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Abstract
We investigate the asymptotic structure of electromagnetism in Minkowski space in even and odd

spacetime dimensions ≥ 4. We focus on d > 4 since the case d = 4 has been studied previously at

length. We first consider spatial infinity where we provide explicit boundary conditions that admit

the known physical solutions and make the formalism well defined (finite symplectic structure and

charges). Contrary to the situation found in d = 4 dimensions, there is no need to impose parity

conditions under the antipodal map on the leading order of the fields when d > 4. There is, however,

the same need to modify the standard bulk symplectic form by a boundary term at infinity involving

a surface degree of freedom. This step makes the Lorentz boosts act canonically. Because of the

absence of parity conditions, the theory is found to be invariant under two independent algebras

of angle-dependent u(1) transformations (d > 4). We then integrate the equations of motion in

order to find the behaviour of the fields near null infinity. We exhibit the radiative and Coulomb

branches, characterized by different decays and parities. The analysis yields generalized matching

conditions between the past of I + and the future of I −.
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I. INTRODUCTION

Most of the studies of the asymptotic properties of gravity in the asymptotically flat

context have been performed at null infinity [1–4] (for recent useful reviews, see [5–7]). This

is quite natural, and would seem to be even mandatory, in order to decipher the intricate

properties of gravitational radiation.

One conceptual difficulty with analyses at null infinity, however, is that the existence of a

null infinity with the smoothness properties usually assumed in the asymptotic treatments is

a difficult dynamical question: given reasonable initial data on a Cauchy hypersurface, will

their Cauchy development give rise to a null infinity with the requested properties? Strong

doubts that this would be the case have been expressed in [8], which we quote verbatim:

“... it remains questionable whether there exists any non-trivial solution of the field equa-

tions that satisfies the Penrose requirements [of asymptotic simplicity].Indeed, his regularity

assumptions translate into fall-off conditions of the curvature that may be too stringent and

thus may fail to be satisfied by any solution that would allow gravitational waves.”

This point has also been forcefully stressed in the recent work [9].

One remarkable by-product of the studies at null infinity was the discovery that the

asymptotic symmetry group of gravity in the asymptotically flat context was the infinite-

dimensional Bondi-Metzner-Sachs (BMS) group. Initially received with some skepticism

because the physical significance of this infinite-dimensional enlargement of the Poincaré

group was not clear, the emergence of the BMS group was understood recently to be related

to profound infrared properties of gravity having to do with soft graviton theorems and

memory effects [10–16] (see [17] for an exposition of this recent work and [18–20] for earlier

investigations). The conclusion of the huge amount of activity that florished since then is

that the BMS group is a gift rather than an embarrassment! An even further enlargement of

the Poincaré group including “super-rotations” have been even argued to be useful [21–23].

The BMS transformations are diffeomorphisms leaving the boundary conditions at null

infinity invariant. They are exact symmetries of the theory. That is, they leave the action

exactly invariant up to a surface term, without having to make approximations. As exact

symmetries of the theory, they should be visible in any description, and, in particular, in

slicings of spacetime adapted to spatial infinity. In such slicings, they would appear as

diffeomorphisms leaving the boundary conditions at spatial infinity invariant. For this to
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be the case, however, the boundary conditions at spatial infinity should be equivalent, or

at least compatible in a sense that we shall make more precise below, with the boundary

conditions at null infinity. This brings us back to the dynamical question on null infinity

mentioned above.

Earlier investigations of the asymptotic symmetries at spatial infinity showed no sign of

the BMS group. One either found the Poincaré group with no enlargement [24, 25], or the

smaller homogeneous Lorentz group [26], or an even larger extension, the Spi group [27, 28],

but in no case the BMS group uncovered at null infinity. One logical possibility for this

descrepancy would be that the boundary conditions at spatial infinity are incompatible with

the boundary conditions at null infinity, so that the set of transformations preserving ones

would not preserve the others1.

If true, this situation would be very disappointing and physically unsatisfactory. Moti-

vated by the desire to understand better these earlier puzzling results, we have re-examined

the asymptotic structure of gravity at spatial infinity [29, 30]. We have provided in [29]

boundary conditions at spatial infinity that eliminate the previous tensions between spatial

infinity and null infinity analyses, in the sense that: (i) these boundary conditions are in-

variant under the BMS group, which acts non trivially on the fields and has generically non

vanishing conserved charges; (ii) integration of the symmetry generators from spatial to null

infinity enables one to show that it is the same BMS group that acts both at spatial infinity

and at null infinity, expressed in different parametrizations that can be explicitly related

[31].

Furthermore, the matching conditions imposed at null infinity on the leading order of

the gravitational field [17] are automatic consequences of the asymptotic behaviour of the

Cauchy data at spatial infinity2. It is of interest to point out in this respect that while

the leading order of the Cauchy development of the gravitational field coincides with the

generally assumed leading order at null infinity, the subsequent terms in the expansion differ

in general, since subleading terms of the type ln r
rk

(k ≥ 1) will develop from generic initial

1 Invariance of the action cannot be the issue - provided the action is well-defined - since we are dealing
with diffeomorphisms.

2 Although not equivalent (they are stronger), the boundary conditions at null infinity are compatible with
those at spatial infinity, in the sense that they obey the conditions that are implied at null infinity by the
behaviour at spatial infinity.
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data. One consequence of our analysis is that these non-analytic terms do not spoil the BMS

symmetry – even if they spoil the usually assumed “peeling” behaviour of the gravitational

field at null infinity [9]. This gives further robustness to the BMS symmetry3. It also

disentangles the BMS group from gravitational radiation.

Similar features arise in the discussion of the asymptotic behaviour of the electromagnetic

field, where the null infinity analysis [32–34] seemed to be at variance with the spatial infinity

analysis [35]. The tension was solved in [36], again by providing appropriate boundary

conditions at spatial infinity. The null infinity matching conditions of electromagnetism

were also shown there to be a consequence of the boundary conditions at spatial infinity.

Extension of the asymptotic analysis to higher dimensions raises interesting issues, which

have led to a somewhat unclear situation at null infinity where some studies yield infinite-

dimensional asymptotic symmetries as in four spacetime dimensions, while some others do

not [37–46]. The question is further complicated in odd spacetime dimensions because

half-integer fractional powers of r−1 mix with integer powers, leading to problems with the

conformal definition of null infinity [47–49], and the frequent necessity to split the analysis

according to whether the spacetime dimension is odd or even since only in the latter case

does one avoid non-analytic functions at null infinity.

This provides strong motivations for investigating the asymptotic structure of the electro-

magnetic and gravitational fields at spatial infinity in higher dimensions, where the fall-off of

the fields is more uniform (no fractional powers of r). This is done here for electromagnetism.

We show that the methods developed in our previous work [36] generalize straightforwardly

to higher dimensions, with no new conceptual difficulty. The discussion proceeds along sim-

ilar lines independently of the spacetime dimension. One finds in particular the same need

to modify the standard bulk symplectic structure by a surface term, as shown necessary also

by different methods in d = 4 spacetime dimensions [50, 51].

One remarkable feature, however, is that a second angle-dependent u(1) asymptotic sym-

metry emerges. This second u(1) is eliminated in 4 spacetime dimensions because of parity

conditions that must be imposed to get rid of divergences in the symplectic structure and

3 Incidentally, in our first work on this problem [30], we put forward alternative boundary conditions that
were also BMS invariant, but which yielded a singular behaviour (∼ ln r) for some components of the Weyl
tensor as one went to null infinity. In spite of this singular behaviour at null infinity, nothing spectacular
occurred at spatial infinity and the BMS symmetry was untouched.
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of divergences in some components of the fields as one goes to null infinity [36], but these

parity conditions turn out to be unnecessary in higher dimensions (although it would be

consistent to impose them).

The difference in the behaviour of the fields according to whether the dimension is even

or odd appears when one considers null infinity. We exhibit the behaviour of the electromag-

netic field near null infinity by integrating the equations of motion “from spatial infinity to

null infinity”. This is done by going first to hyperbolic coordinates [27, 52–54]. Hyperbolic

coordinates are pathological in the limit, however, and we thus go then to coordinates in-

troduced by Friedrich, which are better suited to that purpose [55–57]. We show that initial

data fulfilling our asymptotic conditions at spatial infinity, without parity conditions, lead

to a non-divergent behaviour at null infinity (d > 4). The presence of terms with different

parities leads to an interesting generalization of the matching conditions between fields at

the past of I + and the future of I −, which we give.

Our paper is organized as follows. Section II provides the boundary conditions for the

standard canonical variables for (free) electromagnetism, i.e., the spatial components of the

vector potential and their conjugate momenta, which are the components of the electric field.

We focus on the case of d = 5 spacetime dimensions. The symplectic form is finite without

parity conditions. We allow a gradient term ∂iΦ where Φ is of order O(r0) in the asymptotic

behaviour of the vector potential. This gives a gauge invariant formulation of the boundary

conditions, and is crucial for exhibiting the full set of asymptotic symmetries. In Section

III, we determine the proper and improper [58] asymptotic symmetries for these boundary

conditions. We show in Section IV that because of the presence of a gradient term in the

boundary conditions, the Lorentz boosts are not canonical transformations. The problem

can be cured by introducing a surface degree of freedom (which can ultimately be identified

with A0 at the boundary). This is just as in 4 spacetime dimensions [36]. We then give the

complete formulation of the d = 5 theory in Section V where we write in particular explicitly

all the Poincaré generators. In Section VI, we show how the second angle-dependent u(1)

symmetry emerges. Section VII generalizes the analysis to arbitrary spacetime dimension

≥ 5. The detailed behaviour of the fields as one goes to null infinity is derived in Section VIII,

where we compare and contrast the situations in d = 4 spacetime dimensions (where parity

conditions are necessary to remove leading logarithmic divergences) and d > 4 spacetime
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dimensions (where this is not necessary). The concluding Section IX gives further light on the

emergence of the second angle-dependent u(1). Three appendices complete the discussion.

As it is common practice in such asymptotic investigations, we shall assume “uniform

smoothness” [3] whenever needed, i.e., ∂ro(r−k) = o(r−k−1), ∂Ao(r
−k) = o(r−k). Similarly,

the distinction between O(r−(k+1)) and o(r−k) will usually not be important to the orders

relevant to the analysis.

We close this introduction by recalling what is meant here by the concept of asymptotic

symmetry. This concept is defined only in space with boundaries (which can be infinity),

once boundary conditions are prescribed to complete the definition of the theory [59], as

particularly emphasized in [60]. Asymptotic symmetries are gauge transformations that

preserve the boundary conditions (and yield finite surface terms in the variation of the ac-

tion so as to have well-defined canonical generators, here at spatial infinity). An asymptotic

symmetry is non trivial if its generator is not identically zero, i.e., if there are allowed config-

urations (configurations obeying the boundary conditions) that make it not vanish. Such an

asymptotic symmetry is then called “improper gauge symmetry” following the terminology

introduced in the lucid paper [58]. “Proper gauge transformations” have identically vanish-

ing generators and form an ideal. The true physical asymptotic symmetry algebra is the

quotient of all the asymptotic symmetries by the proper ones. Note that no gauge condition

is involved in that definition, which is therefore intrinsic since it does not view asymptotic

symmetries as residual gauge transformations preserving some gauge conditions4.

II. ACTION AND BOUNDARY CONDITIONS – PRELIMINARY CONSIDERA-

TIONS

We start with the standard action of source-free electromagnetism in d spacetime dimen-

sions, which takes the canonical form

SH [Ai, π
i, A0] =

ˆ
dt

{ˆ
dd−1x πi∂tAi −

ˆ
dd−1x

(
1

2
πiπi +

1

4
F ijFij + AtG

)
+ F∞

}
(II.1)

4 Of course, the boundary conditions might involve implicitly some gauge fixing as it is usually difficult
to formulate them in terms of gauge invariants only. It is important to check gauge independence. The
boundary conditions given below for electromagnetism leave the freedom of making an arbitrary gauge
transformation with finite generator.
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where F∞ is a surface term at spatial infinity (r → ∞), which depends on the boundary

conditions and which will be discussed below. The dynamical variables to be varied in the

action are the spatial components Ai of the vector potential, their conjugate momenta πi

(equal to the electric field) and the temporal component A0 ≡ At of the vector potential

which plays the role of Lagrange multiplier for the constraint

G = −∂iπi ≈ 0 (II.2)

(Gauss’ law). We use the symbol ≈ to denote equality on the constraint’s surface.

A. Asymptotic behaviour of the fields: first conditions

We now specialize to 4 + 1 spacetime dimensions for definiteness. In 4 + 1 spacetime

dimensions, the electric and magnetic fields decay at spatial infinity as 1
r3
. This implies

that the electromagnetic potential behaves as 1
r2

up to a gauge transformation, i.e., up to

a gradient ∂iΦ. Under a gauge transformation Ai → Ai + ∂iε, Φ is shifted by ε. This

transformation will have a well-defined generator if ε is of order unity at infinity (see below).

It is therefore natural to request that Φ be also of order unity at infinity (which implies

∂iΦ ∼ 1
r
). We thus impose the following decay at spatial infinity,

Ai = ∂iΦ +
1

r2
Ai +

1

r3
A

(1)
i + o(r−3), πi =

1

r3
πi +

1

r4
π(1)i + o(r−4) (II.3)

where Φ and the coefficients of the various powers of r−1 are arbitrary functions on the

3-sphere, i.e., of the angles xA used to parametrize it. We have kept only the leading term

in Φ = Φ + Φ(1)

r
+O( 1

r2
), since the subsequent terms can be absorbed by redefinitions. It is

only in 3 + 1 dimensions that ∂iΦ and the first term containing Ai are of the same order.

Here, ∂iΦ decays more slowly by one power of r.

The boundary conditions (II.3) make the kinetic term in the action well-defined provided

we impose that Gauss’law holds at infinity one order faster than expected, i.e.

∂iπ
i = o(

1

r4
) (II.4)

(the order implied by (II.3) is o( 1
r3

)). This ensures that the term
´
d4x πi∂t∂iΦ has no

logarithmic singularity and clearly does not eliminate any physical solution. The condition

(II.4) is an integral part of our boundary conditions.

7



The asymptotic conditions (II.4) are sufficient by themselves to make the symplectic form

finite. There is no need to impose parity conditions on the fields, contrary to what was found

in 4 spacetime dimensions [36], where an appropriate generalization of the parity conditions

of [25, 35] was necessary.

B. Polar coordinates

For later purposes, we rewrite the boundary conditions in spherical coordinates, in which

the Minkowski metric reads

ds2 = −dt2 + dr2 + gABdx
AdxB, (II.5)

with

gAB = r2γAB (II.6)

where γAB is the round metric in the unit sphere. In the sequel angular indices on a “bar”

quantity will be raised or lowered with γAB, e.g., vA = γABvB. Bar quantities live on the

unit sphere.

One gets for the asymptotic fall-off in polar coordinates, recalling that the momenta carry

a unit density weight:

Ar =
1

r2
Ar +

1

r3
A(1)
r + o(r−3), πr = πr +

1

r
π(1)r + o(r−1), (II.7)

AA = ∂AΦ +
1

r
AA +

1

r2
A

(1)
A + o(r−2), πA =

1

r
πA +

1

r2
π(1)A + o(r−2), (II.8)

where the coefficients of the various powers of 1/r are functions of the angles xA. Further-

more,

∂Aπ
A = 0. (II.9)

Note that ∂rΦ is of order O( 1
r2

) and has been absorbed in Ar.

C. Relativistic invariance of the boundary conditions

The boundary conditions (II.3), (II.4) are easily verified to be Lorentz invariant. A

general deformation of a spacelike hyperplane can be decomposed into normal and tangential
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components, denoted by ξ and ξi, respectively. A Poincaré transformation corresponds to

the deformation

ξ = bix
i + a⊥ (II.10)

ξi = bijx
j + ai (II.11)

where bi, bij = −bji, a⊥ and ai are arbitrary constants. The constants bi parametrize the

Lorentz boosts, whereas the antisymmetric constants bij = −bji parametrize the spatial

rotations. The constants a⊥ and ai are standard translations.

Under such a deformation, the fields transform as

δAi = ξπi + ξjFji + ∂iζ (II.12)

δπi = ∂m
(
Fmiξ

)
+ ∂m

(
ξmπi

)
− (∂mξ

i)πm − ξi∂mπm, (II.13)

The transformation of the fields is really defined up to a gauge transformation. This is the

reason why we have included the term ∂iζ in the transformation of Ai. A definite choice of

accompanying gauge transformation will be made below to get simple expressions for the

algebra. It is clear that the fall-off (II.3), (II.4) is preserved under these transformations

provided ζ behaves as ζ = ζ(xA) + ζ1(xA)
r

+ o( 1
r2

).

The above transformation rules imply that the leading order of the fields transform only

under boosts and rotations (their variations under translations are of lower order). One gets

explicitly the following changes of the leading orders of the fields, which we write in polar

coordinates,

δb,YAr =
b√
γ
πr + Y A

(
∂AAr + AA

)
− ζ1, (II.14)

δb,YAA =
b√
γ
γABπ

B + Y B
(
∂BAA − ∂AAB

)
+ ∂Aζ

1, (II.15)

δb,Y Φ = ζ, (II.16)

δb,Y π
r =
√
γ D

A (
b(∂AAr + AA)

)
+ ∂A(Y Aπr), (II.17)

δb,Y π
A =
√
γ DB

(
b γBCγAD(∂CAD − ∂DAC)

)
+∂B(Y BπA)− ∂BY AπB − Y A∂Bπ

B (II.18)

Here, we have set

ξ = rb+ T, ξr = W, ξA = Y A +
1

r
D
A
W, (II.19)

DADBW + γABW = 0, DADBb+ γABb = 0, LY γAB = 0, ∂AT = 0. (II.20)
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The quantities b, Y A, T and W are functions on the sphere. The first two, b and Y A,

describe the homogeneous Lorentz transformations, while T and W , which do not appear

in the transformation laws (II.14)-(II.18) of the leading orders, describe the translations. In

these equations, DA is the covariant derivative associated with γAB and DA
= γABDB.

Contrary to what happens in 4 spacetime dimensions, the leading order Ar is not gauge

invariant. Furthermore, the boosts mix radial and angular components, which do not have

independent dynamics anymore. Finally, we note that the spacetime translations have no

action on the leading orders of the fields. The symmetry group at this order is thus the

homogeneous Lorentz group. To get the full Poincaré group, one needs to consider the

subsequent terms in the asymptotic expansion of the fields5.

D. Further strengthening of the boundary conditions

It turns out that while the boosts preserve the boundary conditions, they fail to be

canonical transformations (see Section IV below). In order to recover a canonical action for

the boosts, one adds new surface degrees of freedom. This can be achieved along the lines

of [36] if one strengthen further the boundary conditions.

We impose that the leading term AA of the angular part of the vector potential be a pure

gradient. This condition is preserved under the Poincaré group if we also impose πA = 0.

Thus, we complete (II.3), (II.4) by

AA = ∂AΘ , πA = 0. (II.21)

The requirement AA = ∂AΘ, which is new with respect to d = 4 where it is not needed,

is equivalent to the condition FAB = 0. Imposing FAB = 0 does not seem unreasonable

in 5 (and higher) spacetime dimensions. If there are only electric sources, this condition is

certainly fulfilled. So the question is whether it eliminates interesting magnetic configura-

tions. In 4 + 1 dimensions, magnetic sources are extended objects, namely, strings. They

can be of two different types: (i) infinite, or (ii) closed (strings with boundary do not yield a

conservation law). Our formalism only applies to the second case, since we are not covering

infinitely extended strings going all the way to infinity, for which there are extra degrees

5 It is actually well known that in the case of gravity, the next-to-leading terms contribute crucially to the
angular momentum and the boost charges and so cannot be ignored.
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of freedom at infinity – the endpoints of the string – that must be taken into account (on

which the Poincaré group acts). But if the strings are closed, their field is more like the field

of a dipole because the total charge that they carry is zero [61]. The magnetic field decays

thus faster at infinity (see Appendix A) and it is legitimate to assume FAB = 0.

E. Summary: complete set of boundary conditions at spatial infinity on Ai, π!

To summarize: the complete set of boundary conditions on the canonical variables Ai,

πi is given by (II.7)-(II.8) supplemented by (II.21) (which automatically implies (II.9)). We

rewrite them here:

Ar =
1

r2
Ar +

1

r3
A(1)
r + o(r−3), πr = πr +

1

r
π(1)r + o(r−1), (II.22)

AA = ∂AΦ +
1

r
∂AΘ +

1

r2
A

(1)
A + o(r−2), πA =

1

r2
π(1)A + o(r−2), (II.23)

(Complete set of boundary conditions on the canonical variables Ai, πi)

in order to have them conveniently grouped together.

Given the vector potential, the functions Φ(xA) and Θ(xA) are determined up to a con-

stant. We shall come back to this point later.

III. PROPER AND IMPROPER GAUGE TRANSFORMATIONS

The boundary conditions (II.3) are invariant under gauge transformations generated by

the first-class constraint-generator G :

δεAi = ∂iε, δεπ
i = 0, (III.1)

provided the gauge parameter ε has the asymptotic behaviour

ε = ε(xA) +
1

r
ε(1)(xA) + o(r−1). (III.2)

As already indicated above, the leading term Ar in the expansion of the radial compo-

nent of the potential is not gauge invariant, contrary to what happens in 3 + 1 spacetime

dimensions. It transforms as Ar → Ar−ε(1). The leading (O(r−2)) term of the field strength

FAr is of course invariant. It is given by FAr = ∂AAr + AA. One has AA → AA + ∂Aε
(1) so

that FAr → FAr.

11



The generator of (III.1) reads explicitly

G[ε] =

ˆ
d4x εG +

˛
d3Si ε π

i ≈
˛
d3Si ε π

i (III.3)

≈
˛
d3x ε πr (III.4)

(where the integrations in the last terms are over the 3-sphere at infinity, i.e., over the

angular variables xA).

Another crucial difference with respect to 3 + 1 spacetime dimensions is that since the

leading order of the radial component πr does not fulfill particular parity conditions, both

even and odd parts of the gauge parameters contribute to the charge G[ε]. Non-vanishing

values of ε define “improper gauge transformations” [58], no matter what the parity of ε 6= 0

is. An improper gauge transformation shifts the function Φ by ε.

The value of the generator G[ε] for ε = ε0 (constant) is the total electric charge Q. In

the absence of charged matter field, Q = G[ε0] = 0, so that constant shifts of ε(xA) are

unobservable (no charged states). To have Q 6= 0, one needs to couple charged sources to

the electromagnetic field, in which case Gauss’ law becomes −∂kπk+j0 ≈ 0. The asymptotic

analysis is unchanged provided the sources are localized or decrease sufficiently rapidly at

infinity. We should stress, however, that even if Q = 0, the generator G[ε] for non constant

functions ε(xA) on the sphere will generically be different from zero.

To complete the description of the asymptotic behaviour, we need to specify the fall-off

of the Lagrange multiplier At. Since At parametrizes the gauge transformation performed

in the course of the evolution, we take for At the same fall-off as for the gauge parameter ε,

At = A
(0)
t (xA) +

1

r
At(x

A) + o(r−1). (III.5)

If A(0)
t (xA) 6= 0, the time evolution involves a non-trivial improper gauge transformation.

IV. BOOSTS AND SYMPLECTIC STRUCTURE

We now turn to the question as to whether the Poincaré transformations, which preserve

the boundary conditions as we have just seen, are canonical transformations. That is, we

analyse whether they are true symmetries6.

6 Invariance of the symplectic form is a consequence of the invariance of the action up to a total time
derivative.
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We focus on boosts, which are the only transformations presenting difficulties. For boosts,

the above transformations reduce to

δAi = ξπi + ∂iζ (IV.1)

δπi = ∂m
(
Fmiξ

)
(IV.2)

where ξ = br. As we now show, these fail to be canonical transformations with the symplectic

2-form derived from (II.1)

Ω =

ˆ
d4x dV π

i dVAi (IV.3)

where the product is the exterior product ∧ of forms which we are not writing explicitly,

and where we use the symbol dV for the exterior derivative in phase space in order not to

introduce confusion with the spacetime exterior derivative.

The transformation defined by the vector field X is canonical if dV (iXΩ) = 0. Evaluating

this expression for the boosts, one finds, by a computation that parallels the 3+1 case,

dV (ibΩ) =

ˆ
d4x ∂m

(√
gξdV F

mi
)
dVAi (IV.4)

where we have used dV πi dV πi = 0. Integrating by parts and using dV Fij dV F ij = 0, we get

that dV (ibΩ) reduces to a surface term,

dV (ibΩ) =

˛
d3x
√
g ξ dV F

ri dVAi , (IV.5)

an expression that can be transformed to

dV (ibΩ) = −
˛
d3x
√
γ b dV

(
D
A
Ar + A

A
)
dV ∂AΦ (IV.6)

using the asymptotic form of the fields.

This expression would vanish if we had not allowed a gradient term ∂iΦ in Ai. But with

such a term, the variation of the symplectic form is generically non zero and the boosts are

accordingly non canonical transformations.

In 3 + 1 dimensions, the coefficient of the dV ∂AΦ-term reduces to dV D
A
Ar because the

contribution from the angular part is subleading. This enables one to integrate by parts and

replace the surface term by

dV (ibΩ) =

˛
d2x
√
γ dVArD

A
(b dVAA) (D = 3 + 1 dimensions) (IV.7)
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By introducing a single surface degree of freedom Ψ that transforms appropriately under

boosts and adding the surface contribution −
¸
d2x
√
γ dVAr dV Ψ to the symplectic form,

one can make the Lorentz boosts canonical [36].

A similar route can be followed here provided AA = ∂AΘ. The variation of the bulk

symplectic form can then be transformed into

dV (ibΩ) =

˛
d3x
√
γ dV

(
Ar + Θ

)
D
A

(b dV ∂AΦ) (IV.8)

and by introducing a surface degree of freedom Ψ at infinity transforming under boosts as

δbΨ = D
A

(b∂AΦ) (IV.9)

and adding the surface term

−
˛
d3x
√
γ dV

(
Ar + Θ

)
dV Ψ (IV.10)

one finds that the boosts are canonical (see detailed computation in Subsection VB below).

The discussion proceeds in fact as in the 3+1 case, with the 3 + 1 gauge-invariant Ar

replaced by the 4+1 gauge-invariant Ar+Θ. The development parallels exactly the discussion

in 4 dimensions and is given in the next section.

There is, however, one important difference with respect to the 3 + 1 dimensional case:

it is that both even and odd parts of the the field Ψ carry physical degrees of freedom. This

is because the coefficient Ar + Θ of dV Ψ in (IV.10) has no particular parity property (while

it is odd in 3 + 1 dimensions).

V. COMPLETE FORMULATION

We shall thus give only here the salient features. At this stage, the field Ψ is a field living

on the three-sphere at infinity, which can depend on time. As in 3 + 1 dimensions, one can

extend it inside the bulk to a “normal” field with conjugate momentum πΨ constrained to

vanish. It is to this formulation that we shall immediately proceed.
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A. Action

The complete action is

SH [Ai, π
i,Ψ, πΨ,Θ0;At, λ] =

ˆ
dt

{ˆ
d4x πi∂tAi + πΨ∂tΨ−

˛
d3x
√
γ
(
Ar + Θ

)
∂tΨ

−
ˆ
d4x

(
1

2
√
g
πiπi +

√
g

4
F ijFij

)
−
ˆ
d4x (λπΨ + AtG)

}
. (V.1)

where Ψ and πΨ are new fields which behave at infinity as

Ψ =
Ψ

r
+

Ψ(1)

r2
+ o(r−2), (V.2)

πΨ =
1

r4
π

(1)
Ψ + o(r−4). (V.3)

(in Cartesian coordinates) and where λ is a Lagrange multiplier for the constraint

πΨ ≈ 0. (V.4)

Since πΨ is constrained to vanish on-shell, its precise decay at infinity can in fact be strength-

ened without eliminating classical solutions.

We have written explicitly the zero mode Θ0 of Θ among the arguments of the action

functional to emphasize that SH depends not just on AA = ∂AΘ, but on the full Θ. Shifts

of Θ by constants will be seen to be symmetries.

The equations of motion that follow from the action are the original equations of motion

for the original fields Ai, πi, which imply

∂t(Ar + Θ) = 0, (V.5)

an equation which also follows by varying Ψ. One also gets

∂tΨ = 0 (V.6)

by varying with respect to the vector potential. This equation is compatible with the

equation obtained by varying with respect to πΨ, provided λ ∼ 1
r2
, which we shall assume.

One can in fact allow for a 1
r
-term in λ if one introduces at the same time a non-vanishing

surface Hamiltonian that reflects that the motion would then involve an improper gauge

transformation for Ψ (see Section VI), but we shall not do so here. Finally, varying with

respect to the Lagrange multipliers imply the constraints.
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B. Poincaré charges

With the boundary modification of the symplectic charges, all Poincaré transformations

are canonical transformations with a well-defined generator. This generator can be written

in terms of local diffeomorphisms generators in the following way

Pξ,ξi =

ˆ
d4x

(
ξHEM + ξiHEM

i

)
+ BEM(ξ,ξi), (V.7)

HEM = −Ψ∂iπ
i − Ai∇iπΨ +

1

2
√
g
πiπ

i +

√
g

4
FijF

ij, (V.8)

HEM
i = Fijπ

j − Ai∂jπj + πΨ∂iΨ, (V.9)

BEMξ,ξi =

˛
d3x

(
b
(

Ψπr +
√
γ∂AΦD

A
(Ar + Θ)

)
+ Y A(∂AΦ πr +

√
γΨ∂A(Ar + Θ))

)
.

(V.10)

As is well known, transformations of the fields under a symmetry are defined up to a gauge

transformation in any gauge theory. The choice implicitly made in (V.7) leads to a simple

algebra. For the kinematical transformations (spatial translations and rotations,) it is such

that the action of these spatial symmetries on the fields is the ordinary Lie derivative, i.e.,

δξkAi = LξkAi, δξkΨ = LξkΨ (V.11)

where Ψ is a spatial scalar so that LξΨ = ξk∂kΨ and where the spatial vector ξk is given by

(II.19). Note that the Poincaré charges are invariant under shifts of Θ by constants.

To illustrate the derivation, consider the boosts (ξ = br, ξi = 0). The variations of all

the canonical fields are given by

δbAi =
ξπi√
g

+ ∂i(ξΨ), δbπ
i = ∂m

(
Fmi√gξ

)
+ ξ∇iπΨ (V.12)

δbΨ = ∇i (ξAi) , δbπΨ = ξ∂iπ
i (V.13)

from which one gets

δb(Ar + Θ) =
bπr√
γ
, δbΨ = D

A
(b∂AΦ) (V.14)

upon appropriate choice of the constant that characterizes the ambiguity in Θ. Under these

transformation, the symplectic two form

Ω = Ωbulk + Ωboundary (V.15)
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with

Ωbulk =

ˆ
d4x

(
dV π

i dVAi + dV πΨ dV Ψ
)

(V.16)

and

Ωboundary = −
˛
d3x
√
γ dV

(
Ar + Θ

)
dV Ψ (V.17)

is invariant, δbΩ = dV ibΩ = 0, since one finds

ibΩ
bulk = −dV

(ˆ
d4xξHEM

)
−
˛
d3x b (dV π

r) Ψ−
˛
d3x
√
γ bD

A
(Ar + Θ) dV ∂AΦ (V.18)

and

ibΩ
boundary = −

˛
d3x b πr dV Ψ−

˛
d3x
√
γ bD

A (
dV (Ar + Θ)

)
∂AΦ (V.19)

so that

ibΩ = −dV
(ˆ

d4xξHEM +

˛
d3x b πr Ψ +

˛
d3x
√
γ bD

A
(Ar + Θ) ∂AΦ

)
(V.20)

The quantity of which ibΩ is the exterior derivative is minus the canonical generator of the

transformation, in agreement with (V.7).

Similarly, one finds for spatial rotations (ξ = 0, ξr = 0, ξA = Y A),

δRAi = ξj∂jAi + ∂iξ
jAj, δRπ

i = ∂m
(
ξmπi

)
− ∂mξiπm (V.21)

δRΨ = ξi∂iΨ, δRπΨ = ∂i(ξ
iπΨ) (V.22)

from which one gets

δR(Ar + Θ) = Y A∂A(Ar + Θ), δRΨ = Y A∂AΨ (V.23)

(with again a definite choice of the constant in δRΘ). It follows that

iRΩbulk = −dV
(ˆ

d4xξiHEM
i +

˛
d3x ξA πr ∂AΦ

)
(V.24)

and that

iRΩboundary = −dV
(˛

d3x
√
γ Y A∂A(Ar + Θ) Ψ

)
(V.25)

yielding the above generator for spatial rotations. Note that here, the bulk and boundary

contributions to the symplectic form are separately invariant.

The computation of the time and spatial translations is simpler and leads to generators

that have only a bulk piece. This is because the relevant leading orders are invariant (it

should be observed that for spatial translations δWAr = −∂AΦD
A
W and one can take

δWΘ = +∂AΦD
A
W so that δW (Ar + Θ) = 0).
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C. Poincaré algebra

In addition to the Poincaré symmetries, the theory is invariant under

Θ→ Θ + c (V.26)

(everything else fixed), where c is a constant. This transformation is generated by

J =

˛
d3x
√
γΨ (V.27)

since one has

iJΩ = iJΩboundary = −
˛
d3x
√
γ c dV Ψ = −dV (cJ) . (V.28)

This quantity vanishes in 4 spacetime dimensions where Ψ is odd due to the parity conditions

(and no “naked” Θ appears anyway).

One can easily compute the algebra of the various generators. One finds:

{Pξ1,ξi1 , Pξ2,ξi2} = Pξ̂,ξ̂i , (V.29)

ξ̂ = ξi1∂iξ2 − ξi2∂iξ1, ξ̂i = ξj1∂jξ
i
2 − ξ

j
2∂jξ

i
1 + gij(ξ1∂jξ2 − ξ1∂jξ2), (V.30)

which is the Poincaré algebra.

Furthermore,

{Pξ,ξi , J} = 0. (V.31)

VI. ASYMPTOTIC SYMMETRIES

A. Two sets of angle-dependent u(1) symmetries

We have already identified above an infinite set of asymptotic symmetries, which are

gauge transformations parametrized by a gauge parameter that tends to a function ε on

the 3-sphere at infinity. Contrary to the situation encountered in 3+1 dimensions all of

these transformations are improper gauge transformations, i.e., non trivial symmetry trans-

formations that generically change the physical state of the system, independently of their

parity properties. This brings a full angle dependent u(1) set of asymptotic symmetries,

with charge-generator equal (on-shell) to

G[ε] =

˛
d3x ε πr. (VI.1)

18



The introduction of the surface field Ψ at infinity brings in an independent second set of

angle dependent u(1)asymptotic symmetries. These are transformations that shift Ψ by an

arbitrary (time-independent) function µ of the angles. They can be extended in the bulk as

δµΨ = µ, δµ(anything else) = 0 (VI.2)

with

µ =
µ

r
+ o(r−1) (VI.3)

These are easily checked to leave the action invariant. [One can include subleading terms in

µ, parametrized by arbitrary functions of the angles and of time, but these are proper gauge

transformations leaving the action invariant provided λ is transformed as δµλ = ∂tµ.]

These transformations are canonical transformations with canonical generator given by

G[µ] =

ˆ
d4xµπΨ +B

where the surface term is necessary when µ ∼ 1
r
, even though the corresponding bulk

constraint-generator is algebraic! This is just as in 3 + 1 dimensions.

One finds explicitly

iµΩbulk = −dV
(ˆ

d4xµπΨ

)
, iµΩboundary = −dV

(
−
˛
d3x
√
γ(Ar + Θ)µ

)
(VI.4)

yielding as generator

G[µ] =

ˆ
d4xµπΨ −

˛
d3x
√
γ(Ar + Θ)µ (VI.5)

an expression that reduces on-shell to

G[µ] = −
˛
d3x
√
γ(Ar + Θ)µ. (VI.6)

The generator G[µ], which generically does not vanish, is invariant under proper and im-

proper gauge transformations. One way to see this is to recall that ∂A(Ar + Θ) = F rA, so

that the gauge invariant asymptotic field strength F rA determines Ar + Θ up to a constant,

and we fix the variation of the constant in Θ so that δAr = −δΘ.

We thus come to the remarkable conclusion that the theory is invariant under angle-

dependent u(1)⊕ u(1) asymptotic symmetries, with generators given on-shell by

Gµ,ε =

˛
d3x

(
ε πr −

√
γ(Ar + Θ)µ

)
(VI.7)
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B. Algebra

The algebra of the global symmetries with themselves and the Poincaré generators are

easily worked out. One finds

{Gµ,ε, Pξ,ξi} = Gµ̂,ε̂, {Gµ1,ε1 , Gµ2,ε2} = 0, (VI.8)

µ̂ = −∇i(ξ∂iε)− ξi∂iµ, ε̂ = −ξµ− ξi∂iε. (VI.9)

It follows from these equations that the algebra of the symmetries is a semi-direct sum of

the Poincaré algebra and the abelian algebra parametrized by µ and ε. The action of the

Poincaré subalgebra characterising this semi-direct sum can be read off from (VI.9):

δ(Y,b,T,W )µ = Y A∂Aµ+DA(bD
A
ε), δ(Y,b,T,W )ε = Y A∂Aε+ bµ. (VI.10)

One also finds by direct computation

{Gµ,ε, J} = −
˛
d3x
√
γµ, (VI.11)

i.e, a central charge appears in this Poisson bracket relation.

It should be observed that the even-parity component (under the antipodal map) of ε and

the odd-partity component of µ transform into each other under Poincaré transformations.

These are the only non-trivial components present in 4 spacetime dimensions. Similarly,

the odd-parity component of ε and the even-parity component of µ transform also into each

other. These define proper gauge transformations in 4 spacetime dimensions, but improper

ones in d > 4 spacetime dimensions when no parity condition need be imposed on the

asymptotic fields.

C. Time evolution

Up to now, the field At is completely arbitrary. A definite choice of At amounts to a choice

of which gauge transformation accompanies the time evolution generated by the standard

Hamiltonian 1
2

´
(E2 +B2). It is convenient to choose

At = Ψ (VI.12)

and we shall adopt this condition in the sequel. This has a number of consequences:
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• The behaviour of At at spatial infinity takes the form

At =
1

r
At(x

A) + o(r−1). (VI.13)

i.e., the O(1)-piece A(0)
t (xA) is set to zero, which means that no improper gauge trans-

formation is added to the motion generated by 1
2

´
(E2 + B2). [This O(1)-piece can

easily be re-inserted if needed, e.g., in discussing black hole thermodynamics.]

• With the identification At = Ψ, the action reduces to

SH [Ai, π
i, At, π

0;λ] =

ˆ
dt

{ˆ
d4x πi∂tAi + π0∂tAt −

˛
d3x
√
γ
(
Ar + Θ

)
∂tAt

−
ˆ
d4x

(
1

2
√
g
πiπi +

√
g

4
F ijFij

)
−
ˆ
d4x

(
λπ0 + AtG

)}
. (VI.14)

where π0 ≡ πΨ.

• The asymptotic equation ∂tAt = 0, which follows from ∂tΨt = 0, is asymptotically

equivalent to the Lorenz gauge ∂tAt+∂iAi = 0, since ∂tAt = O(1
r
), while ∂iAi = O( 1

r2
).

The action (VI.14) is in fact the action one obtains by direct application of the Dirac

constrained Hamiltonian formalism. The primary constraints (here π0 = 0) are enforced

explicitly with their own Lagrange multipliers (here λ). The secondary constraints (here

G = 0) follow from the preservation in time of the primary constraints. The parameters of

the gauge transformations generated by π0 and G are related in this “unextended formulation”

by ε̇ = µ (more in [62])7.

For that reason, the introduction of Ψ is not really the introduction of a new physical

degree of freedom. It corresponds rather to the explicit recognition that the O(1
r
)-part of

A0 is not pure gauge, which must therefore be kept. It would be incorrect to set it equal to

zero since this would require the use of an improper gauge transformation. That shifts of At

are not proper gauge transformations reflects itself through the fact that the corresponding

generator is
´
d4xµπ0 −

¸
d3x
√
γ(Ar + Θ)µ and does not generically vanish, even on-shell.

The advantage of including the Ψ field is that this important property is clearly put to the

7 The Lorenz gauge involves the time derivative of At and thus is invariant under gauge transformations
with a gauge parameter ε that obeys a second order equation with respect to time. This means that on
an initial slice, the gauge parameters µ = ε̇ and ε are completely free: they obey no gauge condition and
there is no gauge fixing to be preserved.
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foreground. But once understood, one can equivalently work with the more familiar action

(VI.14). This action reproduces the standard Maxwell action (up to a surface term) with

Aµ as sole dynamical variables if one performs the Legendre transformation in reverse, back

to the Lagrange formalism.

VII. MORE THAN 5 SPACETIME DIMENSIONS

The extension of the formalism to other dimensions higher than 4 is direct and remark-

ably “uneventful”. There is in particular no difference between odd and even spacetime

dimensions. We give below the relevant formulas.

A. Action, boundary conditions, Poincaré generators

The action generalizing (VI.14) is

SH [Ai, π
i, At, π

0,Θ0;λ] =

ˆ
dt

{ˆ
dd−1x πi∂tAi + π0∂tAt −

˛
dd−2x

√
γ
(
Ar + (d− 4)Θ

)
∂tAt

−
ˆ
dd−1x

(
1

2
√
g
πiπi +

√
g

4
F ijFij

)
−
ˆ
dd−1x

(
λπ0 + AtG

)}
. (VII.1)

The asymptotic conditions are (at a given time)

Ar = ∂rΦ +
1

rd−3
Ar +

1

rd−2
A(1)
r + o(r2−d), πr = πr +

1

r
π(1)r + o(r−1), (VII.2)

AA = ∂AΦ +
1

rd−4
∂AΘ +

1

rd−3
A

(1)
A + o(r3−d), πA =

1

r2
π(1)A + o(r−2), (VII.3)

At =
1

r
At(x

A) +
1

r2
A

(2)
t + · · · 1

rd−4
A

(d−4)
t + o(r4−d) (VII.4)

π0 =
1

r
π0

(1) + o(r−1) (VII.5)

Φ = Φ +
1

r
Φ(1) + · · ·+ 1

rd−5
Φ(d−5) (VII.6)

and involves no parity conditions (d > 4). The Lagrange multiplier λ fulfills

λ = O(
1

r2
). (VII.7)

We stress that we have given the asymptotic behaviour of the fields, in particular of the

density π0, in polar coordinates (in cartesian coordinates, π0 ∼ r1−d).

The equations of motion imply

∂tAt = 0 (VII.8)
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which is equivalent to

∂µAµ = O(
1

r2
) (VII.9)

(instead of the expected O(1
r
) that would follow from a generic time-dependence). The

Lorenz gauge is therefore fulfilled asymptotically.

The Poincaré generators are

Pξ,ξi =

ˆ
dd−1x

(
ξHEM + ξiHEM

i

)
+ BEM(ξ,ξi), (VII.10)

HEM = −At∂iπi − Ai∇iπ0 +
1

2
√
g
πiπ

i +

√
g

4
FijF

ij, (VII.11)

HEM
i = Fijπ

j − Ai∂jπj + π0∂iAt, (VII.12)

BEMξ,ξi =

˛
dd−2x

(
b
(
Atπ

r +
√
γ∂AΦD

A
(Ar + (d− 4)Θ)

))
+

˛
dd−2x

(
Y A(∂AΦ πr +

√
γ At∂A(Ar + (d− 4)Θ))

)
. (VII.13)

There is also the symmetry Θ→ Θ + c generated by

J =

˛
dd−2x

√
γ At (VII.14)

B. Asymptotic symmetries

The theory has gauge symmetries generated by

Gε,µ =

ˆ
dd−1x

(
εG + µπ0

)
+

˛
dd−2x

(
ε πr −

√
γ µ (Ar + (d− 4)Θ)

)
(VII.15)

≈
˛
dd−2x

(
ε πr −

√
γ µ (Ar + (d− 4)Θ)

)
(VII.16)

with

ε = ε(xA) +
1

r
ε(1) +O(

1

r2
) (VII.17)

and

µ =
µ(xA)

r
+O(

1

r2
) (VII.18)

The action is invariant provided the following (non-independent) conditions hold: (i) ∂tε = 0;

(ii) ∂tµ = 0; (iii) ∂tε = µ.

The unwritten O( 1
r2

)-terms in (VII.17) are arbitrary functions of time and define proper

gauge transformations. The corresponding O( 1
r2

)-terms in (VII.18) are determined by the

condition µ = ε̇ (in the unextended canonical formalism considered here). One could use
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these proper gauge transformations to eliminate all terms in Φ but the leading one, but this

is not necessary.

By contrast, the leading terms parametrized by ε(xA) and µ(xA), which are arbitrary

time-independent functions of the angles restricted by no parity condition (d > 4) define

improper gauge transformations. The asymptotic symmetries are thus the direct sum of two

independent sets of angle-dependent u(1) transformations. Note that ε(1) is determined by

the condition ∂tε = µ to be ε(1) = tµ(xA) and that the generator (VII.15)-(VII.16) is just

the corresponding Noether charge.

The algebra of the generators of asymptotic symmetries and Poincaré transformations is

the same as in Subsection VIB.

We close this section by observing that ∂2
t ε = O( 1

r2
) is equivalent to �ε = O( 1

r2
). Now, the

condition �ε = 0 defines the residual gauge freedom in the Lorenz gauge. The asymptotic

symmetries are therefore residual gauge transformations of the asymptotic Lorenz gauge.

What makes them non-trivial symmetry transformations, however, is not that they are

residual gauge transformations for some gauge conditions, but that their canonical generator

has a non-vanishing value8.

VIII. CONNECTION WITH NULL INFINITY

The formulation on Cauchy hyperplanes in Mikowski spacetime Rd−1,1 ' R × Rd−1 is

complete and fully specifies the system. It is self-contained and sufficient to answer all

dynamical questions, including asymptotic ones for t→ ±∞ or any other limit.

A. Hyperbolic coordinates

It is of interest in particular to derive from the present formulation the behaviour of the

fields as one goes to null infinity. To that end, we first integrate the equations in hyperbolic

8 One can impose the Lorentz gauge to all orders. In that case, the residual gauge transformations fulfill
�ε = 0 to all orders. The general solution to that equation that starts like ε = ε +

tµ
r +

∑
n≥2

ε(n)

rn

will have generically ε(n) ∼ tn. Each ε(n) will involve two new integration “constants” CN (xA) (functions
of the angles), but these integration “constants” correspond to pure gauge transformations, even though
associated with residual gauge transformations.
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coordinates [27], were the metric is given by

ds2 = dη2 + η2habdx
adxb, habdx

adxb = − 1

(1− s2)2
ds2 +

γAB
1− s2

dxAdxB. (VIII.1)

Here, hab is the metric on the (d− 1) hyperboloid. The explicit change of variables is

η =
√
−t2 + r2, s =

t

r
(VIII.2)

The hyperbolic patch covers the region r > |t|. The inverse transformation reads

t = η
s√

1− s2
, r = η

1√
1− s2

. (VIII.3)

The use of hyperbolic coordinates in this context is known to be very useful [27, 52–57].

The hypersurface s = 0 in hyperbolic coordinates, on which η = r, coincides with the hy-

persurface t = 0 and is therefore a Cauchy hypersurface on which we have already studied the

behaviour of the fields at infinity. This leads to the following fall-off for the electromagnetic

potential

Aη = ∂ηΦ + Aηη
−d+3 +O(η−d+2), Aa = ∂aΦ + Aaη

−d+4 +O(η−d+3), (VIII.4)

with field strengths taking the asymptotic form

Eb = Fbη = η−d+3
(
∂bAη + (d− 4)Ab

)
+O(η−d+2), Fab = η−d+4F ab +O(η−d+3). (VIII.5)

Here,

Φ = Φ + · · ·+ 1

ηd−5
Φ(d−5). (VIII.6)

Note that the temporal component As of the vector potential in hyperbolic coordinates is

boosted by one power of η with respect to At. As above, we will also assume F ab = 0

(i.e., FsA = 0 and FAB = 0), which means that there exists a boundary field Θ such that

Aa = ∂aΘ.

The equations of motion are given by

DaEa = 0, ηd−5DbFba − ∂η(ηd−3Ea) = 0 (VIII.7)

with Eb ≡ Fbη. Here, Da is the covariant derivative associated with the hyperboloid metrix

hab, while latin indices are raised or lowered with hab and hab, respectively.
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Although the asymptotic analysis only needs the leading orders, it is instructive to assume

that the asymptotic behaviour of the fields can be expressed in terms of an expansion in

η−1:

Eb = Fbη =
∑
k≥0

η−d+3−kE
(k)
b , Fab =

∑
k≥0

η−d+4−kF
(k)
ab , F

(0)
ab = 0. (VIII.8)

This is because the equations of motion imply a decoupling order by order. Indeed, one gets

DaE(k)
a = 0, DbF (k)

ba + kE(k)
a = 0, (VIII.9)

Similarly, the Bianchi identity becomes

(d− 4 + k)F
(k)
ab = ∂aE

(k)
b − ∂bE

(k)
a , ∂[aF

(k)
bc] = 0. (VIII.10)

This leads to the second order equation

DbDbE(k)
a − (d− 2)E(k)

a + k(d− 4 + k)E(k)
a = 0. (VIII.11)

containing E(k)
a only.

We now focus on the component E(k)
s of the curvature. As in the 4d case, this is the most

interesting one as it carries the information about the charges. The analysis of the other

components of the field strength can be found in appendix C.

Using the fact that E(k)
a is divergence-less, the component a = s of equation (VIII.11)

reads

(1− s2)∂2
sE

(k)
s + (d− 6)s∂sE

(k)
s + (d− 4)E(k)

s −DAD
AE(k)

s − (1− s2)−1k(d− 4 + k)E(k)
s = 0.

(VIII.12)

Making then the following rescaling of the components:

Ξ(k) = (1− s2)
k
2E(k)

s , (VIII.13)

leads to

(1− s2)∂2
sΞ

(k) + (d− 6 + 2k)s∂sΞ
(k) − (k − 1)(k + d− 4)Ξ(k) −DAD

AΞ(k) = 0. (VIII.14)

Using a basis of spherical harmonics for the (d− 2)-sphere (see Appendix B 1), we get

Ξ(k) =
∑
l,m

Ξ
(k)
lm (s)Ylm(xA), DADAYlm = −l(l + d− 3)Ylm, (VIII.15)

(1− s2)∂2
sΞ

(k)
lm + (d− 6 + 2k)s∂sΞ

(k)
lm − (k − 1)(k + d− 4)Ξ

(k)
lm + l(l + d− 3)Ξ

(k)
lm = 0.

(VIII.16)
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With λ = k + d−3
2

(= integer or half-integer) and n = l− k, we can rewrite this equation as

(1− s2)∂2
sΞ

(k)
lm + (2λ− 3)s∂sΞ

(k)
lm + (n+ 1)(2λ+ n− 1)Ξ

(k)
lm = 0. (VIII.17)

This equation is exactly the same as the equation that arises in the discussion of the asymp-

totics of the scalar field discussed in [63], where the necessary mathematical background was

recalled. For the sake of completeness of this paper, the needed results are reproduced in

Appendix B 2.

As shown in Appendix B 2, the general solution to the equation (VIII.17) takes the form:

Ξ
(k)
lm = Ξ

P (k)
lm P̃ (λ)

n (s) + Ξ
Q(k)
lm Q̃(λ)

n (s). (VIII.18)

In the limit s → ±1, the resulting function Ξ
(k)
lm tends to a constant. When l ≥ k, the

contribution from the P -branch is sub-leading.

The complete analysis given in appendix C leads to similar expressions for the other

components of the curvature. An interesting feature that emerges from the analysis is that

the divergence-less condition on E(k)
a implies that most of the zero-modes of E(k)

s are zero:

Ξ
P (k)
00 = 0, Ξ

Q(0)
00 = 0, Ξ

Q(k)
00 = 0, ∀k > 0. (VIII.19)

B. Behaviour at null infinity

In order to make the link with null infinity, it is necessary to rescale the radial coordinate

ρ = η
√

1− s2 [55–57]. Indeed, the hyperbolic coordinates badly describe the limit to null

infinity: the pair (s, η) always tends to (1,∞) on all outgoing null geodesics t = r + b, no

matter what b is. By contrast, the coordinate ρ tends to 2|b| and can distinguish between

the various null geodesics. The detailed procedure on how to derive the evolution of the

Cauchy data as one goes to null infinity is discussed at length in [55–57], to which we refer

the reader. Note the use of the radial coordinate 1
ρ
there, which goes to zero in the null

infinity limit.

A relevant quantity is then the electric density:

√
−gF ρs =

√
γρd−3(1− s2)−d+ 7

2Es(ρ, s, x
A)

=
√
γ(1− s2)−

d
2

+2
∑
k

ρ−kΞ(k). (VIII.20)
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Let us look at the leading term k = 0, separating the two branches, we get

√
−gF ρs =

√
γ
∑
lm

Ξ
P (0)
lm (1−s2)−

d
2

+2P̃
( d−3

2
)

l Ylm+
√
γ(1−s2)−

d
2

+2
∑
lm

Ξ
Q(0)
lm Q̃

( d−3
2

)

l Ylm+O(ρ−1).

(VIII.21)

In the limit s → ±1, the first term will go to a constant while the second one will diverge.

Surprisingly, when we look at the sub-leading contributions in ρ−1, all contributions from

Q
(λ)
n along with the contributions from P

(λ)
n with n = l− k < 0 will diverge in the same way

when s→ ±1. The rest of the contribution from the P ’s will be sub-leading when s→ ±1:

√
−gF ρs =

√
γ(1− s2)−

d
2

+2
∑
k

∑
lm

ρ−k
(

Ξ
P (k)
lm P̃

(k+ d−3
2

)

l−k + Ξ
Q(k)
lm Q̃

(k+ d−3
2

)

l−k

)
Ylm. (VIII.22)

Performing the change of variables leading to standard retarded null coordinates,

u = η
s− 1√
1− s2

, r = η
1√

1− s2
, (VIII.23)

so that

s = 1 +
u

r
, ρ = −2u− u2

r
, (VIII.24)

(u < 0), we get

Fur =
1− s2

η
Es = ρ−1(1− s2)

3
2Es(ρ, s, x

A). (VIII.25)

Using the expansion we obtained above, this leads to

Fur =
∑
k

ρ2−d−k(1− s2)
d
2

∑
lm

Ξ
P (k)
lm P̃ (λ)

n (s)Ylm

+
∑
k

ρ2−d−k(1− s2)
d
2

∑
lm

Ξ
Q(k)
lm Q̃(λ)

n (s)Ylm. (VIII.26)

Substitution of s and ρ then yields

Fur = r2−d
∑
lm

Ξ
P (0)
lm lim

s→1
P

( d−3
2

)
n Ylm +O(r1−d)

+ r−
d
2 (−2u)2− d

2

∑
k

(−2u)−k lim
s→1

( ∑
l≥0,m

Q̃(λ)
n Ξ

Q(k)
lm Ylm +

∑
k>l≥0,m

P̃ (λ)
n Ξ

P (k)
lm Ylm

)
+O(r−

d
2
−1).

(VIII.27)

We can thus conclude that in the r−1 expansion, the various orders in η−1 of the Q branch

combined with some spherical harmonic component of the P branch will build a function of

u at order r−
d
2 while the rest of the P branch will only contribute to a u-constant term at
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order r2−d. It should be noted that whereas there is no fractional powers of η in hyperbolic

coordinates, fractional powers of r appear in null coordinates, in the case of odd spacetime

dimensions.

The leading term in r2−d represents the Coulomb part, while the leading term in r−
d
2

represents the radiation part. Our expansion in null coordinates is in agreement with the

results of [64].

In 4 spacetime dimensions, the k = 0 contribution of the Q branch acquires a leading

logarithmic divergence [29, 36]. Assuming that this contribution is absent, i.e. Ξ
Q(0)
lm = 0,

then the above expansion is still valid for d = 4. In that case, the remaining Q contributions

and the leading P contribution appear at the same order r−2. There is no such singularity

in d > 4 dimensions and so no need to remove the k = 0 contribution of the Q branch.

Although this is not necessary, one might be tempted to remove the Q branches at all

orders along with all the P branches contribution with k ≥ l, in order to get rid of the

r−
d
2 -terms. The only component in Fur is then at r2−d, which encodes as we mentioned the

Coulomb part associated with the parity even branch at the leading order at spatial infinity:

the P -branch for k = 0. However, when d > 4, this contribution is constant along scri and

it will not build a generic function of u. From our analysis, we see that the relevant order

is r−
d
2 , which must be kept. A curiosity in 4 spacetime dimensions is that this is also the

order at which the Coulomb contribution appears.

C. Generalized matching conditions

To come back to the case of 5 spacetime dimensions, our analysis implies the following

asymptotics at null infinity for d = 5:

Fur = A(u, xA)r−
5
2 + C(xA)r−3 + . . . , A(u, xA) =

1√
−u

A(xA) +O
(

(−u)−
3
2

)
. (VIII.28)

Both C and A have opposite matching conditions since A comes from the Q(0) branch while

C comes from the P (0) branch.

The generalized matching conditions will thus involve both even and odd matchings (P is

even under the sphere antipodal map combined with s→ −s but Q is odd). These matching

conditions are associated with different powers of r. The same procedure works in higher
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dimensions. In 4 dimensions where one must set A = 0, there is only the even component

[29, 36].

D. Gauge transformations

In hyperbolic coordinates where the s-time is boosted by one power of η, the two types

of improper gauge transformations appear at the same order O(η0). Technically, this follows

from the fact that s = t
r
, so that terms such as

(
t
r

)k, which decrease as r−k on constant

t-slices, behave as sk, i.e., as constants on constant s-slices.

Gauge transformations are generated by parameters ε of the form

ε(η, xa) = ε(xa) +O(η−1), DaDaε = 0 (VIII.29)

where, as we have seen, the Lorenz gauge holds at infinity. The generator is given on-shell

by

Qε ≈
˛

(dd−2x)
√
−hhsb

[
Ebε−

(
Aη + (d− 4)Θ

)
∂bε
]

(VIII.30)

where the first term,associated with the gauge parameter undifferentiated with respect to

time and linked with the flux of the electric field Es ∼ Fηs, generates the first type of

improper gauge transformations, while the second one, associated with the s-derivative of

the gauge parameter, generates the second type of improper gauge transformations. The

generator Qε is conserved.

The equation for ε can be rewritten as

(1− s2)∂2
s ε+ (d− 4)s∂sε−DAD

Aε = 0, (VIII.31)

which leads to

ε =
∑
l,m

εl,m(s)Yl,m(xa), (1− s2)∂2
s εl,m + (d− 4)s∂sεl,m + l(l + d− 3)εl,m = 0. (VIII.32)

This corresponds to equation (B.6) with λ = 1
2
(d− 1) and n = l− 1. For l > 0, we can write

the solution as

εl,m = (1− s2)
d
2
−1
(
εPl,mP

( d
2
− 1

2
)

l−1 (s) + εQl,mQ
( d
2
− 1

2
)

l−1 (s)
)
. (VIII.33)

The term for l = 0 is given by

ε0,0(s) = εP0,0

ˆ s

0

(1− x2)
d
2
−2dx+ εQ0,0. (VIII.34)
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As for the radial electric field in the previous section, we have two branches of solutions for

ε characterised by their behaviour under parity. The solution parametrised by εQl,m is odd

while the one parametrised by εPl,m is even. The odd solution tends to a finite function on

the sphere in the limit s → ±1 while the even solution tends to zero except for the zero

mode l = 0.

At first sight, the behaviour of these u(1) transformations in the limit s → 1 might be

suprising. In particular, it would seem that the P branch falls off too fast and will lead to

a zero charge close to null infinity. Let us focus on d = 5 and look at the behaviour of the

charges in the limit s→ 1. From our previous analysis, we have

Es = ∂s(Aη + Θ), DaEa = DaDa(Aη + Θ) = 0. (VIII.35)

The combination Aη + Θ satisfies the same equation as ε and takes the general form

Aη + Θ =
∑
l,m

(
ΘP
l,mP̃

(2)
l−1(s) + ΘQ

l,mQ̃
(2)
l−1(s)

)
Yl,m, (VIII.36)

where ΘP
lm and ΘQ

lm can be expressed in terms of Ξ
(0)P
lm and Ξ

(0)Q
lm .

In the limit s→ 1, the ultraspherical functions with n ≥ 0 behave as:

P̃ (2)
n = (1− s2)

3
2

[
P (2)0
n + P (2)1

n (1− s) +O
(

(1− s)2
)]
, (VIII.37)

Q̃(2)
n = Q(2)0

n +Q(2)1
n (1− s) +O

(
(1− s)2

)
. (VIII.38)

Taking into account these asymptotic behaviours, we can expand the charge in the neigh-

bourhood of future null infinity:

Qε = −
∑
l>0,m

(1− s2)−
1
2

[
∂s

(
ΘP
l,mP̃

(2)
l−1(s) + ΘQ

l,mQ̃
(2)
l−1(s)

)(
εPl,mP̃

(2)
l−1(s) + εQl,mQ̃

(2)
l−1(s)

)
−Θ↔ ε

]
−ΘP

0,0ε
Q
0,0 + ΘQ

0,0ε
P
0,0 (VIII.39)

= −
∑
l>0,m

(1− s2)−
1
2

[
∂s

(
ΘQ
l,mQ

(2)0
l−1 + ΘQ

l,mQ
(2)1
l−1 (1− s) + ΘP

l,mP
(2)0
l−1 (1− s2)

3
2 +O

(
(1− s)2

))
(
εQl,mQ

(2)0
l−1 + εQl,mQ

(2)1
l−1 (1− s) + εPl,mP

(2)0
l−1 (1− s2)

3
2 +O

(
(1− s)2

))
−Θ↔ ε

]
−ΘP

0,0ε
Q
0,0 + ΘQ

0,0ε
P
0,0

=
∑
l>0,m

[
3(εQl,mΘP

l,m − εPl,mΘQ
l,m)Q

(2)0
l−1P

(2)0
l−1 +O

(
(1− s)

1
2

))]
−ΘP

0,0ε
Q
0,0 + ΘQ

0,0ε
P
0,0.

(VIII.40)

As expected, the various modes pair up and we do recover the two u(1)’s.
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IX. CONCLUSIONS

One striking result of our analysis is the emergence of an asymptotic symmetry algebra

that is the direct sum of two angle-dependent u(1)’s for d > 4, instead of just one angle-

dependent u(1).

This somewhat unexpected result can be understood as follows. It is customary to say

that in electromagnetism (and for that matter, also in gravity), “the gauge symmetry strikes

twice”. That is, both temporal and longitudinal components of Aµ are removed by the

single gauge invariance δεAµ = ∂µε. This property follows from the fact that the gauge

symmetry involves both ε and ε̇, which are independent at any given time, so that invariance

of the physical states (defined on a spacelike surface) under gauge transformations yields

two conditions, one related to ε and one related to ε̇. Classically, this is reflected in the

presence of two first class constraint-generators per space point, π0 ≈ 0 and G ≈ 0 [62].

The “obvious” angle-dependent u(1) symmetry is associated with
´
dd−1x εG ≈ 0, which

involves spacelike derivatives and clearly needs to be supplemented by a non-vanishing sur-

face term in order to be a well-defined canonical generator when the gauge parameter ε does

not go to zero. This surface term can be computed along the lines of [25]. This is the first

global angle-dependent u(1) symmetry.

It is traditionnally assumed that the generator
´
dd−1x ε̇ π0, being purely algebraic, does

not need to be supplemented by a surface term, no matter how its parameter ε̇ behaves at

infinity. This would be true with the standard bulk symplectic form, but is incorrect in the

present case due to the surface contribution to the symplectic structure. As we have seen,

the generator
´
dd−1x ε̇ π0 must be supplemented by a non-vanishing surface term when ε̇

goes to a non-vanishing function of the angles at infinity (at order 1
r
). This is the origin of

the second angle-dependent global u(1).

Each first class constraint kills locally one canonical gauge pair and also brings at infinity

its own angle-dependent global u(1). There is therefore symmetry between longitudinal and

temporal directions.

Another way to understand the necessity of the second u(1) comes from Lorentz invari-

ance, once the first u(1) generated by G[ε] is uncovered. Indeed, we have seen that while

G[ε0] = Q (zero mode = electric charge) is in the trivial representation of the Poincaré group,

generators G[ε] with a non-trivial angle-dependent parameter ε do not form by themselves
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a representation. They transform into the generator G[µ] of the second u(1), so that G[µ]

is needed by Lorentz invariance once G[ε] with a non-trivial angle-dependent parameter ε

appears. As we pointed out, one has in fact two representations pairing G[ε] and G[µ] of

opposite parities, namely, (G[εeven], G[µodd) and (G[εodd], G[µeven). From the point of view of

Lorentz invariance, the two angle-dependent u(1)’s are more conveniently split in this way.

In four dimensions, parity conditions eliminate one u(1), the one generated by

(G[εodd], G[µeven). At the same time, there is no need for imposing the condition FAB = 0.

This enables one to consider magnetic sources with monopole decay at infinity. It has been

argued in [65] that a second magnetic u(1) was underlying some soft theorems, so there

would be also two u(1)’s in that case.

It would be of interest to display explicitly the action of the second u(1) at null infin-

ity and study its quantum implications. Similarly, the generalization to gravity should be

carried out. This will be done in a forthcoming paper [66], where we shall discuss how

features similar to those encountered here (absence of parity conditions and expected cor-

responding enlargement of the asymptotic symmetry - in that case doubling of the BMS

supertranslations) should appear in the gravitational context.

Note added

While this work was being completed, we received the interesting preprint [67] that deals

with similar questions. This work confirms the results of [36], [29] that the parity conditions

in d = 4 spacetime dimensions not only make the symplectic form finite but also eliminate

the divergence of the fields as one goes to null infinity. The preprint [67] also imposes

conditions in d > 4 that are stronger than the conditions discussed here, which explains

why only one angle-dependent u(1) is found in that work. Similarly, the recent preprint [68]

considers matching conditions equivalent to the standard parity conditions of d = 4 and also

finds a single u(1).
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Appendix A: Magnetic Sources in d > 4

Let us assume that there are only have magnetic sources. The equations for the electro-

magnetic field takes the form

∂µF
µν = 0, ∂µ(?F )µν1...νn = κν1...νn , n = d− 3, (A.1)

where we have assumed usual euclidean coordinates xµ = t, x1, ..., xd−1. We will assume that

the magnetic source κν1...νn is non-zero in a finite region only. The natural source will be a

(d− 3)-dimensional object:

Y ν(σ) : R× Σ→ Rd, (A.2)

κν1...νn(xµ) = q

ˆ
dY ν1 ∧ . . . ∧ dY νn δd

(
xµ − Y µ(σ)

)
, (A.3)

where Σ is a closed spatial manifold of dimension (d− 4).

A static configuration will take the following form

Y 0 = σ0, ∂σ0Y i = 0, (A.4)

κi1...in = 0, ∂iκ
tij...jn−2 = 0, κti1...in−1(xj) = q

˛
Σ

dY i1 ∧ . . . ∧ dY in−1δd−1
(
xj − Y j(σ)

)
,

(A.5)

where the time dependence drops out as we can evaluate the integral over σ0. We can

compute the "total" charge:
ˆ
dd−1xκti1...in−1 = q

˛
Σ

dY i1 ∧ . . . ∧ dY in−1 = 0. (A.6)

In this case, the dynamical equations (A.1) are easily solved in terms of a dual potential

Bν1...νn :

? Fµν1...νn = (n+ 1)∂[µBν1...νn], Bi1...in = 0, Bti1...in−1 = ∆−1κti1...in−1 . (A.7)
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Using the relevant Green’s function, we get:

Bti1...in−1(t, x) =

ˆ
dd−1x′

1

|x− x′|d−3
κti1...in−1(x′) (A.8)

=
1

rd−3

ˆ
dd−1x′κti1...in−1(x′) +O(r2−d) (A.9)

= O(r2−d). (A.10)

The corresponding field strength is given by

? F ti1...in = O(r1−d), ?F i1...in+1 = 0, Fti = O(r1−d), Fij = 0. (A.11)

Appendix B: Special functions

1. Spherical harmonics

Functions on the (n− 1)-sphere can be decomposed in spherical harmonics Yl(xA) where

l is the degree of the corresponding polynomial[69]. Spherical harmonics of degree l are

eigenfunctions of the Laplacian on the sphere

∆Yl = −l(n+ l − 2)Yl, (B.1)

and they have the following parity properties under the antipodal map xA → −xA

Yl(−xA) = (−)lYl(x
A). (B.2)

Vectors on the (n − 1)-sphere can also be decomposed in spherical harmonics. We have

two families:

• longitudinal vector fields are decomposed in longitudinal vector spherical harmonics

ΦA
l . They are eigenfunctions of the Laplacian with eigenvalues given by:

∆ΦA
l = −[l(l + d− 2)− d+ 2]ΦA

l , ΦlA = ∂AYl (B.3)

• transverse vector fields are decomposed in transverse vector spherical harmonics ΨA
l .

They are eigenfunctions of the Laplacian with eigenvalues given by:

∆ΨA
l = −[l(l + d− 2)− 1]ΨA

l . (B.4)
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The above results for the decomposition of transverse vector fields lead to a set of spherical

harmonics for exact two forms ΘlAB = ∂AΨlB − ∂BΨlA. The action of the Laplacian is given

by

∆ΘlAB = −[l(l + d− 2)− d+ 3]ΘlAB. (B.5)

2. Ultraspherical polynomials and functions of the second kind

This subsection follows very closely [63]. We have chosen to give this information again

here (rather than referring to the relevant equations in [63]) for the sake of completeness

and for the convenience of the reader.

The central equation for our analysis is (VIII.17), i.e.,

(1− s2)∂2
sY

(λ)
n + (2λ− 3)s∂sY

(λ)
n + (n+ 1)(n+ 2λ− 1)Y (λ)

n = 0, (B.6)

λ = k +
d− 3

2
, n = l − k. (B.7)

From its definition, the parameter λ is an integer (odd spacetime dimensions) or a half-

integer (even spacetime dimensions). Furthermore λ ≥ 1
2
, the miminum value λ = 1

2
being

achieved for the leading order of the 1
η
expansion in 4 spacetime dimensions (d = 4 and

k = 0). This minimum value has a special status as we shall see (appeareance of logarithmic

singularities).

The equation (B.6) can be brought into standard form [70] by appropriate changes of

variables. The procedure is different according to whether the parameter n, which is an

integer, is positive or zero, n ≥ 0, or is negative, n < 0. Both cases occur in our analysis

since n = l − k so that n < 0 whenever the order k in the 1
η
-expansion exceeds the order l

of the spherical harmonics. For the leading 1
η
-order k = 0, only the case n ≥ 0 occurs.

• n ≥ 0.

The rescaling

Y (λ)
n (s) = (1− s2)λ−

1
2ψ(λ)

n (s) (B.8)

brings the equation to the form

(1− s2)∂2
sψn − (2λ+ 1)s∂sψn + n(n+ 2λ)ψn = 0. (B.9)

In our case (λ = 1
2
, 1, 3

2
, · · · and n ∈ N), this equation has a polynomial solution. For

λ = 1
2
, the equation reduces to the Legendre equation and we recover the familiar
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Legendre polynomials. For general λ > −1
2
, this equation takes a form analysed

e.g. in [70], and the polynomial solution is known as ultraspherical polynomial or

Gegenbauer’s polynomial P (λ)
n . These polynomials satisfy

P (λ)
n (−s) = (−)nP (λ)

n (s), P (λ)
n (1) =

 n+ 2λ− 1

n

 . (B.10)

and can be constructed using the following recurrence formula

nP (λ)
n (s) = 2(n+ λ− 1)sP

(λ)
n−1(s)− (n+ 2λ− 2)P

(λ)
n−2(s), n > 1, (B.11)

P
(λ)
0 (s) = 1, P

(λ)
1 (s) = 2λs. (B.12)

The function of the second kind Q(λ)
n is the solution of the differential equation (B.9)

which is linearly independent of P (λ)
n . The full set can be constructed using the same

recurrence relation with a different starting point:

nQ(λ)
n (s) = 2(n+ λ− 1)sQ

(λ)
n−1(s)− (n+ 2λ− 2)Q

(λ)
n−2(s), n > 1, (B.13)

Q
(λ)
0 (s) =

ˆ s

0

(1− x2)−λ−
1
2dx, Q

(λ)
1 (s) = 2λsQ

(λ)
0 (s)− (1− s2)−λ+ 1

2 . (B.14)

They take the general form

Q(λ)
n (s) = P (λ)

n (s)Q
(λ)
0 (s) +R(λ)

n (s)(1− s2)−λ+ 1
2 , (B.15)

where R(λ)
n are polynomials of degree n− 1 and satisfy Q(λ)

n (−s) = (−)n+1Q
(λ)
n (s). For

the values of λ relevant for our analysis (half integers and integers), the functions of

the second kind Q(λ)
n (s) diverge at s = ±1. For λ = 1

2
, the Legendre function of the

second kind diverges logarithmically while the other values of λ lead to

lim
s→1

(1− s2)λ−
1
2Q(λ)

n (s) =
1

2λ− 1
, n = 0, 1, . . . (B.16)

(Q(λ)
n (s) ∼ (1− s2)−λ+ 1

2 ).

The general solution for Y (λ)
n is then given from (B.8) by

Y (λ)
n (s) = AP̃ (λ)

n (s) +BQ̃(λ)
n (s), (B.17)

P̃ (λ)
n (s) = (1− s2)λ−

1
2P (λ)

n (s), Q̃(λ)
n (s) = (1− s2)λ−

1
2Q(λ)

n (s), ∀n ≥ 0, (B.18)

P̃ (λ)
n (−s) = (−)nP̃ (λ)

n (s), Q̃(λ)
n (−s) = (−)n+1Q̃(λ)

n (s). (B.19)
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For all values of λ, the Q̃ branch of Y will dominate in the limit s→ ±1. If λ = 1
2
, the

Q̃ branch will diverge logarithmically while the P̃ branch will be finite. For all other

values of λ (integers and half-integers ≥ 1), the Q̃ branch will be finite and will tend

to a non-zero constant at s = ±1 while the P̃ branch will go to zero.

• n < 0.

In that case, taking into account that k ≥ 1 (in order to have n = l−k < 0), one finds

that n+ 2λ− 1 = l + k + d− 4 > 0, so that n > 1− 2λ. Furthermore λ ≥ 3
2
> 1,

0 > n > 1− 2λ, λ ≥ 3

2
.

The change of parameters n = −r− 1 (r = −n− 1 = 0, 1, 2, · · · ) and λ = 1− ρ brings

the equation to the form

(1− s2)∂2
sY

(λ)
n − (2ρ+ 1)s∂sY

(λ)
n + r(r + 2ρ)Y (λ)

n = 0, (B.20)

r = −n− 1 = 0, 1, 2, · · · , ρ = 1− λ = 1− (k +
d− 3

2
). (B.21)

This is again the equation (B.9) for ultraspherical polynomials, but with a range of ρ

which is not the usual one since ρ ≤ −1
2
. This more general equation has been also

studied in [70], where it was found that the pattern is similar: there is a polynomial

branch and a "second" class branch, which is actually also polynomial when ρ (and

thus λ) is a half integer.

We give the solutions directly in terms of the original parameters λ and n appearing in

the expansion of the fields. The polynomial branch pr(s) of solutions has the standard

parity pr(−s) = (−)rpr(s), while the other branch (which might also be polynomial as

we pointed out) fulfills qr(−s) = (−)r+1qr(s). Therefore, in order to keep uniformity in

the parity properties when expressed in terms of n, we denote the polynomial branch

by Q̃(λ)
n and the other branch by P̃ (λ)

n .

The two sets of solutions can be constructed with the following recurrence relation:

(2λ+ n− 1)P̃
(λ)
n−1(s) = 2(n+ λ)sP̃ (λ)

n (s)− (n+ 1)P̃
(λ)
n+1(s), n ≤ −2, (B.22)

P̃
(λ)
−1 (s) =

ˆ s

0

(1− x2)λ−
3
2dx, P̃

(λ)
−2 (s) = sP̃

(λ)
−1 (s) +

1

2(λ− 1)
(1− s2)λ−

1
2 , (B.23)
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the polynomial branch being given by the following starting point

Q̃
(λ)
−1(s) = 1, Q̃

(λ)
−2(s) = s. (B.24)

In order to prove this recurrence, one needs the following relation

(1− s2)∂sP̃
(λ)
n = (n+ 1)(sP̃ (λ)

n − P̃
(λ)
n+1) (B.25)

and its equivalent in terms of Q̃. The parity conditions read

P̃ (λ)
n (−s) = (−)nP̃ (λ)

n (s), Q̃(λ)
n (−s) = (−)n+1Q̃(λ)

n (s). (B.26)

The general solution for Y (λ)
n keeps the form

Y (λ)
n (s) = AP̃ (λ)

n (s) +BQ̃(λ)
n (s), 0 > n > 1− 2λ. (B.27)

An important difference from the regime n ≥ 0 is that both branches have now the

same asymptotic behaviour in the limit s → ±1: they both tend to a non-zero finite

value. In particular, as we already mentioned, both branches are polynomials if λ is a

half integer.

Appendix C: Extra components in hyperbolic description

In the main text, we have solved the equations of motion for one component of the

curvature Fµν , namely, Es. In this appendix, we will solve for the other components.

The equations to be solved are

Eb = Fbη =
∑
k≥0

η−d+3−kE
(k)
b , Fab =

∑
k≥0

η−d+4−kF
(k)
ab , F

(0)
ab = 0, (C.1)

DaE(k)
a = 0, (d− 4 + k)F

(k)
ab = ∂aE

(k)
b − ∂bE

(k)
a , (C.2)

DbF (k)
ba + kE(k)

a = 0, ∂[aF
(k)
bc] = 0. (C.3)

Combining these equations, we can obtain second order equations for both E(k)
a and F (k)

ab :

DaDaE(k)
b − (d− 2)E

(k)
b + k(d− 4 + k)E

(k)
b = 0, (C.4)

DaDaF (k)
bc − 2(d− 3)F

(k)
bc + k(d− 4 + k)F

(k)
bc = 0. (C.5)
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As we saw in the main text, the first equation combined with the fact that E(k)
a is divergence-

less on the hyperboloid implies an evolution equation for E(k)
s :

(1−s2)∂2
sE

(k)
s +(d−6)s∂sE

(k)
s +(d−4)E(k)

s −DAD
AE(k)

s −(1−s2)−1k(d−4+k)E(k)
s = 0. (C.6)

In a similar way, the second equation combined with the fact that F (k)
ab is closed on the

hyperboloid gives us an evolution equation for F (k)
AB:

(1− s2)∂2
sF

(k)
AB + (d− 6)s∂sF

(k)
AB + 2(d− 4)F

(k)
AB

−DCDCF
(k)
AB − (1− s2)−1k(d− 4 + k)F

(k)
AB = 0. (C.7)

The general solution for E(k)
s is given in terms of ultraspherical polynomials as follows

E(k)
s = (1− s2)−

k
2

∑
l,m

(
Ξ
P (k)
lm P̃ (λ)

n + Ξ
Q(k)
lm Q̃(λ)

n

)
Ylm, (C.8)

where λ = k+ d−3
2

and n = l− k. In order to obtain the general solution to equation (C.7),

we will use the same strategy and decompose F (k)
AB in spherical harmonics:

F
(k)
AB = (1− s2)−

k
2

∑
l>0,m

α
(k)
lmΘlmAB. (C.9)

The exact spherical harmonics ΘlmAB are enough as F (k)
AB is an exact 2-form on the sphere.

Equation (C.7) then takes the form

(1− s2)∂2
sα

(k)
lm + (d+ 2k − 6)s∂sα

(k)
lm + l(l + d− 3)α

(k)
lm − (k − 1)(k + d− 4)α

(k)
lm = 0, (C.10)

which has the following solution

α
(k)
lm = α

P (k)
lm P̃ (λ)

n (s) + α
Q(k)
lm Q̃(λ)

n (s), (C.11)

with the same λ and n.

Using the expression for E(k)
s and F (k)

AB, we can now build the remaining components of

the curvature in such a way that the main equations are satisfied. This is done by expending

(C.2):

DAE
(k)
A = (1− s2)∂sE

(k)
s + (d− 4)sE(k)

s , (C.12)

∂AE
(k)
B − ∂BE

(k)
A = (d− 4 + k)F

(k)
AB, (C.13)

F
(k)
sA =

1

d− 4 + k
(∂sE

(k)
A − ∂AE

(k)
s ). (C.14)
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The first two lines give respectively the longitudinal and the transverse part of E(k)
A in terms

of E(k)
s and F

(k)
AB while the last one then gives the last components F (k)

sA in term of the

rest. The only consistency condition coming from these equations concerns the zero-mode

of (C.12). Integrating this equation on the sphere, we see that the zero-mode of the RHS

has to be zero:

0 =

ˆ
dd−2Ω

{
(1− s2)∂sE

(k)
s + (d− 4)sE(k)

s

}
= (1− s2)−

k
2

(
(1− s2)∂s + (d− 4 + k)s

)(
Ξ
P (k)
00 P̃

(λ)
−k + Ξ

Q(k)
00 Q̃

(λ)
−k

)
. (C.15)

This implies that Ξ
P (k)
00 P̃

(λ)
−k + Ξ

Q(k)
00 Q̃

(λ)
−k has to be proportional to (1 − s2)

d−4+k
2 . One can

easily check that, except for k = 0 where P (λ)
0 = (1 − s2)

d−4
2 , the function (1 − s2)

d−4+k
2 is

not a solution of the dynamical equation of the zero-mode of Ξ(k). This implies

Ξ
P (k)
00 = Ξ

P (0)
00 δk0 , Ξ

Q(k)
00 = 0. (C.16)

Using the symbols T and L to respectively denote the transverse and longitudinal part

of vectors defined on the sphere, we obtain the following expressions

E
(k)T
A = (d− 4 + k)(1− s2)−

k
2

∑
l>0,m

(
α
P (k)
lm P̃ (λ)

n + α
Q(k)
lm Q̃(λ)

n

)
ΨlmA, (C.17)

E
(k)L
A = −(1− s2)−

k
2

∑
l>0,m

1

l(l + d− 3)(
(1− s2)∂s + (d− 4 + k)s

)(
Ξ
P (k)
lm P̃ (λ)

n + Ξ
Q(k)
lm Q̃(λ)

n

)
ΦlmA, (C.18)

F
(k)T
sA = (1− s2)−

k
2
−1
∑
l>0,m

(
(1− s2)∂s + ks

)(
α
P (k)
lm P̃ (λ)

n + α
Q(k)
lm Q̃(λ)

n

)
ΨlmA, (C.19)

F
(k)L
sA = −k(1− s2)−

k
2
−1
∑
l>0,m

1

l(l + d− 3)

(
Ξ
P (k)
lm P̃ (λ)

n + Ξ
Q(k)
lm Q̃(λ)

n

)
ΦlmA. (C.20)

This provides the general solution to the complete system as the tensors F (k)
ab and E(k)

a built

in this way satisfy the last two equations given in (C.3). The second equation is trivially

satisfied while the first one can be shown to reduce to combinations of the two evolution

equations (C.6) and (C.7).
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