits of
the resource states by   a=

=
( )

j

n
jin 1

and   a=
=

( )
k

m
kout 1

respectively where
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 a r ar
a

r r r r= +
-

+ + +( ) ( ) ( )X X Y Y Z Z
1

4
, 2j j j j j j j

with a Î [ ]0, 1 quantifies the level of noise and the subscript j denotes the qubit onwhich the Pauli operators act
on. Furthermore, we can take into account for the noise which the read-in Bellmeasurements introduce by a
lower value ofα in Nin, whichwe denote byβ, see [40]. Hence, we have   b=

=
( )

j

n
jin 1

.

Becausewe can nowmathematically shift the noise from the input qubits of the resource states to the initial
states, we decompose the ideal noisymap a as the concatenation of noise acting on the initial states followed by
the noiseless ideal hashing protocol and noise acting on the output qubits of the hashing protocol, i.e.
   =a ◦ ◦out in. Becausewe can take into account for in in the parameter estimation step of the idealmap
 we end upwith   =a a◦ , wherewe have defined  =a

out.
This enables us now to precisely define the term confidentiality. In particular, we call the hashing protocol

a ε-confidential, if

   e-a a
à  ( ), 3

where D = D Äà Î   sup idk k op,1 for a CPTPmapΔwith  rD Dr    ≔ ( )supop,1 1 11
and

r rr=  †tr1 denotes the1-normof a density operator ρ, see also [48].
Observe that the state j jñá Ä∣ ∣ m in the accepting branch of a, see (1), is private, i.e. a state which is

disentangled fromEve. Thismotivates the termprivacy distillation.
We outline the remainder of this paper as follows: we start by estimating the rate of convergence of noiseless

bipartite hashing forfinitelymany i.i.d. initial states. Next, we generalize this result to arbitrary initial states
including the eavesdropper’s system via the post-selection technique. This will finally imply the confidentiality
guarantees for the noisymeasurement-based implementation of hashing.

The hashing protocol [29] deterministically converges exponentially fast towards several copies of ñ∣B00 for
i.i.d. initial states. In particular, we find for the noiselessmodified (i.e. our proposed) hashing protocol  , taking
n+kn initial states ρ, that

  r r d- - + + - -dÄ + Ä + - ( ) ( ) [ ( ( )) ( ( ) )] ( )nx F F kn2 2 exp 2 2 exp 16 , 4n kn n kn n
1 1 max min

2

where d d d= + + -d⎡
⎣⎢

⎤
⎦⎥( )( ) ( )x a g1 log 1

g1 max max
max

and a g,max max are constants depending on Fmin and

Fmax. The parameter δ stems from the hashing protocol [29] and affects the number of output systems
r d= - -( ( ) )m n S1 2 where r( )S denotes the vonNeumann entropy of ρ aswell as the rate of convergence

governed by (4). For our purposes we choose d = -n 1 5, see appendix C. In addition, the right-hand side of (4)
approaches zero exponentially fast.

Equation (4) can be derived from the following observations, see also appendix C: the 1-norm induced
distance of  rÄ +( )n kn and  rÄ +( )n kn is equal to the distance within the ok-branch, because  and  agree on
the fail-branch. The protocol can fail due to three reasonswhere each type of failure occurswith a certain
probability. Thefirst one corresponds to the case that the ensemble of Bell pairs falls outside of the likely
subspace and is given by - -( ( ))nx n2 exp 1

1 5 . The second one bounds the probability ofmisidentifying the
string by -( )nexp ln 24 5 , and the third one bounds the failure probability of parameter estimation
by - -( ( ) )F F kn2 exp 16max min

2 .
Nevertheless, (4) is insufficient to prove full cryptographic confidentiality, as it only concerns the systems of

the participants and i.i.d. initial states. So the next step is to generalize (4) to arbitrary initial states including the
systemof Evewhich is the topic of the next section.

In order to provide an estimate of (3) for bi- andmultipartite hashing protocols in terms of i.i.d. initial states,
e.g. (4), we proceed similar to the approach of [28]:first we relate the distance of the real and idealmap including
Eve’s purifying system at the beginning of the protocol to the distance between the respectivemaps concerning
the systems of the participants only. Secondwe use the post-selection technique [46], which implies that the
distance between the real and idealmap for any purification of the initial states is bounded by a specific pure
state, a purification of the so called de-Finetti Hilbert–Schmidt state.

We eliminate the first issue by using an inherent characteristic of noiseless entanglement distillation
protocols: the target state of such protocols shared betweenAlice and Bob is pure, provided the parameter
estimation is passed. Therefore the state of Alice andBob is independent of Eve, i.e. there is no residual
entanglement to her.We formalize this intuition via the following observation, rigorously proven in
appendixD: if the output of the real and idealmap, i.e.  and  respectively, differ atmost ε for a particular
initial state ρ, then they differ atmost e4 on any purification yñ∣ of ρ, i.e.

  y y eÄ - Ä ñá ( )(∣ ∣ ) ( )id id 4 . 5E E ABE 1

The next step is to relate non-i.i.d. initial states to i.i.d. initial states. Recall that the post-selection technique is
applicable to permutation invariantmaps only. Because hashing protocols are not permutation invariantmaps,
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wehave to prepend the overall protocol by a symmetrization step in order to apply the post-selection technique.
Thisfinally enables us to prove confidentiality of hashing protocols according to (3) via the following theorem.

Theorem1 (Post-selection-based reduction technique). Let  s be the real protocol and  s the ideal protocol
prepended by a symmetrization step ( )s taking +n kn initial states. Let  and  be the sub-protocols after
symmetrization. Thenwe have

    s- -
s

à +
Ä +   ( )( ) ( )g4 max , 6s s

n kn d AB
n kn

, 1
AB

where d denotes the dimension of an individual system and =
+ + -

+ ++
-

⎛
⎝⎜

⎞
⎠⎟ ( )g

n kn d

n
n kn

1
1n kn d

d
,

2
12
.

The parameter d in theorem 1 corresponds to the dimension of each individual initial state, therefore it is
constant for a specific protocol andwe have forM participants that =d 2M .

We sketch the proof of theorem1 as follows: the post-selection technique of [46] implies that
    y y- = - Ä ñáyà ñ   ( ) (∣ ∣)∣ idsups s s s

E 1ABE
is bound by evaluating this expression for a particular

state, a purification of the de-Finetti Hilbert–Schmidt state. Hencewe apply our previous observation, i.e. (5), to
that particular initial state which reduces the confidentiality proof to i.i.d. initial states. For the complete proof of
theorem1we refer to appendix E.

Wenow easily conclude confidentiality of the noiseless bipartite hashing protocol prepended by
symmetrization by combining theorem 1 for d=4 and (4)which leads to

  - + +

´ - + -
+ - -

à
-

  ( )
[ ( ( )) ( )

( ( ) )] ( )

n kn

nx n n

F F kn

4 2 1

2 exp exp ln 2

2 exp 16 . 7

s s 15

1
1 5 4 5

max min
2 1 2

Equation (7) analytically proves that arbitrary confidentiality levels can be achieved via the hashing protocol [29]
andfinally enables us to show confidentiality for a noisymeasurement-based implementation of the hashing
protocol.

Recall that the resource states, necessary for ameasurement-based implementation of the hashing protocol,
are subject to LDNacting on all qubits,  a a=

=
( ) ( )

l

n
l1

where  a( )l is defined in equation (2) and that
we include the noise of a noisy Bell-measurement at the read-in in the value ofα in (2), see [40]. For amore
detailed discussion of this noisemodel we refer to [47] and appendix A.2.

The confidentiality proof for the noisymeasurement-based implementation of hashing now concludes by
using the following intuition fromMBQCwith resource states: the LDNon the input qubits can bemoved, due
to the symmetry of Bell-states, to the initial states whereas LDNacting on the output qubits can be assumed to
act after the protocol. Therefore one is left with a noiseless hashing protocol generating pure states affected by
LDN.We reiterate that such an approach is not directly applicable in the setting of gate-based implementations.

We sharpen this observation as follows: the resource states of the protocol consist only of input and output
qubits, see appendix A.2 and , and according to [42]we can virtuallymove the noise acting on the input qubits to
the initial states provided by Eve. Thuswe deal with this part of the noise via amodification of parameter
estimation, since the entropy of the initial states increases after virtuallymoving the noise. The noise acting on
the output qubits of the resource states can be assumed to act after the protocol completes, as that noise
commutes with the read-in Bell-measurements. This leaves uswith a noiseless protocol followed by LDNacting
on the output qubits, which just slightly depolarizes the pure Bell-pairs fromnoiseless hashing.Moreover, this
noise stems from the apparatus so this does not jeopardize confidentiality. In particular, because LDN is a CPTP
map, the contractivity of the1-norm implies (see also appendix F) that

   - -a a
à à    ( ), 8s s s s, ,

where  as, and  as, denote the real and the ideal noisy hashing protocol prepended by symmetrization, and
noise of strength a-1 of the form (2) acts on each qubit of the resource states independently and identically.
Hence the noisy implementation offers the same confidentiality guarantees as the noiseless implementation, the
protocol just simply abortsmore often during parameter estimation.

We highlight that the proof of confidentiality for noisy hashing does not require any numeric evidence,
whereas the proof in [28] for the distillation protocol [25] relies on numerical simulations. Furthermore the
tolerable noise for post-selection is significantly higher, namely of the order of several percent per qubit
compared to -( )O 10 20 in [28], although it should bementioned that the noisemodels are different and cannot
directly be compared.

Furthermore wefind that there exists a regime of noise for bipartite hashingwhere privacy, or equivalently
confidentiality, is achievable even though distillation is not feasible. For this regime, the privacy regime, hashing
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decreases the fidelity of each output system relative to ñ∣B00 , i.e. the protocol washes out entanglement rather
than distilling it, but nevertheless, any eavesdropper factors out. In contrast, if the noise level is within the
distillation regime thefidelity of each output system relative to ñ∣B00 increases, and, as a consequence, any
eavesdropper factors out. For private states in the context ofQKDa similar observationwasmade in [44], where
it was shown that even though entanglement distillation is not feasible yet secure keys can still be generated from
private states with bound entanglement.

It is interesting to qualitatively compare thesefindings to earlier works: in [27, 49] confidentiality aspects
were studied in the framework of a gate-based implementation of the EDP of [25]. It was also found that the
noise regimes for privacy and distillation do not coincide, but contrary to the results presented here, the privacy
regime for the gate based implementationwas found to be a subset of the distillation regime. Formore details on
those noise regimeswe refer to appendix B.

We consider the scenario where the local apparatus leaks all the information about the noise processes
realized (by the noisy resource states of the hashing protocol) to Eve as in [27, 28]. Theorem7 of [28] states that if
a real protocol a is ε-confidential, then it is e2 -confidential if the noise transcripts leak to Eve. The resulting
states remain private and enable for confidential quantum channels.

The hashing protocol [29] can be generalized tomultipartite quantum states [30–36], which is relevant for
distributed quantum computation [20], quantumkey agreement protocols [17–19] and quantumnetworks
[14–16, 43]. Also for those protocols one shows their confidentiality by following the same line of
argumentation, which can be found in appendixG.

3.Discussion

In summarywe have analytically shown that noisymeasurement-based implementations of bi- andmultipartite
hashing protocols establish exponential confidentiality levels.We directly exploited the properties ofMBQC
with resource states which leads, together with the purity of the asymptotic state of noiseless hashing and the
post-selection technique, to a short, straightforward and transparent confidentiality proof.

Furthermore, the privacy and distillation regimes do not coincide, similarly to private states with bound
entanglement in the context ofQKD. In particular, there exists a regime of local i.i.d. noise where privacy is
achievable, but distillation is not. In this regime, any eavesdropper is factored out despite no entanglement being
distilled. Nevertheless, in both regimes thefinal states are disentangled from any eavesdropper, which enables
for secure quantum channels, if the information regarding the noise processes do not leak to the eavesdropper. If
this information leaks to the eavesdropper, confidential quantum channels are still feasible as the resulting states
remain private.
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AppendixA. Bipartite hashing protocol and itsmeasurement-based implementation

In this section of the supplementarymaterial we provide a short review of the biparite hashing protocol [29], we
introduce themeasurement-based implementation thereof [40] and discuss its advantages over a gate-based
approach.

In the followingwe denote the four Bell-basis states by s sñ = Ä ñ∣ ( )∣B id Bij x
j

z
i

00 where Î { }i 0, 1 is referred

to as the phase bit, Î { }j 0, 1 is referred to as the amplitude bit of ñ∣Bij and ñ = ñ + ñ∣ (∣ ∣ )B 00 11 200 .

A.1. Entanglement distillation via hashing
EDPs distill amaximally entangled state from several noisy copies provided the initial fidelity, defined as

r s r sr=( )F , tr 1 2 1 2 for density operators ρ andσwhere s j j= ñá∣ ∣ (the desired target state), is
sufficiently high. Several protocols have been proposed for this task, whichwe divide into two categories
depending on the number of systems they utilize within each basic distillation step. In the first groupwe have
recurrence-type protocols [25, 26]whichwork pair-wise, whereas in the second groupwe have so-called
hashing-type protocols [29] that operate, in principle, on the entire ensemble. Common to both classes of
protocols is that they utilize local operations,measurements and classical communication.
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Recurrence-type protocols are robust against local noise in both the gate-based [50] andmeasurement-
based implementations [42]. In contrast, the gate-based implementations of hashing-type protocols are fragile
with respect to noise of the local apparatus aswewill discuss briefly.

The hashing protocol [29] is an EDPwhich operates on a large ensemble of noisy initial states in an iterative
manner. In its standard version, the participants assume to receive n copies of an initial state ρ, where ρ is a two
qubit density operator diagonal in the Bell-basis. The hashing protocol outputs r= -( ( ))m n S1 systems in the
asymptotic limit where r <( )S 1denotes the von-Neumann entropy of ρ. At each basic distillation step, which
we also refer to as a round, the participants apply local operations according to a string drawn uniformly at
randomand followed by a controlledNOT into one target state.More precisely, they accumulate the phase and/
or amplitude bit i and j of r = å ñá∣ ∣p B Bi j ij ij ij, of each individual pair into one target system via several

controlledNOTs. Recall that such a bilateral controlledNOT transforms a tensor product of twoBell-states
ñ∣Bi j1 1
and ñ∣Bi j2 2

to the tensor-product state ñ ñÅ Å∣ ∣B Bi i j i j j1 2 1 1 1 2
. Next, the partiesmeasure the target Bell-pair which

is determined by the string. Thismeasurement reveals essentially one bit of parity information about the
remaining ensemble, thereby purifying it (as themixedness of a state can be interpreted as a lack of classical
information). The basic distillation step is iterated several times and in the end a fraction of purified systems
remains.

Hashing protocols rely on two fundamental concepts related to classical coding theory: likely subspace
encoding and universal hashing. The idea of likely subspace encoding for ensembles of quantum states wasfirst
mentioned, to our knowledge, in [38]. There it was proven that an asymptotic ensemble of i.i.d. quantum states
rÄn where r = å ñá∣ ∣p v vi i i i is a density operator which receives almost all its weight from a small subspace
spanned by so-called likely sequences ñá Î{⨂ ∣ ∣}( ) ( )v vk i i j J

k
j

k
j where one identifies a specific sequence ñá⨂ ∣ ∣v vk i ik k

with the bit string ¼( )i i, , n1 .More precisely, the probability offinding a particular sequence ¼( )j j, , n1 that is
outside this likely subspace can bemade arbitrarily small in terms of the number of copies n of ρ. In case of the
hashing protocol the vectors ñ∣vi in r = å ñá∣ ∣p v vi i i i of the initial states rÄn correspond to individual Bell-states

ñ∣Bij . The original proposal of the likely subspace in [38] relies on theweak law of large numbers, which is an
asymptotic statement. Universal hashing [39] is a widely studied concept which turned out especially useful in
privacy amplification [51], a critical part in quantumkey distribution protocols. Privacy amplification
minimizes the amount of information an eavesdropper haswith respect to a generated key. For that purpose the
participants use so-called universal2 function families. A family of functions  =  Î{ }g A B:i i I is said to be
universal2 if for any ¹ Îx y A the probability that =( ) ( )g x g yi i is atmost ∣ ∣B1 when gi is chosen uniformly at
random from  .

One basic distillation step of the hashing protocol comprises the following steps: one participant draws a
string Î { }s 0, 1, 2, 3 n (whichwe also refer to as parity hash string) uniformly at random, corresponding to a
universal hash function.Next, the participant classically communicates s to the other participant and both
perform, according to s, local operations and bilateral controlledNOTs on their parts of the quantum states.
Depending on Î { }s 0, 1, 2, 3t they bypass (st=0) or they accumulate either the amplitude bit j (st=1), the
phase bit i (st=2) or both, amplitude and phase bit Åi j, (st=3) for the Bell-pair ñ∣Bij indexed by  t n1
into thefirst pair for which ¹s 0t via a bilateral controlledNOT. Finally, theymeasure both parts of this target
systemusing theZ observable which reveals almost one bit of parity information about the remaining ensemble.
This basic distillation step is iterated n−m times, thereby collecting sufficient amount of information regarding
parities about the remaining quantum systems. The parity information isfinally used to restore the systems to
the ñÄ∣B m

00 state. For further detsails on the hashing protocol, we refer the reader to [29].
If one considers instead of asymptotic ensembles an initial ensemble offinite size n, bipartite hashing can still

be used to distill entanglement. For finitelymany initial states slightly fewer systemswith afinite infidelity (i.e.
there is a non-zero deviation relative to the state ñÄ∣B m

00 )will be distilled.More precisely, forfinite size hashing
the number of output systems is r d= - -( ( ) )m n S1 2 where the tunable parameter δ characterizes thewidth
of the likely subspace. The parameter δ turns out to be crucial when determining the rate of convergence towards

ñÄ∣B m
00 andwewill choose for our purposes d = -n 1 5 later.
There also exist extensions of the bipartite hashing protocol to amultipartite setting allowing the distillation

of two colorable graph states [30], all graph states [31], GHZ states [32, 33], CSS states [34] and stabilizer states
[35, 36]. Conceptually those types of protocols rely on the same ideas as bipartite hashing. Again, local parity
collecting operations are used to reveal information about the remaining ensemble. They are especially well-
suited to distill resource states formeasurement-based implementations of particular quantum tasks such as
quantum error correction.

In themain text we have outlined the proof of confidentiality of the hashing protocol for two colorable
graph states [30] andwe provide a detailed description and a complete proof of confidentiality thereof within
this supplementarymaterial.

7

QuantumSci. Technol. 4 (2019) 025009 APirker et al



A.2.Measurement-based implementation
One alternative to the gate-based implementation of a quantum circuit isMBQC [52, 53]. A quantumoperation
 can be implemented by coupling the input qubits via Bellmeasurements to a universal resource state, e.g. a 2D
cluster state [54]. For circuits which contain only gates from theClifford group andPaulimeasurements one can
also use an optimized, special purpose resource state ofminimal size [41]. This resource state will consist of only
n+m qubits for a circuit whichmaps n qubits tom qubits. Hashing protocols, likemost other EDPs, belong to
this class of circuits and thus allow for such aminimal sizemeasurement-based implementation. The results of
the Bellmeasurements at the read-in determine both the results of the paritymeasurements of the hashing
protocol as well as the Pauli byproduct operators on thefinal output states. Formore informations and examples
see [28, 55].

The noiseless implementationof the hashing protocol produces asymptotically perfect Bell-pairs. Therefore
any eavesdropper is factoredout, in the limit, guaranteeing perfect confidentiality. But even if i.i.d. LDNacts on the
quantumgates, any gate-based approach fails [40]. This is due to theO(n)bilateral CNOTswithin every distillation
round,whichwashes out all information from the initial states.Hence the gate-based implementation ofhashing is
limited to thenoiseless scenario only.

This drawback is overcome by ameasurement-based approach [40]. Ameasurement-based implementation
of the hashing protocol is rather straightforward: a sequence of parity hash strings is drawnuniformly at random
by one participant and classically communicated to all other participants. They construct the corresponding
resource states according to that particular sequence. These resource states are finally coupled to the initial states
via Bell-measurements which implements the hashing protocol in ameasurement-based fashion.

Since all gates of the hashing protocol are elements of theClifford group the resource states consist only of
input and output qubits, see discussion above. This implies that the resource states are ofminimal size and
therefore optimal with respect to the number of qubits which need to be stored temporarily.

In [40] it was shown that ameasurement-based implementation of the hashing protocol [29] is capable of
distilling entanglement for imperfect resource states and imperfect read-in Bell-measurements. There the
resource states are affected by i.i.d. local LDNof the form  a a=

=
( ) ( )

l

n
l1

acting on all qubits of the
resource states where

 a r ar
a

r r r r= +
-

+ + +( ) ( ) ( )X X Y Y Z Z
1

4
A1j j j j j j j

andα characterizes the strength of the noise. In particular, themeasurement-based implementation of hashing
tolerates up to 7%of noise acting on each qubit of the resource states [40]. In [56], it was shown that any local
noise process can be brought into a local depolarizing form. This observation alsomotivated the noisemodel of
LDN chosen in [42] to studymeasurement-based recurrence-type distillation protocols. There it was shown that
themeasurement-based implementation of recurrence-type distillation protocols is capable of tolerating up to
24%of noise acting on each qubit of the resource states. Furthermore, as studied in [47], local i.i.d. depolarizing
noise provides an accurate and reasonable approximation if one generates the resource states via entanglement
distillation. The generation of resource states via entanglement distillation also provides an efficient scheme to
create high-fidelity resource states, crucial for accurateMBQCvia resource states.

The reasonwhy ameasurement-based implementation of the hashing protocol in the presence of i.i.d. LDN
of the form  a( )works is due to a fundamental observationmade in [42]: if the resource states undergo a LDN
of the form  a a=

=
( ) ( )

l

n
l1

then one can virtually exchange the location of the LDNwhen followed by a

Bell-measurement, i.e.  a r a r=( ) ( )1 2 where r r= †P PB B andPB denotes a projector on a Bell-state.
Intuitively speaking, as = ñá∣ ∣P B BB ij ij , this is due the symmetry s sÄ ñ = Ä ñ( )∣ ( )∣B Bid idij ij up to a global
phasewhereσ is a Pauli operator. This enables us to effectivelymove the noise acting on the input qubits of the
resource states to the input state (as we couple the input state to the resource states via Bell-measurements).We
emphasize that this holds for LDNof the form  a a=

=
( ) ( )

l

n
l1

and,more importantly, this can not be
donewithin the circuitmodel even though the gate-based andmeasurement-based approach to quantum
computation are computationally equivalent. In particular, computational equivalence does not necessarily
imply equivalent robustness with respect to noise. This observation becomesmore clear when one considers the
noise processes as being part of the protocol. In themeasurement-based scenario with resource states, the
observation of [42] implies that the i.i.d. LDN acting on the input qubits of the resource states can effectively be
moved to the initial states, see discussion above. The i.i.d. LDN acting on the output qubits can be applied
afterwards, because the quantum computation at hand is performed in terms of Bell-measurements at the read-
in. This leaves onewith a perfect quantumoperation on amodifed input state, where i.i.d. LDN is applied,
followed by the noise process of the output qubits. In [57] this observationwas applied tomeasurement-based
quantum communication, where it was shown that very high error thresholds (of the order of 10%per qubit)
can be obtained. In contrast, in the gate-based approach noise accumulates through repeatedly applying
quantumgates. Furthermore, on commuting noise through the gates of a quantum circuit towards the input, the
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noise processesmight get correlated due to commutation relations,maybe ending up in correlated noise rather
than i.i.d. LDN acting on the input state. So to summarize, this observation shows that at least for i.i.d. LDN the
measurement- and gate-based approach are not equivalent.

To summarize, themeasurement-based approach permits a noisy implementation of the hashing protocol
whereas a standard gate-based implementation fails in the presence of noise.

Appendix B.Noise regimes

In themain text we identified two different regimes of i.i.d. LDNof the form  a a=
=

( ) ( )
l

n
l1

, where
 a( )l is defined via (A1), acting on the resource states of themeasurement-based implementation of hashing:
privacy and distillation regime.Within the first regime any eavesdropper factors out but no entanglement will be
distilled. In particular, for bipartite hashing, thefidelity relative to ñ∣B00 will decrease due to the protocol. In
contrast, in the distillation regime any eavesdropper is factored out and entanglement is distilled, i.e. thefidelity
relative to the target state increases.

To see this we recall the conditions on the noise parameters for distillation and privacy. The noiseless
hashing protocol distills perfect Bell pairs in the asymptotic limit of infinitelymany initial states inWerner form
as soon as their fidelity exceeds =F 0.8107crit , see [29]. In this case the final Bell pairs are private (and thus
confidentiality is guaranteed) and Fcrit can be translated to = - »( )q F4 1 3 0.7476crit crit . In the noisy case one
has two conditions for the noise parametersα and q, which quantify the level of noise on the resource states and
thefidelity of the initial states, respectively (see also [42]) for asymptotic ensemble sizes:

a > ( )q q B12
crit

and

a > ( )q. B22

Here, (B1) guarantees that the fidelity of the initial states, after the noise from the resource states ismapped to the
initial states, see the previous section and [42], exceeds the threshold value qcrit. In this case the output pairs will
be private. The second condition, (B2), ensures that thefidelity of the output pairs is larger than the fidelity of the
input pairs. From this one sees that for privacy one only needs to fulfill (B1), whereas both (B1) and (B2)need to
hold for distillation. Observe that (B1) is a condition due to the noise acting on the input qubits (thereby
increasing the required fidelity of the initial states to succeed hashing)whereas condition (B2) stems from the
noise applied to the output qubits (which depolarizes the perfect Bell-pairs produced by noiseless hashing in the
asymptotic limit). Thismeans that the parametersα and q aremore constrained if one aims for increasing
entanglement, as compared to the case of privacy.We summarize thesefindings infigure B1.

This observation provides a clear distinction between privacy and distillation regime for asymptotic
ensembles: both regimes, distillation and privacy, have in common that any eavesdropper factors out due to the
protocol but they differ with respect towhether entanglement is distilled or not. Thismotivates the term

Figure B1.Visualization of the different regimes in the a–q plane (only the upper right corner of the entire plane is shown). In the
white area neither privacy nor distillation is achieved. In the entire colored area privacy is guaranteed, but only in the blue area one has
distillation. Thismeans that there is a parameter regime (yellow area), where one has privacy despite the fact that the fidelity of the Bell
pairs does not increase during the distillation.
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quantumprivacy distillation for the proposed overall protocol as there are noise regimeswhere the protocol
offers privacy, or equivalently private entanglement, without achieving distillation.

A similar situation arises in the finite size case. Here, themodificationswill be that qcrit in (B1) is no longer
directly related to Fcrit and that (B2)needs to bemodified to

a >( ) ( )q n F q, . B32
out in

Here, ( )q n F,out quantifies the level of noise on the output pairs of the hashing protocol for n initial states with
fidelity F. It can be obtained from the bound on the fidelity of the output pairs. Therewill again be two different
regimes, and the distillation regimewill be smaller than the privacy regime due to the fact that it ismore
constrained (there are two inequalities to be satisfied, whereas there is only one for confidentiality).

AppendixC. Rate of convergence of noiseless bipartite hashing for i.i.d. initial states

Herewe provide the proof of equation (4) of themain text for d = -n 1 5 summarizedwithin the following
Theorem.

Theorem2 (Convergence for i.i.d. initial states). Let  be the real protocol and  the ideal protocol taking

+n kn initial states. Furthermore, let d d d= + + -d⎡
⎣⎢

⎤
⎦⎥( )( ) ( )x a g1 log 1

g1 max max
max

where amax and gmax are

constants depending on Fmin and Fmax. Thenwe have for all initial states r that

  r r- - + - + - -Ä + Ä + - ( ) ( ) [ ( ( )) ( ) ( ( ) )]
( )

nx n n F F kn2 2 exp exp ln 2 2 exp 16 .

C1

n kn n kn
1 1

1 5 4 5
max min

2

Furthermore, the right-hand side of equation (4) of themain text approaches exponentially fast zero.

Proof.Because the ideal and the realmap are identical in the aborting branch, wefind for the initial states rÄ +n kn

that

  r r s e- = - ñár
Ä + Ä + Ä   ( ) ( ) ∣ ∣ ( )p B B C2n kn n kn

AB
m

1 00 00 H

where sAB denotes the state of the hashing protocol after n−m rounds and rp the success probability for initial
state ρ. Thuswe need to estimate eH. Becausewe twirl the initial states towardsWerner formwe assume from
nowon that they are ofWerner form.

The hashing protocol can fail due to two reasons, see [29]: the string corresponding to the initial states falls
outside the likely subspace or, after n−m rounds two or evenmore configurations are compatible with the total
parity information, i.e. they can not be distinguished from each other.

Bydenoting this failure probabilities by ¢p1
and ¢p2

and the corresponding states after theprotocol by s1 and s2

respectively,wefind that the total failure probability ¢pf
of thehashingprotocol satisfies ¢ = ¢ + ¢p p pf 1 2

.We also

observe that if the parameter estimationwas accurate the state after theprotocol completes, i.e. sAB of (C2), is givenby

ås s= - ¢ ñá + ¢Ä

=

( )∣ ∣ ( )p B B p1 . C3AB f
m

i
i i00 00

1

2

More precisely, with probability - ¢p1 f
we are able to restore the output of the hashing protocol tom copies of

ñ∣B00 andwe end upwith probabilities ¢p1
and ¢p2

in the state s1 and s2 respectively. This implies for (C2) that

s - ñá ¢ + ¢Ä ∣ ∣ ( ) ( )B B p p2 C4AB
m

00 00 1 1 2

via the triangle inequality for the case whenever parameter estimation is accurate.
Additionally the overall protocol can fail due to the following observation: the parameter estimation

provides an estimate F for thefidelity Fwhich is accepted by the participants, but F is actually outside the agreed
range [ ]F F,min max . In that case Alice and Bob run hashing even though the protocol will either fail (since the
initialfidelity is too low) or thefidelity is too high to provide accurate confidentiality estimates7. This observation
in turn implies that the state after hashingwithin the ok-branch ismaximum far from the asymptotic state of the
hashing protocol, i.e.

s - ñá Ä ∣ ∣ ( )B B 2. C5AB
m

00 00 1

7
The hashing protocol requires >F Fcrit where =F 0.8107crit to distill entanglement from the initial states. The restriction that <F Fmax is

due to the applicability of Bennett’s inequality which requires bounded randomvariables. However, for the noisy implementation of the
hashing protocol this criterionwill bemet automatically as the resource states for themeasurement-based implementation undergo an i.i.d.
LDNprocess.
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Nevertheless, the probability of the protocol succeeding for initial state ρ also takes into account for parameter
estimation succeeding, i.e. = ¢ ¢r ·p p p3 where ¢p3 denotes the probability of parameter estimation succeeding for
initial state ρ. Therefore, if Alice and Bobmistakenly run hashing even if they should have abortedwefind via
(C5) for (C2) that

s - ñá ¢r
Ä ∣ ∣ ( )p B B p2 . C6AB

m
00 00 1 3

So to summarize we obtain for an arbitrary initial state ρ by combining (C4) and (C6) that

s - ñá ¢ + ¢ + ¢r
Ä ∣ ∣ ( ) ( )p B B p p p2 . C7AB

m
00 00 1 1 2 3

Thuswe are left to provide upper bounds for (the unknown) probabilities ¢ ¢p p,1 2
and ¢p3 respectively, i.e. we need

tofind p p,1 2 and p3 such that ¢p pi i for  i1 3 because this implies for (C7) that

s - ñá + +r
Ä ∣ ∣ ( ) ( )p B B p p p2 . C8AB

m
00 00 1 1 2 3

Wederive a bound for the probability of falling outside the likely subspace p1 via the Bennett inequality [58].
Bennett’s inequality [58] states that we have for X X,.., n1 independent random variables, where ∣ ∣X ai almost-
surely and the expected value ofXi is zerow.l.o.g., that

å s
s

> -
=

⎜ ⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟ ( )X t

n

a
h

at

n
Pr 2 exp C9

i

n

i
1

2

2 2

where ås = =n X1 Var
i

n
i

2
1

and = + + -( ) ( ) ( )h u u u u1 log 1 8.
For thehashing protocol the randomvariablesXi take the values r- -( ) ≔ ( )X k l p S, logi kl2 where

år = ñá= ∣ ∣p B B
k l kl kl kl, 0

1
and år = - =( )S p plog

k l kl kl, 0

1
2 denotes the von-Neumannentropy.Thevon-Neumann

entropy simplifies for states inWerner form to r = - - - -( ) ( ) ( ) (( ) )S F F F Flog 1 log 1 32 2
≕ ( )S F .

The i.i.d. assumption implies that allXi are independent and identical distributed (therefore wewill
subsequently denote themby the randomvariableX), thus wefind ås = == ≕ ( )n X X V F1 Var Var

i

n
i

2
1

.
Hencewe have

å

å

å

å

= = - -

= + +

= + +

= + - +

= + - - -

( ) ( ( ))

( ( ) ( ))

( ) ( )

( )( ( )) ( )

( ) (( ) ) ( ) ( )

V F X p p S F

p p S F p S F

p p S F p p p S F

p p S F S F S F

F F F F S F

Var log

log 2 log

log 2 log

log 2

log 1 log 1 3 . C10
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Weobserve that the randomvariableX is bounded.Moreprecisely,wehave = +∣ ( )∣ ∣ ( )∣X k l p S F, log kl2
- +∣ (( ) )∣ ( ) ≕ ( )F S F a Flog 1 32 because - >∣ (( ) )∣ ∣ ∣F Flog 1 3 log2 2 for >F 0.8107 (which is theminimum

requiredfidelity forWerner states by thehashingprotocol).
The next step is to insert d= = ( )t n a a F, and s = ( )V F2 in (C9)which yields by denoting the left-hand-

side of (C9) by p1
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By defining =( ) ( )
( )

g F V F

a F
we rewrite the previous inequality as
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8
Observe that Bennett’s inequality is only applicable to bounded randomvariables, which is also the reasonwhywe propose to accept only

initial states where thefidelity is within an agreed range [ ]F F,min max .

11

QuantumSci. Technol. 4 (2019) 025009 APirker et al



Weobserve that (C12) depends on thefidelity F of the initial states which is inappropriate for confidentiality
estimates. In order to obtain a boundwhich is independent of the fidelity of the initial states we use that Alice and
Bob only run the hashing protocol if Î [ ]F F F,min max .We observe that (C12) ismaximizedwhenever

d d+ + -d( )[( ( ) ) ]
( ) ( )

g F log 1n

a F g F
isminimal because d d+ + -d( )( ( ) )

( )
g F log 1 0

g F
which follows

from + >
+

( )x nlog 1 , 0x

x 1
and >( )a F 0.

For that purposewe show that the function = + + - =( ) ( ) ( )y x x b b x blog 1
+ + - -( )( ( ) ( ))x b x b x blog log is strictlymonotonic decreasing in x.Weobtain for thefirst derivative of y that



¢ = + +
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- +
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x b

x b
x

x b

x

x b x
b

x
x b

x

b

x

b

x

b

x

log log

log 1 log 1

log log 1 0 C13

since +( )z zlog 1 . Thus d d+ + - d( )( ( ) )
( )

g F log 1 min
g F

whenever ( )g F max.

From figureC1we see that ( )g F max for F min. This implies for (C12) that

 d
d

d
-

+ + -
⎪

⎪

⎧⎨⎩
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎫
⎬
⎭( )

( ( ) )
( )

( )p
n

a F
g F

g F
2 exp log 1 . C141 min

min

Consequently d d+ + -d( )( ( ) )
( )

g F log 1 0
g Fmin

min
and ( ) ( )a F a Fmax implies

 d
d

d
-

+ + -
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎫
⎬
⎭

( ) ( )p
n

a
g

g
2 exp log 1 , C151

max
max

max

where = ( )a a Fmax max and = ( )g g Fmax min .We rewrite (C15) in amore compact formby defining

d d d= + + -d⎡
⎣⎢

⎤
⎦⎥( )( ) ( )x a g1 log 1

g1 max max
max

and inserting d = -n 1 5 9 as

 - -( ( )) ( )p nx n2 exp . C161 1
1 5

Wewill use (C16) for the confidentiality estimate (C8). In order to show that (C16) ensures an exponential
convergence, as we claim, we need to provide an upper bound for the exponent of (C16), i.e. for the function

d
d

d- + + -
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( )n

a
g

g
log 1 C17

max
max

max

FigureC1. Plot of the function g(F). Observe that g is strictlymonotonic decreasing for Î [ )F 0.82, 1 .

9
The choice of δ is a trade-off between the rate of convergence and the number of output system r d= - -( ( ) )m n S1 2 . Any choice

d < -n 1 4 is appropriate.
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where δwill be choosen later as -n 1 5 as previously. By defining

d
d

d= + + -
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟( ) ( ) ( )f n n g

g
log 1 . C18max

max

Equation (C17) reads as- ( )f n amax. In the followingwe compute a lower bound y(n) for f (n), i.e. >( ) ( )f n y n
for all n, which is in turn an upper bound for (C16), i.e.  - -( ( ) ) ( ( ) )p f n a y n a2 exp 2 exp1 max max . Using
that + >

+
( )xlog 1 x

x1 2
for >x 0, see [59], wefind from >g 0max and d > 0 that

d d
d

+ >
+

=
+

d

d

⎛
⎝⎜

⎞
⎠⎟ ( )

g g
log 1

1

2

2
. C19

g

gmax 2 max

max

max

Furthermorewe have that d d+ + -d( )( )g log 1 0
gmax

max

which implies togetherwith (C19) for (C18)



d
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max
max

max max

max

max
2

max
2
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2

max

2

max

because d 1. Inserting d = -n 1 5 finally gives

d
>

+
=

+
( ) ≕ ( ) ( )f n

n

g

n

g
y n

2 1 2 1
C21

2

max

3 5

max

implying

 - - = -
+

⎛
⎝⎜

⎞
⎠⎟( ( ) ) ( ( ) )

( )
( )/ /p f n a y n a

n

a g
2 exp 2 exp 2 exp

2 1
C221 max max

3 5

max max

which analytically proves the exponential scaling of the hashing protocol.
Furthermore, following the approach of [29], wefind that the probability of having two configurations

which are compatible with the collected parity information, p2, is bounded by d-2 n . Thus, inserting d = -n 1 5

gives < -p 2 n
2

4 5
.

Finally we provide an estimate for the probability of accepting initial states fromEve in the case whenAlice
and Bob should abort the protocol after parameter estimation, i.e. the actual fidelity F is below theminimum
required value Fmin but the estimate F is not, or the actualfidelity F is above Fmax but the estimate F is not,
corresponding to the probability ¢p3 . For that purpose we perform two-qubitmeasurements of twoBell-pairs,
thefirst w.r.t. the ÄX X and the secondw.r.t. the ÄZ Z observable. One easily observes that ñ∣B00 is the
common+1 eigenstate of both operators. By referring to thismeasurements asM1 andM2 respectively and
recalling that the parameter estimation utilizes kn systemswe define the randomvariables Fi associatedwith a
pair of Bell-pairs for  i kn1 2 which is equal to 1wheneverM1 andM2 simultaneously reveal outcome 1
and 0 otherwise. Recall that theHoeffding inequality [60] states that we have for X X,.., n1 i.i.d. random variables
where   = - = åa X b c b a S X, ,i i i i i i n i i and the expected valueEn of Sn, i.e. = [ ]E E Sn n , that

- > < -
⎛
⎝⎜

⎞
⎠⎟(∣ ∣ ) ( )S E t

t

nC
Pr 2 exp

2
C23n n

2

2

holds for all t andwhere " i c C: i . Hoeffding’s inequality (C23) implies now for the empiricalmean

å= =( )F kn F2
i

kn
i1

2
that

h h- > < -(∣ [ ]∣ ) ( ) ( )F E F knPr 2 exp C242

holds for all η.More precisely, the probability of estimating an error larger than η via F to [ ]E F is decaying
exponential in n. So Alice and Bob choose Fmin and Fmax and they agree to continuewith the hashing protocol
whenever Î - D + D[ ]F F F4, 4PE PE where = +( )F F F 2PE min max andD = -F Fmax min. Fixing
h = D 4 implies for (C24) that

h- > < - -(∣ [ ]∣ ) ( ( ) ) ( )F E F F F knPr 2 exp 16 . C25max min
2
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In otherwords, (C25)means that the probability that Alice and Bob continuewith the hashing protocol in case
they should abort, i.e. the actual fidelity F is outside [ ]F F,min max , is exponentially small. For example, if the fidelity
estimate F is = + DF F 4PE (which implies Alice and Bobwill run hashing), then the probability that the
actualfidelity F satisfies > + D =F F F2PE max is exponentially bounded.

To summarize, wefind for (C2) that

  r r- - + - + - -Ä + Ä + - ( ) ( ) [ ( ( )) ( ) ( ( ) )]
( )

nx n n F F kn2 2 exp exp ln 2 2 exp 16 .

C26

n kn n kn
1 1

1 5 4 5
max min

2

Notice that the right-hand side of (C26) is independent of ρ, which completes the proof. ,

AppendixD. Local closeness implies global closeness

In themain text we formulated the following claim: if the output of the real and idealmap differ atmost ε for a
particular initial state then they differ atmost e4 for any purification of this initial state.We prove this
statement within the following Lemma.

Lemma1. Let  be the real and  be the ideal protocol. Furthermore let ρ be amixed state shared by the participants
of the protocol. If   r r e- ( ) ( ) 1 , then

  y y eÄ - Ä ñá ( )(∣ ∣ ) ( )id id 4 D1E E ABE 1

for all purifications yñ∣ ABE of ρ.

Proof.Weobserve that

 r s s= Ä ñá + - Ä ñár r
^( ) ∣ ∣ ( ) ∣ ∣ ( )p pok ok 1 fail fail , D2AB AB

 r j j s= ñá Ä ñá + - Ä ñár r
Ä ^( ) ∣ ∣ ∣ ∣ ( ) ∣ ∣ ( )p pok ok 1 fail fail . D3AB

m
AB

The assumption   r r e- ( ) ( ) 1 implies s j j e- ñár
Ä ∣ ∣p AB AB

m
1 because  r( ) and  r( ) are equal on

the fail branch. Thuswe have s j j e- ñá r
Ä ∣ ∣ pAB AB

m
1 .

Furthermore wefind for the application of the real and the ideal protocol to a purification yñ∣ ABE of rAB that

 y y s sÄ ñá = Ä ñá + - Ä ñár r
^( )(∣ ∣ ) ∣ ∣ ( ) ∣ ∣ ( )p pid ok ok 1 fail fail , D4E ABE ABE ABE

 y y j j r sÄ ñá = ñá Ä Ä ñá + - Ä ñár r
Ä ^( )(∣ ∣ ) ∣ ∣ ∣ ∣ ( ) ∣ ∣ ( )p pid ok ok 1 fail fail . D5E ABE AB

m
E ABE

This implies for the one-norm that

  y y
s j j r

Ä - Ä ñá

= - ñá Är
Ä

 
 

( )(∣ ∣ )
∣ ∣ ( )p

id id

. D6

E E ABE

ABE AB
m

E

1

1

Thuswe need to show that s j j r e- ñá Är
Ä ∣ ∣p 4ABE AB

m
E 1 . One easily verifies s s=[ ]trE ABE AB and

s r=[ ]trAB ABE E because the systemE is not affected by the protocol  . Recall that we have by assumption that
s j j e- ñá r

Ä ∣ ∣ pAB AB
m

1 . Thuswe apply lemma 10 of the supplementarymaterial from [28] to r s≔SE ABE

andj j j rñá ÄÄ≔ ∣ ∣SE AB
m

E where ≔S AB which implies

s j j r e- ñá Ä r
Ä ∣ ∣ ( )p4 . D7ABE AB

m
E 1

Employing (D7) in (D6) yields

   y y e e eÄ - Ä ñá =r r r ( )(∣ ∣ ) ( )p p pid id 4 4 4 D8E E ABE 1

which completes the proof. ,

Appendix E. Proof of theorem1

Proof.Due to the symmetrizationwe find that  s and  s are permutation invariantmaps. Hence applying the
post-selection technique of [46] gives

    t t- Ä - Ä ñáà +   ( )(∣ ∣ ) ( )g id id , E1s s
n kn d

s
E

s
E ABE, 1

where d is determined by the number of participants (see themain text) and tñ∣ ABE is a purification of the de-
Finetti Hilbert–Schmidt state, hence òt t s m s tñá = ¢Ä +[∣ ∣ ] ( ) ≕tr dE ABE AB

n kn whereμ is themeasure induced by

theHilbert–Schmidtmetric on ( )End d . One easily observes that
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     òt t s m s s¢ - ¢ = - -
s

Ä + Ä +   ( )( ) ( ) ( ) ( ) ( )( ) ( )d max , E2s s s s
AB

n kn
AB

n kn
1

1
1

AB

where  and  denote the subprotocols after symmetrization. As tñ∣ ABE is a purification of t¢we can apply
lemma 1 implying for (E1) that

 

 

 

 

 







t t

t t

t

s

-
Ä - Ä ñá

- ñá

= - ¢

-
s

à

+

+

+

+
Ä +

 
 

 

 

 

( )(∣ ∣ )

( )( [∣ ∣ ])

( )( )

( )( ) ( )

g

g

g

g

id id

4 tr

4

4 max , E3

s s

n kn d
s

E
s

E

n kn d
s s

E

n kn d
s s

n kn d AB
n kn

, ABE 1

, ABE 1

, 1

, 1
AB

where the second inequality stems from lemma 1 and the last inequality from (E2)whichfinally shows the
claim. ,

Appendix F. Confidentiality of a noisymeasurement-based implementation of the
hashing protocol

Within this sectionwe prove equation (8) of themain text. In doing so, we formulate the following Theorem.

Theorem3. Let  as, and  as, be the real and the ideal noisy hashing protocol prepended by symmetrizationwhere
noise of strength a-1 of the form (A1) acts on each qubit of the resource states independent and identical. Then

   - -a a
à à    ( ). F1s s s s, ,

Proof.The resource state each protocol party requires for themeasurement-based implementation of hashing is
pure,minimal in the number of qubits and consists only of input and output qubits, because all quantum gates
involved in the hashing protocol are elements of theClifford group [41].

Hence there are only two different locations at which noise acts: input and output qubits. For the noise acting
on the input qubits we use the observationmade in [42], which enables us to virtuallymove the noise from the
input qubits to the initial states, thereby increasing their entropy. For the noise acting on the output qubits, as
described in themain text, we can safely assume that this noise will act after the protocol completes, leaving us
with a noiseless hashing protocol (w.r.t. the output qubits).

Wedeal with thenoise on the input qubits by a slightmodificationof the parameter estimation step. Recall that
Alice andBobfix Fmin and Fmax for parameter estimation and they continuewith thehashing protocolwhenever
theirfidelity estimate F iswithin the interval - +[ ]F F, where =  DF F 4PE for = +( )F F F 2PE max min and
D = -F Fmax min. Thenoise acting on the input qubits of the resource states increases the entropy of the initial
stateswhich forcesAlice andBob to accept less initial states fromEve. Bydescribing the initial states in an i.i.d.
setting after the twirl via i.i.d. LDNof the form (A1), i.e. r = ñá( )∣ ∣D q B B1 00 00 , theparameter estimation interval

- +[ ]F F, transforms to - +[ ]q q, via = - ( )q F4 1 3.According to thepreviousobservation thatwe canvirtually
move thenoise of levelαon the inputqubits of the resource states, a( )D1 and a( )D2 respectively, to the initial states
we consequently describe the initial states as a a añá = ñá =( ) ( ) ( )∣ ∣ ( ) ( )∣ ∣D D D q B B D D q B B2 1 1 00 00 1

2
1 00 00

a ñá( )∣ ∣D q B B1
2

00 00 , see alsofigureF1.Observe thatwehavemoved thenoise fromBob’s toAlice’s sidedue to the
symmetryofBell-states. Thusweneed tohave a Î - +[ ]q q q,2 topass theparameter estimation and run thehashing
protocol.Observe that a q2 transforms to thefidelity ¢F of the initial states, including thenoise of the resource state, via
a = ¢ -( )q F4 1 32 . Thereforewemodify theparameter estimation to continuewith thehashingprotocolwhenever
the estimateof thefidelity F of the initial states satisfies

a
a

a

a
Î

+ +- +
⎡
⎣⎢

⎤
⎦⎥ ( )F

q q3

4
,

3

4
, F2

2

2

2

2

see figure F2.
We denote the protocols withmodified parameter estimation according to condition (F2) by themaps

 a‐s, in and  a‐s, in respectively. It follows immediately from the definition of the protocols that we achieve the
same confidentiality level of equation (7) of themain text as for the noiseless protocols, Alice and Bobwill just
abort the protocolmore often.Hencewe easily deduce

   - = -a a
à à    ( )‐ ‐ . F3s s s s, in , in
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Wenowextend the confidentiality proof to a full noisymeasurement-based implementationof thehashingprotocol
protocol as follows: sincewe can effectivelymovenoise of levelα acting on the inputqubits of the resource states to
the to-be-purified ensemble, themodification (F2)of theparameter estimation extends the confidentiality proof via
(F3) tonoise actingon the input qubits of the resource state. Fornoise actingon theoutput qubitsweuse the following
observation:Because thenoise is assumed tobeof the form (A1) it is alsoCPTP.Bydenoting thenoise actingon the
output qubits as   a a=a

=⨂ ( ) ( )j
m

j A j B1 ; ; whereA andBdenoteAlice’s andBob’s parts of thefinalBell-pairs,

thenoisy real protocol and ideal protocol read as   =a a a◦ ‐s s, , in and   =a a a◦ ‐s s, , in respectively10.Hence
(F3) and the contractivity of the1- norm forCPTPmaps imply

        - = - - = -a a a a b a a
à à à à       ◦( ) ( )‐ ‐ ‐ ‐ . F4s s s s s s s s, , , in , in , in , in

What remains to be dealt with are the Pauli byproduct operators due to themeasurement outcomes at the inputs,
but since LDNof the form (A1) commutes with the Pauli byproduct operators we do not have toworry about
them in the proof of confidentiality, which completes the proof. ,

AppendixG. Confidentiality ofmultiparty hashing protocol for two-colorable
graph states

We start by recalling some basic notation, definitions and properties of graph states.
We define the graph state basis y ñk k¼∣ , , N1

where k k¼ Î { }, , 0, 1N1 associatedwith a graph = ( )G V E,
where = ∣ ∣N V as the common eigenstate of the correlation operators

=
Î

( )( )

{ }

( )K X Z G1j
j

j k E

k

,

with eigenvalues - k( )1 j for  j N1 where the superscript denotes the qubit onwhich the Pauli operator is
acting on.We refer to the state y ñ¼∣ 0, ,0 also as the graph state associatedwith = ( )G V E, . Note that the states
y ñk k k k¼ ¼ ={∣ }, , , , 0

1
N N1 1

form a basis of theHilbert-space  Ä( ) N2 . A special class of graph states are so-called two-
colorable graph states which correspond to two-colorable graphs. A graph is said to be two-colorable if there

Figure F1.The figure shows, at an abstract level, how noise on the input qubits ismoved from the resource states to the initial states.
The blue ellipsis indicate Bell-measurements, the red vertices the input qubits of the resource state and the light-blue vertices the
qubits of the initial states.

Figure F2.The interval for parameter estimation acceptance [ ]F F,min max transforms according to (F2) to ¢ ¢[ ]F F,min max .

10
This is due to the fact that we can assume that the noise acting on the output qubits is applied after the protocol(s) have finished.
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exists amapping  { }f V: 1, 2 such that for all vertices Îv V it holds that ¹( ) ( )f v f w for all neighbors
Îw V of v. Themost prominent examples of two-colorable graph states are GHZ and cluster states [54].
Supposewewant to distill a two-colorable graph state y ñ¼∣ 0 0 corresponding to a graph = ( )G V E, where

È=V V V A,A B andB denote the colors and = =∣ ∣ ∣ ∣V N V N,A A B B where = +N N NA B. Themultipartite
hashing protocol assumes asymptoticallymany i.i.d. initial states ρ diagonal in the graph state basis, i.e.
r l y y= å ñám n m n m n m n∣ ∣, , , , wherem m m= ¼ Î( ) { }, , 0, 1N

N
1 A

A and n n n= ¼ Î( ) { }, , 0, 1N
N

1 B
B aremulti-

indices corresponding to colorA andB respectively11 .For two-colorable graph states we definemultilateral
CNOTs on two copies r1 and r2 which enable us to transfer information between the initial states r1 and r2.
More precisely, by applying aCNOT to all particles in ( )V VA B where r1 serves as target(source) and r2 as source
(target) a straightforward computation leads to (by denoting this unitary asU1)

y y y yñ Ä ñ  ñ Ä ñm n m n m n n m m n¢ ¢ Å ¢ Å ¢ ¢∣ ∣ ∣ ∣ ( ). G2
U

, , , ,
1

By exchanging the roles ofVA andVB one obtains (by denoting this unitary asU2)

y y y yñ Ä ñ  ñ Ä ñm n m n m m n m n n¢ ¢ Å ¢ ¢ Å ¢∣ ∣ ∣ ∣ ( ). G3
U

, , , ,
2

Supposewemeasure all qubits of the graph state y ñm m n n¼ ¼∣ , , , , ,NA NB1 1
belonging to the setVAwith theX and all

qubits of the setVBwith theZ observable. By denoting the outcomes of theXmeasurements with x Î { }0, 1i
and the outcomes of theZmeasurements with z Î { }0, 1j one immediatelyfinds via (G1)

åm x z= +
Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

{ }
mod 2 G4i i

i j E
j

,

for all  i N1 A. In otherwords,we canuse thismeasurement setting to reveal information about all ki for
 i N1 A simultaneously.We refer to thismeasurementswithM1. Similarly, by exchanging the roles ofVA andVB

weobtain informationabout all ni for  i N1 B. In the following,we refer to thismeasurementswithM2.
Themultiparty hashing protocol is nowdefined as follows [30]: in order to reveal information about colorA,

i.e.m, (whichwe denote as sub-protocol P1)we applyU1 to a random subset of the n initial states with a common
target system (thereby accumulating the values corresponding to colorA) and performmeasurementM1 on this
common system. Similarly, by applyingU2 to a random subset of the initial states with a common target system
(thereby accumulating the values corresponding to colorB) followed byM2 on this common systemone obtains
information about colorB, i.e. n (whichwe denote as sub-protocol P2). Repeating the sub-protocolsP1 andP2
sufficientlymany times leads to perfect knowledge about the remaining states, i.e. one ends up in a pure state
(whichwe can restore to the target state y ñ¼

Ä∣ m
0, ,0 ).

Recall that the overall protocol prepends themultiparty hashing protocol by a twirling and parameter
estimation step. The twirling step ensures that the initial states are diagonal within the graph state basis, see [30],
whereas the participants use parameter estimation to decide whether themultiparty hashing protocol will
succeed or not.

Formally, we define the probabilities

å l=m

m m n
m m m n

¹
¼ ¼ ( )( )a , G5i

,
, , , , ,

i

k j

i NA1

å l=n

n n m
m n n n

¹
¼ ¼ ( )( )b G6j

,
, , , , ,

j

k j

j NB1

for  i N1 A and  j N1 B. For example, for a three-qubit statewe have l= å( )a k l kl1
0

, 0 and

l= å( )a k l kl1
1

, 1 . Observe that the values ( )S ai and ( )S bj correspond to the entropies of mi and nj within the
vectorsm and n .

As shown in [30], the protocol described above is capable of distilling  = - -( ( )m n S a1 max i N i1 A

  ( ))S bmax j N j1 B
copies of the state y ñ¼∣ 0, ,0 in the asymptotic limit.

Nowwe are ready to compute the distance of the real and idealmultiparty hashing protocol for i.i.d. initial
states. Intuitively it follows from the same arguments as in the bipartite setting.

Theorem4. Let  be the real and  be the idealmultiparty hashing protocol. Furthermore let r be an initial state.
Then

  r r e-Ä + Ä + ( ) ( ) ( ), G7n kn n kn
1 H

where e Î -( ( ))O nexpH is independent of the initial state r.

11
If the initial states are not diagonal in the graph state basis we achieve this by probabilistically applying the correlation operators (G1), see

[30]. This procedure is also referred to as twirling.
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Proof.Recall that themultiparty hashing protocol aims to distill several copies of a two-colorable graph state via
the sub-protocolsP1 for colorA andP2 for colorB from n copies of the initial state r y y= å ñám n m n m n∣ ∣, , , where

the states y ñm n∣ , correspond to the graph state basis.
The crucial observation is that we learn the values ofm and n corresponding to the colorsA andBwithin n

copies of the initial state r y y= å ñám n m n m n∣ ∣, , , via the sub-protocols P1 andP2 independently. In other words,
m and n do not get correlated during the protocol execution, i.e. they remain independent. By taking a closer
look atP1 ( )P2 we infer that also the individual components ofm n( ) remain independent. In particular, the
components ofm m m= ¼( ), , N1 A

n n n= ¼( ( )), , N1 B
remain distinct during the protocol, i.e. for each i the value

mi is independent of mk for all ¹k i (for each j the value nj is independent of nk for all ¹k j). This is due to the
fact thatU1 ( )U2 operates component-wise onm n( ) 12. Keeping this observations inmind, it is straightforward
to providefinite size estimates for the fidelity of the state after the protocol relative to y ñ¼∣ 0, ,0 . Observe that the
hashing protocol fails if either P1 orP2 fails which implies for the failure probability pf of the hashing protocol
that  +p p pf P P1 2

where pP1
and pP2

denote the failure probabilities of sub-protocol P1 andP2 respectively.

First we discuss the failure probability of sub-protocol P1. This sub-protocol can fail due to three reasons,
similar as in the bipartite setting: the initial states do not belong to the likely subspace or, after the sub-protocol
hasfinished, two ormore configurations are compatible with the collected parity information, or the protocol is
continuedmistakenly after parameter estimation, i.e. the parties should have aborted but continued the
multiparty hashing protocol to its very end.

To provide an estimate for the probability that the initial states fall outside the likely subspacew.r.t. sub-
protocol P1 we define for colorA the randomvariables ( )( )X bi for  i N1 A which take the values

= - -( ) ( ) ( )( ) ( )X b a S alog G8i
i
b

i2

with probability ( )ai
b . In order to learnm, we observe that a specificm m m= ¼( ), , N1 A

belongs to the likely
subspace whenever each mi belongs to its likely subspace i, i.e.

  m mÎ  " Î ( )i N1 : . G9A i i

Consequently,

   
 

åm m mÏ Ï Ï
=

( ) ( ) ( ) ( )NPr Pr max Pr . G10
i

N

i i A
i N

i i
1 1

A

A

Weestimate m Ï( )Pr i i viaHoeffding’s inequality [60]. In order to applyHoeffding’s inequality we need to
make sure that l ¹m n 0, for allm and n after twirling, as the the random variables ( )( )X bi of (G8)need to be
bounded.We achieve this bymixing each individual initial state with a small, but defined, portion of the identity
operator. From this we observe that the randomvariables ( )X i have zeromean and that

 +Î∣ ∣ ∣ ∣ ( ) ≕( ) ( )X a S a Cmax logi
b i

b
i i0,1 2 aftermixing. Therefore theHoeffding inequality implies

å >
-

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟ ( )( )X t

t

nC
Pr 2 exp

2
G11

k

n

k
i

i1

2

2

for all twhere k denotes the index of the initial state within rÄn and i the ith component ofm. Inserting d=t n in
(G11) together with d = -n 1 4 yields

 



åm Ï = >
-

-
=

⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

( )

( )

( )X n
n

C

n

C

Pr Pr 2 exp
2

2 exp
2

, G12

i i
k

n

k
i

i1

3 4
2

2

where  =C Cmax i N i1 A
. Note that (G12) is independent of i, which implies for (G10) that

 m Ï
-⎜ ⎟⎛

⎝
⎞
⎠( ) ( )N

n

C
Pr 2 exp

2
. G13A 2

Observe that  =C Cmax i N i1 A
still depends on the initial states. Due to parameter estimation onefinds another

constant ¢ >C C independent of the initial states. The probability of not being able to distinguish between two
ormore configurations is, for a particular component ofm, again d-2 n , as for the bipartite case. Hence inserting
d = -n 1 4 gives that the probability ofmisidentifying a specific mi where  i N1 A is bounded by -2 n3 4

.

Therefore the probability ofmisidentifying m is bounded by -N 2A
n3 4

.
We point out that also in themultipartite setting a parameter estimation step is crucial in order to ensure

entanglement distillation. For that purpose wefind that the states after twirling andmixing are diagonal within
the graph state basis, i.e. of the form

12
Intuitively speaking this independence stems from the two-colorability of the graph-state and the properties ofU1 andU2.
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år l y y= ñá
m n

m n m n m n∣ ∣ ( ), G14
,

, , ,

where all l ¹m n 0, . The goal of parameter estimation is to provide estimates ai and bj for the probability
distributions ai and bj of (G5) and (G6) for all  i N1 A and  j N1 B. The concrete boundaries for which
the participants continuewith hashing depends on the target state of the protocol. However, it suffices to
estimate lm n, for allm and n whichwe denote by lm n, . Observe thatwe have to determine in total 2N

coefficients, whereN denotes the number of participants and is constant. This can be done viameasurements on
kn systems of ρ according to the observables of the correlation operators (G1). Indeed, the expected values of the
correlation operators are sufficient to determine the coefficients lm n, for allm and n within
r l y y= å ñám n m n m n m n∣ ∣, , , , . Nowone can applyHoeffding’s inequality to exponentially bound the probabilities

that the estimates lm n, of lm n, have a distance larger than some fixed h > 0 (which corrsponds to the accuracy
of our estimate lm n, ) similar to the bipartite case. From this we deduce that the probability of continuingwith
the hashing protocolmistakenly is exponentially small in terms of the number n of initial states.

In summary, via the same argument as in the bipartite case (i.e. the previous estimates are upper bounds for
the real failure probabilities, see (C3), (C4) and (C8)), the probability that sub-protocol P1 fails satisfies

Î -( ( ))p O nexpP1
. Similarly one obtains that sub-protocol P2 fails with probability Î -( ( ))p O nexpP2

which implies that Î -( ( ))p O nexpf , thereby proving e Î -( ( ))O nexpH as claimed. ,

Observe that equation (G7) is restricted to i.i.d. initial states rather than arbitrary initial states and does not
take into account Eve’s purification of the initial states. But since theorem1 of themain text is also applicable to
themultiparty hashing protocol, we eliminate these issues and immediately infer for themultiparty hashing
protocol prepended by symmetrization by using (G7) that

   e- + +à
-  ( ) ( )n kn4 1 . G15s s 4 1

H
M

The proof of (G15) is simple: theorem 1of themain text applies to themultiparty hashing protocol with
=d 2M , whereM denotes the number of participants. Hence (G7) implies (G15) via theorem1 of themain text.
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