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Abstract
Quantum emitters (QEs) coupled to structured baths can localizemultiple photons around themand
formqubit-photon bound states. In theMarkovian orweak coupling regime, the interaction ofQEs
through these single-photon bound states is known to lead to effectivemany-bodyQEHamiltonians
with tuneable but yet perturbative interactions. In this workwe study the emergence of suchmodels in
the non-Markovian or strong coupling regime in different excitation subspaces. The effectivemodels
for the non-Markovian regimewith up to three excitations are characterized using analyticalmethods,
uncovering the existence of doublons or triplon states. Furthermore, we provide numerical results for
systemswithmultiple excitations and demonstrate the emergence of polaritonmodels with optically
tuneable interactions, whosemany-body ground state exhibits a superfluid-Mott insulator transition.

1. Introduction

Quantum systems coupled to a common environment experience interactionsmediated by the bath excitations
[1]. In quantum electrodynamics, this is the basicmechanismbehind the forces between electrons, atoms, or
molecules. Those interactions can be tuned if one controls the coupling to the bath, which opens up exciting
possibilities in quantum information. One of themost prominent examples in this context is that of two-level
quantum emitters (QEs) coupled to the free-space electromagnetic field, resulting in thewell knowndipole–
dipole interactions betweenQEs [2, 3]. Unfortunately, these interactions are generally accompanied by
spontaneous emission, which limits their applications. The latter can be avoided if the density ofmodes at the
transition frequency vanishes, since the spontaneous decay rate is proportional to that quantity. This occurs, for
instance, if one embedsQEs in a cavity such thatQEs are far-off resonance from the cavitymodes [4, 5].

Another way of canceling spontaneous emissionwhile obtaining exchange interactions amongQEs is by
endowing the bathwith a periodic structure, which strongly influences the density of states [6]. In fact, band gaps
where the density of states vanishes can emerge, so that spontaneous emission in that bath can be prevented, but
still interactions between the emitters can bemediated by virtual processes via the commonbath [7, 8].
Experiments with atoms, quantumdots, or superconductors interacting with structured bath has renewed the
interest in investigating these phenomena [9–15]. Other experimental scenarios involving cold atoms in optical
lattices with state-dependent potentials are amenable to the same description, and thus the appearance of
analogous phenomena have been predicted [16, 17] and have recently been observed [18].

The theoretical description of the interactionsmediated by a bath is relatively simple in the so-called
Markovian limit [2, 3, 19]. There, it is possible to derive amaster equation for theQEs only, where the bath
degrees of freedom are traced out. This effective description contains bothHamiltonian and dissipative Lindblad
terms. The latter vanishes if theQEs transition frequency lies in the band gap, whereas thefirst one describes the
interactions between theQEsmediated by the bath, where one of them is excitedwhen another one is de-excited.
The emergence of dipole–dipole interactions in this scenario, which opens the door to investigate spinsmodels
with long range interactions [20–22], can be attributed to the existence of a single-photon bound states [7]. An
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intuitive picture [21] is that the single-photon bound state acts as an off-resonant cavitymode thatmediates
interaction between theQEs. The strength and functional formof these interactions depend on theQE-bath
coupling strength, detuning aswell as the band-dispersion relation. Although, these interactions can bemade
relatively strong to overcome other dissipativemechanism, their predicted strength is ultimately limited by the
Markovian conditions under which these effective description has been derived.

In this work, we study the effectivemany-bodyHamiltonians emergingwhenQEs couple to structured baths
beyond theMarkovian limit, and investigate towhich point the dipole–dipole description survives in this
regime. Furthermore, we study the consequences on the effectiveQE interactions of the emergence ofmulti-
photon bound states, whichwere recently predicted in the singleQE regime [15, 23–26], but whose impact in the
multi QE situation has not yet been fully considered. Our analysis allows us to uncover qualitatively different
interactionHamiltonians, inwhichmulti-photon bound states (doublons/triplons) hop fromQE to the other,
and analytically characterize themup to three excitations.Withmore excitations, we numerically characterize
the emergent polaritonmodels using densitymatrix renormalization group (DMRG), and show that their
interactions can be controlled optically through theQE-bath interactions, allowing us to probe the quantum
phase transition between superfluid andMott insulator.

Thismanuscript is organized as follows. In section2,we explain themodel thatwill be used throughout thepaper
and review the results in theMarkovian limit to have themas reference for thenext section. In section3,we study the
single excitation subspace, deriving an effectiveHamiltonian todescribe thedipole–dipole interaction for twoand
manyQEs. In sections4–6,we study the two-excitation subspace for both the twoandmanyQEregimes. Since the
phenomenology in this regimediffers significantly fromwhat is expected in aMarkoviandescription,weuse section4
to explain the analytical toolsweuse to characterize it, anddescribe qualitatively themain features that emerge in this
subspace, namely, the scatteringof twopolaritonmodes and thehoppingof doublon states. This emergentdynamics
will bediscussed indetail in sections 5 and6, respectively. In section 7,we analytically characterize the three excitation
subspace, and then go to themany-excitations regime tonumerically explore a superfluid toMott-insulatorphase
transition appearing in the ground state of the systems. Finally,we summarize our results and conclude in section8.

2. Setup andMarkovian limit

2.1.Model
As shown schematically infigure 1(a), we considerNb>1QEswith two energy levels g e,j jñ ñ{∣ ∣ } ( j=1,K,Nb)
coupled to a structured bath. The totalHamiltonian of the system reads (with ÿ=1):

H H a a
N

ae h.c. , 1A
j

ge
j

k
k k k

k

k n
k

,

i jå åe s= + +
W

+-( ) ( )† · †

where HA e j
N

ee
j

1
bw s= å = describes an array ofNb two-level QEswith transition frequencyωe. Periodic boundary

conditions (PBCs) for the bath are used, sowe can label itsmodes in terms of the quasi-momentum k. Here, ak

Figure 1. (a) Scheme of themodel: several QEs are coupled to a structured bosonic bathwith energy dispersion εk. Though, we
schematically plotted a 1Dbath, the results can be extended to higher dimensions. (b)Pictorial representation of the doublon states
hopping betweenQEs.

2

New J. Phys. 20 (2018) 105005 T Shi et al



(ak
†) is the annihilation (creation) operator of the bathmodewith quasi-momentum k, ke is the energy

dispersion relation,N is the total number of bathmodes, andΩ is theQE-bath coupling strength.We assume
that the bath has a single band ofwidthW, although the results can be easily extended to other situations. To
obtain analytical results, wewill go into the continuum limit, where N  ¥ so that k becomes a continuous
vector, andwe can replace sums by integrals. Finally, j

js a b= ñ áab ∣ ∣are the spin operators for the jthQE andnj
its corresponding vector position.We note that thewe have assumed a spatially local system-bath coupling,
which results in a k-dependent coupling of the form Nek

k ni jW = W - · . Despite this simplification, we are still
able to capture non-Markovian effects emerging fromnon-trivial energy dispersions, εk, as we show in the next
section.

In optical andmicrowave implementations, we require that , mine kw eW  , so the counter-rotating terms
for theQE-bath coupling can be neglected. For convenience, wewill work in the rotating frame at the frequency
minεk, which amounts to taking

H , 2A
j

N

ee
j

1

b

å s= D
=

( )

where mine kw eD = - . A crucial feature of theHamiltonian in equation (1) is that the number of excitations,
defined as

N a a , 3
j

ee
j

k
k kexc å å s= + ( )†

is conserved. This allows us to derive effectivemodels separately in the subspaces with different numbers of
excitations. In this work, wewill concentrate on the few-body scattering and bound-state behaviors in the
subspaces withNexc=1, 2, 3, and the quantumphase transitions in the ground states of the subspaceswith
many excitations.

Thoughmost of the expressions we derive are valid for an arbitrary energy dispersion εk (see appendices), in
themain text we focus on the results for a 1D tight-bindingmodel, where the energy dispersion reads:

J J k2 2 cos , 4ke = - ( )

with J being the hopping strength and k N N N0, 2 , , 2 1p p= ¼ -( ) . Notice, we have implicitely taken the
distance between the bosonic sites, a0≡1, as the unit of length.

2.2.QEs as hard-core bosons
For the analytical calculations performed in this paper, it is convenient to describeQEs using hard-core bosons.
In this representation, we replace bge

j
js  , where bj is an annihilation operator fulfilling bosonic commutation

relations, andwe restrict theHilbert space to the states with b 0j
2 =( )† . In practical terms, this can be done by

writing:

H b b
U

b b b b
2

5A
j

N

j j
j

N

j j j j
1 1

b b

å å= D +
= =

( )† † †

and taking theU  ¥ limit, which forbids double occupation of the bjmodes.
In the case ofmanyQEs, we assume that they are equally spaced, which allows us towork in Fourier space by

defining b b ej p p
p ni j= å · . The quadratic part of theHamiltonian is H Hp p0 = å with

H a a b b
z

a b b a 6p
K

k k k p p
K

k p p kå åe= + D +
W

+( ) ( )† † † †

that commutewith each other (i.e., H H, 0p p =¢[ ] ), where the photonmomentum k p K= + is given by the
QEquasi-momentum p and the reciprocalmomentumK of the sublattice, and z=N/Nb is the number of bath
modes per unit cell. The hard-core interaction partHhc becomes

H
U

N
b b b b

2
. 7

b p p q
p p p phc

, ,

q q q q

1 2
2 1 2 1 2 2 2 2å= + - - + ( )† †

2.3.Markovian limit
Let us here remind the results obtained in theMarkovian limit when theQEs transition frequency lies within the
band-gap, whichmeans thatΔ<0, and W,D W∣ ∣ . In that limit, one can eliminate the bath degrees of
freedomusing standard quantumoptics techniques and obtain an effectiveHamiltonian for theQEs [2, 3]. For
twoQEswith relative position d n n2 1= - , one obtains:

H H V d , 8A2
M

dd 1 2 2 1s s s s= + ++ - + -( )( ) ( )
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whereVdd(d) is the dipole–dipole interaction strength, which in the limit N  ¥, reads:

V d
kd

2

e
9

D

k d

k
dd

2
i

ò p e
= W

D -
( )

( )
( )

·

for a generalD-dimensional bath and j j eg
j

ge
js s s s= º =+ -( ) ( )† †. FormanyQEs, one obtains

H H V d d . 10N A
i j

i j i j j i
M

,
ddb å s s s s= + - ++ - + -( )( ) ( )

Note that the dipole–dipole interaction formanyQEs is the same as for twoQEs under theMarkov
approximation. For the 1D tight-bindingmodel, one obtains [20]

V e 11dd

2
d= -

W
D

x-

∣ ∣
( )

with the decay length Jln 1x = D- (∣ ∣ ).Wewill use these effectiveHamiltonians as a baseline to compare with
the results of the next sections. In particular, wewill see what is the regime of validity, and how it has to be
modified outside that regime. To do that, wewillfirst study analytically up to the three-excitationmanifold, and
finally performDMRGcalculations for the case withmany excitations.

3. Single excitation

In this sectionwe study the physics of the single excitation subspace. This regime has been extensively studied in
the literature (see, for instance, [26] and references therein). Here, wewill review results that are relevant for the
other sections, and also derive simple formulas for the emergent effectivemodels.

We divide this section in two parts: in section 3.1we study the situationwhen only twoQEs are coupled to
the bath, deriving an effective exchange interactionHamiltonian valid in a particular region of the (Δ/J,Ω/J)
parameter regime that wewill define. In section 3.2, we study the situationwithmanyQEs and derive an effective
hoppingmodel in the lowest band, which can be defined in all parameter regimes. In both regimes, when
D W∣ ∣ we recover the effective spinmodels predicted for theMarkovian limit in equations (8)–(10). However,
in the strong-coupling limit,Ω?J,Δ, an effective spinmodel can still be derived to characterize the hopping of
the strong hybridizedQE and photon, i.e., a polariton, where the effective hopping strengths are dramatically
enhanced compared to those in theMarkovian regime.

3.1. TwoQEs
The single-excitation eigenstates for the systemwith twoQEs can be generally written as 01 bY ñ = ñl l∣ ∣† with

u b u b f ak . 12
k

k1, 1 2, 2 åb = + +l l l l ( ) ( )† † † †

The coefficients u1,λ, u2,λ, and fλ(k) for all the eigenstates (including bound states and scattering states) can be
obtained by solving the Schrödinger equation H E1 1 1Y ñ = Y ñl l l∣ ∣ (see appendix A). The probability weights of
symmetric and anti-symmetricmodes b b b 21 2=  ( )† † † in the eigenstate 1Y ñl∣ are Z b0 01

2b= á ñl
s

s l
= ∣ ∣ ∣ ∣† .

In general, the two lower eigenstates, 01 bY ñ = ñl= ∣ ∣† , represent the symmetric and anti-symmetric
superpositions of two local single-excitation bound states around theQEs.However, as wewill showbelow (and
already derived in [26]), only the symmetric bound state survives in certain parameter regimes. In the regime
where both bound states exist, theHamiltonian can be projected into the subspace spanned by these two bound
states, which gives rise to the following effectivemodel for the low energy part of the spectrum:

H E E . 13eff
1

1 1b b b b= ++ + + - - - ( )( ) † †

Abasis transformation converts thisHamiltonian into a hoppingmodel

H E t h.c. , 14
j

j jeff
1

0
1,2

eff 1 2å b b b b= + +
=

   ( ) ( )( ) † †

for the two localizedWanniermodes 21,2b b b= + - ( ) , where E E E 20 1 1= ++ -( ) is the effective
chemical potential and t E E 2eff 1 1= -+ -( ) is the effective hopping strength.

If the distance d between two neighboringQEs is sufficiently large, the twonearly degenerate ground states
with E E1 1~+ -describe the single-excitation bound states localized around two individual QEs. These two
bound states begin to hybridize with each other as d decreases.When the distance d ismuch smaller than the
localization length of the bound states, the strongmixing of the bound states induces the energy level splitting
t2 eff around E0. If the splitting is large enough, the anti-symmetric bound state energymerges in the continuum
and the state is not bound anymore. For example, for the 1Dbathwith the tight-binding dispersion relation, the
symmetric bound state always exists, but the anti-symmetric bound state can only be found in the regime
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d 22D < W [26]. Obviously, the effective hoppingmodel of equation (14) cannot be definedwhen only the
symmetric bound state exists. In this paper, wemainly focus on the regimewhere both bound states exist, such
that the low-energy physics of the single excitation is described by the effectiveHamiltonian (14), where the
relevant parameter is the hopping strength teff.

As shown infigure 2, in theMarkovian D W∣ ∣ and strong couplingΩ?J,Δ regimes, a parameter
regime that we denote as the arc region, the photon is strongly localized aroundQEs. Thus, the effective
chemical potential E0∼E1B tends to the energyE1B of the bound state around a singleQE. The effective hopping
strengthwhen teff=E0 can be approximated by t Z E E Je 4B B Beff 1

2 d
1 1~ - W -x- ( ) (see appendix A), where

the single-particle weight and the decay length are

Z
k

E

E

J J
E E J

1
d

2

1
,

ln
1

2
2

1
4 . 15

B
B k

B
B B

1
2

1
2

1

1
1 1

1

ò p e

x

= + W
-

= - + -

-

-

⎡
⎣⎢

⎤
⎦⎥

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

( )

( ) ( )

In theMarkovian limit, the effective hopping strength t J J d
eff eff

1~ - D -∣ ∣ decays exponentially with the
distance d, where J Jeff

2 2= W D , such that it reproduces the result of equation (11). In the strong coupling limit,
the effective hopping strength t J J d

eff eff
1= - W -( ) also decays exponentially, however, J J 2eff = , which

means that the coupling strengths are significantly enhanced due to the strong hybridization betweenQE
excitation and photon.

Infigure 2, the effective hopping strength teff is shown in theΔ−Ω plane for twoQEswith d=1, 2 coupled
to the 1D tight-binding bath. For t0, effD < ∣ ∣ increasesmonotonically and saturates to J/2 in the strong
coupling limit. For t0, effD > ∣ ∣ increases to themaximal value atΩmax slightly above the boundary

d2W = D , and decreases to J/2 in the strong coupling limitΩ? J,Δ. The Rabi frequencyΩmaxmaximizing
teff∣ ∣ is highlighted by the dashed red lines infigure 2.

3.2.QE array
Let us now consider the situationwherewe havemanyQEs coupled to every z bath lattice sites. By imposing
PBCs for theQE array, the excitations will have z+1 bands for theQEpropagation, although herewe focus on
the lowest energy band. Using the intuition from the previous section (see also [26]), we expect that the bath
mediatesQE interactions giving rise to a polariton propagating in theQE lattice. Let us now explain how to
characterize this emergent behavior.

Sincewe are restricting in this section to the single excitation subspace, the hard-core interaction
Hamiltonian plays no role, and therefore the single-particlemodeswith different quasi-momenta p in thefirst
Brillouin zone are decoupled. Thus, theQE-bathHamiltonian is quadratic and can be diagonalized,
H E pp p p0 1 b b= å l l l l( ) † , by the annihilation (creation) operatorβpλ ( pb l

† ) of the single polaritonwith

Figure 2.The effective hopping strength, t E E 2eff 1 1= -+ -( ) , in theΔ−Ω plane for the 1D tight binding dispersion relation. J is
chosen as the unit and (a) d=1 (b) d=2.
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momentump and dispersion relationE1λ(p) in theλ-th band, whereλä[0, 1, 2,L, z] labels the different
energy bands. In the polaritonmode 0pb ñl∣† , the probability weight ofQEmode of quasimomenta p being in the
excited state is given by:

Z bp 0 0 . 16p p1
2b= á ñl l( ) ∣ ∣ ∣ ∣ ( )†

The dynamics in the lowest band (i.e.,λ=0) is given by:

H PH P E p , 17
p

p peff
1

0 1å b b= = ( ) ( )( ) †

whereP is the projector into the states 0 0p p 0b bñ º ñl=∣ ∣† † in the lowest bandλ=0, and E Ep p1 1 0º l=( ) ( ) its energy
dispersion relation.TheWanniermodes canbeobtained via Fourier transformas Nej bp p

p ni jb b= å · , which
describes the local single-excitationbound state around the jthQE. In termsof these localWanniermodes, the
effectiveHamiltonian in the coordinate space canbewritten as

H t 18
jj

j j j jeff
1 å b b=

¢
- ¢ ¢  ( )( ) †

with hopping strengths

t
N

E p
1

e . 19j j
b p

p n n
1

i j jå=- ¢
- ¢( ) ( )·( )

In the arc region, the dominant hopping constant t tj j1 1d~ - can be deduced from the first order degenerate
perturbation theory, where t J Z1 B1 1= -( ). In theMarkovian and large Rabi coupling limit, t J1

2 2= W D and
J/2 agrees with Jeff in the two-QE case.

In the large d limit, the vanishing t 0j  indicates that the localWanniermodes reduce to the single-
excitation bound states localized around different individual QEs. As the lattice spacing decreases, tj becomes
finite and the localWanniermodes hybridizewith each other to form the dispersive polariton band.Here, we
note that since PBC for theQE array is applied, the translational symmetry ensures that the number of states in
the lowest band is the same as theQEnumber due to the Bloch theorem.However, if theQE array has finite size
andwe have open boundary condition, like it occurs for twoQEs coupled to the bath, some polaritonmodes
may vanish in certain parameter regimes due to the boundary effect, as we showed in previous section.

Infigure 3, the nearest neighbor (NN) and next-nearest neighbor (NNN) hopping strengths tl 1,2= in the
Δ−Ω plane are shown for the 1D tight-binding dispersion relation. In the arc region of theΔ−Ω plane, the
Wanniermode in the lowest band is the single excitation bound state strongly localized around each individual
QE, and the overlap of twoWanniermodes exponentially decays with the localization length ξ�1. As a result,
theNNhopping strength t1∼teff can be determined by the hopping strength in the two-QE case, and the long
range hopping strength tl>1∼0. In theMarkovian limit D W∣ ∣ , the single particle weight
Z Zp p 11 0 1º ~l= ( ) ( ) shows that the polariton state in the lowest band ismostly composed ofQE excitations,
and the band is only slightly deformed from a completely flat one. In the strong coupling limitΩ?J,Δ, the
reduced Z p 1 21 ~( ) exhibits the strong hybridization ofQE excitation and bath photonmodes, which gives
rise to thefinite width J2~ of the polariton band.

Non-Markovian effects emerge in the intermediate regime, where the long range hopping strengths tl>1 in
general do not vanish, as shown infigures 3(c) and (d). In the smallΩ/J limit, the hopping strengths saturate to
t1/J=−0.424 and t2/J=0.085 for d=2when the detuningΔ /J>2. This saturation can be understood
using the single-excitation band structure in the limit of 0W  . If 0 c k de< D < D º p= andΩ/J is small, the
lowest band states aremostly composed of photons in the bath and the lowest band has awidth∼Δ. IfΔ>Δc,
thewidth of the lowest band saturates toΔc at smallΩ, and t d d l d2 1 sinl

l 2 2p p - - -( ) ( ) [ ( )].
Summing up, we have derived and characterized the effective hoppingmodel emerging in the single-

excitation subspacewhenmanyQE are coupled periodically to the bathmodes. In particular, we have shown it
reduces to an effective tight-bindingmodel in the arc region of theD W– plane. In theMarkovian regime
D W∣ ∣ (strong coupling limitΩ?J,Δ), the effectivemodel describes the propagation of the bareQE
excitation (the hybridizedQE-photon polariton excitationwith the single particle weight 1/2). In the latter, the
effectiveNNhopping is significantly enhanced compared to that in theMarkovian regime.

4.General features of two excitation subspace

The dynamics withmore than oneQE excitation can be characterized by the effective spinmodel of
equation (10) only in theMarkovian limit. To the best of our knowledge, the use of that effectivemodel beyond
theMarkovian regime is not justified, and how to characterize the dynamics in thewholeΔ–Ω plane is not clear
yet. In this section, we pedagogically review the tools on how to treat both the two andmanyQE situation in the
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two-excitation sector, and explain qualitatively the emergent features. In particular, wewill see that two different
types of excitations appear in the two-excitation subspace, namely, the scattering states of two single polaritons
and the doublon states formed by two bound polaritons, as we show schematically infigure 1(b). Then, we
discuss them in detail in sections 5 and 6, respectively.

4.1. TwoQEs
Whenonly twoQEs are coupled to the bath, the general two-excitation eigenstate has the form

Z b b a b a ak k k0 0 , 0 . 20
j

j j
k

k
kk

k k2 2 1 2
, 1,2

2å åj jY ñ = ñ + ñ + ¢ ñl l l l
= ¢

¢∣ ∣ ( ) ∣ ( ) ∣ ( )† † † † † †

The eigenvalue E2λ of 2Y ñl∣ , the probability weightZ2λ, and thewavefunctions k k k k, , ,1 2 2j j j ¢l l l( ) ( ) ( ) can be
obtained from the analytical structure of theGreen function G tG td e t

2 2
iòw = w( ) ( ) in the frequency domain

[25], where G t t t ti 0 02 2 1 1 2a a a a q= - á ñ( ) ∣ ( ) ( ) ∣ ( )† † in the time domain, and b a a, ,k k1,2 1,2a Î ¢( ) (see
appendix B).

Figure 3.The effectiveNNandNNNhopping strengths for the 1D tight binding dispersion relation of bath: (a)–(b)TheNNhopping
strength in theΔ−Ω plane for d=1 and d=2, respectively. (c)–(d)TheNNNhopping strength in theΔ−Ω plane for d=1 and
d=2, respectively.
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The ground state energy corresponds to the smallest isolated pole ofG2(ω) in thefirst Riemann surface. As
we shall discuss in section 5.1, the ground state describes two repulsive polaritons localized around two different
QEs, where the localization behavior is analyzed by the ground state wavefunctions in section 5.1.We also
construct a variational wavefunction and an effectiveHamiltonian to describe the low energy physics in the two-
excitation subspace.

Apart form the pole corresponding to the ground state, one can alsofind two additional isolated poles
corresponding to higher excited states in certain parameter regime (see section 6.1 and appendix B). These two
states can be illustrated in the followingway: for a singleQEwith two photons, it has been demonstrated that the
two photons can be both localized around theQE and form a two-excitation bound state [23, 25, 26], which is
referred to as the doublon state, schematically depicted infigure 1(b). Here, the two higher excited states
represent the symmetric and anti-symmetric superpositions of doublon states around differentQEs. The
properties of the doublon state is studied in section 6.1, where an effective hoppingmodel for the doublon is
derived.

4.2.QE array
Here, two new types of states appear compared to the single-excitation regime, i.e., the scattering state of two
polaritons and the propagating doublon state. For a systemwith two excitations in theQE array, the eigenstate at
quasi-momentum q has the general form

f b b f b a

f a a

q p p K

p K K

0 , 0

, , 0 , 21

b ba

a

p
p p

p K
p p K

p K K
p K p K

2
,

, ,

q q q q

q q

2 2 2 2

2 2

å å

å

Y ñ= ñ + ñ

+ ¢ ñ

l + - + - +

¢
+ + - + ¢

∣ ( ) ( ) ∣ ( ) ∣

( ) ∣ ( )

† † †

† †

where themomenta p and q are restricted to thefirst Brillouin zone of theQE’s sublattice. One can introduce the
four-point Green function G t i t t tq, 0 02 2 1 1 2a a a a q= - á ñ( ) ∣ ( ) ( ) ∣ ( )† † in the time domain, where the operators

b b a, ,q p q p q p K1 2 2 2a Î + + + +( ) and b a a, ,q p q p K q p K2 2 2 2a Î - - + - + ¢( ). Its Fourier transform
G tG tq q, d , e t

2 2
iòw = w( ) ( ) gives the dispersion relation E q2l ( ) of the state q2Y ñl∣ ( ) in the bandλ, the

wavefunctions f fp p K, ,b ba( ) ( ), and f p K K, ,a ¢( ). The energy band structure in the two-excitation subspace can
be determined from the analytical structure of G q,2 w( ) (see appendix C).

Infigure 4, we show the three lowest bands of the two excitation subspace for different sets of system
parameters with 1D tight-binding dispersion relation. The bands corresponding to the scattering of two
polaritons are identified by the continuum infigure 4 (in gray shading), where the lowest band belongs to them.
The scattering properties will be studied in detail in section 5, where an effective two-bodyHamiltonian is
established to describe the low energy dynamics of two polaritons. Between the scattering continuum, the single

Figure 4. For the 1D tight-binding dispersion relation of photons, the first three bands including two scattering bands and one
doublon band in themiddle. (a)–(c) for d=1:Δ/J=−1,Ω/J=1 (a);Δ/J=0,Ω/J=1 (b);Δ/J=1,Ω/J=1 (c); (d)–(f) for
d=2:Δ/J=−1,Ω/J=1 (d);Δ/J=0,Ω/J=1 (e);Δ/J=1,Ω/J=1 (f).
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isolated band appears in themidgap, which corresponds to the propagating doublon, which can be described
with an effective hoppingmodel as we show in section 6.

5. Two excitations: standard polaritons

5.1. Two-QE ground state
In this subsection, we study the ground state of the two excitation subspacewhen twoQEs coupled to the
photonic bath. In particular, (i)we compute the exact ground state wavefunction; (ii)we construct a variational
ansatz to reveal the properties of the ground state; and (iii)wederive an effectiveHamiltonian to describe the
low-energy dynamics in the so-called arc region.

The ground energyEG is determined by the position of the isolated pole in the first Riemann surface ofG2(ω),
more precisely, EG is the smallest solution of the equation

Z Z

E E E
0, 22

,

1 1

G 1 1
å

- -
=

s ll

l
s

l
s

l l= ¢

¢

¢
( )

where E1l and Z1l
s are defined in section 3.1.The ground state configuration is visualizedby thewavefunctions

kjGj ( ) and k k,2Gj ¢( ) (their analytical expressions are given in appendixB). In the left and right panels offigure5,we
show thewavefunctions Nn k ej jk

k n
G G

ij j= å( ) ( ) · and Nn m k k, , ekk
k n k m

2G 2G
i ij j= å ¢¢

+ ¢( ) ( ) · · in the
coordinate space forΔ/J=−1 andΔ/J=4, respectively,where thedistanced=2 andΩ/J=1. ForΔ/J=−1,
the ground state ismostly composedofQEexcitationswithhard-core interaction, thus the two excitations repulse
eachother andprefer to localize around twodifferentQEs, as shown infigures 5(a) and (c). For J 4D = , the ground
state is dominatedby the free photons, and the single excitations localized arounddifferentQEshybridizewith each
other, as shown infigures 5(b) and (d).

This repulsive interaction between the two excitations can also be identified by the energy difference
E E E2 BG G 1d º - the ground state energyEG and the energy of the excitations localized around two individual

Figure 5.The single-photon, njGj ( ), and two-photonwavefunctions,j2G(n,m), as defined in the text, for a kcos( ) bath dispersion
and aQEwith detuningsΔ/J=−1 (a) andΔ/J=4 (b), whereΩ/J=1 and d=2.
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QEs far apart from each other. Infigures 6(a) and (c), we show δEG in theΔ−Ω plane for d=1 and 2,
respectively. In the arc region, the energy difference δEG∼0. This is because the two single-excitation bound
states are strongly localized around differentQEs, which suppresses their interaction. In the regimeΔ>0 and
Ω/J=1, the non-interacting photon excitations dominate in the bound state, and δEG∼0. In the vicinity of
the boundary d2W = D , where the anti-symmetric bound state 0b ñ-∣† vanishes, there is a still a considerable
probability for theQEs to be excited, while having a large overlap between the two single-excitation bound
states. This induces the interaction between the twoWanniermodes such that δEG<0, as shown by the dark
(blue) regions infigures 6(a) and (c).

The low energy dynamics of the single excitation subspace is governed by the effectiveHamiltonian Heff
1( )

projected into the subspace spanned by the polaritonmodes 0b ñ∣† . Therefore, we expect that the two-excitation
ground state describing the two interacting polaritons ismostly composed of the low energy excitations

0 22b ñ ∣† . Infigures 6(c) and (d), we show the probability p 0 22
2G

2b= å á Y ñs s=∣ ∣ ∣ ∣ tofind two (anti-)
symmetric excitations 0 22b ñ ∣† in the exact ground state 2GY ñ∣ . Here, we note that in the regime d 22D > W
the anti-symmetricmode 0b ñ-∣† vanishes, and the probability is defined as p 0 22

2G
2b= á Y ñ+∣ ∣ ∣ ∣ , namely, only

the symmetricmode is taken into account. The large probability p>0.85 even in the non-Markovian regime
shows that the excitations 0 22b ñ ∣† dominate the ground state, which indicates that the low energy dynamics

Figure 6.The energy difference δEG and theweight p, as defined in themain text, for d=1 (a)–(b) and d=2 (c)–(d).
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in the single and two-excitation subspaces can be described by some interactingHamiltonian for the polariton
modes 0b ñ∣† .

A remarkable feature of the two excitation ground state is that the first order correlationmatrix
Mij i ja a= á ñ† , for operators b a,j k1,2a = , and the two-photonwavefunction k k,2Gj ¢( ) atmost have two
dominating singular values in thewholeD W– plane. This fact inspires us to construct a variational ansatz

0 22v 2
1 2 2 2 g gY ñ = - ñ-

+ -∣ ( )∣† † for the ground state by two deformed single-excitationmodes defined by:

b b v ak
1

2
, 23

k
k1 2 åg j=  +  ( ) ( ) ( )† † † †

where v± are real numbers, kj( ) are orthonormal wavefunctions, and the normalization fac-
tor v1 22

2 2 = å +s s( ) .
Under the normalization constraint k 1k

2jå =s∣ ( )∣ , theminimization of the variational energy
E H2v 2v= áY Y ñ∣ ∣ with respect tojσ(k) indicates that the variational function should have the form

N e
k

1
, 24k

k
j

h
e

=
-s

s

s

s
( ) ( )

where eσ is a variational parameter, 1 e 2k
k dih s= +s

-( )· , and the normalization factor

N e

k d1 1 cos
. 25

k k
2

 å s
e

=
+

-
s

s

·
( )

( )

In terms of the variational parameters vs and eσ, the variational ground state energy can bewritten as

E v v v e

v v
v

I e

1
2 1

1
1 2 , 26

2

2 2 2

2



 

å= D + D + +

+ + W -

s
s s s s

s
s s
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s
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⎪
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⎭
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where

I e
N

d

e

k1 1 cos
. 27

k k
å s

e
=

+
-

s s
s

( ) · ( )

One canminimize the ground state energywith respect to vσ and eσ tofind the optimal variational state v2Y ñ∣ .
Figures 7(a) and (b) show the overlap pv between v2Y ñ∣ and the exact ground state for 1D tight-binding dispersion
relation at d=1, 2. The fact that pv>0.98 in all parameter regimes underscores the accuracy of our variational
state v2Y ñ∣ .

If we define the normalized symmetric and anti-symmetricmodes v1N,
2g g= +   of the variational

state, we can calculate the overlap between thesemodes and the single-particle ones, 0b ñ∣† , given by

p 0 0N,b g= á ñ  ∣ ∣ ∣ ∣† . The symmetricmode 0N,g ñ+∣† only deviates slightly from the bare single-particlemode

0b ñ+∣† , i.e., p+>0.99, in thewhole parameter space, including the non-Markovian regimes (not shown). On the
contrary, themode 0N,g ñ-∣† is very different from the anti-symmetric single-particlemode 0b ñ-∣† in the vicinity of
the boundaryΔ=Ω2d/2, as shown infigures 7(c) and (d) for d=1, 2. Furthermore, in the regime
Δ>Ω2d/2, the anti-symmetric bound state vanishes and the 0 2N,

2g ñ+∣† dominates the ground state. This is
why the probability p, whichmeasures the overlap between the exact and the variational wavefunction, is still
very large in this non-Markovian regime.

In the so-called arc region, p±∼1 and v+=v− indicates that the ground state 02v 1 2b bY ñ ~ ñ∣ ∣† † , where the
small component of the double occupation states 0j 1,2

2b ñ= ∣† in 2vY ñ∣ shows the hard-core nature of 0jb ñ∣† . As a
result, we can construct the effective spinmodel

H t J E J E
1

4

1

4

1

4
28z

z z z z
zeff eff 1 2 2 1 1 2 G 1 2 0s s s s s s s s= + + + + + ++ - + -( ˜ ˜ ˜ ˜ ) ˜ ˜ ( ˜ ˜ ) ( )

for the single and two excitations subspaces, where J E E2z G 0= - and the spin operators j 1,2s =
-˜ denote the

(annhilation) operator of the localWanniermodes, i.e., j 1,2 1,2s b==
-˜ ˜ . In theMarkovian regime the spin

operators js
-˜ become the bareQE transition operator 1,2s- , while in the strong coupling regime js

-˜ denotes the
annihilation operator of the strongly hybridized polaritonmode.

5.2.ManyQEs
For twoQEs, the two-excitation ground state can be described by two interacting single-excitations 0 22b ñ ∣† .
In this subsection, we investigate the scattering of two excitations in the periodicQE array coupled to the
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photonic bath. As discussed in section 4, the two-excitation spectrum is obtained by the four-point connected
Green function (see appendix C), which displays a band structure due to the PBC imposed. To study the low
energy scattering of two individual polaritons, we derive the energy-dependent two-body interaction in the
whole parameter plane using the Feshbach treatment [27].We demonstrate that the effective interaction
strength between twopolaritons can be tuned by the detuningΔ and the Rabi frequencyΩ. In particular, the
hardcore nature of two excitations justifies the validity of the spinmodel in the arc region.

Let usfirst derive the effectiveHamiltonian describing the lowest band of two-excitation spectrumusing the
Feshbach treatment. For the incident state 0p q pb b ñ- ∣† † of two polaritons with totalmomentum q and energyE,
the scattering state q q qP Q2sc 2 2Y ñ = Y ñ + Y ñ∣ ( ) ∣ ( ) ∣ ( ) can bewritten as the superposition of Pq qP2 2scY ñ = Y ñ∣ ( ) ∣ ( )
and Qq qQ2 2scY ñ = Y ñ∣ ( ) ∣ ( ) , where P andQ=1−P are the projectors into the lowest and higher bands, i.e., the
‘open’ and ‘closed’ channels in the Feshbach resonance.

By eliminating the higher energy band in the Schrödinger equation, the component qP2Y ñ∣ ( ) in the lowest
channel obeys the secular equation

H E Eq q . 29P Peff 2 2Y ñ = Y ñ( )∣ ( ) ∣ ( ) ( )

The effectiveHamiltonian H E H PH E Peff eff
1

int= +( ) ( )( ) describes the scattering of two excitations in the lowest
band by

H E
N

U E b b b bq
1

2
, , 30

b p p q
p q p q p pint int

1 2

1 1 2 2å= - -( ) ( ) ( )† †

Figure 7.The overlap between the variational state and the exact ground state for (a) d=1 and (b) d=2. The overlap between the
deformed single-particlemode 0N,g ñ-∣† and the bared anti-symmetricmode 0b ñ-∣† for (c) d=1 and (d) d=2.
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where the effective two-body interaction

U E
N

Z Z

E E E
q

p q p

p q p
,

1
31

b p
int

,

1 1

1 1

1

å= - ¢ -
- - -ll

l l

l l¢

¢

¢

-⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( )

) ( )
( )

depends on the incident energy E, and the summation does not include the contribution from the lowest band.
The component

E H
QH Eq q

1
32Q P2

0
int 2Y ñ =

-
Y ñ∣ ( ) ( )∣ ( ) ( )

in the closed channel follows from the Schrödinger equation, which is a bound state of two excitations in the
higher energy bands. Thus, the closed channel componentwill not contribute to the scatteringwavefunction in
the asymptotic limit.

We characterize the scattering process of two low-energy polaritons at the band bottomby the effective
interactionU Z U E0 0,eff 1

2
eff 0= ( ) ( ), whichwe plot infigure 8 for d=1, 2 in theΔ−Ω plane. In theΔ>0

regime, the polaritonmode 0pb ñ∣† ismostly composed of bath photons for smallΩ, so the interaction strength

Ueff is extremely softened. AsΩ increases, theweight ofQE excitation in themode 0pb ñ∣† becomes larger, and the
effective interactionUeff increases accordingly. Thismeans awide range ofUeff can be achieved by tuning the
Rabi frequencyΩ andΔ.

In theMarkovian regime, the single-particle weight Z 11 ~ and a large gap (comparedwith the bandwidth)
separates the lowest band and the higher energy bands, which result in the divergent interactionUeff and the
small component qQ2

2Y ñ∣∣ ( ) ∣ in the closed channel. Thus, the low-energy dynamics can be described by the
effective spinmodel H tjj j j j jeff s s= å ¢ - ¢

+
¢
-˜ ˜ projected in the lowest band, where the spin operator j js s~- -˜ can

be approximated by the baredQE transition operator. In the strong coupling regime,Z1∼1/2 and the two-
body interactionUeff between strongly hybridized polaritons is divergent. Therefore, the spinmodel is also valid
in this region, and j js b~-˜ denotes the localWanniermodewith the strong on-site interaction.

6. Two excitations: doublons

6.1. Two-QEdoublon state
As it occurred for the single-photon bound states, only for a given region of theΔ−Ω parameter space, two
bound states 2Y ñ∣ with higher energiesE2± thanEG appear in the spectrum. The exact condition for the
existence of two bound states is determined via theGreen function approach in appendix B. The localization
behavior of two bound states can be understood by inspecting their wavefunctionsjj±(n) andj2±(n,m),
whichwe plot infigure 9, for d=2,Ω/J=2, andΔ/J=−1. There, we observe that the two bound states are
the symmetric and anti-symmetric superpositions of the two-photon bound states [25] localized around
differentQEs.

Figure 8.The low-energy two-body interaction in the parameter plane, where (a) d=1 and (b) d=2.
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When both doublons exist an effective hoppingmodel for them can be constructed, which reads:

H d d t d d d d , 33D
j

j j Ddoublon
1,2

1 2 2 1åm= + +
=

( ) ( )† † †

where dl
† describes the generation of the doublonWanniermode 1 2l

2 2Y ñ - - Y ñ+ -(∣ ( ) ∣ ) localized around
the lthQEwith the chemical potential E E 2D 2 2m = ++ -( ) and the effective hopping
strength t E E 2D 2 2= -+ -( ) .

Infigure 10we plot the hopping strength tD in theΔ−Ω plane for d=1, 2. Forfixed distance d and small
Rabi coupling, the large localization length of the doublonWanniermodes gives rise to a strong hybridization
between them and a large energy level splitting t2 D. As a result, the two doublon states vanish bymerging into the
continuumof scattering band. As the Rabi frequency or the distance d increases, the localization length is shorter
than d, and the overlap between two doublonWanniermodes becomes smaller. Therefore, the energy level
splitting t2 D is reduced, so one can find two doublon states and define the effective hopping strength tD. This
intuitive picture also explains why the regimewhere these bound states vanish shrinks as the distance d increases,
as shown infigure 10(b).

6.2.ManyQEs
FormanyQEs, we already saw infigure 4, that a doublon band (E qB2 ( ), in red triangles) appears in themidgap of
the scattering bands, whose dispersion depends strongly on the parameter regime. For example, forΔ/J=1
andΩ /J=1 infigure 4(f), the doublon band has a visible curvaturewhich implies that the doublons have a
large hopping strength, whereas forΔ/J decreases to−1 infigure 4(d), the doublon band is very flat which tell us
that the doublons aremostly localized.

To gainmore intuition of the features of this doublon band, we plot the coordinate space structure of the
doublon infigure 11 using the Fourier transforms f fr r m, ,b ba( ) ( ), and f r n m, ,a ( ) of the functions
f fp p K, ,b ba( ) ( ), and f p K K, ,a ¢( ) defined in equation (21). Here, fb(r) is the amplitude of having two excited
QEs separated by a distance r, fba(r,m) is the amplitude offinding one photon at the positionm and one excited
QE separated from the photon by a distance r, and f r n m, ,a ( ) is the amplitude of detecting two photons at
positionsn andm. Infigure 11, we observe that for d=2,Δ/J=0 andΩ/J=2, the square norms

Figure 9.Thewavefunctions of the symmetric and anti-symmetric bound states are shown in the left and right panels, where
d J2, 2= W = , andΔ/J=−1. The single-photonwavefunction njj ( ) and the two-photonwavefunction n m,2j ( ) are shown
in the upper and lower rows.
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Figure 10.The effective hopping tD for d=1 (a) and d=2 (b).

Figure 11.The left and right panels display the wavefunctions of the doublon states withmomentum q=0 in thefirst two doublon
bands, respectively, where d=2,Δ/J=0 andΩ/J=2. In thefirst row, the wavefunctions f nb

2∣ ( )∣ and f m m,ab
2∣ ( )∣ are shown by

the solid blue curves and dashed red curves, where theQE excitation in f m m,ab ( ) is set at the origin. Thewavefunctions f n m,a
2∣ ( )∣

are shown in the second row.
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f fr r m, ,b ab
2 2∣ ( )∣ ∣ ( )∣ , and f r n m, ,a

2∣ ( )∣ of the state withq=0 in thefirst two isolated bands display that the
two polaritons attract each other to form a propagating doublon.One can also see that the two polaritons are
tightly bound in the lowest doublon band but loosely bound in the higher doublon band.

From the doublon state, qB2Y ñ∣ ( ) , and its dispersion relation E qB2 ( ), we can construct the effective doublon
Hamiltonian as follows:

H t d d , 34D

n m
n m n mdoublon

,
å= - ( )†

which describes the hopping of the doublonmode d 0n ñ∣† . In the single doublon space, d n0 Bn 2= ñáY∣ ( )∣ is
defined by theWannier state Nn qeB B bq

q n
2

i
2Y ñ = å Y ñ-∣ ( ) ∣ ( )· localized aroundQE at the positionn. The

effective hopping strength of the doublon is

t
N

E q
1

e , 35D

b
Bn m

q

q n m
2

iå=-
-( ) ( )·( )

where theNNhopping strength t D
n m 1- = is tD (the effective hopping strength in the two-QE case).We note that in

the dilute gas limit, where the density of doublons=1, the effective hoppingmodelHdoublon is still valid.

7.Many excitations

In this section, we study the spectrum for theN-excitation subspaces (withN>2), focusing on theQE-array
situation. In thefirst subsection, we apply theGreen-function approach to characterize analytically the emergent
dynamics in theN=3 subspace,finding a continuumband that describe two types of scattering processes, i.e.,
the scattering of three individual polaritons and that between one polariton and one doublon. There exists also
an isolated band inwhich the three excitations form a bound state (referred to as the triplon state) and co-
propagate along theQE array.

Even though theGreen-Functionmethod canbe inprinciple extended for larger excitationnumber, it becomes
very challengingdue to the emergenceofmany topologically inequivalent Feynmandiagrams.Thus, in the second
subsectionweuse the intuitiondeveloped in theprevious sections tonumerically characterize the ground state
properties of the systemusingDMRG [28, 29]. In particular,wewill be able to show that one can go froma regime
where the systembehaves as aMott-insulator to a superfluidbehavior, just by tuning the systemparameters.

7.1. Three excitations
In this subsection, we study the properties of three excitations using theGreen functionmethod (see
appendixD). Infigure 12, we show the band structures for three excitations for two cases withΔ=0 and lattice
spacing d=1. The lowest continuumband describes the scattering between three individual polaritons, while
the second continuumband is composed of the scattering states between one polariton and one doublon. In the
three-polariton scattering band, the two-body interaction between polaritons can be tuned byΩ andΔ, as
shown in section 5.With relatively large Rabi frequenciesΩ/J=5, 6, themidgap opens between the two lowest
scattering bands, and a triplon band (denoted by the red triangles)with dispersion relation E qB3 ( ) appears. In
the triplon band, the explicit analytic formof the triplon state qB3Y ñ∣ ( ) reads:

Figure 12.The first three bands in the three-excitation subspace, whereΔ=0 and d=1. (a)Ω/J=5; (b)Ω/J=6.
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Infigures 13(a)–(d), we plot the triplonwavefunctions in real coordinate space, by Fourier transforming the
functions f fk k k k K, , , ,b bba1 2 1 2( ) ( ), f fk k K K k k K K K, , , , , , , ,baa a1 2 2 3 1 2 1 2 3( ) ( ), respectively. Aswe observe in the
figure, thewavefunction has a bound-state behavior, where theQE excitations and photons are localized around
each other. The effective hoppingmodel

H t T T 37T

n m
n m n mtriplon

,
å= - ( )†

for the triplon has the same form as equation (34). In the single triplon subspace, T n0 Bn 3= ñáY∣ ( )∣ is defined by
the three-excitation bound state Nn qeB B bq

q n
3

i
3Y ñ = å Y ñ-∣ ( ) ∣ ( )· localized aroundQE at the positionn, and

the effective hopping strength is

t
N

E q
1

e . 38T

b
Bn m

q

q n m
3

iå=-
-( ) ( )·( )

7.2. Superfluid toMott insulator transition
Let usfinally consider the situation ofmany excitations in theQE array situation.With the intuitionwe
developedwith the results of the previous section, we know that when the coupling is very strong,Ω?J, or

Figure 13.The triplonwavefunctions in the coordinate space forΩ/J=5,Δ=0, and d=1. (a)The probability to find twoQE
excitations around oneQE excitation at the origin ( fb); (b) the probability tofind twoQE excitations around one photon at the origin
( fbba); (c) the probability to find two photons around oneQE excitation at the origin ( faab); (d) the probability to find two photons
around one photon at the origin ( fa).

17

New J. Phys. 20 (2018) 105005 T Shi et al



whenwe are in the deepMarkov regime, J ,D W∣ ∣ , we expect to have very localized bound states around the
QEs.However, as one deviates from that conditions, the localization length of the bound states grows leading to
strong hybridizing effects between the localized excitations. In this section, we explore whether this localization
length change leads to a superfluid-Mott insulating phase transition in the ground state of the system.

To obtain a detailed quantitative understanding, we study the systemnumerically using theDMRGmethod
[28, 29]. TheDMRGalgorithm is a variationalmethodwithin the class ofmatrix product states and its nature
imposes two constraints on the numerical studies. First, one should adopt open boundary conditions as this is
more suitable forDMRG. The Bloch bands andmomentum introduced for periodic systems cannot be defined
for open systems but the physical properties should be the same if the system is sufficiently large. Secondly, the
number of excitations on the bath sites should have an upper bound, that we denote as  , because the
computational cost of DMRG is related to theHilbert space dimensions of the lattice sites.  should be large
enough such that the numerical results reflect the true physics. The ground states have been computed using
DMRG in various cases andwe find that 5 = is sufficient because increasing it to 6 does not change the results
significantly. This implies, however, that these results cannot be obtainedwith the bosonization employed to
describe the single-excitation regime, which is whywe employDMRG to obtain them.

The total number of excitationsNexc is a conserved quantity so differentNexc sectors can be studied
separately. It is possible to access both the superfluid and theMott insulating phases only ifNexc is equal to the
number of impurity sitesNimp. For convenience, wework in real space representation, unlike in the other
sectionswherewemostly work in reciprocal space representation.We label the unit cells using Roman letters i, j
etc and the lattice sites (both the impurity and bath)within a unit cell usingGreek lettersα,β etc. The creation/
annihilation operators for both all lattice sites can be expressed on a equal footing as aia

† /aia. Thefirst thingwe
would like to confirm is the existence of two phases in the system. The diagnostic tool we use is the correlation
functionmatrix F a ai j i j, = á ña b a b

† with iα ( jβ) interpreted as the row (column) index. Figure 14 shows the
eigenvalues of Fiα, jβ in the systemwithNimp=Nexc=80 atΔ=0.0, 0.2 and various differentΩ. The single-
excitation bound states in the largeΩ regime are very localized sowe expect to seeMott insulator behavior,
where Fiα, jβhasmultiple eigenvalues of similarmagnitudes corresponding to themultiplemodes occupied by
the excitations.When the spatial extent of the single-excitation bound states increases, the system transits to the
superfluid phase wheremost excitations occupy the samemode so Fiα, jβhas only one dominant eigenvalue. The
low-energy effective theory for the superfluid phase is a Luttinger liquid theory, which predicts that
F i ji j

f
, ~ -a a ∣ ∣ to thefirst order [30]. Figure 14 shows two examples of least squarefitting of Fiα, jα, wherewe

choose i=10 and i j5 55 -∣ ∣ because the power law scaling is not expected to be accurate if i and/or j are
too close to the edge or if i j-∣ ∣ is too small. One can see that f is basically independent of a, with an
approximate value of−0.177 at J J0.0 , 0.15D = W = and−0.154 at J J0.2 , 0.40D = W = . The vonNeumann
entanglement entropy also provides valuable information about the system. This quantity is defined as
S Tr lnA Ar r= - ( )where ρA is the reduced densitymatrix of the left LAunit cells of the chain. For the superfluid
phase, the functional formof S is

S L
c L L

L
g F

6
ln sin , 39A

A

p
p= + +⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )

where c is the central charge of the Luttinger liquid, g is a constant, and F is a non-universal oscillating term [31].
Figure 15 shows two examples of least squarefitting of S in the systemwith N N 80imp exc= = , wherewe choose

Figure 14.The correlation functionmatrix Fiα, jβ in the systemwithNimp=Nexc=80. The structure of a unit cell is shown on the
top. Panels (a) and (c) show the 10 largest eigenvalues of Fiα, jβ. Panels (c) and (d) show the scaling of Fiα, jα versus R i j= -∣ ∣, where
themarkers are numerical values and the lines are least squarefitting results.
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10�LA�70 and discard those close to 0 or L to avoid edge effect. It turns out that the oscillating term is
negligible and c=1.015 7 (c=1.059 5) for J J0.0 , 0.15D = W = ( J J0.2 , 0.40D = W = ). This suggests that
the superfluid state is a one-component Luttinger liquidwith c=1. In theMott insulating phase at largerΩ, S is
almost constant in the bulk of the system as one expects for a 1D gapped phase.

8. Conclusions

To sum up, we have studied the emergent dynamics of many QEs interacting with structured photonic
reservoirs in the non-Markovian andmany excitation regimes. In the two- and three-excitation subspaces,
we provide analytical formulas for both the energies and wavefunctions of the relevant states governing the
dynamics for arbitrary bath dimension and energy dispersion.We apply these formulas to study the case of a
nearest-neighbor tight-binding one-dimensional bath and uncover several phenomena which are oblivious
in perturbative descriptions. First, we show the emergence of effective hoppingmodels in parameter
regimes far from theMarkovian ones, with the advantage of having stronger dipole–dipole couplings as
compared to the perturbative regimes. Second, we also predict the emergence of new hoppingmodels in
the excited part of the spectrum, in which doublon/triplon states hop between the different QEs coupled to
the bath. Finally, we numerically characterize the ground state in themany excitation sector of these
quantum optical models, and show how the ground state can undergo an optically drivenMott-superfluid
phase transition controlled by the localization length of the bound states. An interesting research direction
is to apply the theoretical toolbox developed in themanuscript to study higher dimensional structured
baths [32–34].

AppendixA. Single excitation

In this Appendix, we solve the Schrödinger equation to study the single excitation bound states of two-QEswith
distance d d= ∣ ∣and theQE array with the lattice spacing z=N/Nb, where d n n2 1= - is the vector
connecting twoQEs.Without loss of generality, we choosen1=0 andn2=d for twoQEs. The parameters
u u,1, 2,l l, and thewavefunction f kl ( ) are determined by the Schrödinger equation as

u
N

f E u

u
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f E u

f
N

u u E f
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By solving equation (A.1), we obtain the following equation to determine the bound state energies:

G E u 0, A.21
1 =-
 ( ) ( )

and the vectors u uu , T
1, 2,=  ( ) , where theGreen function

G
1

A.3
xd o

w
w w w s

=
- D - S - S

( )
( ) ( )

( )

Figure 15.The vonNeumann entanglement entropy S in the systemwithNimp=Nexc=80. The numerical values are shown as blue
stars and the yellow lines are least squarefitting results.
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is defined by the Paulimatrixσx and the self-energies
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For the (anti-) symmetric bound state with energyE1±, the parameters u u u 21, 2,=  º   , and the
wavefunction
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is determined by the normalization condition.
The bound state energies E1 and the parameters u 2

 are the poles and the corresponding residues of the
Green function
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where Z1l
 gives the probability b0 0 2bá ñl∣ ∣ ∣ ∣† to detect themodes b b b0 21 2ñ = ∣ ( )† † † in the eigenstate

0b ñl∣† . Aswe show in themain text, there are certain parameter regimes inwhich the anti-symmetric statemerges
into the continuum and only a single bound state exists. However, when both bound states exist a low-energy
effectiveHamiltonian can bewritten:

H E E , A.8eff
1

1 1b b b b= ++ + + - - - ( )( ) † †

obtained by projecting onto the subspacewith the symmetric and anti-symmetric bound states.
In theMarkovian limit D W∣ ∣ (Δ<0), the single excitation bound state is extremely localized, such that

the effective hopping teff D∣ ∣ ∣ ∣. Thus, the single particle bound state energies E E tB1 1 eff~  can be
expanded around the single-excitation bound state energy
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in the presence of oneQE. The secular equation determines the hopping strength
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In the strong coupling limitΩ/J?1, the single excitation bound state is also localized, as a result, the effective
hopping teff is determined by equation (A.10), where E B1 ~ W.

For the periodicQE array coupled to the photonic bath, the eigenstates formpolariton bands. For the quasi-
momentump, the eigenstate 0pb ñl∣† ofHamiltonianHphas the energyE1λ(p), where the creation operator

u b f ap p p K k kb = + ål l l
† † † of the polariton in theλ band is determined by the secular equations
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Appendix B.Green functions of two-excitation in twoQEs

In this appendix, we derive the exact formof the two-excitationGreen functionG2(ω) for twoQEs. The
quadraticHamiltonian in equation (1) is taken as the unperturbed part. In the interaction picture, the two-
particle Green function reads
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whereαj, I(t) andHI(t) are the operatorαj=1,2 and the hard-core interaction H U b b b b 2I j j j j j= å † † in the
interaction picture.

By expanding the unitary evolution operator in equation (B.1), the Fourier transform
G G G c2 2 0 2w w w= +( ) [ ( )] [ ( )] can bewritten as the free propagation part
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where cá ñ denotes the connectedGreen function on the vacuum state.
Using theWick theorem, we obtain
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and theDyson expansion
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The connectedGreen function in the diagonalized basis becomes
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In the interacting channel s=±, the bound state energy E2s is determined by the pole ofTs(ω ), i.e.,
T E 0s s2 =( ) . The corresponding residue
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of the j-QE in the excited state with one photon ofmomentum k in the bath, and the amplitude
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The ground state analyzed in section 5.1 has the smallest energy in the symmetric subspace s=+. The
symmetric and anti-symmetric doublon states studied in section 6.1 correspond to the isolated polewith higher
energy in the subspace s=+ and that in the subspace s=−. The eigenenergies and thewavefunctions of the
ground state and the doublon states are determined byT E 0s s2 =( ) and equations (B.12)–(B.14).

The doublon states with higher energies in the s=± channels only exist for certain parameters. The
symmetric bound state exists if E E21 1>+ - andT E 01 >+ +( ) , while the anti-symmetric bound state can be
found if the single-excitation bound state 0b ñ-∣† exists andT E 01 >- +( ) . In theMarkovian limit and strong
coupling regime, one can alwaysfind two higher-energy bound states in the±channels.

AppendixC.Green functions of two-excitation inQE array

In this appendix, we derive the equation to determine the band structure in the two-excitation spectrum, and the
two-excitationwavefunctions f fp p K, ,b ba( ) ( ), and f p K K, ,a ¢( ).

The band structure can be identified by the position of the poles and branch cuts ofG2(q,ω ) for two
excitations 01 2a a ñ∣† † withmomenta p q p2=  . In the interaction picture, theGreen function G tq,2( ) in the
time domain reads
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The expansion of the unitary evolution operator gives rise to the Fourier transform
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UsingWick theorem,we obtain
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The poles and residues ofT q,2 w( ) determine the doublon dispersion relation E qB2 ( ) and band structure of
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h Ep qBKK K p K p2 e e= - -¢ + ¢++ -
( ) ( ) . Thewavefunctions can be Fourier transformed to real space to give

f fr r m, ,b ab( ) ( ), and f r n m, ,a ( ), which represent the amplitudes of having two excitedQEs that are separated
by a distance r, having one photon at the positionm and one excitedQE separated from the photon by a distance
r, and having two photons at the positionsn andm.

AppendixD. Three-excitation spectrum

In this appendix, we study the properties of three excitations in theQE array by theGreen function approach.
The triplon state has the form
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Similar to the analysis of two excitations, we introduce the three-excitationGreen function
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and triplon bands. The three excitations have the total quasi-momentum q. Thewavefunctions
f f fk k k k K k k K K, , , , , , , ,b bba baa1 2 1 2 1 2 2 3( ) ( ) ( ), and f k k K K K, , , ,a 1 2 1 2 3( ) are obtained by the residues of Green
functionsG3(ω) in the vicinity of poles with (a) b b b, , ;k k q k k1 2 31 2 1 2

a a a= = = - - (b) b b, ,k k1 21 2
a a= =

a ;q k k K3 ,1 2
a = - - (c) b a a, , ;Kk k q k k K1 2 , 3 ,1 2 2 1 2 3

a a a= = = - - and (d) a a a, ,k K k K q k k K1 , 2 , 3 ,1 1 2 2 1 2 3
a a a= = = - - .
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In the interaction picture, theGreen functionG3(t) becomes
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Using theDyson expansion, the connected part G c3 w[ ( )] reads
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where P denotes the permutation ofα1,2,3, and the three-excitationT-matrix satisfies the equation
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The branch cuts ofT3 correspond to the scattering bands describing both the scattering of three individual
polaritons and that between a single doublon and one polariton. The pole ofT3 determines the triplon band,
where three polaritons form the bound state and co-propagate on the lattice.

In the vicinity of the triplon pole, the three-excitationT-matrix has the form
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It follows from equation (D.5) that the residue function F(p1,ω1) obeys
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By the residue theorem, one can carry out the integral overωk and obtain
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Setting E p1 1 11
w = l ( ), we can establish thematrix equation

f E fM q D.9Bp
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The triplon energy is determined by EM q Idet 0B3 - =[ ( ( )) ] , and fkl is the eigenstate corresponding to the
zero eigenvalue of EM q IB3 -( ( )) , which gives rise to the residue function F p ,1 1w( ) by equation (D.8).
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The residues in the vicinity of the pole E qB3 ( ) leads to thewavefunctions
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where the totalmomentum q p p p1 2 3= + + . The Fourier transforms of these wavefunctions give rise to the
wavefunctions in the coordinate space shown in section 7.
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