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We investigate the asymptotic structure of electromagnetism in Minkowski space in even and odd
spacetime dimensions > 4. We focus on d > 4 since the case d = 4 has been studied previously at length.
We first consider spatial infinity where we provide explicit boundary conditions that admit the known
physical solutions and make the formalism well defined (finite symplectic structure and charges). Contrary
to the situation found in d = 4 dimensions, there is no need to impose parity conditions under the antipodal
map on the leading order of the fields when d > 4. There is, however, the same need to modify the standard
bulk symplectic form by a boundary term at infinity involving a surface degree of freedom. This step makes
the Lorentz boosts act canonically. Because of the absence of parity conditions, the theory is found to be
invariant under two independent algebras of angle-dependent (1) transformations (d > 4). We then
integrate the equations of motion in order to find the behavior of the fields near null infinity. We exhibit the
radiative and Coulomb branches, characterized by different decays and parities. The analysis yields
generalized matching conditions between the past of Z* and the future of Z~.
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I. INTRODUCTION

Most of the studies of the asymptotic properties of
gravity in the asymptotically flat context have been
performed at null infinity [1-4] (for recent useful reviews,
see [5—7]). This is quite natural, and would seem to be even
mandatory, in order to decipher the intricate properties of
gravitational radiation.

One conceptual difficulty with analyses at null infinity,
however, is that the existence of a null infinity with the
smoothness properties usually assumed in the asymptotic
treatments is a difficult dynamical question: given reason-
able initial data on a Cauchy hypersurface, will their
Cauchy development give rise to a null infinity with the
requested properties? Strong doubts that this would be the
case have been expressed in [8], which we quote verbatim:
“...1t remains questionable whether there exists any non-
trivial solution of the field equations that satisfies the
Penrose requirements [of asymptotic simplicity]. Indeed,
his regularity assumptions translate into fall-off conditions
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of the curvature that may be too stringent and thus may fail
to be satisfied by any solution that would allow gravita-
tional waves.” This point has also been forcefully stressed
in the recent work [9].

One remarkable by-product of the studies at null infinity
was the discovery that the asymptotic symmetry group of
gravity in the asymptotically flat context was the infinite-
dimensional Bondi-Metzner-Sachs (BMS) group. Initially
received with some skepticism because the physical sig-
nificance of this infinite-dimensional enlargement of the
Poincaré group was not clear, the emergence of the BMS
group was understood recently to be related to profound
infrared properties of gravity having to do with soft
graviton theorems and memory effects [10-16] (see [17]
for an exposition of this recent work and [18-20] for earlier
investigations). The conclusion of the huge amount of
activity that flourished since then is that the BMS group is a
gift rather than an embarrassment. An even further enlarge-
ment of the Poincaré group including ‘‘super-rotations”
have even been argued to be useful [21-23].

The BMS transformations are diffeomorphisms leaving
the boundary conditions at null infinity invariant. They
are exact symmetries of the theory. That is, they leave
the action exactly invariant up to a surface term, without
having to make approximations. As exact symmetries
of the theory, they should be visible in any description,
and, in particular, in slicings of spacetime adapted to
spatial infinity. In such slicings, they would appear as
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diffeomorphisms leaving the boundary conditions at
spatial infinity invariant. For this to be the case, however,
the boundary conditions at spatial infinity should be
equivalent, or at least compatible in a sense that we shall
make more precise below, with the boundary conditions
at null infinity. This brings us back to the dynamical
question on null infinity mentioned above.

Earlier investigations of the asymptotic symmetries at
spatial infinity showed no sign of the BMS group. One
either found the Poincaré group with no enlargement
[24,25]; the smaller homogeneous Lorentz group [26];
or an even larger extension, the Spi group [27,28], but in no
case the BMS group uncovered at null infinity. One logical
possibility for this discrepancy would be that the set of
boundary conditions at spatial infinity is incompatible with
the set of boundary conditions at null infinity, so that there
exists transformations preserving one set but not the other.
(Invariance of the action cannot be the issue—provided
the action is well defined—since we are dealing with
diffeomorphisms.)

If true, this situation would be very disappointing and
physically unsatisfactory. Motivated by the desire to under-
stand better these earlier puzzling results, we have
reexamined the asymptotic structure of gravity at spatial
infinity [29,30]. We have provided in [29] boundary
conditions at spatial infinity that eliminate the previous
tensions between spatial infinity and null infinity analyses,
in the sense that (i) these boundary conditions are invariant
under the BMS group, which acts nontrivially on the fields
and has generically nonvanishing conserved charges, and
(ii) integration of the symmetry generators from spatial to
null infinity enables one to show that it is the same BMS
group that acts both at spatial infinity and at null infinity,
expressed in different parametrizations that can be explic-
itly related [31].

Furthermore, the matching conditions imposed at null
infinity on the leading order of the gravitational field [17]
are automatic consequences of the asymptotic behavior of
the Cauchy data at spatial infinity. Although not equivalent
(they are stronger), the boundary conditions at null infinity
are compatible with those at spatial infinity, in the sense
that they can be shown to obey the conditions that are
implied at null infinity by the behavior at spatial infinity. It
is of interest to point out in this respect that while the
leading order of the Cauchy development of the gravita-
tional field coincides with the generally assumed leading
order at null infinity, the subsequent terms in the expansion
differ in general, since subleading terms of the type “r‘—k’
(k > 1) will develop from generic initial data. One conse-
quence of our analysis is that these nonanalytic terms do
not spoil the BMS symmetry—even if they spoil the
usually assumed “peeling” behavior of the gravitational
field at null infinity [9]. This gives further robustness to the
BMS symmetry. It also disentangles the BMS group from
gravitational radiation. [Incidentally, in our first work on

this problem [30], we put forward alternative boundary
conditions that were also BMS invariant, but which yielded
a singular behavior (~Inr) for some components of the
Weyl tensor as one went to null infinity. In spite of this
singular behavior at null infinity, nothing spectacular
occurred at spatial infinity and the BMS symmetry was
untouched.]

Similar features arise in the discussion of the asymptotic
behavior of the electromagnetic field, where the null
infinity analysis [32-34] seemed to be at variance with
the spatial infinity analysis [35]. The tension was solved in
[36], again by providing appropriate boundary conditions
at spatial infinity. The null infinity matching conditions of
electromagnetism were also shown there to be a conse-
quence of the boundary conditions at spatial infinity.

Extension of the asymptotic analysis to higher dimen-
sions raises interesting issues, which have led to a some-
what unclear situation at null infinity where some studies
yield infinite-dimensional asymptotic symmetries as in four
spacetime dimensions, while some others do not [37-46].
The question is further complicated in odd spacetime
dimensions because half-integer fractional powers of r~!
mix with integer powers, leading to problems with the
conformal definition of null infinity [47-49], and the
frequent necessity to split the analysis according to whether
the spacetime dimension is odd or even since only in the
latter case does one avoid nonanalytic functions at null
infinity.

This provides strong motivations for investigating the
asymptotic structure of the electromagnetic and gravita-
tional fields at spatial infinity in higher dimensions, where
the falloff of the fields is more uniform (no fractional
powers of r). This is done here for electromagnetism. We
show that the methods developed in our previous work [36]
generalize straightforwardly to higher dimensions, with no
new conceptual difficulty. The discussion proceeds along
similar lines independently of the spacetime dimension.
One finds in particular the same need to modify the
standard bulk symplectic structure by a surface term, as
shown necessary also by different methods in d =4
spacetime dimensions [50,51].

One remarkable feature, however, is that a second angle-
dependent u(1) asymptotic symmetry emerges. This sec-
ond u(1) is eliminated in 4 spacetime dimensions because
of parity conditions that must be imposed to get rid of
divergences in the symplectic structure and of divergences
in some components of the fields as one goes to null infinity
[36], but these parity conditions turn out to be unnecessary
in higher dimensions (although it would be consistent to
impose them).

The difference in the behavior of the fields according to
whether the dimension is even or odd appears when one
considers null infinity. We exhibit the behavior of the
electromagnetic field near null infinity by integrating the
equations of motion “from spatial infinity to null infinity.”
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This is done by going first to hyperbolic coordinates
[27,52-54]. Hyperbolic coordinates are pathological in
the limit, however, and we thus go then to coordinates
introduced by Friedrich, which are better suited to that
purpose [55-57]. We show that initial data fulfilling our
asymptotic conditions at spatial infinity, without parity
conditions, lead to a nondivergent behavior at null infinity
(d > 4). The presence of terms with different parities leads
to an interesting generalization of the matching conditions
between fields at the past of Z* and the future of Z~, which
we give.

Our paper is organized as follows. Section II provides the
boundary conditions for the standard canonical variables
for (free) electromagnetism, i.e., the spatial components of
the vector potential and their conjugate momenta, which are
the components of the electric field. We focus on the case of
d = 5 spacetime dimensions. The symplectic form is finite
without parity conditions. We allow a gradient term 0,;®,
where @ is of order O(r°) in the asymptotic behavior of the
vector potential. This gives a gauge-invariant formulation
of the boundary conditions and is crucial for exhibiting the
full set of asymptotic symmetries. In Sec. III, we determine
the proper and improper [58] asymptotic symmetries for
these boundary conditions. We show in Sec. IV that
because of the presence of a gradient term in the boundary
conditions, the Lorentz boosts are not canonical trans-
formations. The problem can be cured by introducing a
surface degree of freedom (d.o.f.) (which can ultimately be
identified with A, at the boundary). This is just as in 4
spacetime dimensions [36]. We then give the complete
formulation of the d = 5 theory in Sec. V where we write in
particular explicitly all the Poincaré generators. In Sec. VI,
we show how the second angle-dependent u(1) symmetry
emerges. Section VII generalizes the analysis to arbitrary
spacetime dimension > 5. The detailed behavior of the
fields as one goes to null infinity is derived in Sec. VIII,
where we compare and contrast the situations in d =4
spacetime dimensions (where parity conditions are neces-
sary to remove leading logarithmic divergences) and d > 4
spacetime dimensions (where this is not necessary). The
concluding Sec. IX gives further light on the emergence of
the second angle-dependent u(1). Three appendixes com-
plete the discussion.

As it is common practice in such asymptotic investiga-
tions, we shall assume “uniform smoothness” [3] whenever
needed, ie., 0,0(r™%) =o(r*1"),0,0(r %) = o(r’%).
Similarly, the distinction between O(r~**1)) and o(r¥)
will usually not be important to the orders relevant to the
analysis.

We close this Introduction by recalling what is meant
here by the concept of asymptotic symmetry. This concept
is defined only in space with boundaries (which can be
infinity), once boundary conditions are prescribed to
complete the definition of the theory [59], as particularly
emphasized in [60]. Asymptotic symmetries are gauge

transformations that preserve the boundary conditions (and
yield finite surface terms in the variation of the action so as
to have well-defined canonical generators, here at spatial
infinity). An asymptotic symmetry is nontrivial if its
generator is not identically zero, i.e., if there are allowed
configurations (configurations obeying the boundary con-
ditions) that make it not vanish. Such an asymptotic
symmetry is then called “improper gauge symmetry”
following the terminology introduced in the lucid paper
[58]. “Proper gauge transformations” have identically
vanishing generators and form an ideal. The true physical
asymptotic symmetry algebra is the quotient of all the
asymptotic symmetries by the proper ones. Note that no
gauge condition is involved in that definition, which is
therefore intrinsic since it does not view asymptotic
symmetries as residual gauge transformations preserving
some gauge conditions. (Of course, the boundary condi-
tions might involve implicitly some gauge fixing as it is
usually difficult to formulate them in terms of gauge
invariants only. It is important to check gauge independ-
ence. The boundary conditions given below for electro-
magnetism leave the freedom of making an arbitrary gauge
transformation with a finite generator.)

II. ACTION AND BOUNDARY CONDITIONS:
PRELIMINARY CONSIDERATIONS

We start with the standard action of source-free electro-
magnetism in d spacetime dimensions, which takes the
canonical form

SH Al,ﬂ' A()

/dl/dd lxn'0,A;
ar [ atx(Laim 4+ LFiiE, 1A F 2.1
— | at X 5”ﬂi+1 i tAG | +Fs,  (21)

where F, is a surface term at spatial infinity (r — o),
which depends on the boundary conditions and which will
be discussed below. The dynamical variables to be varied in
the action are the spatial components A; of the vector
potential, their conjugate momenta 7z’ (equal to the electric
field), and the temporal component A, = A, of the vector
potential which plays the role of the Lagrange multiplier for
the constraint

G=-0n'~ (2.2)
(Gauss’s law). We use the symbol =
the constraint’s surface.

to denote equality on

A. Asymptotic behavior of the fields: First conditions

We now specialize to 4 + 1 spacetime dimensions for
definiteness. In4 + 1 spacetime dimensions the electric and
magnetic fields decay at spatial infinity as 5. This implies that
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the electromagnetic potential behaves as r% up to a gauge
transformation, i.e., up to a gradient 0;®. Under a gauge
transformation A; — A; + 0;e, @ is shifted by e This
transformation will have a well-defined generator if € is
of order unity at infinity (see below). It is therefore natural
to request that @ be also of order unity at infinity (which
implies 9;® ~ %). We thus impose the following decay at
spatial infinity:

_ 1 -
Al:8l®+r_Al+

2
I SR S -4 2
=5 —|—r47r +o(r ™), (2.3)
where ® and the coefficients of the various powers of r~!
are arbitrary functions on the 3-sphere, i.e., of the angles x*
used to parametrize it. We have kept only the leading term
in®=0o+2 O(%), since the subsequent terms can be
absorbed by redefinitions. It is only in 3 + 1 dimensions
that 9,® and the first term containing A; are of the same
order. Here, 9;® decays more slowly by one power of r.
The boundary conditions (2.3) make the kinetic term in
the action well-defined provided we impose that Gauss’s
law hold at infinity one order faster than expected, i.e.,

. 1
aiﬂ' =0 (F)

[the order implied by (2.3) is o()]. This ensures that the
term [ d*x7'0,0;® has no logarithmic singularity and
clearly does not eliminate any physical solution. The
condition (2.4) is an integral part of our boundary
conditions.

The asymptotic conditions (2.4) are sufficient by them-
selves to make the symplectic form finite. There is no need
to impose parity conditions on the fields, contrary to what
was found in 4 spacetime dimensions [36], where an
appropriate generalization of the parity conditions of
[25,35] was necessary.

(2.4)

B. Polar coordinates

For later purposes, we rewrite the boundary conditions in
spherical coordinates, in which the Minkowski metric reads

ds®> = —dt* + dr? + gupdx*dxB, (2.5)

with

9as = *7ap; (2.6)
where y,5 is the round metric in the unit sphere. In the
sequel, angular indices on a “bar” quantity will be raised or
lowered with 7,5, e.g., 74 = 7487. Bar quantities live on
the unit sphere.

One gets for the asymptotic falloff in polar coordinates,
recalling that the momenta carry a unit density weight,

- 1 ¢ _
A,:ﬁAr+FA§)+o(r 3, (2.7)
- 1 g -1
7 =7 +-z" +o(r ), (2.8)
r
R
Ap:@¢+;AA+ﬁAw+ﬂUJL (2.9)
=l Ly o(r??) (2.10)
r r? ’ '

where the coefficients of the various powers of 1/r are
functions of the angles xA. Furthermore,

Note that 9,® is of order 0(%) and has been absorbed
in A,.

C. Relativistic invariance of the boundary conditions

The boundary conditions (2.3) and (2.4) are easily
verified to be Lorentz invariant. A general deformation
of a spacelike hyperplane can be decomposed into normal
and tangential components, denoted by & and &, respec-
tively. A Poincaré transformation corresponds to the
deformation

£=bx +a* (2.12)

E=bu+d, (2.13)
where b;, b;; = —bj;, a* and a' are arbitrary constants. The
constants b; parametrize the Lorentz boosts, whereas the
antisymmetric constants b;; = —b;; parametrize the spatial
rotations. The constants a* and a’ are standard translations.
Under such a deformation, the fields transform as

6A; = Eni + EF;i 4+ 0,¢ (2.14)

or' = 0,y (F™E) + 0,y (§"7') — (0 €') 2™ = £'0,m".
(2.15)

The transformation of the fields is really defined up to a
gauge transformation. This is the reason why we have
included the term 0;( in the transformation of A;. A definite
choice of accompanying gauge transformation will
be made below to get simple expressions for the
algebra. It is clear that the falloff in (2.3) and (2.4) is
preserved under these transformations provided ¢ behaves
as { = Z(x") + S5 4 o().

The above transformation rules imply that the leading
order of the fields transforms only under boosts and
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rotations (their variations under translations are of lower
order). One gets explicitly the following changes of the
leading orders of the fields, which we write in polar
coordinates:

_ b _ _
SpyAr =27+ YH(04A, + Ay) = (1, (2.16)
4
i b g vBia 3 i 1
SpyAx = —=7apT" + YP(0pAs — 0pAp) + 0x¢', (2.17)
V7
Spy® =2¢, (2.18)
Spym" = IDY(b(O4A, + Ay)) + 0, (YA7"), (2.19)

Spyt = \7Dg(byP 7 P (8cAp — OpAc)) + 0p(YP7?)
— OpYARE — YAD,7E. (2.20)

Here, we have set

1.
E=rb+T, E=W, &=Y"4+-DAW, (2.21)
r

DADBW + }_/ABW = 0, DADBb + 7ABb = 0, (222)

‘CY77AB - 0, 8AT = O (223)
The quantities b, YA, T, and W are functions on the sphere.
The first two, b and Y4, describe the homogeneous Lorentz
transformations, while 7" and W, which do not appear in the
transformation laws (2.16)—(2.20) of the leading orders,
describe the translations. In these equations, DA is the
covariant derivative associated with 7,5 and DA = 48Dy

Contrary to what happens in 4 spacetime dimensions, the
leading order A, is not gauge invariant. Furthermore, the
boosts mix radial and angular components, which do not
have independent dynamics anymore. Finally, we note that
the spacetime translations have no action on the leading
orders of the fields. The symmetry group at this order is
thus the homogeneous Lorentz group. To get the full
Poincaré group, one needs to consider the subsequent
terms in the asymptotic expansion of the fields. In this
context, it is actually well known that in the case of gravity,
the next-to-leading terms contribute crucially to the angular
momentum and the boost charges and so cannot be ignored.

D. Further strengthening of the boundary conditions

It turns out that while the boosts preserve the boundary
conditions, they fail to be canonical transformations (see
Sec. IV below). In order to recover a canonical action for
the boosts, one adds new surface d.o.f. This can be achieved
along the lines of [36] if one strengthens further the
boundary conditions.

We impose that the leading term A, of the angular part of
the vector potential be a pure gradient. This condition is

preserved under the Poincaré group if we also impose
74 = 0. Thus, we complete (2.3) and (2.4) by

Ay = 0,0, 7 =0. (2.24)

The requirement A, = 9,0, which is new with respect
to d =4 where it is not needed, is equivalent to the
condition F,z = 0. Imposing F,z =0 does not seem
unreasonable in 5 (and higher) spacetime dimensions. If
there are only electric sources, this condition is certainly
fulfilled. So the question is whether it eliminates interesting
magnetic configurations. In 4 + 1 dimensions, magnetic
sources are extended objects, namely, strings. They can be
of two different types: (i) infinite or (ii) closed (strings with
a boundary do not yield a conservation law). Our formalism
only applies to the second case, since we are not covering
infinitely extended strings going all the way to infinity, for
which there are extra d.o.f. at infinity—the end points of the
string—that must be taken into account (on which the
Poincaré group acts). But if the strings are closed, their field
is more like the field of a dipole because the total charge
that they carry is zero [61]. The magnetic field decays thus
faster at infinity (see Appendix A) and it is legitimate to
assume Fyp = 0.

E. Summary: Complete set of boundary
conditions at spatial infinity on A;, 7'

To summarize, the complete set of boundary conditions
on the canonical variables A;, 7' is given by (2.7)—(2.10)
supplemented by (2.24) [which automatically implies
(2.11)]. We rewrite them here:

- 1 @ _
A, = pA,+FA$ 4 o(r7), (2.25)

- [t ~1
7= +-zV" 4+ o(r ), (2.26)

r
D 419.6 4+ A 4 o2
AAzaA(I)—i—;@A@—l—ﬁAA +O<r ), (227)
1

mt =4+ o(r72), (2.28)

r

in order to have them conveniently grouped together.

Given the vector potential, the functions ®(x*) and
O (x") are determined up to a constant. We shall come back
to this point later.

III. PROPER AND IMPROPER GAUGE
TRANSFORMATIONS

The boundary conditions (2.3) are invariant under gauge
transformations generated by the first-class constraint
generator G:
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(3.1)

provided the gauge parameter € has the asymptotic behav-
ior

e =¢e(x") + ];6(1)()6‘4) + o(r ). (3.2)

As already indicated above, the leading term A, in the
expansion of the radial component of the potential is not
gauge invariant, contrary to what happens in 3 + 1 space-
time dimensions. It transforms as A, — A, —e(l). The
leading [O(r~2)] term of the field strength F 4, is of course
invariant. It is given by F,, = Jd,A, +A,. One has
Ay — Ay + 0,46V so that Fy, — Fy,.

The generator of (3.1) reads explicitly

Gle] = / d*xeG + f d’Sen’ ~ f d’S;en’ (3.3)

~ f{ dPxer”

(where the integrations in the last terms are over the
3-sphere at infinity, i.e., over the angular variables x*).

Another crucial difference with respect to 3 + 1 space-
time dimensions is that since the leading order of the radial
component z” does not fulfill particular parity conditions,
both even and odd parts of the gauge parameters contribute
to the charge Gle]. Nonvanishing values of & define
“improper gauge transformations” [58], no matter what
the parity of € # 0 is. An improper gauge transformation
shifts the function @ by &.

The value of the generator Gle] for € = €, (constant) is
the total electric charge Q. In the absence of charged matter
field, O = G[ey] = 0, so that constant shifts of &(x) are
unobservable (no charged states). To have Q # 0, one
needs to couple charged sources to the electromagnetic
field, in which case Gauss’s law becomes —9,7* + j* = 0.
The asymptotic analysis is unchanged provided the sources
are localized or decrease sufficiently rapidly at infinity. We
should stress, however, that even if Q = 0, the generator
Gle] for nonconstant functions &(x*) on the sphere will
generically be different from zero.

To complete the description of the asymptotic behavior,
we need to specify the falloff of the Lagrange multiplier A,.
Since A, parametrizes the gauge transformation performed
in the course of the evolution, we take for A, the same
falloff as for the gauge parameter e,

(3.4)

A =A%)+ L2 6 o).

; (3.5)

Ir A (x*) # 0, the time evolution involves a nontrivial
improper gauge transformation.

IV. BOOSTS AND SYMPLECTIC STRUCTURE

We now turn to the question as to whether the Poincaré
transformations, which preserve the boundary conditions as
we have just seen, are canonical transformations. That is,
we analyze whether they are true symmetries (invariance of
the symplectic form is a consequence of the invariance of
the action up to a total time derivative).

We focus on boosts, which are the only transformations
presenting difficulties. For boosts, the above transforma-
tions reduce to

5141' :fﬂ'i‘f'aié: (41)

o' = 0,,(F™§) (4.2)
where £ = br. As we now show, these fail to be canonical
transformations with the symplectic 2-form derived from
2.1,

Q= / d4xdvﬂidvAl‘, (43)
where the product is the exterior product A of forms which
we are not writing explicitly and where we use the symbol
dy for the exterior derivative in phase space in order not to
introduce confusion with the spacetime exterior derivative.

The transformation defined by the vector field X is
canonical if dy(ixQ) = 0. Evaluating this expression for
the boosts, one finds, by a computation that parallels the
3+ 1 case,

dy(in) = [ @30, (VGdy ")y,
where we have used dyz'dyn; = 0. Integrating by parts and

using dyF;;dyF7 =0, we get that dy(i,Q) reduces to a
surface term,

dv(ibg) = j{d3x\/§§dvFridvAi,

an expression that can be transformed to

(4.4)

(4.5)

dy(iyQ) = — f Bxr[Fbdy (DR, + A)dy0,®, (4.6)

using the asymptotic form of the fields.

This expression would vanish if we had not allowed a
gradient term 0;® in A;. But with such a term, the variation
of the symplectic form is generically nonzero and the
boosts are accordingly noncanonical transformations.

In 3 + 1 dimensions, the coefficient of the dyd,®-term
reduces to dyD*A, because the contribution from the
angular part is subleading. This enables one to integrate
by parts and replace the surface term by

dy(i,Q) = ?{ /7y A, DA(bdyA,)

(D =3+ 1 dimensions).  (4.7)
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By introducing a single surface d.o.f. ¥ that transforms
appropriately under boosts and adding the surface contri-
bution — § dx+/7dyA,dy¥ to the symplectic form, one can
make the Lorentz boosts canonical [36].

A similar route can be followed here provided
A, = 0,0. The variation of the bulk symplectic form
can then be transformed into

dy(iyQ) — 74 Brfidy (A, + B)DA(bdy0,®)  (48)

and by introducing a surface d.o.f. ¥ at infinity, trans-
forming under boosts as

5,¥ = DA (b0, D), (4.9)
and adding the surface term
—fﬁmﬁ@@fumw@, (4.10)

one finds that the boosts are canonical (see the detailed
computation in Sec. V B below).

The discussion proceeds in fact as in the 3 + 1 case, with
the 3 + 1 gauge-invariant A, replaced by the 4 4 1 gauge-
invariant A, + ©. The development parallels exactly the
discussion in 4 dimensions and is given in the next section.

There is, however, one important difference with respect
to the 3 4 1-dimensional case: it is that both even and odd
parts of the the field ¥ carry physical d.o.f. This is because
the coefficient A, + ® of dy¥ in (4.10) has no particular
parity property (while it is odd in 3 + 1 dimensions).

V. COMPLETE FORMULATION

We shall thus give here only the salient features. At this
stage, the field ¥ is a field living on the 3-sphere at infinity,
which can depend on time. As in 3 + 1 dimensions, one can
extend it inside the bulk to a “normal” field with conjugate
momentum zy constrained to vanish. It is to this formu-
lation that we shall immediately proceed.

A. Action

The complete action is

SH[AH ﬂi’ ‘I‘a H\Pa @O9A[7 /I]

:/dt{/d4x7ri8,Ai+7tq/ o0,¥

where ¥ and 7y are new fields which behave at infinity as

gy gl
=—+—+o(r?), (5.2)
roor
1
Ty = —47r$) +o(r ™) (5.3)

(in Cartesian coordinates) and where A is a Lagrange
multiplier for the constraint

7y 2 0. (5.4)

Since my is constrained to vanish on shell, its precise decay
at infinity can in fact be strengthened without eliminating
classical solutions.

We have written explicitly the zero mode ®, of ® among
the arguments of the action functional to emphasize that S
depends not just on A, = 9,0, but on the full ®. Shifts of
©® by constants will be seen to be symmetries.

The equations of motion that follow from the action are
the original equations of motion for the original fields A;,
7', which imply

0,(A, +©) =0, (5.5)

an equation which also follows by varying ¥. One also gets

¥ =0 (5.6)
by varying with respect to the vector potential. This
equation is compatible with the equation obtained by
varying with respect to zy, provided A~ L, which we
shall assume. One can in fact allow for a %—term in 4 if one
introduces at the same time a nonvanishing surface
Hamiltonian that reflects that the motion would then
involve an improper gauge transformation for ¥ (see
Sec. VI), but we shall not do so here. Finally, varying
with respect to the Lagrange multipliers implies the
constraints.

B. Poincaré charges

With the boundary modification of the symplectic
charges, all Poincaré transformations are canonical trans-
formations with a well-defined generator. This generator
can be written in terms of local diffeomorphism generators
in the following way:

Py = / dx(EHEN 4 EHEM) + BB (5.7)

HM = 99,7 —AV’iz\y—i——n’ﬂ +£F Fi, (5.8)
N

HFM =F.n —Alajﬂj + ﬂ\paiqj, (59)
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BEY — j{ Pr{b(F7 + 50,0DA (A, + ©))

+YA(0,@7" + /TPO4(A, + 9))}. (5.10)
As 1s well known, transformations of the fields under a
symmetry are defined up to a gauge transformation in any
gauge theory. The choice implicitly made in (5.7) leads to a
simple algebra. For the kinematical transformations (spatial
translations and rotations), it is such that the action of these
spatial symmetries on the fields is the ordinary Lie
derivative, i.e.,

0aA; = LaA;, 0a¥ = LW, (5.11)
where W is a spatial scalar so that £,V = &0, ¥ and where
the spatial vector & is given by (2.21). Note that the
Poincaré charges are invariant under shifts of ® by
constants.

To illustrate the derivation, consider the boosts (¢ = br,
& =0). The variations of all the canonical fields are

given by

S)A, — ‘% +0,(e), (5.12)
Sy’ = 0,,(F™\/g€) + EVimy (5.13)
5, ¥ = Vi(EA,), Symy = E0;m’, (5.14)
from which one gets
S,(A, +0) = bi 5, ¥ = DA(b0,®), (5.15)
VY

upon appropriate choice of the constant that characterizes
the ambiguity in ®. Under these transformations, the
symplectic 2-form

Q — Qbulk | Qboundary (5.16)
with

Qbulk — /d4x(dvn'idVAi + dymydy'P) (5.17)
and

Qboundary — _ 7{ dx\/7dy(A, +0)d, P, (5.18)

is invariant, 5,Q = dyi,2 = 0, since one finds

ibgbulk = _dV (/ d4x€HEM> - % d3xb(dvﬁ'r)‘il
- ]{ dx\/7bDA(A, + ©)dy0,® (5.19)

and
i, Qboundary — _ ]f dxba’ d,¥
- ]{ dx/7bDA(dy (A, + ©))9,®, (5.20)
so that
i,Q = —dy, < / d*xEHEM + 7{ & xba"¥P
(5.21)

+ 7{ d*x\/ybDA (A, + (:))8Ad'>>.

In agreement with (5.7), i, is the exterior derivative of
minus the canonical generator of the transformation.

Similarly, one finds for spatial rotations (£ = 0, " = 0,
g =14,

ORA; = .ffain + 8,-§jAj, (5.22)
ot = 0, (EM7t) — D, E ™ (5.23)
S5xY = £10,9, Spmy = 0;(Emy), (5.24)
from which one gets
Sr(A,+O)=Y40,(A,+0), 6P=Y49,¥ (5.25)

(with again a definite choice of the constant in §z0). It
follows that

iRQbUIk = _dV </ d4x5iHFM =+ ]{d3x§Aﬁr3A<i)> (526)

and that

igQboundary — _ g, ( 7{ dx\/7YA0, (A, + @)lif), (5.27)

yielding the above generator for spatial rotations. Note that
here, the bulk and boundary contributions to the symplectic
form are separately invariant.

The computation of the time and spatial translations is
simpler and leads to generators that have only a bulk piece.
This is because the relevant leading orders are invariant
[it should be observed that for spatial translations
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SyA, = —0,®D*W and one can take &y® = +0,P
DAW so that 5y(A, + ©) = 0.

C. Poincaré algebra

In addition to the Poincaré symmetries, the theory is
invariant under
0—-0+c (5.28)
(everything else fixed), where c¢ is a constant. This trans-
formation is generated by

J= f{ dPx\/7¥ (5.29)

since one has
l‘jQ:i‘/Qboundary:—%d:;x 7Cdv\ijz_dv<c.]). (530)

This quantity vanishes in 4 spacetime dimensions where ¥
is odd due to the parity conditions (and no “naked” @
appears anyway).

One can easily compute the algebra of the various

generators. One finds

{Pflafﬁ’P-fzvf%} = Py, (5.31)
E=&0i6 -804, (5.32)
&= f{ajfé - féajfli +¢9(£0;6 — £,0,6,),  (5.33)
which is the Poincaré algebra.
Furthermore,
{Pssi. J} = 0. (5.34)

VI. ASYMPTOTIC SYMMETRIES

A. Two sets of angle-dependent u(1) symmetries

We have already identified above an infinite set of
asymptotic symmetries, which are gauge transformations
parametrized by a gauge parameter that tends to a function €
on the 3-sphere at infinity. Contrary to the situation encoun-
tered in 3 + 1 dimensions, all of these transformations are
improper gauge transformations, i.e., nontrivial symmetry
transformations that generically change the physical state of
the system, independently of their parity properties. This
brings a full angle-dependent u(1) set of asymptotic sym-
metries, with charge-generator equal (on shell) to

Gle] = 7{ P (6.1)

The introduction of the surface field ¥ at infinity brings
in an independent second set of angle-dependent u(1)

asymptotic symmetries. These are transformations that shift
Y by an arbitrary (time-independent) function i of the
angles. They can be extended in the bulk as

5,¥ = u, 6,(anything else) = 0, (6.2)
with
u =’;‘+o(r-1). (6.3)

These are easily checked to leave the action invariant. [One
can include subleading terms in y, parametrized by arbi-
trary functions of the angles and of time, but these are
proper gauge transformations leaving the action invariant
provided 4 is transformed as 5,4 = 0,u.]

These transformations are canonical transformations
with canonical generator given by

Glu] = /d“x;m\p + B,

where the surface term is necessary when yN}, even
though the corresponding bulk constraint generator is
algebraic. This is just as in 3 + 1 dimensions.

One finds explicitly

iMQb"lk = —dy </ d4x,u7r\p>,

i, Qboundary — g, <— f BxVi(A, + @)ﬁ), (6.5)

(6.4)

yielding as generator

Gl = [ dumy =~ § Exvid, +O)R. (60
an expression that reduces on shell to

Glu) = —fcﬁx\/?(/i, + O)ji. (6.7)
The generator G[u|, which generically does not vanish, is
invariant under proper and improper gauge transformations.
One way to see this is to recall that 94 (A, + ©) = F,4, so
that the gauge-invariant asymptotic field strength F,,
determines A, + © up to a constant, and we fix the variation
of the constant in © so that 5A, = —50.

We thus come to the remarkable conclusion that the
theory is invariant under angle-dependent u(1) @ u(1)
asymptotic symmetries, with generators given on shell by

G, = ja{ Pr(er - ViR, +O)R).  (6.8)
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B. Algebra
The algebra of the global symmetries with themselves
and the Poincaré generators are easily worked out. One
finds

{Gue Pegi} = G {G6-Gpye,} =0, (6.9)

fi==V'(EDie) — EDip. é=—tu—Ede.  (6.10)
It follows from these equations that the algebra of the
symmetries is a semidirect sum of the Poincaré algebra and
the Abelian algebra parametrized by ji and €. The action of
the Poincaré subalgebra characterizing this semidirect sum

can be read off from (6.9):

Sy prwyit = Y20ui + D, (bD*), (6.11)
5(Y.b,T$W)é = YAE)AE + bﬁ (612)

One also finds by direct computation
{G,e. T} = —fd%c\fyﬂ; (6.13)

ie., a central charge appears in this Poisson bracket
relation.

It should be observed that the even-parity component
(under the antipodal map) of € and the odd-parity compo-
nent of i transform into each other under Poincaré trans-
formations. These are the only nontrivial components
present in 4 spacetime dimensions. Similarly, the odd-
parity component of € and the even-parity component of
transform also into each other. These define proper gauge
transformations in 4 spacetime dimensions, but improper
ones in d >4 spacetime dimensions when no parity
condition need be imposed on the asymptotic fields.

C. Time evolution

Up to now, the field A, is completely arbitrary. A definite
choice of A, amounts to a choice of which gauge trans-
formation accompanies the time evolution generated by the
standard Hamiltonian 1 [(E? + B?). It is convenient to
choose

A=Y (6.14)
and we shall adopt this condition in the sequel. This has a

number of consequences:
(i) The behavior of A, at spatial infinity takes the form

A, :%A )+ o), (6.15)

i.e., the O(1)-piece AEO) (x*) is set to zero, which
means that no improper gauge transformation is

added to the motion generated by 1 [(E* + B?).

[This O(1)-piece can easily be reinserted if needed,

e.g., in discussing black hole thermodynamics.]
(i) With the identification A, = P, the action reduces to

SH[Al-,ﬂ",A,,ﬂO;/ﬂ:/dt{/d4xni8,Ai+ﬂ08,A,

faﬁx\[(A +0)0,4,

W PREIECA

- / d4x(/1ﬂ0+AtQ)}, (6.16)

where 7° = my.

(iii) The asymptotic equation 9,A, = 0, which follows
from 0,%, = 0, is asymptotically equivalent to the
Lorenz gauge §'A, + 0'A; = 0, since 0'A, = O(%),
while 9'A; = O(% )

The action (6. 16) is in fact the action one obtains by direct
application of the Dirac constrained Hamiltonian formal-
ism. The primary constraints (here z° = 0) are enforced
explicitly with their own Lagrange multipliers (here 4). The
secondary constraints (here G = 0) follow from the pres-
ervation in time of the primary constraints. The parameters
of the gauge transformations generated by z° and G are
related in this “unextended formulation” by ¢ = u (see
more in [62] and also [63]).

For that reason, the introduction of ¥ is not really the
introduction of a new physical d.o.f. It corresponds rather to
the explicit recognition that the O(%)-part of Ay is not pure
gauge, which must therefore be kept. It would be incorrect
to set it equal to zero since this would require the use of an
improper gauge transformation. That shifts of A, are not
proper gauge transformations is reflected through the
fact that the corresponding generator is [ d*xun° —
$ d®x\/7(A, + ©)jz and does not generically vanish, even
on shell. The advantage of including the W field is that this
important property is clearly put into the foreground. But
once understood, one can equivalently work with the more
familiar action (6.16). This action reproduces the standard
Maxwell action (up to a surface term) with A, as the sole
dynamical variable if one performs the Legendre trans-
formation in reverse, back to the Lagrange formalism.

VII. MORE THAN 5 SPACETIME DIMENSIONS

The extension of the formalism to other dimensions
higher than 4 is direct and remarkably “uneventful.”
There is in particular no difference between odd and
even spacetime dimensions. We give below the relevant
formulas.
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A. Action, boundary conditions, Poincaré generators

The action generalizing (6.16) is
SH[Ai,ﬂi,A,,ﬂO,(:)o;/l}—/dt{/dd_lxzriG,A,»—f—ﬂoa,At

- 7{ &2 7R, + (d—4)8)0,A,

(s o,

—/dd_lx(/lﬂo—i—A,g)}. (7.1)
The asymptotic conditions are (at a given time)
I 4 N0 2-d
Ar :6,(1)—‘1-@14,—*—@14;« +0(}" ), (72)
14 -1
7=+ -z 4+ o(r ), (7.3)
r
Ay = 0,0+ aA@ + = AV Lo, (7.4
1
= pﬂ“)A +o(r2), (7.5)
2 L -
A=A + A7 4 AT o) (1.6)
o_1y, -1
n’=—my +o(r) (7.7)
® =&+ ol L o) 7.8
= +; + +E (7.8)

and involve no parity conditions (d > 4). The Lagrange
multiplier A fulfills

(7.9)

We stress that we have given the asymptotic behavior of the
fields, in particular of the density z°, in polar coordinates
(in Cartesian coordinates, z° ~ r!1=9).

The equations of motion imply
A, =0, (7.10)

which is equivalent to

1
aﬂAﬂ - 0(?)

[instead of the expected O(L) that would follow from a
generic time dependence]. The Lorenz gauge is therefore
fulfilled asymptotically.

(7.11)

The Poincaré generators are

Pes = / AT x(EH™M + EHPM) + BRYL). (7.12)

HEM:—Ataiﬂ'i—Aivi”0+_7[i”i+ﬁF'-Fij (713)
2,/9 4

HF’M =F..1 —Alajﬂj + ”OaiAt’ (714)

BRI = § dx(bA + V7O, BDA (4, + (d-4)0)

+ 7{ d2x (YA (0,87 + V7A0,4(A, + (d—4)0))).
(7.15)

There is also the symmetry ® — © + ¢ generated by

J= jé A2 x\/7A,. (7.16)

B. Asymptotic symmetries

The theory has gauge symmetries generated by

Géﬂ /dd 1 (€g+ﬂﬂ0)

+ ]{ d2x(en” — \7iu(A, + (d-4)0))  (7.17)

~ f d2x(ew - JTAA, + (d-4)8)),  (7.18)

with
€= ¢e(x") + %6(1) - 0(%) (7.19)

and
p :&;‘H o(%). (7.20)

The action is invariant provided the following (noninde-
pendent) conditions hold: (i) 9,6 =0, (i) 0,z =0,
and (iii) 0, = p

The unwritten O(r—lz)—terms in (7.19) are arbitrary func-
tions of time and define proper gauge transformations. The
corresponding O(-%)-terms in (7.20) are determined by the
condition y = ¢ (in the unextended canonical formalism
considered here). One could use these proper gauge trans-
formations to eliminate all terms in @ but the leading one,
but this is not necessary.
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By contrast, the leading terms parametrized by &(x*) and
j(x%), which are arbitrary time-independent functions of
the angles restricted by no parity condition (d > 4) define
improper gauge transformations. The asymptotic sym-
metries are thus the direct sum of two independent sets
of angle-dependent u(1) transformations. Note that e(!) is
determined by the condition 9,6 =  to be e() = #i(x*)
and that the generator (7.17)—(7.18) is just the correspond-
ing Noether charge.

The algebra of the generators of asymptotic symmetries
and Poincaré transformations is the same as in Sec. VIB.
We close this section by observing that 97¢ = O(% )

equivalent to e = (r) Now, the condition e =

defines the residual gauge freedom in the Lorenz gauge.
The asymptotic symmetries are therefore residual gauge
transformations of the asymptotic Lorenz gauge. What
makes them nontrivial symmetry transformations, however,
is not that they are residual gauge transformations for some
gauge conditions, but that their canonical generator has a
nonvanishing value. Note in that respect that one can
impose the Lorentz gauge to all orders. In that case, the
residual gauge transformations fulfill Lle = O to all orders.
The general solutlon to that equation that starts like € =
e+%+ Zn>2 = " will have genencally e ~ 1" Each e
will ‘involve two new integration “constants” Cy(x*)
(functions of the angles), but these integration constants
correspond to pure gauge transformations, even though
they are associated with residual gauge transformations.

VIII. CONNECTION WITH NULL INFINITY

The formulation on Cauchy hyperplanes in Minkowski
spacetime R ~ R x R4"! is complete and fully spec-
ifies the system. It is self-contained and sufficient to answer
all dynamical questions, including asymptotic ones for
t — Foo or any other limit.

A. Hyperbolic coordinates
It is of interest in particular to derive from the present
formulation the behavior of the fields as one goes to null
infinity. To that end, we first integrate the equations in
hyperbolic coordinates [27], where the metric is given by

ds®> = dy? + n*hg,dx®dx?, (8.1)

ds* + “—B dxAdx®.

hapdx?dx? = ———
@ = T =) 1= s

(8.2)

Here, h,, is the metric on the (d — 1) hyperboloid. The
explicit change of variables is

n=+v-£+r, s=L.

r

(8.3)

The hyperbolic patch covers the region r > |¢|. The inverse
transformation reads

s 1
t=n , r=n .
V1= g2 V1= g2

The use of hyperbolic coordinates in this context is known
to be very useful [27,52-57].

The hypersurface s = 0 in hyperbolic coordinates, on
which n = r, coincides with the hypersurface 1 = 0 and is
therefore a Cauchy hypersurface on which we have already
studied the behavior of the fields at infinity. This leads to
the following falloff for the electromagnetic potential:

(8.4)

Ay =0,@ + A" + O( ), (8.5)
Ay = 0,0+ A+ O3, (8.6)
with field strengths taking the asymptotic form
Ey = Fpy = 17 (9,A, + (d = 4)A,)
+ 002, (8.7)
Fop =10~ F gy + 0. (8.8)
Here,
<1>:‘5+“'+,7d—_5‘1><"‘5)- (8.9)

Note that the temporal component A, of the vector potential
in hyperbolic coordinates is boosted by one power of 7 with
respect to A,. As above, we will also assume F,, = 0 (i.e.,
F,4 =0 and F, 5 = 0), which means that there exists a
boundary field ® such that A, = 9,0.

The equations of motion are given by

DE, = 0, n*>DVF,, — 0,(n"3E,) =0, (8.10)
with E, =F,,. Here, D, is the covariant derivative
associated with the hyperboloid metric 4,,, while latin
indices are raised or lowered with 2%” and h,,,, respectively.

Although the asymptotic analysis only needs the leading
orders, it is instructive to assume that the asymptotic
behavior of the fields can be expressed in terms of an
expansion in 7!

= Fpy= > 4 kgW (8.11)
k>0
Fugp= Y @ rl  FY =0 (8.12)

k>0

This is because the equations of motion imply a decoupling
order by order. Indeed, one gets
DR + kEY = 0.

DEY =0, (8.13)
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Similarly, the Bianchi identity becomes

d-4+kFY =0,EWN —0,EP (8.14)
OuFy) = 0. (8.15)

This leads to the second order equation
D'DEY —(d=2)EP + k(d-4+EP =0 (8.16)

containing E( ) only.

We now focus on the component E§ ) of the curvature.
As in the 4D case, this is the most interesting one as it
carries the information about the charges. The analysis of
the other components of the field strength can be found in

Appendix C.
Using the fact that Eg is divergenceless, the component
a = s of Eq. (8.16) reads
(1-s52)PEY + (d —6)s9,EV
+(@d-4EY - D, DAE( )
—(1=s2)"k(d-4+KEF =0. (8.17)

Making then the following rescaling of the components,

B0 = (1 - s2)EW, (8.18)
leads to
(1 =s2)2EN + (d - 6 + 2k)sd,EW)
—(k=1)(k+d—-4)Z® —D,D*E® =0. (8.19)

Using a basis of spherical harmonics for the (d — 2)-sphere
(see Appendix B 1), we get

20 =3 "5N (5)Y,, (%), (8.20)
Lm
DAD,Y,, = —I(I+d—3)Y,,, (8.21)
(1-52)028 4 (d—6+2k)50,2")
—(k=1)(k+d=4)EV +1(1+d-3)= =0. (8.22)

With 1 =k + % (= integer or half-integer) and n = [ — &,
we can rewrite this equation as
(1 - )28, + (24 - 3)s0,E,,)

Fn+1)2i+n-DEM =0.  (8.23)

This equation is exactly the same as the equation that arises
in the discussion of the asymptotics of the scalar field

discussed in [64], where the necessary mathematical back-
ground was recalled. For the sake of completeness of this
paper, the needed results are reproduced in Appendix B 2.

As shown in Appendix B2, the general solution to
Eq. (8.23) takes the form

(8.24)
In the limit s — +1, the resulting function E ugm) tends to a
constant. When [ > k, the contribution from the P-branch is
subleading.

The complete analysis given in Appendix C leads to
similar expressions for the other components of the
curvature. An interesting feature that emerges from the
analysis is that the divergenceless condition on El(Z ) implies
that most of the zero modes of E( ) are zero:

g =0, 82%=0, =¢W=0, Vik>0. (8.25)

B. Behavior at null infinity

In order to make the link with null infinity, it is necessary

to rescale the radial coordinate p = V1 — s> [55-57].
Indeed, the hyperbolic coordinates badly describe the limit
to null infinity: the pair (s,7) always tends to (1, c0) on all
outgoing null geodesics t = r + b, no matter what b is. By
contrast, the coordinate p tends to 2|b| and can distinguish
between the various null geodesics. The detailed procedure
on how to derive the evolution of the Cauchy data as one
goes to null infinity is discussed at length in [55-57], to
which we refer the reader. Note the use of the radial
coordinate /1) there, which goes to zero in the null infin-
ity limit.
A relevant quantity is then the electric density:

V=gF? = \7pt73 (1 = s2)HE (p. 5. xY)
— 51— )Yk
k

Let us look at the leading term k = 0; separating the two
branches, we get

(8.26)

VEIF = iy _E (- )RRy,

Im

+Vi(l -5 "’“Z”Q Y+ 0.

(8.27)

In the limit s — +1, the first term will go to a constant
while the second one will diverge. Surprisingly, when we
look at the subleadlng contributions in p~!, all contribu-
tions from Q,(, ) along with the contributions from P( ) with
n = [ —k < 0 will diverge in the same way when s — +1.
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The rest of the contribution from the P’s will be subleading
when s — +£1:

(8.28)

Performing the change of variables leading to standard
retarded null coordinates,

s—1 1
u=mn , r=mng , 8.29
V1= g2 V1= g2 ( )
so that
u u?
s=1+—, p=—2u——, (8.30)
r r
(u < 0), we get
-5 -1 233 A
F, = E;=p (1_S )2E5<pvs7x ) (831)

Using the expansion we obtained above, this leads to

ur — X}Z—d—k(l Z'—P

+ sz d=k(] — 52 :1%1( )Q( )(s)Y,m.

Im

(S Ylm

(8.32)

Substitution of s and p then yields

r2- dz_lm hmP

Im

+ r_%(_zu)z_gz klln’]l( Z Qn ‘—‘lm Ylm

k >0,m

+ > S,L,,,S)Y,m>+0<r—%’—1>.
k>1>0,m

We can thus conclude that in the r~! expansion, the various
orders in 77! of the Q branch combined with some
spherical harmonic component of the P branch will build
a function of u at order r~%, while the rest of the P branch
will only contribute to a u-constant term at order r>~¢. It
should be noted that whereas there are no fractional powers
of 5 in hyperbolic coordinates, fractional powers of r
appear in null coordinates, in the case of odd spacetime
dimensions.

The leading term in 7>~ represents the Coulomb part,
while the leading term in r represents the radiation part.
Our expansion in null coordinates is in agreement with the
results of [65].

Y+ 0(r)

(8.33)

In 4 spacetime dimensions, the kK = 0 contribution of the
Q branch acquires a leading logarithmic divergence
[29,36]. Assuming that this contribution is absent, i.e.,

EZQ”E(D = 0, then the above expansion is still valid for d = 4.

In that case, the remaining Q contributions and the leading
P contribution appear at the same order r~2. There is no
such singularity in d > 4 dimensions and so no need to
remove the k = 0 contribution of the Q branch.

Although this is not necessary, one might be tempted to
remove the Q branches at all orders along with all the P
branch contributions with k£ > [, in order to get rid of the
r~i-terms. The only component in F,,, is then at 729, which
encodes as we mentioned the Coulomb part associated with
the parity even branch at the leading order at spatial
infinity: the P-branch for k = 0. However, when d > 4,
this contribution is constant along scri and it will not build a
generic function of u. From our analysis, we see that the
relevant order is =%, which must be kept. A curiosity in 4
spacetime dimensions is that this is also the order at which
the Coulomb contribution appears.

C. Generalized matching conditions

To come back to the case of 5 spacetime dimensions, our
analysis implies the following asymptotics at null infinity
ford =5:

Fopo=A, xr 3+ Cx")r3 +...,  (8.34)
A(u,xA)—\/l__uA(xA)—l-O((—u)‘%). (8.35)

Both C and A have opposite matching conditions since A
comes from the Q(°) branch, while C comes from the P(©)
branch.

The generalized matching conditions will thus involve
both even and odd matchings (P is even under the sphere
antipodal map combined with s — —s, but Q is odd). These
matching conditions are associated with different powers of
r. The same procedure works in higher dimensions. In 4
dimensions where one must set A = 0, there is only the
even component [29,36].

D. Gauge transformations

In hyperbolic coordinates where the s-time is boosted by
one power of 7, the two types of improper gauge trans-
formations appear at the same order O (#"). Technically, this
follows from the fact that s = £, so that terms such as (f)k
which decrease as r—* on constant z-slices, behave as s,
1.e., as constants on constant s-slices.

Gauge transformations are generated by parameters € of
the form

e(n, x4) = e(x* b, D*D,e =0,

)+ 00~ (8.36)
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where, as we have seen, the Lorenz gauge holds at infinity.
The generator is given on-shell by

Q fddz

where the first term, associated with the gauge parameter
undifferentiated with respect to time and linked with the
flux of the electric field E; ~ F, generates the first type of
improper gauge transformations, while the second one,
associated with the s-derivative of the gauge parameter,
generates the second type of improper gauge transforma-
tions. The generator Q, is conserved.
The equation for € can be rewritten as

V=hP[Eye — (A, + (d — 4)8)d,e],

(8.37)

(1 - 2% + (d - 4)50,e — D,De =0,  (8.38)
which leads to
€= Zel,m(s)yl,m(xa)v (839)
l,m
(1 - 52)3%61."1 + (d - 4)sasel.m
+ l(l +d- 3)€[’m =0. (8.40)

This corresponds to Eq. (B6) with A=1(d—1) and
n=1[—1. For [ > 0, we can write the solution as

a1
€m=1-s ) (e, mPlz 12 (s) + €z ” 5312) (s)) (8.41)

The term for / = 0 is given by

€0o(s) = €5 A S(1 - 2dx €l (8.42)

As for the radial electric field in the previous section, we
have two branches of solutions for € characterized by thelr
behavior under parity. The solution parametrlzed by e Im 18
odd while the one parametrized by ¢/, is even. The odd
solution tends to a finite function on the sphere in the limit
s — =£1, while the even solution tends to zero except for the
zero mode [ = 0.

At first sight, the behavior of these u(1) transformations
in the limit s — 1 might be surprising. In particular, it
would seem that the P branch falls off too fast and will lead
to a zero charge close to null infinity. Let us focusond = 5
and look at the behavior of the charges in the limit s — 1.
From our previous analysis, we have

E,=0,(A, +0), DE, = D*D,(A, + ©) = 0.

(8.43)

The combination An + O satisfies the same equation as €
and takes the general form

1 2 ~(2
Ay +0=3 (Of,PL(5) + OF, 00 () Y1 (8:44)
L.m
where @ and ©2 can be expressed in terms of Egng
(0)2

and ;.
In the limit s — 1, the ultraspherical functions with
n > 0 behave as

PP = (1= )PP + PP (1= 5) + 0((1 = 5)?)),
(8.45)

07 = 0" + 07 (1-9) +0((1-9?).  (8.46)
Taking into account these asymptotic behaviors, we can
expand the charge in the neighborhood of future null

infinity:

Q. == (1-5)70,(8f,P7(s) +

[>0,m

02,02())

(el P2 (5) + 2,017 (5) = © < ]
- 60,050.0 + G)0,060.0

:—Zl—s %

[1>0,m
+67, P21 -5+ 0((1-5)))
(2,02 + 2,02 (1 -5)
+ef, PEL(1 =52+ 0((1-5))
- Gg.,oego + 6(?0550

= 2{3(61?,"@1 — €l lm)Ql 1 1 1 +0((1—S)%))]

[>0,m

(8.47)

Ql 1 +@ Ql 1(1—8)

-0 < ¢

—OF €8y + OF oeb - (8.48)
As expected, the various modes pair up and we do recover
the two u(1)’s.

IX. CONCLUSIONS

One striking result of our analysis is the emergence of an
asymptotic symmetry algebra that is the direct sum of two
angle-dependent u(1)’s for d > 4, instead of just one angle-
dependent u(1).

This somewhat unexpected result can be understood as
follows. It is customary to say that in electromagnetism
(and for that matter, also in gravity), “the gauge symmetry
strikes twice.” That is, both temporal and longitudinal
components of A, are removed by the single gauge
invariance .4, = d,e. This property follows from the
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fact that the gauge symmetry involves both € and €, which
are independent at any given time, so that invariance of the
physical states (defined on a spacelike surface) under gauge
transformations yields two conditions, one related to ¢ and
one related to ¢. Classically, this is reflected in the presence
of two first-class constraint generators per space point, 7° ~
0 and G~ 0 [62].

The “obvious” angle-dependent u(1) symmetry is asso-
ciated with [ d?"'xeG ~ 0, which involves spacelike deriv-
atives and clearly needs to be supplemented by a
nonvanishing surface term in order to be a well-defined
canonical generator when the gauge parameter ¢ does not go
to zero. This surface term can be computed along the lines of
[25]. This is the first global angle-dependent u(1) symmetry.

It is traditionally assumed that the generator | d*~'xén”,
being purely algebraic, does not need to be supplemented
by a surface term, no matter how its parameter ¢ behaves at
infinity. This would be true with the standard bulk
symplectic form, but is incorrect in the present case due
to the surface contribution to the symplectic structure. As we
have seen, the generator [ d“~'xén” must be supplemented
by a nonvanishing surface term when é goes to a non-
vanishing function of the angles at infinity (at order {). This is
the origin of the second angle-dependent global u(1).

Each first-class constraint kills locally one canonical
gauge pair and also brings at infinity its own angle-
dependent global u(1). There is therefore symmetry
between longitudinal and temporal directions.

Another way to understand the necessity of the second
u(1) comes from Lorentz invariance, once the first u(1)
generated by G[e| is uncovered. Indeed, we have seen that
while Geg] = Q (zero mode = electric charge) is in the
trivial representation of the Poincaré group, generators G|e]
with a nontrivial angle-dependent parameter € do not form
by themselves a representation. They transform into the
generator Glu] of the second u(1), so that G[u] is needed
by Lorentz invariance once G|e| with a nontrivial angle-
dependent parameter € appears. As we pointed out, one has
in fact two representations pairing Gle] and Glu| of
opposite  parities, namely, (G[e**"], G[u*%)  and
(G[e*¥], G[u®*"). From the point of view of Lorentz
invariance, the two angle-dependent u(1)’s are more
conveniently split in this way.

In four dimensions, parity conditions eliminate one u(1),
the one generated by (G[e°%], G[u°"). At the same time,
there is no need for imposing the condition F 45 = 0. This
enables one to consider magnetic sources with monopole
decay at infinity. It has been argued in [66] that a second
magnetic u(1) was underlying some soft theorems, so there
would be also two u(1)’s in that case.

It would be of interest to display explicitly the action of
the second u(1) at null infinity and study its quantum
implications. Similarly, the generalization to gravity should
be carried out. This will be done in a forthcoming paper
[67], where we shall discuss how features similar to those

encountered here (absence of parity conditions and
expected corresponding enlargement of the asymptotic
symmetry—in that case doubling of the BMS supertrans-
lations) should appear in the gravitational context.
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Note added.—Recently, we received the interesting preprint
[68] that deals with similar questions. This work confirms
the results of [36,29] that the parity conditions in d =4
spacetime dimensions not only make the symplectic form
finite but also eliminate the divergence of the fields as one
goes to null infinity. The preprint [68] also imposes
conditions in d > 4 that are stronger than the conditions
discussed here, which explains why only one angle-
dependent u(1) is found in that work. Similarly, the recent
preprint [69] considers matching conditions equivalent to
the standard parity conditions of d =4 and also finds a
single u(1).

APPENDIX A: MAGNETIC
SOURCES IN d > 4

Let us assume that there are only magnetic sources. The
equations for the electromagnetic field take the form
0,F" =0,

8”(*F)””"“”" — Kl/]...l/n, n= d _ 3’

(A1)
where we have assumed usual Euclidean coordinates
x =t,x',...,x7!. We will assume that the magnetic

source k*1"~**» is nonzero in a finite region only. The natural
source will be a (d — 3)-dimensional object:

Y*(6): Rx S — RY, (A2)

KOt (xt) = q/dY”‘ A o AdYS (X — YH(6)), (A3)

where X is a closed spatial manifold of dimension (d — 4).
A static configuration will take the following form:

Y0 =69, DY =0, (A4)

K'i]”-in = 0’ aiK'tij”'ju—Z = 0’

(AS)

kil (1) = g ]{ QY A .. A dY 811 (3 — Yi(0),
z

(A6)
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where the time dependence drops out as we can evaluate the
integral over ¢°. We can compute the “total” charge:

/dd_lxk’il"'i"' = q% dY' A ... AdY =0, (A7)
x

In this case, the dynamical equations (A1) are easily solved
in terms of a dual potential B, :

*F;w]...vn = (I’l + 1)8[//tByl...b,,]’ Bil...in =0, (Ag)
Btil...i,,_l — A—leil--»in—l' (Ag)
Using the relevant Green’s function, we get
tiy...i d—1 ./ 1 tiy...1 /
Bt (g, x) = | d¥lx g Kt (x)  (A10)
=]
1 o
=3 A=y ke (X)) + O(r2) (A1)
= 0(r* ). (A12)
The corresponding field strength is given by
xFliin = O(r1=4), xFiin = (), (A13)
Fti = O(I’l_d), Flj = 0 <A14)

APPENDIX B: SPECIAL FUNCTIONS

1. Spherical harmonics

Functions on the (n — 1)-sphere can be decomposed in
spherical harmonics Y,(x*), where [ is the degree of the
corresponding polynomial [70]. Spherical harmonics of
degree [ are eigenfunctions of the Laplacian on the sphere

and they have the following parity properties under the
antipodal map x* — —x4:

Y)(=xt) = ()17, (x*). (B2)

Vectors on the (n — 1)-sphere can also be decomposed in

spherical harmonics. We have two families:

(1) longitudinal vector fields are decomposed in longi-
tudinal vector spherical harmonics ®{'. They are
eigenfunctions of the Laplacian with eigenvalues
given by

Dy =0,Y;
(B3)

AD} = —[I(I+d-2)—d+2]®),

(ii) transverse vector fields are decomposed in trans-
verse vector spherical harmonics W4. They are
eigenfunctions of the Laplacian with eigenvalues
given by

APA = —[I(I+d-2)—1]W).  (B4)

The above results for the decomposition of transverse
vector fields lead to a set of spherical harmonics for exact
2-forms @,y = 04¥;5 — 05¥;4. The action of the
Laplacian is given by

AGIAB - —[l(l + d - 2) - d + 3]®IAB‘ (BS)

2. Ultraspherical polynomials and functions of the
second kind

This subsection follows very closely [64]. We have
chosen to give this information again here (rather than
referring to the relevant equations in [64]) for the sake of
completeness and for the convenience of the reader.

The central equation for our analysis is (8.23), i.e.,

(1= 232y + (24 - 3)s0, Y

4)

+(n+Dn+2a-1YY =0, (B6)

d-3
i:k+_’

> n=1-—k.

(B7)
From its definition, the parameter A is an integer (odd
spacetime dimensions) or a half-integer (even spacetime
dimensions). Furthermore, A > 1, the minimum value 1 = {
being achieved for the leading order of the 1 expansion in 4
spacetime dimensions (d = 4 and k = 0). This minimum
value has a special status as we shall see (appearance of
logarithmic singularities).

Equation (B6) can be brought into standard form [71] by
appropriate changes of variables. The procedure is different
according to whether the parameter n, which is an integer, is
positive or zero, n > 0, or is negative, n < 0. Both cases
occur in our analysis since n=1[1—k, so that n <0
whenever the order k in the 1-expansion exceeds the order
[ of the spherical harmonics. For the leading %—order k=0,
only the case n > 0 occurs.

(i) n>0.

The rescaling

vil(s) = (1= il(s)  (BS)

brings the equation to the form

(1 =52y, — (24 + )50y, +n(n + 24y, = 0.
(B9)

1.1,3,---and n € N), this equation
has a polynomial solution. For 1 = % the equation

reduces to the Legendre equation and we recover the

In our case (4 =
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familiar Legendre polynomials. For general 4 > — %
this equation takes a form analyzed, e.g., in [71], and

the polynomial solution is known as an ultraspher-

ical polynomial or Gegenbauer’s polynomial PS,D.

These polynomials satisty
A n
W (=s) = () Ps),
+21-1
PP(1) = (" ) (B10)

n

and can be constructed using the following recur-
rence formula:

nPY (s) = 2(n+ A —1)sP?, (s)
—(n+24-2)PY,(s). n>1, (BII)

P(s) =1, PY(s)=22s.  (B12)

The function of the second kind Q,(f) is the
solution of the differential equation (B9), which is

linearly independent of Pﬁf). The full set can be
constructed using the same recurrence relation with
a different starting point:

nQEf)(s) =2(n+4i- 1)SQE:1_)1 (s)
—(n+24-2)0%(s). n>1,  (BI3)

0Y(s) = / 1—2) 7, (B14)

0 (s) = 22505 (s) = (1 = s2)7**5. (BIS)

They take the general form

0(s) = “><s>Q§f><>
P(s)(1-s2)73,  (Bl6)

where RE,A) are polynomials of degree n —1 and

satisfy fo)(—s) = (—)”“Qf{l)(s). For the values of
A relevant for our analysis (half-integers and inte-
gers), the functions of the second kind fo)( )
diverge at s = £1. For 1 = l , the Legendre function

of the second kind dlverges logarithmically while
the other values of 4 lead to

lim(1 -2~ 0) (S)_2/11 n=01,... (B17)

[0V (5) ~ (1 = s2) 7.
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The general solution for Y (Vn > 0) is then
given from (B8) by

vi(s) = AP (s) + BOY(5),  (B18)
PP (s) = (1= 24P 0(s),  (BI19)
01(s) = (1-s2y07(s),  (B20)

P (=s) = (=)' P (s), (B21)

O (=s) = (=10 (s).  (B22)

For all values of A, the Q branch of Y will dominate
in the limit s — +1. If 1 = l the O branch will
diverge logarithmically while the P branch will be
finite. For all other values of 1 (integers and half-
integers > 1), the Q branch will be finite and will
tend to a nonzero constant at s = +1, while the P
branch will go to zero.

n<0.

In that case, taking into account that k > 1 (in
order to have n=1[—k <0), one finds that
n+2i—1=I14+k+d—-4>0, so that n > 1-24.
Furthermore 4 >3 > 1,

0>n>1-=24, A>

N W

The change of parameters n=—r—1
(r=-n-1=0,1,2,...) and A=1-p brings
the equation to the form

(1 -2y - (2p +1)50,YY

+ (r+2p) =0, (B23)

r=-n—1=0,1,2,..., (B24)
d-3

p=l-i=1-(k+=77).  (B2S)

This is again Eq. (B9) for ultraspherical polyno-
mials, but with a range of p which is not the usual
one since p < —%. This more general equation has
also been studied in [71], where it was found that the
pattern is similar: there is a polynomial branch and a
“second”’-class branch, which is actually also poly-
nomial when p (and thus 7) is a half-integer.

We give the solutions directly in terms of the
original parameters A and n appearing in the ex-
pansion of the fields. The polynomial branch p,(s)
of solutions has the standard parity p,(—s) =
(=) p,(s), while the other branch (which might
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also be polynomial as we pointed out) fulfills
q.(=s) = (=)""1q,(s). Therefore, in order to keep
uniformity in the parity properties when expressed in
terms of n, we denote the polynomial branch by QS,’D
and the other branch by P,({l).

The two sets of solutions can be constructed with
the following recurrence relation:

24+ n—1)PY (5) = 2(n + 1)sPY (s)
—(n+1)BY (), n<-2, (B26)
P (s) = / (1= 22, (B27)
0
PY(s) = sPY(s) + (1-s2)*5,  (B28)

- 20— 1)

the polynomial branch being given by the starting
point

Q(_/ll)(s) =1, Q@(s) =s.

In order to prove this recurrence, one needs the
following relation:

(B29)

(1-s2)0,PY = (n+1)(sPY =B ) (B30)

and its equivalent in terms of Q. The parity con-
ditions read

P (=s) = (-)"P{(s).
0 (=s) = (=) 10 (s).

(B31)

(B32)

(4)

The general solution for Y, keeps the form

= AP (s) + BOY (s),
(0>n>1-22).

Y (s)
(B33)

An important difference from the regime n > 0 is
that both branches have now the same asymptotic
behavior in the limit s — +1: they both tend to a
nonzero finite value. In particular, as we already
mentioned, both branches are polynomials if 1 is a
half-integer.

APPENDIX C: EXTRA COMPONENTS IN
HYPERBOLIC DESCRIPTION

In the main text, we have solved the equations of motion
for one component of the curvature F,,, namely, E°. In this
appendix, we will solve for the other components.

The equations to be solved are

— F)y = Z”_d+3 —k E (C1)
k>0
Fap= Y ™ Ry, Fyl=0,  (C2)
k>0
DaEfzk) =0, (C?’)
(d=4+KFy) = 0,E, —0,EL.  (C4)
D'Fy) +KES =0, 9,Fy) =0.  (C5)

Combining these equatlons we can obtain second order
equations for both E< ) and F, ( )
(d=2)EW + k(d—4+ KEW =0,

DD,EV — (Co)

DD, FY —2(d-3)FY) + k(d -4+ K FY =0. (C7)

As we saw in the main text, the first equation combined
with the fact that EE, Vis dlvergenceless on the hyperboloid
implies an evolution equation for Ej

—6)s0,EV) + (d — 4)EV
) k(d -4+ k)ED = 0.

(1-s2)2EY + (d

—-D,DAEY — (1 - (C8)

In a similar way, the second equation combined with the
fact that F i];) is closed on the hyperboloid gives us an
evolution equation for FX%:

(d - 6)s0,F\) +2(d - 4)F)
2lk(d—4+k)FL) =o0.

k
(1-s2)02F') +

—DDFY) —(1-5 (C9)

The general solution for E§k) is given in terms of

ultraspherical polynomials as follows:
E< 1 -5 __Z('—‘lm

where 1 =k + d; and n =/ —k. In order to obtain the
general solution to Eq (C9), we will use the same strategy
and decompose F 4 10 spherical harmonics:

+ —Im 0k )QEIA))Ylmv (CIO)

Fioy=(1=5)7%Y" al 0. (C11)

[1>0,m
The exact spherical harmonics @, is enough as F' XZ is an
exact 2-form on the sphere. Equation (C9) then takes the
form
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(1= 5202 +(d+ 2k — 6)s9,a)) + 1(1+ d - 3)a")

—(k=1)(k+d-4)al) =0, (C12)
which has the following solution:
al) = WPD () + 200 (s).  (C13)

with the same A and n.

Using the expression for Egk) and F XZ, we can now build
the remaining components of the curvature in such a way
that the main equations are satisfied. This is done by
expending (C1):

DEY = (1 - s2)aSE§") +(d-4)sEX,  (C14)
d,Ey) aB =(d—-4+k)F 2;, (C15)

1
F¥ ——— BV -0,EY).  (Cl6)

d—4+k

The first two lines give respectively the longltudmal and the
transverse part of E/(f) in terms of E; ) and F! g,, while the
last one then gives the last components F i in terms of
the rest. The only consistency condition coming from these
equations concerns the zero mode of (C14). Integrating this
equation on the sphere, we see that the zero mode of the rhs
has to be zero:

0= /dd‘2Q{(1 -2

= (1= )31 =)0, + (d =4 +K)s)
(" Y+ 250 0%

)0,EX + (d - 4)sEW)

(C17)

This implies that :(I)’ék)p(/w + B :Oo(k) Q('U has to be propor-
tional to (1 — s2)="
k = 0, where Pé) =

. One can easily check that, except for
(1 —s2)T", the function (1 —s2)" 2"

is not a solution of the dynamical equation of the zero mode
of %), This implies

=20 — 0. (C18)

Using the symbols T and L to respectively denote the
transverse and longitudinal part of vectors defined on the
sphere, we obtain the following expressions:

k

EYT = (d=4+k)(1 - s2)7
> (@ B+ a0 Wi,

[1>0,m

(C19)

(1 =520, + (d—4+k)s)

—P(k) 34 —0(k) A4
=B 4 0000,

—

(C20)

FRT = (1= 57 (1= 579, + ks)

[>0,m

(@, P+, O Wi,

() —’—‘—1
]— 3
s Z l+d 3)

[>0,m

(C21)

(2P W P 4

=Im

=20 0 Py (C22)
This provides the 3general solution to the complete system
as the tensors F and Ea built in this way satisfy the
last two equatlons given in (C5). The second equation is
trivially satisfied while the first one can be shown to reduce

to combinations of the two evolution equations (C8)
and (C9).
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