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An iterative formulation of an arbitrary-short wavelength solver for global gyrokinetic
simulations is suggested. The solver is verified against solutions of the dispersion relation.
It can be used to treat the nonlinear polarisation density which is important at the plasma
edge. In the linear case, the solver is shown to be computationally efficient.

1. Introduction

The multi-scale nature of plasma dynamics is caused by co-existence of instabilities
developing on different scales (Howard et al. 2014), such as the ion temperature gradient
(ITG) instabilities developing on k⊥ρi < 1 and the trapped electron modes (TEM) or
electron temperature gradient (ETG) modes which are unstable at smaller spatial scales.
The multiple scales can also be observed within a single instability (Dominski et al. 2015).
For example, purely electrostatic ITG or TEM modes are basically ion-scale instabilities,
which can develop fine radial structures when resolving the kinetic passing electron
dynamics at scales shorter than the ion Larmor radius ρi. These short-scale structures
appear in the electrostatic potential and the species density and temperatures due to the
non-adiabatic response of passing electrons near low-order mode rational surfaces and can
alter the zonal flows and the level of turbulence transport (Dominski et al. 2017). Another
example are the short scales developing when Alfvén Eigenmodes, such as the Toroidal
Alfvén Eigenmode, interact with the shear Alfvén continuum (Hasegawa & Chen 1976;
Rosenbluth et al. 1992; Berk et al. 1993; Mishchenko et al. 2011, 2014). Also Magneto-
Hydro-Dynamic (MHD) instabilities, such as the internal kink modes or tearing modes,
can develop small structures at resonant flux surfaces if the characteristic inertial scales
are smaller than the ion gyro-radius (Porcelli 1991; Connor et al. 2012; Mishchenko &
Zocco 2012). Multi-scale simulations are thus obviously required for accurate prediction
of magnetic fusion plasma stability and confinement.
Global gyrokinetic particle simulations are routinely used to describe the field

fluctuation-driven transport in fusion devices. In particle codes, one discretises the
Vlasov equation using the numerical particles (markers) and field equations, such as the
quasineutrality condition, using finite elements, finite differences, or spectral techniques.
The gyrokinetic quasineutrality condition is given by (Brizard & Hahm 2007)

qinpol = −

∫
d6Z δ(R+ ρi − x)

q2i
B

∂fi
∂µ

(φ− 〈φ〉) =
∑

s

qsn1s (1.1)
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with d6Z = B∗
‖dRdv‖dµdθ, B

∗
‖ the Jacobian, qs the particle charge, R is the gyrocenter

position, ρi the ion gyroradius vector, µ the magnetic moment, npol the polarisation den-
sity, fs = f0s + f1 the full gyrokinetic distribution function, f0s the ambient distribution
function (usually a Maxwellian), n1s =

∫
d6Z δ(R+ρs−x) f1s the perturbed gyro-centre

density, and f1s the perturbed part of the gyrokinetic distribution function corresponding
to a particle species s = i, e. In Eq. (1.1), we have employed the gyro-average of the
electrostatic potential φ defined as usual 〈φ〉 =

∮
φ(R + ρ(θ)) dθ/(2π). Usually, the

polarisation density is considered in the linear approximation replacing full fi with the
ambient f0i in Eq. (1.1). This approximation is related to the gyro-fluid Boussinesq
approximation (Yu et al. 2006; Angus & Umansky 2014; Wiesenberger et al. 2014; Kendl
2015) and can fail for edge plasma conditions.
Note that the polarisation density appearing on the left hand side of the quasineutrality

equation is formulated in terms of a phase-space integral. This complicates a numerical
treatment of the polarisation density in global codes. In a local approximation, the
linearised polarisation density is

npol(k) =
n0qi
Ti

[1 − Γ0(k⊥ρi)]φ(k) , Γ0(x) = I0(x
2) exp(−x2) (1.2)

with k the wave vector of the field perturbation and I0(x) the Bessel function of the first
kind. Taking into account that Γ0(x) ≈ 1−x2 for small x, one can write the polarisation
density in the long-wavelength approximation k⊥ρi ≪ 1 as

npol(k) ≈
n0qi
Ti

(k⊥ρi)
2 φ(k) (1.3)

Alternatively, the Padé approximation Γ0(x) ≈ (1+x2)−1 can be used at arbitrary-large
k⊥ρi leading to the approximate polarisation density:

npol(k) =
n0qi
Ti

[1− Γ0(k⊥ρi)]φ(k) ≈
n0qi
Ti

(k⊥ρi)
2

1 + (k⊥ρi)2
φ(k) (1.4)

Globally, one can replace k2⊥ with −∇2
⊥ to obtain the self-adjoint long-wavelength

approximation:

−∇ ·

[
qin0

Ti
ρ2i ∇⊥φ

]
= (n1i − n1e) (1.5)

This equation can also be obtained without invoking the Fourier transformation by a
straightforward Taylor expansion in small gyro-radius |ρi| ≪ |R| of the global polarisa-
tion density, Eq. (1.1). Similarly, the Padé approximation is

−∇ ·

[
qin0

Ti
ρ2i ∇⊥φ

]
= (n1i − n1e)−∇ ·

[
ρ2i ∇⊥(n1i − n1e)

]
(1.6)

Note that the right hand side is different for the Padé approximation, Eq. (1.6), com-
pared with the long-wavelength approximation, Eq. (1.5). This difference corresponds
to 1 + (k⊥ρi)

2 appearing in the denominator on the right hand side of Eq. (1.4).
The long-wavelength approximation becomes poor at the scales comparable to the ion
gyro-radius. In contrast, the Padé approximation is usually quite good in practice but
it is still an approximation. It is desirable to have a direct approach to the global
polarisation density without invoking any simplifications. For this purpose, an arbitrary-
short wavelength solver, directly discretising the global polarisation density, Eq. (1.1),
has been introduced in (Lin & Lee 1995) and (Mishchenko et al. 2005) where it was called
the “generalised solver”. The phase-space integral for computing the polarisation drift
contribution to the quasi-neutrality equation was carried out with a Monte-Carlo-type
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Figure 1: Left: polarisation-density matrix structure corresponding to the long-
wavelength approximation. Right: arbitrary-short wavelength matrix. The number of
non-zero elements increases strongly with the spatial resolution. Figure taken from
(Mishchenko et al. 2006).

integration. The corresponding solver has been implemented in the GYGLES code and
employed to study the Short-Wavelength Ion Temperature Gradient Modes (Mishchenko
et al. 2006), bulk plasma effects on the Toroidal Alfvén Eigenmodes including their
interaction with the shear-Alfvén-wave continuum (Mishchenko et al. 2011, 2014), and
internal kink modes (Mishchenko & Zocco 2012). Recently, a similar approach was
implemented in the ORB5 code (Dominski et al. 2017) and used to study effects of
the non-adiabatic electron dynamics at resonant flux surfaces on the ITG and TEM
instabilities in tokamak geometry. In this latter reference, the phase-space integral
corresponding to the polarisation density is replaced by quadratures over an Eulerian
grid and analytic integration.
The price to pay for the arbitrary-short wavelength solver is the explicitly non-

local nature of the matrix representing the polarisation density. Generally, this matrix
corresponds to an integral operator, Eq. (1.1), and is not sparse (Mishchenko et al. 2006;
Dominski et al. 2017). The resulting computer memory footprint can be quite substantial.
In contrast, both the long-wavelength and Padé approximations are formulated in terms
of differential operators leading to much smaller sparse band matrices, see Fig. 1. In
(Dominski et al. 2017), this problem has been mitigated by a field-aligned Fourier solver
(McMillan et al. 2010). However, the Fourier transform of the general polarisation-density
operator in itself is non-trivial if computed using the Monte Carlo approach (Mishchenko
et al. 2005). In (Dominski et al. 2017), an Eulerian grid has been used to circumvent this.
Another problem, related specifically to the Monte Carlo computation of the polarisation-
density matrix, is the associate particle noise. It may lead to difficulties in the matrix
inversion using Cholesky decomposition since the eigenvalues of this matrix close to zero
may become “numerically negative” due to the statistical inaccuracies. This type of
behaviour has been observed both with the GYGLES (Mishchenko et al. 2005) and with
the ORB5 (Dominski et al. 2017) codes. In practice, one can circumvent this by using
the LDL decomposition technique, but it is of course desirable to resolve such a problem.
All these technical difficulties provide a motivation for an alternative iterative formu-

lation of the arbitrary-short wavelength solver based on the observation that the Padé
approximation is usually quite good in practice, especially in the local approximation,
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Figure 2: Comparison of the ITG growth rates computed using the full polarisation
density, the Padé approximation and the long-wavelength approximation. The local
dispersion relation in slab geometry (Mishchenko et al. 2018) has been solved numerically.

shown in Fig. 2. Therefore, one can use the deviation of the Padé approximation from
the exact polarisation density, computed in some norm, as a small parameter in order
to construct an iterative scheme. In addition, we will see that the iterative formulation
can be used to relax the linear (Boussinesq) approximation of the polarisation density.
A similar scheme has been earlier considered for nonlinear polarisation density by
Idomura (2012) with the focus on momentum transport. Physically, the nonlinearity
in the polarisation density may be of importance since it represents the dynamic part
of the plasma inertia changing as a consequence of the perturbed plasma motion. This
could, for example, modify the shear Alfvén wave whose frequency is determined by the
plasma inertia.
The structure of the paper is as follows. In §2, we discuss the discretisation of the

quasineutrality equation, following (Mishchenko et al. 2005). The iterative approach is
described in §3. It is applied to the linear polarisation density in §4 and extended to the
nonlinear case in §5. We make our conclusions in §6.

2. Discretisation of the linearised polarisation density

In the GYGLES code, the polarisation density is discretised with finite elements (tensor
products of B splines) employing the phase factor transformation (Fivaz et al. 1998):

φ(x) = φ̂(x)eiS(x) , f1a(R) = f̂1a(R)eiS(R) , S = m0θ − n0ϕ (2.1)

Here, S is the phase factor, θ is the poloidal angle, ϕ is the toroidal angle, m0 and n0

are properly chosen poloidal and toroidal wave numbers. The phase-factor transformed
field φ̂ is discretised as φ̂(x, t) =

∑
k φk(t)Λk(x) with Λk the finite elements (tensor

products of B splines) and φk the expansion coefficients. For the phase-factor transformed

distribution function, we write f̂1a(Z, t) =
∑

ν wνδ(Z−Zν(t)) with wν the marker weight
and Zν(t) the marker position in phase space. Introducing the phase-factor notation

∆A = exp[iS(R) − iS(R+ ρ)] , ∆F = exp[iS(R+ ρ)− iS(R)] (2.2)
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we can write the quasineutrality condition Eq. (1.1) in matrix form:

∑

l

Gklφl = bk , bk =
∑

s=i,e

qs

Np∑

ν=1

wsν

〈
Λk∆A

〉
(2.3)

The linear polarisation matrix is computed using the Monte Carlo approach

f0i =

Ñp∑

η=1

f0iηζiηδ(Z − Zη) , Gkl = qi

Ñp∑

η=1

f0iηζiη
Tiη

(〈
ΛkΛl

〉
−
〈
Λk∆A

〉〈
Λl∆F

〉)
(2.4)

with the finite elements and the phase factors computed at the gyro-points correspond-
ing to the ηth “polarisation-density particle” with the phase-space volume ζiη. Note
that ∂f0i/∂µ appearing in the polarisation density has been computed for the linear
polarisation density analytically assuming f0i to be a Maxwellian. For more details, see
(Mishchenko et al. 2005).

3. Iterative scheme for generalised solver

The most general matrix form for the quasineutrality equation
∑

l

(
L̄kl +Gkl

)
φl = bk (3.1)

corresponds to the adiabatic-electron approximation:

q2en0

Te

(
φ− φ̄

)
−

∫
d6Z δ(R + ρi − x)

q2i
B

∂f0i
∂µ

φ̃ = qi

∫
d6Z δ(R + ρi − x) f1i (3.2)

Here, φ̄ is the flux-surface average of the electrostatic potential, 〈φ〉 is its gyro-average,

and φ̃ = φ − 〈φ〉. The numerical computation of the polarisation-density phase-space
integral can be optimised if the distribution function f0i is known analytically, e. g. it
is a Maxwellian. Then, one can use importance sampling for the “polarisation-density
particles” used to compute this integral. The numerical distribution of these particle can
be optimised for the distribution function f0i, the magnetic field B, etc.
In matrix form, Eq. (3.1), the matrix L̄kl corresponds to the adiabatic-electron term:

L̄kl =

∫
d3x

q2en0

Te

[
Λk(x)Λl(x)− Λ̄kΛ̄l

]
(3.3)

with Λ̄k the flux-surface average of the finite element Λk(x), the matrix Gkl is the
arbitrary-short wavelength polarisation-density matrix, given by Eq. (2.4), bk is the
charge assignment vector, defined in Eq. (2.3), and φl is the vector of the B spline
coefficients. The exact arbitrary-short wavelength polarisation-density matrix can be
Padé-approximated as follows:

G ≈ Ĝ =
(
I + L̂M−1

)−1

L (3.4)

where I is the identity matrix, M is the mass matrix, L is the long-wavelength Poisson
matrix, and L̂ is the Poisson matrix, corresponding to k2⊥ρ

2
i in the local limit, defined as

Mkl =

∫
d3xΛk(x)Λl(x) , Lkl =

∫
d3x

min0

B2
∇

(+)
⊥ Λk ∇

(−)
⊥ Λl (3.5)

L̂kl =

∫
d3x

miTi

qiB2
∇

(+)
⊥ Λk ∇

(−)
⊥ Λl , ∇(±) = ∇± i∇S (3.6)
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To derive an iterative generalised solver, we add a zero to the right hand side of the
arbitrary-short-wavelength quasineutrality equation (3.1):

L̄φ+Gφ = b+ (Ĝ− Ĝ)φ (3.7)

with the matrix indices skipped for simplicity. Rearranging the terms, we obtain:

(L̄+ Ĝ)φ = b+ (Ĝ−G)φ (3.8)

with ‖Ĝ − G‖ = O(ε) where the small parameter ε characterises how good the Padé
formula approximates the exact polarisation density; the approximation is good if the
spectral radius ρ(G− Ĝ) < 1. Substituting the expression for Ĝ, Eq. (3.4), we obtain:

[
L̄+ (I + L̂M−1)−1L

]
φ = b+

[
(I + L̂M−1)−1L−G

]
φ (3.9)

Left-multiplying this equation with (I + L̂M−1), results in
[
L̄+

(
L̂M−1

)
L̄+ L

]
φ = b+

(
L̂M−1

)
b+

[
L−G−

(
L̂M−1

)
G
]
φ (3.10)

This equation is the basis for the iterative solution. Expanding the electrostatic potential
in powers of the small parameter φ = φ0 + εφ1 + ε2φ2 + . . ., we obtain

[
L̄+

(
L̂M−1

)
L̄+ L

]
φ0 = b+

(
L̂M−1

)
b (3.11)

[
L̄+

(
L̂M−1

)
L̄+ L

]
φ1 =

[
L−G−

(
L̂M−1

)
G
]
φ0 (3.12)

[
L̄+

(
L̂M−1

)
L̄+ L

]
φ2 =

[
L−G−

(
L̂M−1

)
G
]
φ1 (3.13)

Introducing the following notation for the partial sums

φ̂0 = φ0 , φ̂1 = φ0 + φ1 , φ̂2 = φ0 + φ1 + φ2 , . . . , (3.14)

we can write the iterative scheme in terms of φ̂ as follows:
[
L̄+

(
L̂M−1

)
L̄+ L

]
φ̂0 = b+

(
L̂M−1

)
b (3.15)

[
L̄+

(
L̂M−1

)
L̄+ L

]
φ̂n = b+

(
L̂M−1

)
b + (3.16)

+
[
L−G−

(
L̂M−1

)
G
]
φ̂n−1 , n > 1

Assuming φ = limn→∞ φ̂n, we can rewrite Eq. (3.16) as
[
L̄+

(
L̂M−1

)
L̄+ L

]
φ = b+

(
L̂M−1

)
b+

[
L−G−

(
L̂M−1

)
G
]
φ (3.17)

This equation can be further transformed to
(
I + L̂M−1

)
(L̄+G)φ =

(
I + L̂M−1

)
b (3.18)

which is satisfied for the exact quasineutrality equation (L̄+G)φ = b, see Eq. (3.1). This
provides a consistency test for the iterative scheme derived here.

Note that the matrix
(
L̂M−1

)
L̄ appearing on the left hand side of the quasineutrality

equation in the adiabatic-electron approximation, see for example Eq. (3.16), is actually
non-Hermitian since the matrices L̂ and M−1 do not commute. In the code, this issue
is resolved by writing the strong form of the adiabatic-electron approximation of the
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Figure 3: The frequency and the growth rate of the ITG mode in shearless slab
geometry resulting from the gyrokinetic PIC simulations plotted as a function of k⊥ρs
and compared to the numerical solution of the dispersion relation (Mishchenko et al.

2018). Both the iterative arbitrary-short wavelength results and the long-wavelength
approximation (corresponding to “disp, approx” and “pic, approx” in the legend) results
are shown.

quasineutrality equation in a way preserving the self-adjoint structure:

−∇ ·

[(
min0

B2
+

q2eTi

q2i Te

min0

B2

)
∇⊥φ

]
+

q2en0

Te
φ = qin1i −∇ ·

(
miTi

qiB2
∇⊥n1i

)
(3.19)

In the weak form it implies the following replacement on the left hand side of the
quasineutrality equation in the adiabatic-electron approximation:

[(
L̂M−1

)
L̄
]

kl
−→

∫
d3x

q2eTi

q2i Te

min0

B2
∇

(+)
⊥ Λk ∇

(−)
⊥ Λl (3.20)

Note that this replacement must be applied always when the Padé approximation is used.
It is not a specific feature of the iterative arbitrary-short wavelength solver described in
this paper. Non-Hermiticity of the matrix L̂M−1 appearing on the right hand side of the
quasineutrality equation does not cause any problems for the solver.

4. Linear polarisation density

In the iterative scheme Eq. (3.16), the products Gφn have to be computed. This can be
done using the actual matrix G, Eq. (2.4), pre-computed and stored at the beginning of
the simulation. This “direct-matrix” approach requires substantial memory consumption
and is not suited for the nonlinear polarisation density. An alternative is to use the
“matrix-free” formulation with the “polarisation vector” defined as

g
(n)
k = Gφn =

Np∑

ν=1

q

T
f0(Zν)ζν

(
〈Λkφn〉 −

〈
Λk∆A

〉〈
φn∆F

〉)
(4.1)

The finite elements, the phase factors, and the fields are computed at the gyro-pointRν+
ρν associated with the νth polarisation-density particle. Note that in the sums such as
Eq. (4.1), the same markers moving along the gyrokinetic orbits can be used for the matrix
computation as in the charge assignment, opening a way for the matrix-free nonlinear
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polarisation density treatment. In this case, one would have to handle numerically the
µ-derivative of a distribution function unknown analytically and discretised with the
markers, see Eq. (1.1). We will give a solution of this problem in the next Section.
The polarisation vector gn has to be computed using particles on every iterative step,
Eq. (3.16), it has to be multiplied with the matrix I + L̂M−1 (the same operation has
to be performed on the charge assignment vector b), and combined with the correction

vector Lφ̂n which can be computed on the grid without invoking the markers. Note that
all the matrices to be inverted in the iterative formulation of the solver are computed
on the grid and therefore free of the statistical errors which could otherwise break
the symmetry of the system in an uncontrolled way, in contrast to the direct solver
where the noisy Monte-Carlo matrix appears on the left hand side and has to be
inverted. In the iterative formulation, the noisy part is moved to the right hand side
where it can be treated on the same footing as the charge assignment, also prone to
statistical errors, using the same noise-control techniques. A simple Poisson solver is
sufficient to address Eq. (3.16) for all iterations needed. This means that the usual,
for example Dirichlet, boundary conditions can, in principle, be used and the Fourier
matrix implementation (McMillan et al. 2010) is straightforward. The simple handling
of the boundary conditions for the iterative solver is a practical convenience while its
rigorous justification remains beyond the scope of this paper. A detailed discussion on
the subtleties of the boundary conditions for the arbitrary-short wavelength solver can be
found in (Dominski et al. 2017). Note that the differential operator on the left hand side of
Eq. (3.16) leads to Hermitian and positive-definite matrices, sharing these properties with
the arbitrary-short wavelength polarisation density matrix, Eq. (2.4). For the adiabatic-
electron approximation, Eq. (3.20) must be used.

In Fig. 3, we prove that the iterative solver proposed here gives the right result.
Here, the frequency and the growth rate of the ITG mode in shearless slab geometry
resulting from GYGLES simulations are compared with the numerical solution of the
local dispersion relation (Mishchenko et al. 2018) for both the iterative arbitrary-short
wavelength solver and the long-wavelength approximation. The ion and electron temper-
ature gradient length ρs/LTi = ρs/LTi = 0.0223, the density profile is flat. We choose
the mode structure in such a way that k⊥ ≈ ky where ky is the “poloidal” wave number.
For more details on similar simulations using the direct (non-iterative) arbitrary-short
wavelength solver, see Mishchenko et al. (2005). In Fig. 3, one sees that the agreement
between the dispersion relation solution and the results of the iterative arbitrary-short
wavelength solver is very good. This result verifies the iterative approach, described in
this Section.

In Fig. 4, we show a convergence study with respect to the number of the polarisation-
density particles used to compute the sum in Eq. (4.1). Here, we consider the ITG
mode in shearless slab geometry corresponding to kyρs = 3 in Fig. 3. One sees that
already a small number of polarisation-density particles gives a good agreement with the
dispersion relation. This makes our iterative solver very efficient in terms of computation
time. Note that the particles used to compute the polarisation density can, but do not
have to, coincide with the charge-assignment markers. The charge-assignment markers
are pushed along the gyrokinetic orbits whereas the polarisation-density particles do
not need to change after their loading unless the nonlinear polarisation density is
considered. Using these different sets of the Monte Carlo particles, the dynamic charge-
assignment markers and the static polarisation-density particles, adds flexibility into the
numerics. One can use different particle numbers and loading schemes for the different
sets of the particles, as we do in the example shown in Fig. 4. We have optimised the
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Figure 4: The frequency and the growth rate obtained with the iterative arbitrary-short
wavelength solver Eq. (3.16) plotted as a function of the number of the “polarisation-
density particles” used in Eq. (3.16). The iterative solver Eq. (3.16) is compared to
the direct solver (Mishchenko et al. 2005). The ITG mode in shearless slab geometry
is considered for kyρs = 3, see Fig. 3. Already a small number of the particles gives a
good agreement with the dispersion relation (Mishchenko et al. 2018) demonstrating the
efficiency of the iterative solver.
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Figure 5: The sorted eigenvalues (their absolute values) of the Neumann operator N2, see
Eq. (4.3), plotted for different numbers of the “polarisation-density particles”. On the
left, adiabatic electrons have been used. On the right, the electrons are kinetic. One sees
that the eigenvalues increase when the particle number goes down. The adiabatic-electron
case (corresponding to the Helmholtz operator on the left hand side of the quasineutrality
equation) is more robust compared to the kinetic electrons (Laplace operator).

numerical computation of the polarisation-density using the importance sampling for the
polarisation-density particles whose distribution in the phase space is chosen taking into
account the analytically-known Maxwellian distribution function f0i, the magnetic field
B, etc. As a consequence, the computational cost of the linear iterative solver is small
compared to other aspects of the code since the number of the “polarisation-density
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particles” needed to achieve a good accuracy is much smaller than the number of the
actual “charge-assignment” markers.

Note that Eq. (3.8) can be written as (see §3 for the notations)

φ = (L̄ + Ĝ)−1b+ (L̄ + Ĝ)−1(Ĝ−G)φ , Ĝ =
(
I + L̂M−1

)−1

L (4.2)

The iterative solver described in this paper represents the classical Neumann series
solution of this equation. Thus, one can get insight into the convergence of the solver
considering spectral properties of the operators

N1 = (L̄+ Ĝ)−1(Ĝ−G) , N2 =
[
L̄+

(
L̂M−1

)
L̄+ L

]−1[
L−G−

(
L̂M−1

)
G
]

(4.3)

These operators appear in Eqs. (3.8) and (3.10). In our simulations, we use N2 whereas
N1 is used in the derivation described in §3. The spectral properties of N1 and N2 define
if and how fast the Neumann series converge. In Fig. 5, the spectrum of N2 is shown
for different numbers of the numerical “polarisation-density particles”. On the left, the
case of adiabatic-electron approximation (also used in Fig. 4) is shown. The kinetic
electrons are shown on the right of Fig. 5. One sees that the maximal eigenvalue is much
less than unity unless the particle resolution becomes too crude. This means that the
convergence properties are good since the rate of the convergence in the direction of the
nth eigenvector is given by |λn|

m with λn being the corresponding eigenvalue and m the
iteration number. The convergence is good for all eigenvectors if all eigenvalues are smaller
than unity. One can see that the simulations using adiabatic electrons are more robust
compared to the kinetic-electron simulations: the largest eigenvalue max(|λn|) is much
smaller than unity for the adiabatic electrons at Np = 1000 whereas max(|λn|) is larger
than unity for the kinetic electrons at the same “polarisation-density particle” resolution.
For the adiabatic electrons, the value of max(|λn|) approaches unity for Np = 100. Note
that in Fig. 4, the growth rate and the frequency are still quite accurate after only a
single iteration despite the fact that max(|λn|) ≈ 0.8 is not very small for Np = 100.
One can speculate that the direction along the eigenvector corresponding to the maximal
eigenvalue is not very important for the solution. Only atNp = 50 with max(|λn|) ≈ 4 the
error in the frequency and the growth rate, shown in Fig. 4, becomes more pronounced.
An effective reduction of the solution space as a consequence of the Fourier filtering
(applied in the code) could also help removing the effect of undesired eigenvalues. One
can numerically show that the spectra of N1 and N2 coincide, see Fig. 6. This provides
an additional confirmation that the iterative scheme Eq. (3.16) is consistent.

In Fig. 7, the mode structure of the sheared-slab tearing mode (Zacharias et al. 2012) is
shown. The growth rate of the mode is plotted as a function of the density gradient length
for the density profile shown in the Figure. We compare the direct generalised solver, the
iterative generalised solver with four iterations used here, and the Padé approximation
of the polarisation density. One sees that the agreement between the direct and iterative
formulations of the generalised solver is good whereas the Padé approximation diverges
from the correct result for large density gradients. The Padé-approximated growth rate
can be much larger than the physical result for the parameters considered. This rather
extreme numerical example demonstrates that our iterative scheme works even when the
Padé approximation becomes poor. In such cases, more than one iteration is needed.
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Figure 6: The sorted eigenvalues (with the absolute values shown on the plot) of the
operators N1 and N2 defined in Eq. (4.3) coincide, confirming the consistency of our
solver. Here, the case corresponding to Np = 104 “polarisation-density particles” and
adiabatic electrons is shown. Note the linear scale on the vertical axis of this plot (the
logarithmic scale has been used in Fig. 5).
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Figure 7: On the left: sheared-slab tearing mode (Zacharias et al. 2012) structure,
computed using the generalised solver and the Padé approximation for the density
profile shown and the density gradient length Ln/a = 0.05 with a the half-width of
the simulation domain, see (Zacharias et al. 2012) for details. On the right: the growth
rate of the sheared-slab tearing mode, destabilised by a parallel current, plotted as a
function of the density gradient length for the density profile shown on the left. The
direct generalised solver is compared to the iterative generalised solver and the Padé
approximation. The motion of the ion gyro-centres has been suppressed.

5. Nonlinear polarisation density

The weak formulation of the nonlinear quasineutrality condition, Eq. (1.1), with the
phase-factor transformation Eq. (2.1) employed, is

Npol[φ] = −

∫
d6Z

q2i
B

∂fi
∂µ

[
φ̂−∆A

〈
φ̂∆F

〉]
Λk = bk (5.1)
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Here, fi = f0i + f1i is the total nonlinear distribution function. The finite elements,
the phase-factor transformed electrostatic potential, and the phase factors ∆(A,F) are
computed at the position R+ ρ. The charge assignment vector is

bk =
∑

s=i,e

qs

∫
d6Z f̂1aΛk∆A (5.2)

After the integration by parts, one can write:

Npol[φ] =

∫
d6Z

q2i
B

fi
∂

∂µ

[
Λk

(
φ̂−∆A

〈
φ̂∆F

〉) ]
(5.3)

Taking into account that for any Q(R+ ρ)

∂Q(R+ ρ)

∂µ
=

∂ρ

∂µ
· ∇Q =

1

2µ
ρ · ∇Q , ρ =

√
2µ

eωc
(5.4)

at a fixed R and using ∂〈Q〉/∂µ =
〈
∂Q/∂µ

〉
, we can write

∂

∂µ

(
φ̂−∆A

〈
φ̂∆F

〉)
=

1

2µ

(
ρ · ∇φ̂−∆A

〈
ρ · ∇φ̂∆F

〉
+ (5.5)

+ i∆A

[
ρ · ∇S

〈
φ̂∆F

〉
−
〈
ρ · ∇Sφ̂∆F

〉])
(5.6)

This leads to the nonlinear polarisation density in the matrix-free formulation:

Gφn =

Np∑

ν=1

q2i
2µνB

(f0νζν + wν)
〈
Λk

(
ρ · ∇φ̂n −∆A

〈
ρ · ∇φ̂n∆F

〉)
+ (5.7)

+
(
φ̂n∆F −

〈
φ̂n∆F

〉)
∆Aρ · ∇Λk + iΛk∆A

(
ρ · ∇S

〈
φ̂n∆F

〉
−
〈
ρ · ∇Sφ̂n∆F

〉)〉

Here, ρ · ∇S = m0ρ · ∇θ − n0ρ · ∇ϕ. Taking into account ∆A∆F = 1, we can write

Gφn =

Np∑

ν=1

q2i
2µνB

(f0νζν + wν)
〈
Λk∆A

(
∆Fρ · ∇φ̂−

〈
∆Fρ · ∇φ̂

〉)
+

+
(
φ̂∆F −

〈
φ̂∆F

〉)
∆Aρ · ∇Λk + (5.8)

+ iΛk∆A

(
ρ · ∇Sφ̂∆F −

〈
ρ · ∇Sφ̂∆F

〉)
− iΛk∆Aρ · ∇S

(
φ̂∆F −

〈
φ̂∆F

〉)〉

Here, the sum is taken over the same markers moving along the gyrokinetic orbits as
those used for the charge assignment. The linear part of the polarisation density can also
be computed using stationary “polarisation-density particles” as described in §4. A small
number of these auxiliary “particles” can be sufficient in this case in order to achieve a
good accuracy, making the linear part of the solver computationally efficient. Another
possibility is to compute the linear part of the polarisation density on the Eulerian grid
as in (Idomura 2012; Dominski et al. 2017) while using the Monte Carlo scheme only for
the nonlinear part. Note that for the energy consistency, the equations of motion must be
modified as in (Idomura 2012; Mishchenko & Brizard 2011) when the nonlinear part of
the polarisation density is included. In this paper, we limit our consideration to the basic
formulation of the iterative numerical scheme which can also be used for more detailed
studies of the nonlinear polarisation effect in future.
In Fig. 8, the mode structure of the tearing instability is shown computed using only

the linear part of the solver Eq. (5.8), i. e. skipping wν on the right hand side. This
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Figure 8: On the left: the mode structure of the tearing instability computed using
the linear part of the solver Eq. (5.8). The scheme based on Eq. (4.1) employing an
analytically known Maxwellian distribution function is compared vs. the scheme based on
Eq. (5.8) which can be used for any, also nonlinear, distribution functions. Np = 16×106

is used for the arbitrary-distribution scheme. Np = 105 is used for the Maxwellian-
distribution scheme. On the right: the convergence with respect to the number of the
polarisation-density particles. Note the different abscissa scales for the two schemes. The
Maxwellian scheme, Eq. (4.1), converges more than two orders of magnitude faster since
the importance sampling can be employed. One sees that the growth rates computed
with the two schemes, Eqs. (4.1) and (5.8) are in a good agreement with each other.

result is compared to the mode structure computed using the solver Eq. (4.1) which
assumes that the distribution function is a Maxwellian. In contrast, the scheme based
on Eq. (5.8) does not make this assumption and can therefore be used for any, even
numerically determined, distribution function. Np = 16 × 106 is used for the arbitrary-
distribution scheme. Np = 105 is used for the Maxwellian-distribution scheme. One sees
that the agreement between the schemes in terms of the mode structure is very good.
On the right of Fig. 8, the convergence of the tearing mode growth rate is shown as a

function of the number of the polarisation-density particles. Again, the scheme based on
Eq. (4.1) is compared with the scheme based on Eq. (5.8). One sees that the Maxwellian-
distribution scheme Eq. (4.1) converges much faster in terms of the number of the
polarisation-density particles compared to the arbitrary-distribution scheme Eq. (5.8).
This is a consequence of the importance sampling which can be employed in the first
scheme to take into account the distribution function f0i, the gyrokinetic magnetic field B,
etc. One sees that the growth rate computed employing Eq. (5.8) is in a good agreement
with the linear matrix-free solver based on Eq. (4.1). A small residual discrepancy between
the growth rates can be attributed to other numerical parameters such as the number
of the gyro-points. This result verifies the new solver which can be used also for the
nonlinear polarisation density.
Finally, in Fig. 9, we plot the nonlinear evolution and the nonlinear mode structure of

the tearing mode comparing simulations using linear and nonlinear polarisation densities.
We use Ne = 32 × 106 electron markers for the charge assignment in both simulations.
The same markers are used to compute the nonlinear part of the polarisation density,
Eq. (5.8). For the linear polarisation density, we use Np = 5×106 particles. One sees that
the effect of the polarisation density nonlinearity is negligible for the case of the tearing
mode considered here. This may change for the edge plasma conditions, see (Yu et al.
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Figure 9: On the left: the collisionless tearing mode (Zacharias et al. 2012) evolution in
the nonlinear regime. The linear approximation of the polarisation density is compared
with the nonlinear case. On the right: the mode structure in the early nonlinear phase
corresponding to t = 1.3 × 10−6 s in the left figure. One sees that the effect of the
polarisation density nonlinearity is negligible for the case considered.

2006; Angus & Umansky 2014; Wiesenberger et al. 2014; Kendl 2015). Note that the other
examples, such as the nonlinear shear Alfvén waves or nonlinear Geodesic Acoustic Modes
(GAMs), will require couplings between the different toroidal mode numbers (e. g. in
order to drive the GAMs nonlinearly from the ITG turbulence), which is not available in
the GYGLES code. These cases can be considered in future when the iterative nonlinear
solver is implemented in a code, such as ORB5 (Jolliet et al. 2007), which is more suited
for the nonlinear simulations. Physically, the nonlinearity in the polarisation density is
interesting since it can change the plasma inertia as a consequence of the perturbed
motion of the ions. At short perpendicular scales, however, the perturbed ion motion is
frequently suppressed as a consequence of the gyro-averaging. It seems, therefore, that
the best way to physically-relevant applications of the nonlinear polarisation density is
considering long wavelengths, as usually appropriate for GAMs, with the perturbed ion
response dominating. An additional advantage is that in this case a simpler scheme,
based on the long-wavelength approximation, can be used, see appendix A.

6. Conclusions

An iterative formulation of the arbitrary-short wavelength solver for global gyrokinetic
simulations has been suggested. The solver has been verified against the solution of the
dispersion relation. It can be used to treat the nonlinear polarisation density which can
be important at the plasma edge. In the linear case, the solver has been shown to be
computationally efficient since a moderate number of numerical particles and a single
iteration are usually sufficient to provide a good accuracy. In future, this solver can be
used to study multi-scale phenomena such as co-existing ITG and TEM instabilities. It is
also of interest for global nonlinear gyrokinetic simulations of fusion plasmas including the
plasma edge where both the strong density gradients and large-amplitude perturbations
are present. In such case, the usual approximations of the gyrokinetic polarisation
density, the Padé approximation and the linear approximation, related to the gyro-fluid
Boussinesq approximation (Yu et al. 2006; Angus & Umansky 2014; Wiesenberger et al.
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2014; Kendl 2015), can break for the edge plasma conditions. In this paper, we have
developed an approach overcoming these limitations.

Acknowledgments We acknowledge Per Helander for his support. We thank Serhiy
Mochalskyy for his help with the eigenvalue ScaLAPACK solver. Numerical simulations
were performed on the Marconi supercomputer within the framework of the EUGY
project. This work has been carried out within the framework of the EUROfusion
Consortium and has received funding from the Euratom research and training programme
2014–2018 and 2019–2020 under grant agreement No 633053. The views and opinions
expressed herein do not necessarily reflect those of the European Commission.

Appendix A

The long-wavelength approximation of the nonlinear quasineutrality equation in the
adiabatic-electron approximation is

q2en0

Te

(
φ− φ̄

)
−∇ ·

(
ni

Bωci
∇⊥φ

)
= qin1i (A 1)

where φ̄ is the flux-surface average of the electrostatic potential, ni = n0 + n1i, n0 is
the unperturbed density (assuming two species and quasineutrality), and n1i is the ion-
density perturbation. This equation can be rewritten as

q2en0

Te

(
φ− φ̄

)
−∇ ·

(
n0

Bωci
∇⊥φ

)
= qin1i +∇ ·

(
n1i

Bωci
∇⊥φ

)
(A 2)

Assuming that the perturbed ion density n1i is smaller than the unperturbed density n0

(not necessarily much smaller), one can apply the Neumann series expansion resulting in

q2en0

Te

(
φ0 − φ̄0

)
−∇ ·

(
n0

Bωci
∇⊥φ0

)
= qin1i (A 3)

q2en0

Te

(
φ1 − φ̄1

)
−∇ ·

(
n0

Bωci
∇⊥φ1

)
= ∇ ·

(
n1i

Bωci
∇⊥φ0

)
(A 4)

Here, the electrostatic potential is expanded as φ = φ0 + ǫφ1 + . . . with ǫ the Neumann
expansion parameter. For convergence, we need ǫ < 1. In the matrix form, we obtain

(L+ L̄)φ0 = b , (L+ L̄)φm+1 = −L1 φm , m = 0, 1, . . . (A 5)
(
L1φm

)

k
=

∫
n1i(x)

Bωci
∇⊥φm(x) · ∇⊥Λk(x) d

3x (A 6)

The definitions of L, L̄ and b can be found in §3. The phase factor is dropped here since
ORB5 (Jolliet et al. 2007) does not have it. The spline coefficients for the perturbed
density can be found from the charge assignment vector b using the mass matrix M :

qin1i(x, t) =
∑

k

nkΛk(x) , nk = M−1
kl bl , bl = qi

Np∑

ν=1

wν〈Λl〉ν (A 7)

A similar approach has been used by Angus & Umansky (2014) in the fluid context.
The full gyrokinetic Hamiltonian including nonlinear terms (Brizard & Hahm 2007)

should be used in the equations of the gyrocenter motion when the polarisation density is
nonlinear. Otherwise, the energy conservation is violated (Brizard 2010). In contrast, the
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nonlinear terms must be dropped in the gyrokinetic Hamiltonian when computing the
gyrocenter orbits for the linearised polarisation density (Boussinesq approximation), see
(Brizard 2010) for details. The need for more complicated gyrocenter orbits is, therefore,
a direct consequence of the nonlinearity in the polarisation density (linked together by
the variational principle and the energy conservation requirement).
In the electrostatic limit, the second-order Hamiltonian is

H̄2 = −
e2

2B

∂

∂µ

〈
φ̃2

〉
= −

e2

B

〈
φ̃
∂φ

∂µ

〉
= −

e2

2µB

〈(
φ− 〈φ〉

)
ρ · ∇φ

〉
(A 8)

ρ =

√
2µ

eωc
α̂ =

v⊥
ωc

α̂ , α̂ = − e1 cosα+ e2 sinα (A 9)

with α the gyro-phase, φ̃ = φ − 〈φ〉, 〈φ〉 the gyro-average, and Eq. (5.4) used. The
electrostatic gyrocenter orbits are given by the expressions (Brizard & Hahm 2007):

B⋆
‖Ṙ =

1

m

∂H

∂v‖
B⋆ −

∇H × b

q
, B⋆

‖ v̇‖ = −
∇H ·B⋆

m
(A 10)

Here, H = H0+H1+H2 is the gyrokinetic Hamiltonian, see (Brizard & Hahm 2007) for
notations and further details. Only the spatial derivative of H2, taken at a constant µ,
is needed for the electrostatic approximation of the perturbed gyrocenter orbits:

∇H2 = −
e2

2µ
∇

[
1

B

〈(
φ− 〈φ〉

)
ρ · ∇φ

〉]
≈ −

m

2
∇

(
∇⊥φ(R)

B

)2

(A 11)

Further elaboration and practical implementation of the long-wavelength non-Boussinesq
scheme is a subject of future research.
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