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Complete security proofs for quantum communication protocols can be notoriously involved, which
convolutes their verification, and obfuscates the key physical insights the security finally relies on. In
such cases, for the majority of the community, the utility of such proofs may be restricted. Here, we
provide a simple proof of confidentiality for parallel quantum channels established via entanglement
distillation based on hashing, in the presence of noise, and a malicious eavesdropper who is restricted
only by the laws of quantum mechanics. The direct contribution lies in improving the linear
confidentiality levels of recurrence-type entanglement distillation protocols to exponential levels for
hashing protocols. The proof directly exploits the security relevant physical properties: measurement-
based quantum computation with resource states and the separation of Bell-pairs from an
eavesdropper. The proof also holds for situations where Eve has full control over the input states, and
obtains all information about the operations and noise applied by the parties. The resulting state after
hashing is private, i.e. disentangled from the eavesdropper. Moreover, the noise regimes for
entanglement distillation and confidentiality do not coincide: confidentiality can be guaranteed even
in situations where entanglement distillation fails. We extend our results to multiparty situations
which are of special interest for secure quantum networks.

1. Introduction

Secure and private quantum communication is a concept of fundamental importance for emerging quantum
technologies. The secure generation of a secret key for the encryption of classical data has received enormous
attention in recent years [ 1-7], and is believed to be one of the key applications of quantum information science.
Security has been shown under ever more general assumptions, finally arriving at device-independent proofs
where the devices for secret key expansion are not trustworthy [8—10]. However, while establishing
entanglement between two remote parties served as key ingredient in many security proofs of QKD, most
existing proofs are not established by sharpening this intuition, i.e. they follow a more convoluted, tedious, and
less straightforward route [2, 11-13].

Here we consider the problem of confidential or secure transmission of quantum information via quantum
channels, equally important as QKD but far less studied. This task is closely related to the confidential generation
of maximally entangled, distributed quantum states. Both are essential ingredients of quantum networks
[14-16], quantum key agreement protocols [17—19], and distributed quantum computation [20]. In an
idealized, noiseless situation a secure quantum channel, studied in [21-23], may be established in terms of
teleporation [24] using a perfect Bell-pair. The situation turns out to be far less straightforward in a noisy
scenario. Nevertheless, it was shown that private entanglement is feasible when considering noisy channels and
perfect operations [25, 26], as well as noise in local operations for independent and identically distributed (i.i.d.)
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[27] and non i.i.d. [28] situations. The latter works consider the recurrence-type entanglement distillation
protocols (EDPs) [25, 26], which probabilistically increase the fidelity and factor out any eavesdropper with a
linear rate of convergence in terms of initial states.

Hashing protocols [29-36] are one-way EDPs which overcome these limitations. They are deterministic and
converge exponentially fast in terms of initial states towards several copies of a maximally entangled state. This
enables for several confidential quantum channels in parallel, crucial for big quantum data transmission [37]
and which is in contrast to recurrence-type EDPs.

In this paper we provide a proof of confidentiality for hashing protocols in a noisy setting where the
eavesdropper has full control over all the initial states. Since the confidentiality of recurrence-type EDPs [25, 26]
has been shown in similar scenarios [28], this alone is not too surprising, even though hashing enables for
exponential confidentiality levels rather than linear ones. Nevertheless, due to the simplicity of the
confidentiality proof we clearly identify the relevant elements of physical properties from which the formal claim
follows: the purity of the target state for noiseless entanglement distillation protocols and the way one deals with
noise in measurement-based quantum computation (MBQC) with resource states. We emphasize that both are
not exploitable in a noisy gate-based implementation as we illustrate later. The interest of using such
characteristics, arguably, goes beyond the direct cryptographic statement they are implying. What is more, we
identify a regime of noise where privacy, or equivalently confidentiality, is feasible, whereas distillation is not.
Furthermore we show that hashing establishes privacy even when the eavesdropper is provided with
information regarding all noise processes occurring in Alice’s and Bob’s laboratory, which is one step towards
device independence for protocols with a quantum output.

Early security proofs for QKD [7] rely on fault-tolerant quantum computation to reduce the problem of
proving security to a noiseless setting, and utilize quantum random hashing [29] to verify the successful
generation of entanglement. In contrast, our approach eliminates the necessity of fault-tolerant quantum
computation by exploiting physical properties of MBQC with resource states, and we use hashing as an active
tool to establish high-fidelity entangled pairs via entanglement distillation rather than verifying them. Other
works [1, 4, 6] also use the existence of (one-way) EDPs. However, earlier works [1, 6, 7] lack a full treatment of
the finite size setting, crucial for realistic regimes [11]. In contrast, here we analyze the finite size performance of
hashing and explicitly provide confidentiality levels also in non-i.i.d. scenarios.

EDPs aim at distilling entanglement from a noisy ensemble of bi- or multipartite quantum states via local
operations and measurements. Hashing protocols [29-36] form a specific subset of those protocols, which rely
on the concept of likely subspaces [38], used in information theory, and universal hash functions [39], typically
applied in the context of privacy amplification. Their operation is usually described on a large, noisy ensemble
(called initial states) and one distills in the asymptotic limit a fraction of systems in a maximally entangled state,
see appendix A for more details. However, it was shown that hashing via quantum gates fails in the presence of
noise [40]. This drawback is overcome by measurement-based quantum information processing [41]. There, the
desired quantum operation is realized via Bell-measurements between the input quantum state and the input
qubits of a resource state, referred to as read-in measurements. Consequently the only source of noise within this
computational approach is due to imperfect resource states and noisy Bell-measurements (which can be
accounted for by an increased level of the noise acting on the resource state, see [40]). A measurement-based
implementation of the hashing protocol, see appendix A.2, is capable of distilling entanglement for local
depolarizing noise (LDN) up to 7% acting on each qubit of the resource state [40]. This is due to an observation
made in [42]: LDN acting on the input qubits of the resource state can virtually be moved to the initial states.
Furthermore, LDN noise acting on the output qubits of the resource state can be assumed to act afterwards, since
it commutes with the read-in measurements. These observations provide insights how one deals with LDN in
MBQC with resource states, a physical characteristic which is not directly usable in quantum circuits, see
appendix A.2. More precisely, for gate-based implementations the situation is more complex and difficult to
formalize in a useful way, since noise introduced by quantum gates gets highly correlated on propagating noise
through the entire circuit.

In a multipartite setting, a measurement-based implementation of the hashing protocol might turn out to be
very useful for large scale quantum network architectures which rely on e.g. GHZ states [43].

In this paper we will use the terms confidential, secure, privacy, private states and private entanglement.
Therefore we want to clarify their relationship and their distinction before using them.

A communication channel, either classical or quantum, is referred to as confidential if an eavesdropper can
not obtain any information regarding the data being transmitted. Nevertheless, the eavesdropper might change
the data during transmission without being detected. Therefore we refer to privacy as the ability of two (or more)
parties to establish a confidential communication channel. A communication channel is considered to be secure,
ifit is confidential and authenticated, where authenticated here means that the eavesdropper can not alter the
data without being detected by the parties. In the quantum case we call a state private if it can be used to establish
a confidential quantum channel, i.e. a state which is entangled between Alice and Bob but not entangled with the
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eavesdropper. The term private state was already introduced in the context of QKD for generating classical keys
from states with bound entanglement [44] and computing secret key capacities of quantum channels [45]. For
that purpose [44, 45] consider additional systems, known as shield systems, to decouple an eavesdropper from
maximally entangled states to generate a secure key between two parties. However, privacy or private states as we
consider here, refer to the ability of establishing a confidential quantum channel without the notion of shield
systems. The entanglement of such a state is then referred to as private entanglement.

For full formal definitions, proofs and supportive information we refer to the supplemental material.
However, the confidentiality proof of hashing is self-contained in the main text.

2. Results

We consider two categories of players: protocol participants and Eve, the eavesdropper, from which the
participants request their initial states p used for entanglement distillation. The former, connected via classical
authenticated channels, wish to distill m copies of a certain state | ). In the bipartite setting, the state | ) might
correspond to a perfect Bell-pair [29] whereas in the mutlipartite setting to a specific multipartite state [30-36] .
The latter distributes the initial states via noisy quantum channels and has full control over them. In particular,
Eve might be fully entangled with all initial states, which corresponds to the most general scenario how initial
states can be distributed.

Hashing in its original form assumes initial states of tensor product form, i.e. p™ = p®" where pis a density
operator of a multi-partite quantum state and # is asymptotically large. Furthermore, entanglement distillation
will only be feasible if the entropy of the initial states is sufficiently low, see e.g. [29] for bipartite hashing.

To accommodate these requirements, we propose the following protocol: First the participants agree on a
number of desired output systems 1 and a confidentiality level €. From these values they compute the number of
systems n which are necessary to meet both conditions, assuming the worst case entropy for the initial states.
Then, the participants request n + kn systems from Eve subject to entanglement distillation. They apply alocal
twirling operation which ensures that the systems are diagonal within the respective basis (for the bipartite
protocol they twirl towards Werner form). Next, they sacrifice kn systems for parameter estimation in order to
estimate the actual fidelity Frelative to | ) for each system. Depending on their estimate F, they either abort the
protocol because the fidelity is outside [Fyin, Fnax] Or they continue with a measurement-based implementation
of the hashing protocol. Finally they output m systems. When generalizing to arbitrary initial states the protocol
will be prepended by a symmetrization step.

To formalize our confidentiality criterion we recall some basic terminology introduced in [28]. We start with
the definition of the noiseless ideal map F, which takes as input the initial states and outputs, depending on
parameter estimation, either the asymptotic state of the hashing protocol, | ©) (¢ |®™, or some output state, o'pg.
For example, in a bipartite setting | ) (0| = |Byo) (Boo|*" where |Byo) = (]00) + |11))/+/2. The ideal map
F abstracts the entanglement distillation protocol for an initial state p as a process: internally it runs the real
protocol for initial state p to its very end which succeeds with probability p,, and depending on parameter
estimation, it either replaces the final state with its asymptotic state, or it outputs whatever state was reached by
the protocol, o'p;. This approach to define ideal functionality stems from well-established ideas in QKD [46].
Formally we define

(F @ idp) (1) (¥loe) = py10) (7" @ 0 @ |ok) (okly + (1 — p)op @ [fail) (faill, (1)

where |1)pg is a purification of the initial state p provided by Eve and p, denotes the probability of the protocol
succeeding for initial state p. The system fdistinguishes the accepting from the aborting branch.

To analyze confidentiality taking into account realistic noisy scenarios, we define the noisy ideal map F¢,
where a characterizes the level of noise, as ¢ = N @ F, where N'® denotes the noise process acting on the
output qubits of the resource states of hashing.

We first clarify the noise processes we assume to act on the resource states of the measurement-based
implementation of hashing, which motivate our definition of the ideal noisy map. We observe that there are a
number of dominating sources of noise: noise on the resource states, noise on the read-in Bell measurements,
and noise on the initial states subject to entanglement distillation.

For the noise acting on the resource states we assume i.i.d. LDN. This is physically reasonable due to the
observations in [47], which shows thati.i.d. LDN provides an accurate approximation of noise acting on
resource states if these states get generated locally via entanglement distillation.

The resource states for the measurement-based implementation of hashing consist only of input and output
qubits, see appendix A.2 for further details. We denote the noise acting on the input qubits and output qubits of
the resource states by Ny, = H’;: . Di(ar) and Nowe = H':: . Di(«) respectively where
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11—«
Dile)p = ap + ——(p + X;pX; + YjpY; + ZjpZ)), @

with a € [0, 1] quantifies the level of noise and the subscript j denotes the qubit on which the Pauli operators act
on. Furthermore, we can take into account for the noise which the read-in Bell measurements introduce by a
lower value of v in Ni,, which we denote by 3, see [40]. Hence, we have A, = H?:] Di(B3).

Because we can now mathematically shift the noise from the input qubits of the resource states to the initial
states, we decompose the ideal noisy map F* as the concatenation of noise acting on the initial states followed by
the noiseless ideal hashing protocol and noise acting on the output qubits of the hashing protocol, i.e.

F = NyyoFoMN,. Because we can take into account for A, in the parameter estimation step of the ideal map
F weend up with F@ = A% F, where we have defined N = N,.

This enables us now to precisely define the term confidentiality. In particular, we call the hashing protocol

E* e-confidential, if

1€% = Felo < e €)

where[|Allo = supcy [A ® idklop,1 fora CPTP map A with [|Allop,1 == sup <, [|A(p)[[and

Il = trw denotes the 1-norm of a density operator p, see also [48].

Observe that the state | ) (™ in the accepting branch of F¢, see (1), is private, i.e. a state which is
disentangled from Eve. This motivates the term privacy distillation.

We outline the remainder of this paper as follows: we start by estimating the rate of convergence of noiseless
bipartite hashing for finitely many i.i.d. initial states. Next, we generalize this result to arbitrary initial states
including the eavesdropper’s system via the post-selection technique. This will finally imply the confidentiality
guarantees for the noisy measurement-based implementation of hashing.

The hashing protocol [29] deterministically converges exponentially fast towards several copies of | Byg) for
i.1.d. initial states. In particular, we find for the noiseless modified (i.e. our proposed) hashing protocol &, taking
n + kninitial states p, that

| E(p®nthmy — Fp®ntim|; < 2[2exp(—nxi(8)) + 27" + 2exp(—(Fnax — Fuin)?kn/16)], 4

)

where x(6) = 1/amax [(gmax—i—é)log(l +

Fyax. The parameter 6 stems from the hashing protocol [29] and affects the number of output systems

m = n(1 — S(p) — 26) where S(p) denotes the von Neumann entropy of p as well as the rate of convergence
governed by (4). For our purposes we choose § = 11/, see appendix C. In addition, the right-hand side of (4)
approaches zero exponentially fast.

Equation (4) can be derived from the following observations, see also appendix C: the 1-norm induced
distance of £(p®"*t¥") and F(p®"*+k")is equal to the distance within the ok-branch, because £ and F agree on
the fail-branch. The protocol can fail due to three reasons where each type of failure occurs with a certain
probability. The first one corresponds to the case that the ensemble of Bell pairs falls outside of the likely
subspace and is given by 2 exp(—nx; (n~'/°)). The second one bounds the probability of misidentifying the
string by exp(—n*/% In 2), and the third one bounds the failure probability of parameter estimation
by 2 €xp (7(Fmax - Fmin)2 kn/16)-

Nevertheless, (4) is insufficient to prove full cryptographic confidentiality, as it only concerns the systems of
the participants and i.i.d. initial states. So the next step is to generalize (4) to arbitrary initial states including the
system of Eve which is the topic of the next section.

In order to provide an estimate of (3) for bi- and multipartite hashing protocols in terms of i.i.d. initial states,
e.g. (4), we proceed similar to the approach of [28]: first we relate the distance of the real and ideal map including
Eve’s purifying system at the beginning of the protocol to the distance between the respective maps concerning
the systems of the participants only. Second we use the post-selection technique [46], which implies that the
distance between the real and ideal map for any purification of the initial states is bounded by a specific pure
state, a purification of the so called de-Finetti Hilbert—Schmidt state.

We eliminate the first issue by using an inherent characteristic of noiseless entanglement distillation
protocols: the target state of such protocols shared between Alice and Bob is pure, provided the parameter
estimation is passed. Therefore the state of Alice and Bob is independent of Eve, i.e. there is no residual
entanglement to her. We formalize this intuition via the following observation, rigorously proven in
appendix D: if the output of the real and ideal map, i.e. £ and F respectively, differ at most ¢ for a particular
initial state p, then they differ at most 4./ on any purification | ) of p, i.e.

(€ @ idp — F @ idp)(|19) (v |ape)|h < 4VE. 5)

) -6 ] and amay, g, are constants depending on K, and

8max

The next step is to relate non-i.i.d. initial states to i.i.d. initial states. Recall that the post-selection technique is
applicable to permutation invariant maps only. Because hashing protocols are not permutation invariant maps,
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we have to prepend the overall protocol by a symmetrization step in order to apply the post-selection technique.
This finally enables us to prove confidentiality of hashing protocols according to (3) via the following theorem.

Theorem 1 (Post-selection-based reduction technique). Let £° be the real protocol and F* the ideal protocol
prepended by a symmetrization step (s) taking n + kn initial states. Let £ and F be the sub-protocols after
symmetrization. Then we have

1= Flo < 40y sma max 1€ = P ©

n+kn+d*—1

where d denotes the dimension of an individual systemand g, = (
’ n

) <(n+ kn 4+ DL

The parameter d in theorem 1 corresponds to the dimension of each individual initial state, therefore it is
constant for a specific protocol and we have for M participants that d = 2M.

We sketch the proof of theorem 1 as follows: the post-selection technique of [46] implies that
1€ = Follo = supyy,,, (€7 — F) @ idp(1¢) (1])[ is bound by evaluating this expression for a particular
state, a purification of the de-Finetti Hilbert—Schmidt state. Hence we apply our previous observation, i.e. (5), to
that particular initial state which reduces the confidentiality proofto i.i.d. initial states. For the complete proof of
theorem 1 we refer to appendix E.

We now easily conclude confidentiality of the noiseless bipartite hashing protocol prepended by
symmetrization by combining theorem 1 for d = 4 and (4) which leads to

1E5 = Follo <4V2(n + kn 4+ 1)
X [2exp(—nx (n~17%)) + exp(—n*/>In2)
+ Zexp(_(Fmax - Fmin)2 kn/16)]1/2 . (7)

Equation (7) analytically proves that arbitrary confidentiality levels can be achieved via the hashing protocol [29]
and finally enables us to show confidentiality for a noisy measurement-based implementation of the hashing
protocol.

Recall that the resource states, necessary for a measurement-based implementation of the hashing protocol,
are subject to LDN acting on all qubits, D(a) = Hln: . Di(«) where Dy(a) is defined in equation (2) and that
we include the noise of a noisy Bell-measurement at the read-in in the value of v in (2), see [40]. For amore
detailed discussion of this noise model we refer to [47] and appendix A.2.

The confidentiality proof for the noisy measurement-based implementation of hashing now concludes by
using the following intuition from MBQC with resource states: the LDN on the input qubits can be moved, due
to the symmetry of Bell-states, to the initial states whereas LDN acting on the output qubits can be assumed to
actafter the protocol. Therefore one is left with a noiseless hashing protocol generating pure states affected by
LDN. We reiterate that such an approach is not directly applicable in the setting of gate-based implementations.

We sharpen this observation as follows: the resource states of the protocol consist only of input and output
qubits, see appendix A.2 and , and according to [42] we can virtually move the noise acting on the input qubits to
the initial states provided by Eve. Thus we deal with this part of the noise via a modification of parameter
estimation, since the entropy of the initial states increases after virtually moving the noise. The noise acting on
the output qubits of the resource states can be assumed to act after the protocol completes, as that noise
commutes with the read-in Bell-measurements. This leaves us with a noiseless protocol followed by LDN acting
on the output qubits, which just slightly depolarizes the pure Bell-pairs from noiseless hashing. Moreover, this
noise stems from the apparatus so this does not jeopardize confidentiality. In particular, because LDN is a CPTP
map, the contractivity of the 1-norm implies (see also appendix F) that

1€ = F*llo <N = Fllos ®)

where £ and F*“ denote the real and the ideal noisy hashing protocol prepended by symmetrization, and
noise of strength 1 — «a of the form (2) acts on each qubit of the resource states independently and identically.
Hence the noisy implementation offers the same confidentiality guarantees as the noiseless implementation, the
protocol just simply aborts more often during parameter estimation.

We highlight that the proof of confidentiality for noisy hashing does not require any numeric evidence,
whereas the proofin [28] for the distillation protocol [25] relies on numerical simulations. Furthermore the
tolerable noise for post-selection is significantly higher, namely of the order of several percent per qubit
compared to O(10~2%) in [28], although it should be mentioned that the noise models are different and cannot
directly be compared.

Furthermore we find that there exists a regime of noise for bipartite hashing where privacy, or equivalently
confidentiality, is achievable even though distillation is not feasible. For this regime, the privacy regime, hashing
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decreases the fidelity of each output system relative to | By), i.e. the protocol washes out entanglement rather
than distilling it, but nevertheless, any eavesdropper factors out. In contrast, if the noise level is within the
distillation regime the fidelity of each output system relative to | Byo) increases, and, as a consequence, any
eavesdropper factors out. For private states in the context of QKD a similar observation was made in [44], where
it was shown that even though entanglement distillation is not feasible yet secure keys can still be generated from
private states with bound entanglement.

Itis interesting to qualitatively compare these findings to earlier works: in [27, 49] confidentiality aspects
were studied in the framework of a gate-based implementation of the EDP of [25]. It was also found that the
noise regimes for privacy and distillation do not coincide, but contrary to the results presented here, the privacy
regime for the gate based implementation was found to be a subset of the distillation regime. For more details on
those noise regimes we refer to appendix B.

We consider the scenario where the local apparatus leaks all the information about the noise processes
realized (by the noisy resource states of the hashing protocol) to Eve as in [27, 28]. Theorem 7 of [28] states that if
areal protocol £ is e-confidential, then it is 2./€ -confidential if the noise transcripts leak to Eve. The resulting
states remain private and enable for confidential quantum channels.

The hashing protocol [29] can be generalized to multipartite quantum states [30—36], which is relevant for
distributed quantum computation [20], quantum key agreement protocols [17—19] and quantum networks
[14-16,43]. Also for those protocols one shows their confidentiality by following the same line of
argumentation, which can be found in appendix G.

3. Discussion

In summary we have analytically shown that noisy measurement-based implementations of bi- and multipartite
hashing protocols establish exponential confidentiality levels. We directly exploited the properties of MBQC
with resource states which leads, together with the purity of the asymptotic state of noiseless hashing and the
post-selection technique, to a short, straightforward and transparent confidentiality proof.

Furthermore, the privacy and distillation regimes do not coincide, similarly to private states with bound
entanglement in the context of QKD. In particular, there exists a regime of local i.i.d. noise where privacy is
achievable, but distillation is not. In this regime, any eavesdropper is factored out despite no entanglement being
distilled. Nevertheless, in both regimes the final states are disentangled from any eavesdropper, which enables
for secure quantum channels, if the information regarding the noise processes do not leak to the eavesdropper. If
this information leaks to the eavesdropper, confidential quantum channels are still feasible as the resulting states
remain private.
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Appendix A. Bipartite hashing protocol and its measurement-based implementation

In this section of the supplementary material we provide a short review of the biparite hashing protocol [29], we
introduce the measurement-based implementation thereof [40] and discuss its advantages over a gate-based
approach.

In the following we denote the four Bell-basis states by | B;;) = (id ® 0l0)|Byo) where i € {0, 1} isreferred
toas the phasebit, j € {0, 1} isreferred to as the amplitude bit of | B;;) and | Byg) = (|00) + [11)) /2.

A.1. Entanglement distillation via hashing

EDPs distill a maximally entangled state from several noisy copies provided the initial fidelity, defined as
E(p, o) = try/p'/?0p'/? for density operators pand o where ¢ = |) (| (the desired target state), is
sufficiently high. Several protocols have been proposed for this task, which we divide into two categories
depending on the number of systems they utilize within each basic distillation step. In the first group we have
recurrence-type protocols [25, 26] which work pair-wise, whereas in the second group we have so-called
hashing-type protocols [29] that operate, in principle, on the entire ensemble. Common to both classes of
protocols is that they utilize local operations, measurements and classical communication.

6



10P Publishing

Quantum Sci. Technol. 4(2019) 025009 A Pirker et al

Recurrence-type protocols are robust against local noise in both the gate-based [50] and measurement-
based implementations [42]. In contrast, the gate-based implementations of hashing-type protocols are fragile
with respect to noise of the local apparatus as we will discuss briefly.

The hashing protocol [29] is an EDP which operates on a large ensemble of noisy initial states in an iterative
manner. In its standard version, the participants assume to receive 1 copies of an initial state p, where p is a two
qubit density operator diagonal in the Bell-basis. The hashing protocol outputs m = n(1 — S(p)) systemsin the
asymptotic limit where S(p) < 1denotes the von-Neumann entropy of p. At each basic distillation step, which
we also refer to as a round, the participants apply local operations according to a string drawn uniformly at
random and followed by a controlled NOT into one target state. More precisely, they accumulate the phase and/
oramplitudebitiandjof p = 3°; Pi | Bjj) (Bij| of each individual pair into one target system via several
controlled NOTs. Recall that such a bilateral controlled NOT transforms a tensor product of two Bell-states
|B;;)and |B;,; ) to the tensor-product state | B; o,;, jl> |B;j wj,)- Next, the parties measure the target Bell-pair which
is determined by the string. This measurement reveals essentially one bit of parity information about the
remaining ensemble, thereby purifying it (as the mixedness of a state can be interpreted as a lack of classical
information). The basic distillation step is iterated several times and in the end a fraction of purified systems
remains.

Hashing protocols rely on two fundamental concepts related to classical coding theory: likely subspace
encoding and universal hashing. The idea of likely subspace encoding for ensembles of quantum states was first
mentioned, to our knowledge, in [38]. There it was proven that an asymptotic ensemble of i.i.d. quantum states
p®" where p = 3, p;|vi) (vi|is a density operator which receives almost all its weight from a small subspace
spanned by so-called likely sequences { Q) |v i,i”) <viku>| } jej where one identifies a specific sequence Q| v;,) (vi|
with the bit string (3;,..., i,). More precisely, the probability of finding a particular sequence (j,..., j,) thatis
outside this likely subspace can be made arbitrarily small in terms of the number of copies 7 of p. In case of the
hashing protocol the vectors [v;) in p = Y7, p.|v;) (v;| of the initial states p“” correspond to individual Bell-states
| Bjj). The original proposal of the likely subspace in [38] relies on the weak law of large numbers, which is an
asymptotic statement. Universal hashing [39] is a widely studied concept which turned out especially useful in
privacy amplification [51], a critical part in quantum key distribution protocols. Privacy amplification
minimizes the amount of information an eavesdropper has with respect to a generated key. For that purpose the
participants use so-called universal, function families. A family of functions G = {g;: A — Bl;cissaid tobe
universal, if forany x = y € A the probability that g,(x) = g;(y) isat most 1/|B|when g;is chosen uniformly at
random from G.

One basic distillation step of the hashing protocol comprises the following steps: one participant draws a
string s € {0, 1, 2, 3} " (which we also refer to as parity hash string) uniformly at random, corresponding to a
universal hash function. Next, the participant classically communicates s to the other participant and both
perform, according to s, local operations and bilateral controlled NOTs on their parts of the quantum states.
Dependingon s; € {0, 1, 2, 3} theybypass (s, = 0) or they accumulate either the amplitude bit j (s, = 1), the
phasebit i (s, = 2) or both, amplitude and phase bit i & j, (s, = 3) for the Bell-pair | B;;) indexedby 1 < t < n
into the first pair for which s; = 0 via abilateral controlled NOT. Finally, they measure both parts of this target
system using the Z observable which reveals almost one bit of parity information about the remaining ensemble.
This basic distillation step is iterated n — m times, thereby collecting sufficient amount of information regarding
parities about the remaining quantum systems. The parity information is finally used to restore the systems to
the | Byo)®™ state. For further detsails on the hashing protocol, we refer the reader to [29].

If one considers instead of asymptotic ensembles an initial ensemble of finite size #, bipartite hashing can still
be used to distill entanglement. For finitely many initial states slightly fewer systems with a finite infidelity (i.e.
there is a non-zero deviation relative to the state | Byo)®™) will be distilled. More precisely, for finite size hashing
the number of output systemsis m = n(1 — S(p) — 26) where the tunable parameter ¢ characterizes the width
of the likely subspace. The parameter § turns out to be crucial when determining the rate of convergence towards
| Boo)®™ and we will choose for our purposes 6 = n~'/° later.

There also exist extensions of the bipartite hashing protocol to a multipartite setting allowing the distillation
of two colorable graph states [30], all graph states [31], GHZ states [32, 33], CSS states [34] and stabilizer states
[35, 36]. Conceptually those types of protocols rely on the same ideas as bipartite hashing. Again, local parity
collecting operations are used to reveal information about the remaining ensemble. They are especially well-
suited to distill resource states for measurement-based implementations of particular quantum tasks such as
quantum error correction.

In the main text we have outlined the proof of confidentiality of the hashing protocol for two colorable
graph states [30] and we provide a detailed description and a complete proof of confidentiality thereof within
this supplementary material.
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A.2. Measurement-based implementation

One alternative to the gate-based implementation of a quantum circuit is MBQC [52, 53]. A quantum operation
O can be implemented by coupling the input qubits via Bell measurements to a universal resource state, e.g.a 2D
cluster state [54]. For circuits which contain only gates from the Clifford group and Pauli measurements one can
also use an optimized, special purpose resource state of minimal size [41]. This resource state will consist of only
n + m qubits for a circuit which maps n qubits to m qubits. Hashing protocols, like most other EDPs, belong to
this class of circuits and thus allow for such a minimal size measurement-based implementation. The results of
the Bell measurements at the read-in determine both the results of the parity measurements of the hashing
protocol as well as the Pauli byproduct operators on the final output states. For more informations and examples
see[28,55].

The noiseless implementation of the hashing protocol produces asymptotically perfect Bell-pairs. Therefore
any eavesdropper is factored out, in the limit, guaranteeing perfect confidentiality. But even if i.i.d. LDN acts on the
quantum gates, any gate-based approach fails [40]. This is due to the O(n) bilateral CNOTs within every distillation
round, which washes out all information from the initial states. Hence the gate-based implementation of hashing is
limited to the noiseless scenario only.

This drawback is overcome by a measurement-based approach [40]. A measurement-based implementation
of the hashing protocol is rather straightforward: a sequence of parity hash strings is drawn uniformly at random
by one participant and classically communicated to all other participants. They construct the corresponding
resource states according to that particular sequence. These resource states are finally coupled to the initial states
via Bell-measurements which implements the hashing protocol in a measurement-based fashion.

Since all gates of the hashing protocol are elements of the Clifford group the resource states consist only of
input and output qubits, see discussion above. This implies that the resource states are of minimal size and
therefore optimal with respect to the number of qubits which need to be stored temporarily.

In [40] it was shown that a measurement-based implementation of the hashing protocol [29] is capable of
distilling entanglement for imperfect resource states and imperfect read-in Bell-measurements. There the
resource states are affected by i.i.d. local LDN of the form D(«) = HLl Di(ev) acting on all qubits of the
resource states where

1 -«
Di(w)p = ap + T(P + XjpXj + YjpYj + ZjpZ)) (AD)

and « characterizes the strength of the noise. In particular, the measurement-based implementation of hashing
tolerates up to 7% of noise acting on each qubit of the resource states [40]. In [56], it was shown that any local
noise process can be brought into alocal depolarizing form. This observation also motivated the noise model of
LDN chosen in [42] to study measurement-based recurrence-type distillation protocols. There it was shown that
the measurement-based implementation of recurrence-type distillation protocols is capable of tolerating up to
24% of noise acting on each qubit of the resource states. Furthermore, as studied in [47], local i.i.d. depolarizing
noise provides an accurate and reasonable approximation if one generates the resource states via entanglement
distillation. The generation of resource states via entanglement distillation also provides an efficient scheme to
create high-fidelity resource states, crucial for accurate MBQC via resource states.

The reason why a measurement-based implementation of the hashing protocol in the presence ofi.i.d. LDN
of the form D(«v) works is due to a fundamental observation made in [42]: if the resource states undergo a LDN
of the form D(a) = H7:1 Di() then one can virtually exchange the location of the LDN when followed by a
Bell-measurement, i.e. PDy(c) p = PD,(cv) p where Pp = Py pP} and Py denotes a projector on a Bell-state.
Intuitively speaking, as Py = |Bj;) (Bjj|, this is due the symmetry (id ® o)|B;;) = (0 ® id)|Bjj) up to a global
phase where o is a Pauli operator. This enables us to effectively move the noise acting on the input qubits of the
resource states to the input state (as we couple the input state to the resource states via Bell-measurements). We
emphasize that this holds for LDN of the form D(«) = Hl": . Dj(cv) and, more importantly, this can not be
done within the circuit model even though the gate-based and measurement-based approach to quantum
computation are computationally equivalent. In particular, computational equivalence does not necessarily
imply equivalent robustness with respect to noise. This observation becomes more clear when one considers the
noise processes as being part of the protocol. In the measurement-based scenario with resource states, the
observation of [42] implies that the i.i.d. LDN acting on the input qubits of the resource states can effectively be
moved to the initial states, see discussion above. Thei.i.d. LDN acting on the output qubits can be applied
afterwards, because the quantum computation at hand is performed in terms of Bell-measurements at the read-
in. This leaves one with a perfect quantum operation on a modifed input state, where i.i.d. LDN is applied,
followed by the noise process of the output qubits. In [57] this observation was applied to measurement-based
quantum communication, where it was shown that very high error thresholds (of the order of 10 % per qubit)
can be obtained. In contrast, in the gate-based approach noise accumulates through repeatedly applying
quantum gates. Furthermore, on commuting noise through the gates of a quantum circuit towards the input, the

8
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noise processes might get correlated due to commutation relations, maybe ending up in correlated noise rather
thanii.d. LDN acting on the input state. So to summarize, this observation shows that at least for i.i.d. LDN the
measurement- and gate-based approach are not equivalent.

To summarize, the measurement-based approach permits a noisy implementation of the hashing protocol
whereas a standard gate-based implementation fails in the presence of noise.

Appendix B. Noise regimes

In the main text we identified two different regimes of i.i.d. LDN of the form D(a)) = 1_[7:1 D)(cr), where
Di(«) is defined via (A1), acting on the resource states of the measurement-based implementation of hashing:
privacy and distillation regime. Within the first regime any eavesdropper factors out but no entanglement will be
distilled. In particular, for bipartite hashing, the fidelity relative to | Byg) will decrease due to the protocol. In
contrast, in the distillation regime any eavesdropper is factored out and entanglement is distilled, i.e. the fidelity
relative to the target state increases.

To see this we recall the conditions on the noise parameters for distillation and privacy. The noiseless
hashing protocol distills perfect Bell pairs in the asymptotic limit of infinitely many initial states in Werner form
as soon as their fidelity exceeds F.;; = 0.8107, see [29]. In this case the final Bell pairs are private (and thus
confidentiality is guaranteed) and E.j; can be translated to g_,, = (4Fy — 1) /3 &~ 0.7476. In the noisy case one
has two conditions for the noise parameters o and g, which quantify the level of noise on the resource states and
the fidelity of the initial states, respectively (see also [42]) for asymptotic ensemble sizes:

a’q > q., (B1)

and
a? > q. (B2)

Here, (B1) guarantees that the fidelity of the initial states, after the noise from the resource states is mapped to the
initial states, see the previous section and [42], exceeds the threshold value g_,,. In this case the output pairs will
be private. The second condition, (B2), ensures that the fidelity of the output pairs is larger than the fidelity of the
input pairs. From this one sees that for privacy one only needs to fulfill (B1), whereas both (B1) and (B2) need to
hold for distillation. Observe that (B1) is a condition due to the noise acting on the input qubits (thereby
increasing the required fidelity of the initial states to succeed hashing) whereas condition (B2) stems from the
noise applied to the output qubits (which depolarizes the perfect Bell-pairs produced by noiseless hashing in the
asymptotic limit). This means that the parameters o and g are more constrained if one aims for increasing
entanglement, as compared to the case of privacy. We summarize these findings in figure B1.

This observation provides a clear distinction between privacy and distillation regime for asymptotic
ensembles: both regimes, distillation and privacy, have in common that any eavesdropper factors out due to the
protocol but they differ with respect to whether entanglement is distilled or not. This motivates the term
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q

Figure B1. Visualization of the different regimes in the a—q plane (only the upper right corner of the entire plane is shown). In the
white area neither privacy nor distillation is achieved. In the entire colored area privacy is guaranteed, but only in the blue area one has
distillation. This means that there is a parameter regime (yellow area), where one has privacy despite the fact that the fidelity of the Bell
pairs does not increase during the distillation.
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quantum privacy distillation for the proposed overall protocol as there are noise regimes where the protocol
offers privacy, or equivalently private entanglement, without achieving distillation.

A similar situation arises in the finite size case. Here, the modifications will be that q_;, in (B1) is no longer
directly related to F.; and that (B2) needs to be modified to

a’q,,(n, F) > q,,. (B3)

Here, q,,,, (1, F) quantifies the level of noise on the output pairs of the hashing protocol for # initial states with
fidelity F. It can be obtained from the bound on the fidelity of the output pairs. There will again be two different
regimes, and the distillation regime will be smaller than the privacy regime due to the fact that it is more
constrained (there are two inequalities to be satisfied, whereas there is only one for confidentiality).

Appendix C. Rate of convergence of noiseless bipartite hashing for i.i.d. initial states

Here we provide the proof of equation (4) of the main text for § = n~1/°

Theorem.

summarized within the following

Theorem 2 (Convergence for i.i.d. initial states). Let £ be the real protocol and F the ideal protocol taking
6

n + kn initial states. Furthermore, let x,(8) = 1/amax [(gmax—i—é) log (1 + ) - (‘5] where amqx and g _are

max

constants depending on Fyi, and Fy.x. Then we have for all initial states p that

[EpEmthmy — Fp=rimi < 2[2exp(—nxi(n™'/%) + exp(—n*/In2) + 2 exp(—(Bnax — Fnin)> kn/16)].
(92))

Furthermore, the right-hand side of equation (4) of the main text approaches exponentially fast zero.

Proof. Because the ideal and the real map are identical in the aborting branch, we find for the initial states p®"**"
that

| EQp@nthny — F(p@nthm)|| = Pp||UAB — |Boo) (Boo|®™|| < en (C2)

where 04 denotes the state of the hashing protocol after n — mroundsand p, the success probability for initial
state p. Thus we need to estimate ey. Because we twirl the initial states towards Werner form we assume from
now on that they are of Werner form.

The hashing protocol can fail due to two reasons, see [29]: the string corresponding to the initial states falls
outside the likely subspace or, after n — m rounds two or even more configurations are compatible with the total
parity information, i.e. they can not be distinguished from each other.

By denoting this failure probabilities by p, and p, and the corresponding states after the protocol by oy and o,
respectively, we find that the total failure probability p; of the hashing protocol satisfies p; =p/ + p,-Wealso
observe that if the parameter estimation was accurate the state after the protocol completes, i.e. g4 of (C2), is given by

2
oap = (1 — P})|Boo><Boo|®m + > plon (C3)

i=1
More precisely, with probability 1 — p; we are able to restore the output of the hashing protocol to m copies of
| Boo) and we end up with probabilities p,and p; in the state 0y and 0, respectively. This implies for (C2) that

lloas — 1Boo) (Bool*" |k < 2(p + p;) (C4)

via the triangle inequality for the case whenever parameter estimation is accurate.

Additionally the overall protocol can fail due to the following observation: the parameter estimation
provides an estimate F for the fidelity Fwhich is accepted by the participants, but Fis actually outside the agreed
range [Fpin, Fnax]- In that case Alice and Bob run hashing even though the protocol will either fail (since the
initial fidelity is too low) or the fidelity is too high to provide accurate confidentiality estimates’. This observation
in turn implies that the state after hashing within the ok-branch is maximum far from the asymptotic state of the
hashing protocol, i.e.

lloas — |Boo) (Boo|®™|li < 2. (C5)

The hashing protocol requires F > F.j; where F.; = 0.8107 to distill entanglement from the initial states. The restriction that F < Fy,x is
due to the applicability of Bennett’s inequality which requires bounded random variables. However, for the noisy implementation of the
hashing protocol this criterion will be met automatically as the resource states for the measurement-based implementation undergo ani.i.d.
LDN process.

10
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Nevertheless, the probability of the protocol succeeding for initial state p also takes into account for parameter
estimation succeeding, i.e. p, = p3/ - p' where psl denotes the probability of parameter estimation succeeding for
initial state p. Therefore, if Alice and Bob mistakenly run hashing even if they should have aborted we find via
(C5) for (C2) that

Bylloas — 1Boo) (Bool*" i < 2p;. (Co)
So to summarize we obtain for an arbitrary initial state p by combining (C4) and (C6) that
plloas — 1Boo) (Bool*"[li < 2(p/ +p; +py). (C7)

Thus we are left to provide upper bounds for (the unknown) probabilities pll , pzl and p3’ respectively, i.e. we need
tofind p,, p, and pssuch that p’ < p,for1 < i < 3 because this implies for (C7) that

Pp||(TAB — |Boo) (Boo|®™ |l < 2(p; + p, + P3)- (C8)

We derive a bound for the probability of falling outside the likely subspace p, via the Bennett inequality [58].
Bennett’s inequality [58] states that we have for X ,.., X, independent random variables, where |X;| < a almost-
surely and the expected value of X;is zero w.l.0.g., that

2
Pr( > t] < 2exp(—%h(“—t2)) (C9)
N a no

n
2.Xi
=1

where 02 = l/nZ?ZIVarXi and h(u) = (1 + u)log(1 + u) — u®.
For the hashing protocol the random variables X; take the values X;(k, I) :== —log,p,; — S(p) where

p= Z;{ 1o PulBu) (Buland S (p) = —Zi 1o P 0g,py; denotes the von-Neumann entropy. The von-Neumann
entropy simplifies for states in Werner form to S(p) = —F log,(F) — (1 — F)log,((1 — F)/3) =t S(F).

Thei.i.d. assumption implies that all X; are independent and identical distributed (therefore we will
subsequently denote them by the random variable X), thus we find 02 = 1 / n Z?;l VarX; = VarX = V(F).
Hence we have

V(F) = VarX = Y p,;(—log,p,, — S(F))?
k1
= pullogipy + 2S(B)log,py, + S*(F))
k1
= > pulogypy + 28(F)pylog,py + pyS*(F)
!
=" pulogipy + 2S(F)(—S(F)) + S*(F)
k1
=Flog}F + (1 — F)log(1 — F)/3) — S*(F). (C10)
We observe that the random variable X is bounded. More precisely, we have [X (k, )| = |log,p,; + S(F)| <
[log,((1 — F)/3)| + S(F) =: a(F) because |log,((1 — F)/3)| > [log, F|for F > 0.8107 (which is the minimum
required fidelity for Werner states by the hashing protocol).

The next stepistoinsert t = nd, a = a(F)and 02 = V (F) in (C9) which yields by denoting the left-hand-
side of (C9) by p;

a*(F) \ nV(F)
— 2exp ] VD) (1 + “(F)5)1og(1 + “(F)é) _ab)e
az(F) V(F) V(F) V(F)

= 2exp {—_n[(@ + 5)10g(1 + @) — 6]} (C11)
a(F)|\ a(F) V(F)

By defining g(F) = % we rewrite the previous inequality as

—n 1)
P < Zexp{ﬁl(g(ﬂ + 5)log(1 + @) - 6]} (C12)

5 < Zexp(—nV(F) h(a(F)né)]

8 Observe that Bennett’s inequality is only applicable to bounded random variables, which is also the reason why we propose to accept only
initial states where the fidelity is within an agreed range [Fin, Fnaxl-

11
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Figure C1. Plot of the function g(F). Observe that gis strictly monotonic decreasing for F € [0.82, 1).

We observe that (C12) depends on the fidelity F of the initial states which is inappropriate for confidentiality
estimates. In order to obtain a bound which is independent of the fidelity of the initial states we use that Alice and
Bob only run the hashing protocol if F € [Epin, Fnaxl- We observe that (C12) is maximized whenever

n 6 . . E) .
o [(g(F) + 5)log(1 + @) — 6]is minimal because (g (F) + 6)log(1 + @) — 6 > 0 which follows

from log(1 + x) > ﬁ, n > 0and a(F) > 0.
For that purpose we show that the function y (x) = (x + b)log(l + b/x) — b =
(x + b)(log(x + b) — log(x)) — b is strictly monotonic decreasing in x. We obtain for the first derivative of y that

b b
y'(x) =log(x + b) + x+o (log(x) + Xt )
x+0b x
=log(x +b) + 1 —log(x) — 1 — b
x
:b%xib)—zzb41+%)—%<0 (C13)

since log(1 + z) < z.Thus (g(F) + ) log(l + %) — & — min whenever ¢(F) — max.

From figure C1 we see that ¢ (F) — max for F — min. Thisimplies for (C12) that

(20]4} (C14)

g
) — 6 > 0and a(F) < a(Ey.y) implies

n
P < ZeXP{E[(g(Fmin) + 5)log[1 +

J
g(Fmin)

p, < 2exp{—nl(gmax+5)log(l + L) — 5]}, (C15)
amax gmax

where ama = a(Fnay) and g =g (Fnin). We rewrite (C15) in a more compact form by defining

41(6) = 1/amax [(gmax+5)10g(l + gé ) — 5]andinserting6 =n1/%%3s

P, < 2exp(—nx(n~1/%)). (C16)

Consequently (¢ (Enin) + 6)log (1 +

We will use (C16) for the confidentiality estimate (C8). In order to show that (C16) ensures an exponential
convergence, as we claim, we need to provide an upper bound for the exponent of (C16), i.e. for the function

n

I:(gmax—i—&)log(l + L) — (‘)] (C17)

amax gmax

o The choice of § is a trade-off between the rate of convergence and the number of output system m = n(1 — S(p) — 26). Any choice
8 < n~'/*isappropriate.
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~1/5

where 0 will be choosen later as n~!/> as previously. By defining

f(n) = n[(gmax—f—é)log(l + L) - 6]. (C18)
Equation (C17) reads as —f (1) /amax. In the following we compute a lower bound y(n) for f(n), i.e. f(n) > y(n)
for all n, which is in turn an upper bound for (C16),i.e. p; < 2exp(—f (1) /Amax) < 2 exp(—y (1) /Amax). Using

that log(1 + x) > - +xx/2 for x > 0,see[59], wefindfrom g . >0and 6 > 0 that
5

log[l + i) > S 20 (C19)

1+ - 2gmax+6.

Zmax iy

max

Furthermore we have that (g, +0)log (1 + 0 ) — 6 > 0 which implies together with (C19) for (C18)

Emax

Fn) > n((gmax—l—é)ié - 5]

2gmax
n2(5 (GnaxT0) — g0 +0)0
L —
208, . +26% —2g & — &7
=n
zgmax+6
2 2
Wmaxt0 21
because 6 < 1.Inserting & = n~!/° finally gives
né? n3/>
n) > = = y(n C21
f(m 1 21 y(n) (€21
implying
w3/5
Py <2exp(—f (1) /amax) < 2exp(—y(1n)/amax) = 2exp| ————— (C22)
Amax (28T 1)
which analytically proves the exponential scaling of the hashing protocol.
Furthermore, following the approach of [29], we find that the probability of having two configurations
~1/5

which are compatible with the collected parity information, p,, is bounded by 27", Thus, inserting 6 = n
gives p, < 2",

Finally we provide an estimate for the probability of accepting initial states from Eve in the case when Alice
and Bob should abort the protocol after parameter estimation, i.e. the actual fidelity Fis below the minimum
required value F;, but the estimate F is not, or the actual fidelity Fis above Fj,,, but the estimate F isnot,
corresponding to the probability p3’ . For that purpose we perform two-qubit measurements of two Bell-pairs,
the first w.r.t. the X ® X and the second w.r.t. the Z ® Z observable. One easily observes that | Byo) is the
common +1 eigenstate of both operators. By referring to this measurements as M; and M, respectively and
recalling that the parameter estimation utilizes kn systems we define the random variables F; associated with a
pair of Bell-pairs for 1 < i < kn/2 whichis equal to 1 whenever M, and M, simultaneously reveal outcome 1
and 0 otherwise. Recall that the Hoeffding inequality [60] states that we have for X ,.., X, i.i.d. random variables
wherea; < X; < b, ¢; = b; — a;, S, = Y, X; and the expected value E,, of S, i.e. E, = E[S,], that

2
Pr(S, — B,| > 1) < 2exp| -2 (C23)
nC?

holds for all tand where Vi: ¢; < C. Hoeffding’s inequality (C23) implies now for the empirical mean
F = 2/(kn)2fi/12 F that
Pr(|F — E[F]| > 1) < 2exp(—n%n) (C24)

holds for all 7. More precisely, the probability of estimating an error larger than 7y via F to E[F]is decaying
exponential in 1. So Alice and Bob choose Ey;, and Fy,.x and they agree to continue with the hashing protocol
whenever F € [Fpg — A/4, Fpg + A/4]where Fog = (Enin + Fnax)/2and A = oy — Fnin. Fixing

17 = A/4implies for (C24) that

Pr(JF — E[F]| > 1) < 2exp(—(Fnax — Bnin)? kn/16). (C25)
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In other words, (C25) means that the probability that Alice and Bob continue with the hashing protocol in case
they should abort, i.e. the actual fidelity F is outside [ Frin, Fnax]> is exponentially small. For example, if the fidelity
estimate F is F = Fpg + A/4 (which implies Alice and Bob will run hashing), then the probability that the
actual fidelity Fsatisfies F > Fpg + A/2 = E,,, is exponentially bounded.

To summarize, we find for (C2) that

||5(P®n+kn) - }—(P®"+k”)||l < 2[2 exp(_nxl(nil/s)) + eXP(—”4/5 111 2) + Zexp(_(Fmax - Frnin)2 kT’l/16)]
(C26)

Notice that the right-hand side of (C26) is independent of p, which completes the proof. O

Appendix D. Local closeness implies global closeness

In the main text we formulated the following claim: if the output of the real and ideal map differ at most ¢ for a
particular initial state then they differ at most 4./¢ for any purification of this initial state. We prove this
statement within the following Lemma.

Lemma 1. Let & be the real and F be the ideal protocol. Furthermore let p be a mixed state shared by the participants
of the protocol. If || E(p) — F(p)|li < €, then

(€ ®idg — F @ idp)(19) (¥ |ase)[h < 4vE (D1)
for all purifications |1))4p of p.

Proof. We observe that

E(p) = p,0ap © |0k) (ok| + (1 — p,)oyp ® |fail) (faill, (D2)

Fp) = p o) (9l35 © [ok) (ok| + (1 — p)oks ® |fail) (fail|. (D3)

m

The assumption || E(p) — F(p)|l < € implies pp||UAB — o) (@I58l < ebecause E(p)and F(p) are equal on
the fail branch. Thus we have ||oap — |©) (@[50 |l < €/pp.
Furthermore we find for the application of the real and the ideal protocol to a purification |1}, of p,  that

(5 X ldE)(|1/)> <w|ABE) = PpO'ABE X |0k> <Ok| —+ (1 — pp)o'kBE X |fa11> <fa11| , (D4)
(F @ ide)(19) (Y lase) = p,l0) (9135 © pp @ 0k) (ok| + (1 — p,)oipe @ |fail) (faill. (D5)
This implies for the one-norm that

€€ @ idp — F @ idg) (1) (¢ |ase) |l
=plloass — 1) (@l35 © pglh- (D6)

Thus we need to show that pp”UABE — 1) (pliF @ pplh < 4JE. Oneeasily verifies trg[oapr] = oapand
tiagloape] = pg because the system Eis not affected by the protocol £. Recall that we have by assumption that

lloas — 1) (@38 h < 5/pp.Thus we apply lemma 10 of the supplementary material from [28] to pg = 0ugg
and @g; == |@) (|25 ® ppwhere S := AB which implies

loase — 19} (0la5 @ pglh < 4 Je/p, . (D7)

Employing (D7) in (D6) yields
1€ ®idg — F @ idp) (1Y) (Y Lasp)lh < p,4/e/p, = 4/p,E < 4VE (D8)
which completes the proof. 0

Appendix E. Proof of theorem 1
Proof. Due to the symmetrization we find that £ and F* are permutation invariant maps. Hence applying the
post-selection technique of [46] gives

€5 — Follo < &ypinall(€° @ idp — F* @ idp)(I7) (T lasp)|h> (ED
where dis determined by the number of participants (see the main text) and | 7)4pg is a purification of the de-

Finetti Hilbert—Schmidt state, hence tg[|7) (7|aps] = f U%*k” dp (o) =: 7" where i is the measure induced by
the Hilbert-Schmidt metric on End(C%). One easily observes that
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Hgs(T/) _ fs(T/)||1 — H(gs _ ]:s)(f J(%Jrk"d,u(a))

< max [|(€ = P b, (E2)
1 OAB
where £ and F denote the subprotocols after symmetrization. As | 7)4pg is a purification of 7/ we can apply
lemma 1 implying for (E1) that

1€ = F¥llo

8niinall(€® @ idg — F* @ idp)(I7) (7 |ase) [h
8 nd W I(E = F (el ) (7 ane Dl
=48, 1V (€ = FHT)

< 4gn+kn,d\/max 1€ = Py ™l (E3)

<
<

where the second inequality stems from lemma 1 and the last inequality from (E2) which finally shows the
claim. O

Appendix F. Confidentiality of a noisy measurement-based implementation of the
hashing protocol

Within this section we prove equation (8) of the main text. In doing so, we formulate the following Theorem.

Theorem 3. Let £ and F> be the real and the ideal noisy hashing protocol prepended by symmetrization where
noise of strength 1 — « of the form (A1) acts on each qubit of the resource states independent and identical. Then

[ = Fello < 1€ = Flo- (FD)

Proof. The resource state each protocol party requires for the measurement-based implementation of hashing is
pure, minimal in the number of qubits and consists only of input and output qubits, because all quantum gates
involved in the hashing protocol are elements of the Clifford group [41].

Hence there are only two different locations at which noise acts: input and output qubits. For the noise acting
on the input qubits we use the observation made in [42], which enables us to virtually move the noise from the
input qubits to the initial states, thereby increasing their entropy. For the noise acting on the output qubits, as
described in the main text, we can safely assume that this noise will act after the protocol completes, leaving us
with a noiseless hashing protocol (w.r.t. the output qubits).

We deal with the noise on the input qubits by a slight modification of the parameter estimation step. Recall that
Alice and Bob fix E;, and F,,, for parameter estimation and they continue with the hashing protocol whenever
their fidelity estimate F is within the interval [F, F, Jwhere F,. = Fpg & A /4 for Fpg = (Epay + Enin) /2 and
A = Fyax — Enin. The noise acting on the input qubits of the resource states increases the entropy of the initial
states which forces Alice and Bob to accept less initial states from Eve. By describing the initial states in an i.i.d.
setting after the twirl viai.i.d. LDN of the form (A1),i.e. p = D;(q)|Boo) {Boo | the parameter estimation interval
[F., F,]transformsto[q_, q,]viaq, = (4FE. — 1) /3. Accordingto the previous observation that we can virtually
move the noise of level o on the input qubits of the resource states, D; (o) and D, («) respectively, to the initial states
we consequently describe the initial states as D () Dy () D1(q)|Boo) {Boo| = D1(a?)D1(q)|Boo) (Boo| =
Dy (a2q)|Bgo) {Boo |, see also figure F1. Observe that we have moved the noise from Bob’s to Alice’s side due to the
symmetry of Bell-states. Thus we need to have aq € [q_, q, ] to pass the parameter estimation and run the hashing
protocol. Observe that a2q transforms to the fidelity F’ of the initial states, including the noise of the resource state, via
a?q = (4F'" — 1) /3. Therefore we modify the parameter estimation to continue with the hashing protocol whenever
the estimate of the fidelity F of the initial states satisfies

Fe 3q_+a2’ 3, +a? )
40 4o

(F2)

see figure F2.

We denote the protocols with modified parameter estimation according to condition (F2) by the maps
Esa-inand F=o-in respectively. It follows immediately from the definition of the protocols that we achieve the
same confidentiality level of equation (7) of the main text as for the noiseless protocols, Alice and Bob will just
abort the protocol more often. Hence we easily deduce

Hgs,n-in _ ]:s,a—in”o — ||gs _ ]:$||<>- (F3)
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Figure F1. The figure shows, at an abstract level, how noise on the input qubits is moved from the resource states to the initial states.
The blue ellipsis indicate Bell-measurements, the red vertices the input qubits of the resource state and the light-blue vertices the
qubits of the initial states.

F F F F

min min ~ max max

Figure F2. The interval for parameter estimation acceptance [Fnin, Fnax] transforms according to (F2) to [Fly> Faax J-

We now extend the confidentiality proof to a full noisy measurement-based implementation of the hashing protocol
protocol as follows: since we can effectively move noise of level cv acting on the input qubits of the resource states to
the to-be-purified ensemble, the modification (F2) of the parameter estimation extends the confidentiality proof via
(F3) to noise acting on the input qubits of the resource state. For noise acting on the output qubits we use the following
observation: Because the noise is assumed to be of the form (A1) it is also CPTP. By denoting the noise acting on the
output qubitsas N = ®;-":1 D;;a() Dj;p(c) where A and B denote Alice’s and Bob’s parts of the final Bell-pairs,
the noisy real protocol and ideal protocol read as £ = N0 and F5* = N o5 respectively'’. Hence
(F3) and the contractivity of the 1- norm for CPTP maps imply

||€s,a _ f‘s,a”o — ||Nao(gs,a—in _ f‘s,ﬂ—in)”o g ||gs,o¢—in _ j:'s,a»in”o — ||£s _ f‘s”o. (F4)

What remains to be dealt with are the Pauli byproduct operators due to the measurement outcomes at the inputs,
but since LDN of the form (A1) commutes with the Pauli byproduct operators we do not have to worry about
them in the proof of confidentiality, which completes the proof. O

Appendix G. Confidentiality of multiparty hashing protocol for two-colorable
graph states

We start by recalling some basic notation, definitions and properties of graph states.
We define the graph state basis 1), ., 1) Where ky,..., ky € {0, 1} associated witha graph G = (V, E)
where N = |V|as the common eigenstate of the correlation operators

szx(j) H VAU, (GD)
{j.k}€E

with eigenvalues (—1)% for 1 < j < N where the superscript denotes the qubit on which the Pauli operator is
acting on. We refer to the state | o) also as the graph state associated with G = (V, E). Note that the states
{1¥sy....sx) ... my—o fOrm a basis of the Hilbert-space (C?)®N. A special class of graph states are so-called two-
colorable graph states which correspond to two-colorable graphs. A graph is said to be two-colorable if there

10, . . . . . . .
This is due to the fact that we can assume that the noise acting on the output qubits is applied after the protocol(s) have finished.
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existsamapping f: V — {1, 2} such that for all vertices v € V itholds that f (v) = f (w) for all neighbors

w € V of v. The most prominent examples of two-colorable graph states are GHZ and cluster states [54].
Suppose we want to distill a two-colorable graph state |1y o) corresponding to a graph G = (V, E) where

V = V4 U V3, A and Bdenote the colorsand | V4| = Ny, |V3| = Np where N = Ny + Np. The multipartite

hashing protocol assumes asymptotically manyi.i.d. initial states p diagonal in the graph state basis, i.e.

P =N V) (| Where i = (..., piy) € {0, 1 PMandv = (vy,..., vy,) € {0, 1} are multi-

indices corresponding to color A and B respectively' ' .For two-colorable graph states we define multilateral

CNOTs on two copies p, and p, which enable us to transfer information between the initial states p, and p,.

More precisely, by applyinga CNOT to all particles in V; (V) where p, serves as target(source) and p, as source

(target) a straightforward computation leads to (by denoting this unitary as U;)

U,
|'(/Ju,1/> b2 |'¢u’,1/> - |"/’u,ueu’> ® |¢u€au’,u’> . (G2)
By exchanging the roles of V4 and V one obtains (by denoting this unitary as U,)
U
|¢u,u> by |¢u’,u’> = |¢u€9u’,u> & |¢u’,l/%l/>- (G3)

Suppose we measure all qubits of the graph state [0, .11\ ,...,1,) Delonging to the set V; with the X and all
qubits of the set V with the Z observable. By denoting the outcomes of the X measurements with ¢; € {0, 1}
and the outcomes of the Z measurements with G € {0, 1} one immediately finds via (G1)

Hi = [5, + Z C]] mod 2 (G4)
{ij}eE

forall1 < i < Nj.Inother words, we can use this measurement setting to reveal information about all »; for

1 < i < N, simultaneously. We refer to this measurements with M. Similarly, by exchanging the roles of V4 and V3

we obtain information aboutall ; for 1 < i < Np. In the following, we refer to this measurements with M,.

The multiparty hashing protocol is now defined as follows [30]: in order to reveal information about color A,
i.e. p, (which we denote as sub-protocol P;) we apply U, to arandom subset of the # initial states with a common
target system (thereby accumulating the values corresponding to color A) and perform measurement M, on this
common system. Similarly, by applying U, to a random subset of the initial states with a common target system
(thereby accumulating the values corresponding to color B) followed by M, on this common system one obtains
information about color B, i.e. ¥ (which we denote as sub-protocol P,). Repeating the sub-protocols P; and P,
sufficiently many times leads to perfect knowledge about the remaining states, i.e. one ends up in a pure state
(which we can restore to the target state |tg, . 0)®™).

Recall that the overall protocol prepends the multiparty hashing protocol by a twirling and parameter
estimation step. The twirling step ensures that the initial states are diagonal within the graph state basis, see [30],
whereas the participants use parameter estimation to decide whether the multiparty hashing protocol will
succeed or not.

Formally, we define the probabilities

() _
aiu - Z )\;Ll,...,ﬂi,A.A,;LNA,m (GS)
= v
()
ij = Z )\/L,ul,...,uij,uNB (G6)
VkE Vi fi

forl1 < i< Nyand1 < j < Np. For example, for a three-qubit state we have al? = > k1 Aok and
all = >k Aik- Observe that the values S(a;) and S(b;) correspond to the entropies of y; and v; within the
vectors p and V.

As shown in [30], the protocol described above is capable of distilling m = n(1 — max; <j<n, S(a;) —
max; <j<n, S(b;)) copies of the state 1), o) in the asymptotic limit.

Now we are ready to compute the distance of the real and ideal multiparty hashing protocol fori.i.d. initial
states. Intuitively it follows from the same arguments as in the bipartite setting.

Theorem 4. Let £ be the real and F be the ideal multiparty hashing protocol. Furthermore let p be an initial state.
Then

“5(p®”+k") _ «7:(/0®n+kn)||1 < 1> (G7)
where egq € O(exp(—/n)) is independent of the initial state p.

"1 Ifthe initial states are not diagonal in the graph state basis we achieve this by probabilistically applying the correlation operators (G1), see
[30]. This procedure is also referred to as twirling.
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Proof. Recall that the multiparty hashing protocol aims to distill several copies of a two-colorable graph state via
the sub-protocols P, for color A and P, for color B from 7 copies of the initial state p = > Yp,v) (Y, | Where
the states |1/}, ,,) correspond to the graph state basis.

The crucial observation is that we learn the values of s and ¥ corresponding to the colors A and B within n
copies of the initial state p = 37, ,[9),,) (¥},,-| via the sub-protocols P, and P, independently. In other words,
p and v do not get correlated during the protocol execution, i.e. they remain independent. By taking a closer
look at P (P,) we infer that also the individual components of g (v) remain independent. In particular, the
components of = (fiy..., py,) (¥ = (Vy,..., V) remain distinct during the protocol, i.e. for each i the value
p; isindependent of g forall k = i (for each j the value v; is independent of v for all k = j). This is due to the
fact that U, (Us) operates component-wise on p () *. Keeping this observations in mind, it is straightforward
to provide finite size estimates for the fidelity of the state after the protocol relative to |1}, o). Observe that the
hashing protocol fails if either P, or P, fails which implies for the failure probability pjof the hashing protocol
that pr < pp + Pp, where pp, and p;, denote the failure probabilities of sub-protocol P, and P, respectively.

First we discuss the failure probability of sub-protocol P;. This sub-protocol can fail due to three reasons,
similar as in the bipartite setting: the initial states do not belong to the likely subspace or, after the sub-protocol
has finished, two or more configurations are compatible with the collected parity information, or the protocol is
continued mistakenly after parameter estimation, i.e. the parties should have aborted but continued the
multiparty hashing protocol to its very end.

To provide an estimate for the probability that the initial states fall outside the likely subspace w.r.t. sub-
protocol P; we define for color A the random variables X® (b) for 1 < i < N, which take the values

XO(b) = —log,a” — S(aj) (G8)

with probability a,-(b). In order to learn 1, we observe thata specific pp = (piy,..., pty,) belongs to the likely
subspace £ whenever each 11, belongs to its likely subspace L;, i.e.

peELe V1I<i<Nge p; €L (G9)
Consequently,
Ny
Pr(p & L) <> Pr(p; & L£i) < Ny max Pr(u; & L)). (G10)
1<i<N,

i=1

We estimate Pr(p; ¢ L£;) via Hoeffding’s inequality [60]. In order to apply Hoeffding’s inequality we need to
make sure that \,, , = 0forall y2 and v after twirling, as the the random variables X @ (b) of (G8) need to be
bounded. We achieve this by mixing each individual initial state with a small, but defined, portion of the identity
operator. From this we observe that the random variables X have zero mean and that

XD < maxyeo,|log, ai(b) | + S(a;) =: C;after mixing. Therefore the Hoeffding inequality implies

no )
Pr[ SXO | > t] < 2eXp( nétz ) (G11)

k=1 i
for all twhere k denotes the index of the initial state within p®" and i the ith component of . Inserting t = nd in
(G11) together with 6 = n~'/*yields

Pr(u; & L;) = Pr[ Z”jx,@

> n3/4] < Zexp(_é}/ﬁ)

k=1 i
< 2exp(*ch ) (G12)
where C = max, ¢;<n, C;. Note that (G12) is independent of i, which implies for (G10) that
Pr(p & £) < 2N, exp(*ch ) (G13)

Observe that C = max; ¢;<n, C; still depends on the initial states. Due to parameter estimation one finds another
constant C’ > C independent of the initial states. The probability of not being able to distinguish between two
or more configurations is, for a particular component of , again 27, as for the bipartite case. Hence inserting
§ = n~1/4 gives that the probability of misidentifying a specific 1, where 1 < i < Ny is bounded by 27",
Therefore the probability of misidentifying g is bounded by Ny 2

We point out that also in the multipartite setting a parameter estimation step is crucial in order to ensure
entanglement distillation. For that purpose we find that the states after twirling and mixing are diagonal within

the graph state basis, i.e. of the form

12 Intuitively speaking this independence stems from the two-colorability of the graph-state and the properties of U; and U,.
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P=2" Auw

wv

V) (U | (G14)

whereall \,,,, = 0. The goal of parameter estimation is to provide estimates @; and b; for the probability
distributions a;and b; of (G5) and (G6) forall1 < i < Nyand1 < j < Np. The concrete boundaries for which
the participants continue with hashing depends on the target state of the protocol. However, it suffices to
estimate )\, ,, forall p and  which we denoteby ), ,,. Observe that we have to determine in total 2V
coefficients, where N denotes the number of participants and is constant. This can be done via measurements on
kn systems of p according to the observables of the correlation operators (G1). Indeed, the expected values of the
correlation operators are sufficient to determine the coefficients \,, ,, for all & and v within

P = 2 Nl V) (¥, |- Now one can apply Hoeffding’s inequality to exponentially bound the probabilities
that the estimates ~ A, ,, of \,, ,, have a distance larger than some fixed > 0 (which corrsponds to the accuracy
of our estimate ~ \,,,,) similar to the bipartite case. From this we deduce that the probability of continuing with
the hashing protocol mistakenly is exponentially small in terms of the number # of initial states.

In summary, via the same argument as in the bipartite case (i.e. the previous estimates are upper bounds for
the real failure probabilities, see (C3), (C4) and (C8)), the probability that sub-protocol P, fails satisfies
pp, € O(exp(—~/m)). Similarly one obtains that sub-protocol P, fails with probability p p, € O(exp(—+/n))
which implies that pre O (exp(—+/n)), thereby proving g € O (exp(—+/n)) as claimed. [

Observe that equation (G7) is restricted to i.1.d. initial states rather than arbitrary initial states and does not
take into account Eve’s purification of the initial states. But since theorem 1 of the main text is also applicable to
the multiparty hashing protocol, we eliminate these issues and immediately infer for the multiparty hashing
protocol prepended by symmetrization by using (G7) that

1€ — Follo < 4(n 4 kn + D1 /&. (G15)

The proof of (G15) is simple: theorem 1 of the main text applies to the multiparty hashing protocol with
= 2M where M denotes the number of participants. Hence (G7) implies (G15) via theorem 1 of the main text.
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