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STABILITY FOR LINEARIZED GRAVITY ON THE KERR SPACETIME

LARS ANDERSSON, THOMAS BACKDAHL, PIETER BLUE, AND SIYUAN MA

ABSTRACT. In this paper we prove integrated energy and pointwise decay estimates for solu-
tions of the vacuum linearized Einstein equation on the Kerr black hole exterior. The estimates
are valid for the full, subextreme range of Kerr black holes, provided integrated energy esti-
mates for the Teukolsky Master Equation holds. For slowly rotating Kerr backgrounds, such
estimates are known to hold, due to the work of one of the authors [30]. The results in this
paper thus provide the first stability results for linearized gravity on the Kerr background, in
the slowly rotating case, and reduce the linearized stability problem for the full subextreme
range to proving integrated energy estimates for the Teukolsky equation. This constitutes an
essential step towards a proof of the black hole stability conjecture, i.e. the statement that the
Kerr family is dynamically stable, one of the central open problems in general relativity.

The proof relies on three key steps. First, there are energy decay estimates for the Teukolsky
equation, proved by applying weighted multiplier estimates to a system of spin-weighted wave
equations derived from the Teukolsky equation, and making use of the pigeonhole principle for
the resulting hierarchy of weighted energy estimates. Second, working in the outgoing radiation
gauge, the linearized Einstein equations are written as a system of transport equations, driven
by one of the Teukolsky scalars. Third, expansions for the relevant curvature, connection, and
metric components can be made near null infinity. An analysis of the dynamics on future
null infinity, together with the Teukolsky Starobinsky Identity plays an important role in the

argument.
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The Kerr family of asymptotically flat, stationary, and axi-symmetric solutions of the vacuum

Einstein equations is parametrized by mass M and angular momentum per unit mass a.

In

ingoing Eddington-Finkelstein coordinates' (v,7,60,¢) € R x (0,00) x S2, the Kerr metric takes

ISee [33, Box 33.2]. The ingoing Eddington-Finkelstein coordinates are also known as Kerr coordinates. We

work in signature + — ——, and use conventions and notations as in [35].
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the form
) AMarsin? 0
gab = — 2(dr) (o (dv)yy + 2asin® 0(de) (. (dr)y) + T(dﬂﬁ)(a(dv)b)
A — g2 sin? 26n2 OA — (a2 212
+%M(dv)a(dv)b+ oS E(“ 1) G0 0(d)a (d6)s — S(d6)a(d0),

(1.1)

with volume element ¥ sin Odvdrdfde. Here ¥ = a?cos? 6+ r2, A = a? — 2Mr + r2. The Killing
vector fields of the Kerr metric are £* = (9,)%, which has unit norm at infinity and expresses the
fact that Kerr is stationary, and the axial Killing vector field % = (0y)®. In the subextreme case
la] < M, the maximally extended Kerr spacetime contains a black hole with a non-degenerate
event horizon I located at ry = M ++/M? — a2, the larger of the two roots of A. The exterior,
or domain of outer communications, of the Kerr black hole is the region r > r;, which we shall
denote M.

In addition to being stationary and axi-symmetric, the Kerr metric is algebraically special, of
Petrov type D, or {2,2}. In particular, the Weyl curvature tensor of the Kerr spacetime has two
repeated principal null directions? [%,n*. We note that [%,n® are real, and may without loss of
generality be chosen to be future directed, with n® inward directed, n®Vyr < 0, and normalized
so that [*n, = 1. The principal null vectors, together with a pair of complex null vectors m®, m®

where m® is the complex conjugate of m®, with m®m, = —1, and perpendicular to [*, n®%, gives
a principal null tetrad (1%, n% m®,m®). We have gap = 2(I(anp) — M (a7Mp)). We shall here use the

Znajek tetrad [46], which in ingoing Eddinton-Finkelstein coordinates takes the form

2a(0,)" 2(a® +12)(0,)*  A(9)*
by ) V2%
n = — %(ar)“, (1.2b)
Op)" i cscB(0p)° ja sin 6(0,)°

o _ (O9) n icsc(0g) n iasind(9,) (1.20)

V2(r —iacos®)  \2(r —iacos)  V2(r —iacosf)
Let gqp(A\) be a 1-parameter family of metrics on M, with g5(0) = gap. The linearized metric
0Gap = % gab(/\)‘ o Solves the linearized vacuum Einstein equations on M if

6E. =0, (1.3)

where dE,;, is the linearization of the Einstein tensor at gqp in the direction of dgq,. Due to the
covariance of Einstein’s equations, the space of solutions of the linearized Einstein equation is
invariant under gauge transformations

6gab — 5§ab = 5gab - 2v(ayb)- (14)

Upon introducing a suitable gauge condition, e.g. Lorenz gauge V*(dgaps — %59009111)) = 0, the
linearized Einstein equation becomes hyperbolic, and it follows from standard results that the
Cauchy problem for the linearized vacuum Einstein equation on M admits global solutions. A
priori, these may have exponential growth.

Let dgqp be a solution of the linearized vacuum Einstein equation on M, and let n® be the
ingoing principal null vector, cf. (1.2b). The fact that Kerr is of Petrov type D implies there is a
vector field v* such that the gauge transformed metric dg,; satisfies

n%3Ga =0,  g™6Gap = 0, (1.5)
cf. [36]. The resulting gauge condition is called the outgoing radiation gauge®. For a linearized
metric in outgoing radiation gauge, the only non-vanishing components are

Goof = 5gablalb, Glof = 5gablamb, Ggof = 5gabm“mb. (16)

2Let Clabeq be the Weyl tensor of (M, gqp). A null vector k¢ is a principal null direction if k[aCa]bC[dkf]kbkc =0,
cf. [39, §4.3].

3Replacing n® by 1* leads to the ingoing radiation gauge condition. The result of [36] is valid more generally
for linearized gravity on background spacetimes of Petrov type II.
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Let Chyp = 106, and let

M2(ry —1)° — )M
h(r) = 20 — ) + 4M log(—) + 2 =T o arctan (G =DM
T+ T4T r
- 1M
72Marctan(M), (17)
T+
Define the horizon crossing time ¢ 4+ and the hyperboloidal time ¢ by

b+ =v—h/2, (1.8a)
t=v—h. (1.8b)

Then t,-+ and t are time functions with strictly spacelike levels sets which are future Cauchy
surfaces in M. The level sets of both ¢+ and t cross the event horizon and are regular there,
while for large r, the level sets of ¢ -+ are asymptotic to spatial infinity, with asymptotically flat
induced metric, while the level sets of t are asympototic to future null infinity. Let ¢t = 10M and
define

Vinit = {topr =to} N{r>ry}. (1.9)

Let a € R. For tensors w,...q along Xinit, let Hﬁ(Zinit) be the weighted Sobolev space with
norm

k
||w||§gk(zimt) = / M~ Zr”+2i_1|viw|§Edr sin 0dfdo, (1.10)
« Yinit i=0
where the squared modulus |w|§E of a tensor is defined in terms of the positive definite metric
9 ab = 20141y — gap, with T the timelike unit normal of ;.

Theorem 1.1. Let (M, gap) be the domain of outer communications of a slowly rotating Kerr
spacetime, with |a|/M < 1. Let k € N be sufficiently large and € > 0 be sufficiently small. Let
dgab be a solution to the linearized vacuum FEinstein equations on (M, gap) in outgoing radiation
gauge, with ||5g||H§(Eim) < 00, and let Gy, i = 0,1,2 be the components of §gqp defined by (1.6),
with respect to the Znajek tetrad. Let |5g|*> = |Goo|*> + |Gio|*> + |Gaor|?>. There is a constant
C = C(k,|a|/M,e€), such that the inequality

|6g] < CMPP= =324 5g | s (1.11)

init)”

holds for t > 10M.

Considering the conformally rescaled metric 7~ 2g,;, allows one to add a boundary at r = oo,
containing the smooth null manifolds #%+, #~ which represent the limits of those future and
past directed null geodesics, respectively, that reach infinity. The complement is spacelike infinity
ip. The future and past parts ST, .5 ~, of the event horizon are reached by ingoing future and
past null geodesics, respectively, that emanate in M and enter the black hole. The complement of
T U™ in 2, called the bifurcation sphere B, is distinguished by the fact that £¢ is tangent
to B. The coordinate v is finite on J#*. The level sets of the horizon crossing time t 4.+ are
asymptotic to ig. The level sets of ¢ are regular at both # and #*. It induces foliations of the
future part of the event horizon S+ and future null infinity .#*.

Let 6Cupeq be the linearized Weyl tensor. Due to the fact that Kerr is Petrov type D, the
linearized Newman-Penrose scalars

IV = —6Capeal®m®1cm?, 9V, = —6C peqn®mPnms, (1.12)

are gauge invariant. For a solution of the linearized vacuum Einstein equation on the Kerr
background spacetime, #W¥q, 9V, solve a pair of decoupled wave equations called the Teukolsky
Master Equations [42], and also satisfy a set of fourth order differential relations called the
Teukolsky-Starobinsky Identities. cf. [43, 38]. The linearized Einstein equations in outgoing
radiation gauge reduce to the two Teukolsky Master Equations for 9W¥q, ¥#¥,, the Teukolsky-
Starobinsky Identities, and a set of transport equations along n, for the metric components (1.6)
as well as for tetrad components of the linearized connection coeflicients.
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The compactified hyperboloidal coordinate system (t, R, 6, ¢), with R = 1/r and (0, ¢) as in
the ingoing Eddington-Finkelstein coordinates, is regular at .# ™ considered as a null hypersurface
in the conformally rescaled metric r~2g,s, as is the rescaled tetrad

(M~2721% n® M~ 'rm® M~ 'rm®), (1.13)

where (1%, n% m® m®) are given by (1.2). The asymptotic behaviours at .#* of tensor fields on
M, often referred to as peeling, can be understood by passing to the conformal compactification,
taking into account the behaviour of the fields under conformal rescaling, and using the rescaled
tetrad (1.13). A peeling analysis indicates

19‘1’0 = O(T_5), 19‘1’4 = O(T_l), (1.14&)
Gio = O(r=3T)), i=0,1,2. (1.14b)

The scalars YU, 9¥, are properly weighted in the sense of Geroch, Held, and Penrose (GHP)
[23], and have boost- and spin-weights +2, —2, respectively. In the following we shall transform
properly weighted scalars and operators to boost-weight zero by rescaling with powers of a factor
A with boost-weight 1 and spin-weight 0, which takes the value A = 1 in the Znajek tetrad®. Let

(a® +1rH)Y2(r —ia cos )*A™200, (1.15a)

Yyo =
b (a® 4+ r2)Y2\290,. (1.15b)

Yoo =

Then 1/}+2,1ﬁ_2 have boost-weights 0 and spin-weights +2, —2, respectively. The fields 1ﬁ+2, 1/;_2
are the de-boosted radiation fields of 9W, 9W,, respectively, in particular they are regular, in the
sense of spin-weighted fields, and non-degenerate on M including 5" and .#*. In the following,
unless otherwise stated, we shall consider only fields with boost-weight 0.

In order to discuss our estimates for the Teukolsky Master Equations, we introduce operators
acting on fields of spin-weight s, which, restricting to the Znajek tetrad and the ingoing Eddington-
Finkelstein coordinate system, take the explicit form

N= N[

YANG 7 alypp
V=0, ; 1.16
4 v 2(a®+712)  a?+1? (1.162)
Y= —0rp, (1.16b)
o= %6%0 + ﬁ csc 004 — %s cot O, (1.16¢)
5 0= %8990 - ﬁ csc00qp + %S cot O, (1.16d)

and
Lep=0vp,  Lnp = Opp. (1.16e)

Here, V, Y represent derivatives in the directions [*, n®, respectively, while é, 8 are the spherical
edth operators. Define the operators Ry, S5, acting on fields of spin-weight s by

2a(1 42 2Ms(a? — r?
Ry =2(a>+r2)YV — Mﬁn +dsrV + My
a2 +7’2 a2 +T2
2s(M —r)r N ((14+2M7"3+(127"(7*74M))7 (117)
a? + 12 (a2 + 12)2
S, =289 +2aLeL,y + a? sin® Gﬁg — 2iascos L. (1.17b)

If §gqp solves the linearized vacuum Einstein equations, then the scalars 12]8 with s = 42, —2 given
in (1.15) solve the Teukolsky Master Equation

Ryths — Sgtps = 0. (1.18)

4 Let p = m*mPVyng. Then p’ is one of the GHP spin coefficients with boost-weight —1 and spin-weight 0,
and A = (v2(r — iacos0)p’)~! has the desired property.
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In addition to the Teukolsky equations (1.18), the fields 1ﬁ+2, 1/;_2 satisfy the differential identity
4

od A = 4\ . c4—k A T 4.
0 o= —3MLe(V_y) =Y (k)fk 0 Lfoo+ i(y + m) Vs, (1.19)
k=1
where 7 = —(r — iacos0)?7, 7 being one of the GHP spin coefficients. In the Znajek tetrad,

7 = iasin0/v/2. Equation (1.19) is one of the Teukolsky-Starobinsky Identities, expressed in the
variables (1.15) and the operators (1.16).
We introduce the set of operators

B={Y,V,r '8,r 13}, (1.20a)
related to the principal tetrad, and the set

D= {MY,rV,8,3}, (1.20b)
of rescaled operators. Finally, the set

P={3,0,MLe} (1.20¢)
is appropriate for controlling fields on .# . In stating integral estimates we shall make use of the
volume elements

d*p = sin@dv A dr A dO A do, d3p = sinfdr A df A do. (1.21)

Definition 1.2. Let ¥ be a smooth, spacelike hypersurface, and let v, be a 1-form normal to X.

Let d3u, denote a three form such that v A d3u, = d*u. Let ¢ be a boost-weight zero field. Let
k be a positive integer and define

o o/
Bi(¢) = M / (WY VR + VYol + (va(VE + Y 2362 + 18 0l2) ) d,

(1.22a)
k—1
Eg(p) = > MYEL(X; ... X19), (1.22b)
i=0 X1,...,X;€B
By, 1,(¢) = MPr? Zngo|2d4u+/ Mr=3|p|2d%, (1.22¢)
' Qiy 0o N{r>10M} XeB Qty 09
k—1
B () = o MPWL (XL Xa). (1.22d)
i=0 X1,...,X,;€B
In order to discuss our second main result, we shall need the fields
) 2 2 N\t
0 = (%V) ba  0<i<A4, (1.23)

defined in terms of derivatives of 1/;,2. Let 3; be a level set of the hyperboloidal time function
t, cf. (1.8b). For t1 < to, let Qy, 1, denote the spacetime domain given by the intersection of the
past of Xy, , with the future of X, .

Definition 1.3 (Basic decay condition).

Let dgqp be a solution to the linearized Einstein equations on a subextreme Kerr exterior M, and
let thyo be as (1.15a), and let 1&@2, i=0,1,2 be as in (1.23). We shall say that dg,; satisfies the
basic decay condition if the following holds for all sufficiently large k € N.

(1) There is a positive constant C' such that for all ¢; < to with 10M < t; < ta,
2 2
> (BE, (09 + BE L (09) <> B, @), (1.24)
i=0

=0

Jim (seliogl ) =0. (1.25)



6 L. ANDERSSON, T. BACKDAHL, P. BLUE, AND S. MA

Remark 1.4. The spin-weight —2 case, point 1, of definition 1.3 is an integrated energy estimate.
The spin-weight +2 condition in point 2, on the other hand, is not in the form of an estimate,
but rather a weak pointwise decay condition. In section 7, equation (1.25) is proved to follow
from a basic integrated energy estimate analogous to the condition stated in inequality (1.24).

We are now able to formulate the second main result of this paper.

Theorem 1.5. Let (M, gap) be the domain of outer communications of a subextreme Kerr space-
time. Let k € N be sufficiently large and ¢ > 0 be sufficiently small. Let dgqp be a solu-
tion to the linearized vacuum Einstein equations on (M, gap) in outgoing radiation gauge, with
H(;QHH;(Z;,M) < 00, and let Gior, i = 0,1,2 be the components of dgap defined by (1.6), with respect
to the Znajek tetrad.

Assume that dgqp satisfies the basic decay conditions of definition 1.3. Then, there is a constant
C = C(k,|a|/M,e), such that the following inequalities hold for t > 10M.

(1) In the interior region r < t,

(Gaor| < Cr 28| s 5, (1.26a)
|(¥mz|5;(7r_2t_3/2+€H69HH¢(Em“), fori e {0,1}. (1.26b)

(2) In the exterior region r > t,
|Gior| < Cr =t 24 5g | e sy, Jor i €{0,1, 2} (1.27)
Remark 1.6. (1) Tt follows from the work in [30] together with the arguments in section 7

that the conditions stated in definition 1.3 hold for a solution dg,; of the linearized
Einstein equation on a slowly rotating Kerr background, with [|6g| g (s,,,,) < o©.

(2) Theorem 1.5 is valid for the whole subextreme range |a| < M, provided that the basic
decay condition, definition 1.3 holds.

(3) The fall-off at £+, with respect to r, for the metric components G/, that is expressed
in the inequality (1.27), is compatible to that predicted by a peeling analysis for dgap.

The first main step in the proof of theorem 1.5 is to convert the basic energy and Morawetz es-
timates of definition 1.3 into decay estimates for the Teukolsky scalars. After a suitable rescaling,
the higher order de-boosted Teukolsky scalars with spin-weight —2, 1/3(_1)2, 1=0,...,4, defined in
(1.23), solve a 5 x 5 system of spin-weighted wave equations. The right hand side of this system
has only first order derivatives, involving V and £,,. Using a weighted multiplier estimate with
the multiplier r*V, for 0 < a < 2, applied sequentially to this system, the assumed basic decay
conditions imply a hierachy of integrated energy estimates for weighted energies of the form

k
el =Y X [ Mol Xl dn (1.28)
i=0 X1,...,X; €DV 2

which via the pigeonhole principle can be converted to time decay estimates. Here it is important
that the angular part of the spin-weighted wave equation under consideration has either a positive
lower bound on the spectrum for the angular operator, or that the V-term in the right hand side
provides a damping effect. Such considerations constrain the size of the derived system, the
length of the hierarchy of weighted estimates, and consequently the fall-off rates provided by the
estimates.

The second main step is to derive, from the linearized Einstein equations in outgoing radiation
gauge, a set of transport equations, each of which is of the form

Yo =o, (1.29)

for a set of fields, which include de-boosted and rescaled versions of the metric components G,
as well as fields derived from the linearized connection coefficients. The solution is determined by
1/3,2, as well as the initial data given on Xj,;;. The solutions of the hierarchy of transport equations
are estimated using weighted Hardy estimates, which yield integrated, weighted, energy estimates
for the fields in the hierarchy starting from the integrated energy estimates for 1ﬁ_2. A subtlety
here is that the weighted Hardy estimates apply only to fields with sufficient fall-off at .#*. This
makes it necessary to consider Taylor expansions at .# T, and treat the Taylor coefficients on .#+
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separately from the remainder terms. The Taylor coefficients on £ satisfy a set of transport
equations, which can be integrated due to the Teukolsky-Starobinsky Identity and the condition
(1.25). In performing these estimates, it turns out to be important to treat the exterior region
r > t separately from the interior region r < t. The transport estimates from the exterior region
provide decay estimates on the transition region r = t. These provide part of the source for the
estimates in the interior region.

We shall now put the results presented here in context and give some background and refer-
ences. The Kerr [27] family of stationary and rotating black hole solutions to the vacuum Einstein
equation, is conjectured to be unique and dynamically stable, and a proof of these conjectures
is required to establish the validity of the Kerr black hole as a physical model. The black hole
uniqueness conjecture states that any asympotically flat, stationary, vacuum spacetime contain-
ing a non-degenerate black hole is isometric to a member of the sub-extreme Kerr family. See [12]
for a recent review on the black hole uniqueness problem. The black hole stability conjecture, on
the other hand, states that the maximal Cauchy development of data for the vacuum Einstein
equation, which is close in a suitable sense, to Kerr data, is asymptotic at timelike infinity to a
member of the Kerr family. The mathematical problems resulting from the uniqueness and stabil-
ity conjectures have stimulated much work during the last five decades, but in spite of significant
progress, both the stability and uniqueness conjectures remain open.

There are important similarities between the stability problem for Minkowski space and the
black hole stability problem, and the ideas and techniques introduced in the work on this problem
have had a significant influence in work on the black hole stability problem. In particular, we
mention the approach based on conformal compactification used by Friedrich [22] in his proof of
the future stability of Minkowski space, and the vector-fields based energy estimates used in the
monumental proof of the non-linear stability of Minowski space of Christodoulou and Klainerman
[11].

The linearized counterpart to the black hole stability conjecture is the statement that a solution
to the linearized Einstein equations, in a suitable gauge, generated from initial data which is
well-behaved at spatial infinity, tends at timelike infinity to a linearized perturbation of the
Kerr background with respect to the moduli degrees of freedom of the Kerr famility, i.e. mass
and angular momentum per unit mass. Following nearly two decades work on decay estimates
for solutions of wave equations (spin-0) and Maxwell fields (spin-1) on Schwarzschild and Kerr
backgrounds, cf. [19, 16, 40, 3, 4, 41, 32] and references therein, the first such results for linearized
gravity on the Schwarzschild background [13, 20], see also [5, 17]. The technique introduced in [7]

was influential in our approach to treating the 1[)(_1)2 Recently, decay estimates for the Teukolsky
equations in the spin-2 case on slowly rotating Kerr backgrounds [30, 14] have been proved, see
also [20].

Decay estimates on the full sub-extreme range of Kerr backgrounds is known at present only
for the spin-0 case. Here, Whiting’s mode-stability result [45] and its generalization to real
frequencies in the spin-0 case [37] plays a central role. The results mentioned above for fields
with non-zero spin provide energy and integrated energy estimates for the Teukolsky equation in
the slowly rotating case. It can be expected that known techniques based on the generalization
of Whiting’s mode stability result to the real frequency case, with non-zero spin [6], will yield a
proof of the corresponding estimates for the full sub-extreme range of Kerr black holes.

There has recently been significant progress on the non-linear black hole stability problem.
For the case of of slowly rotating Kerr-de Sitter black holes, non-linear stability is known [25].
The presence of a positive cosmological constant in the Kerr-de Sitter case provides exponential
fall-off in time, which plays an important role in the proof. The non-linear stability of the
Schwarzschild spacetime with respect to polarized axially symmetric perturbations is also known
[28]. In particular, the assumptions in the just cited paper imply that the spacetime geometry is
asymptotic at timelike infinity, to a Schwarzchild spacetime.

In the present paper we give the first proof of linearized stability of the Kerr black hole, by
providing energy bounds, Morawetz estimates, and pointwise decay estimates for the linearized
vacuum Einstein equation on the exterior of a slowly rotating Kerr black hole. The estimates
represent a major step towards a proof of the non-linear stability of the Kerr spacetime, without
the additional assumption of axial symmetry.
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Overview of this paper. In section 2 we collect the geometric preliminaries needed in the
paper. This includes the hyperboloidal time function as well as a discussion of the operators
on spin-weighted fields that will be used in the remainder of the paper. We also state here the
Teukolsky Master Equations, and the Teukolsky Starobinsky Identities in the form that we use.
The linearized Einstein equation is presented in section 3.1, where also the outgoing radiation
gauge condition is discussed. The main transport system, resulting from the linearized Einstein
equations in outgoing radiation gauge, and which relates the spin-weight —2 Teukolsky scalar to
the linearized connection coefficients and the linearized metric, is presented in section 3.3.

Section 4 collects some analysis results needed in the main part of the paper. These include
definitions of norms, and basic estimates for spin-weighted operators. Further, three important
lemmas, which play a central role in the decay estimates, are developed in section 5. The first is a
basic lemma which can be used to convert weighted energy estimates to energy decay estimates.
This type of result is often referred to as the pigeonhole principle. The second is a weighted
Hardy estimate for transport equations, and the third is a weighted multiplier estimate for the
spin-weighted wave equation.

Sections 6 and 7 present the decay estimates for the Teukolsky scalars. The decay estimates for
the linearized connection coefficents and the linearized metric originate from these results. The
estimates presented here assume a basic integrated energy decay estimate, but do not require
slow rotation, i.e. smallness of |a|/M.

Finally, in section 8 we use the transport system derived in section 3.3 to prove estimates
for linearized connection coefficents and metric components. The method used here involves the
analysis of Taylor expansions at .# 7. Taylor coefficents are shown to satisfy transport equations
on £, and decay for these is proved using the Teukolsky-Starobinsky identity. The Taylor
remainder is controlled using the weighted Hardy estimates proved in section 5. This section
ends with the proof of the main theorems.

There are two appendices. Appendix A provides the complete first order form of the linearized
Einstein equations that is the basis for all computations in the paper. These are also presented
in a form specialized to outgoing radiation gauge. Finally, appendix B provides information on
the form of the non-radiating solutions to the linearized Einstein equations in outgoing radiation
gauge on the Kerr background that represent linearized mass and angular momentum.

2. GEOMETRIC PRELIMINARIES

2.1. Notation and conventions. We shall use index and sign conventions following Penrose
and Rindler [35], see also [2] for background. We work with tensors and 2-spinors using abstract
indices, and make use of scalar components of tensors and spinors, defined by projecting on a
null tetrad. The resulting scalars are properly weighted in the sense of Geroch, Held and Penrose
(GHP), cf. [23]. The GHP formalism provides a covariant framework which is convenient for
calculations. In particular, we shall use the GHP operators p, p’, 3, &', corresponding to derivatives
along tetrad legs. Unless otherwise stated, we shall assume that all fields are properly weighted
and smooth, in the appropriate sense.

The first-order system of transport equations which is used here, cf. sections 3.1, 3.3 and
appendix A, has been derived using the covariant formalism for calculus of variations with spinors
introduced by Béckdahl and Valiente-Kroon in [10], and is closely related to the first order form
of the Einstein equations as a system of scalar equations derived by Penrose and collaborators in
[23] and [34]. The computer algebra tools for calculations in the 2-spinor and GHP formalisms
developed by Aksteiner and Béackdahl, cf. [8, 9], and related packages, have played a central role
in deriving the equations used in this paper.

Let a spin dyad with the normalization®

OALA =1 (2'1)
be given. For a symmetric spinor ¢ 4...pa’...p/, scalar components ;; are defined by contracting
i times with ¢4, i/ times with ¢4, and contracting the remaining indices with o or o*. The

numbers 4 or i’ are omitted if the spinor is of valence (0,1) or (k,0) respectively. In particular,
the Weyl spinor ¥ 4pcp corresponds to the five complex Weyl scalars ¥;,¢ =0, ..., 4.

5Spinor indices are raised and lowered using the spin metric e4p = €[4 p) normalized such that g,» = €apearp’-
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A complex null tetrad is given in terms of the spin dyad by

4= OAOA/, n® = LALA/, m® = OALA/, me = Aot (2.2)

Here 1%, n®* m®,m® are null, [*, n® being real, and m®, m® complex, with m® the complex conjugate
of m®. The null tetrad satisfies the normalization [*n, = —m®m, = 1, and hence

Jab = 2(L(anp) — M (). (2.3)

The normalization (2.1) is left invariant by rescalings o4 — Aoa, ta — A"lia where A # 0 is
a complex scalar field. Scalar fields ¢ defined by projecting spinors on the dyad, or tensors on
the tetrad, transform as ¢ — A\PX9¢p, for integers p, q. Such scalars are called properly weighted,
with type {p,q}. An example is given by the component v,n® = v 4 A/LALA/, for a vector field
v®, which has type {—1,—1}. Using the notation introduced above, this would be denoted v11/.
The boost weight of a properly weighted scalar of type {p,q} is b = (p + ¢)/2 and the spin
weight is s = (p — q)/2. The notions of properly weighted scalar, type, as well as boost- and
spin-weight extend to tensor and spinor fields. For example, m® has type {1, —1}, boost-weight
0, and spin-weight 1. A field of GHP type {0,0} is well-defined, independent of rescalings of the
tetrad. Examples are the metric g, and the middle Weyl scalar ¥5. We shall refer to such fields
as zero-weighted.

Computations using the GHP formalism are simplified by using the prime and complex con-
jugation operations® . Complex conjugation, ¢ — @ takes fields of type {p,q} to type {q,p},
i.e. it changes the sign of the spin-weight, and preserves the boost-weight. The prime opera-
tion, ¢ — ¢', interchanges I* > n®, m® < m*, and takes fields of type {p, ¢} to fields of type
{=p, —q}. Prime and complex conjugation commute, and are symmetries in the sense that a valid
GHP expression remains valid after applying the prime or complex conjugation. The GHP type,
and the boost- and spin-weights are additive under multiplication.

Properly weighted scalars are sections of complex line bundles, and more generally, properly
weighted tensor and spinor fields are sections of complex vector bundles. The lift of the Levi-
Civita connection V, to these bundles gives a covariant derivative denoted ©,. Projecting on the
null tetrad 1%, n®, m®, m® gives the GHP operators [23],

b=19,, b =n'0,, 0=m*0, 0 =m"0,.
See [24] for discussion of the geometry of properly weighted scalars, and the GHP covariant
derivative. The GHP operators are properly weighted, in the sense that they take properly
weighted fields to properly weighted fields, for example if ¢ has type {p, ¢}, then b ¢ has type
{p+1,q+1}. This can be seen from the fact that 1% = 0464 has type {1,1}.

There are twelve connection coefficients in a null frame, up to complex conjugation. Of these,
eight are properly weighted, and are given by

k=mllWV,olp, o =mPmV,l,, p= mPmValy, T=m"nVl, (2.4)

together with their primes k', 0, p/, 7/. These are the GHP spin coefficients. The remaining four
connection coefficients, given by

1 1
6::§@FPVda+anVmﬂJ ﬁ%:iOfanda+nfanmﬂQ (2.5)
and their primes, enter in the connection 1-form for the connection ©,. We have

Oup =Vap — bnbvalbga + smbvambcp (2.6)

where b, s are the boost- and spin-weights of ¢, respectively. This definition extends to properly
weighted tensor and spinor fields.

Remark 2.1. Let ¢ be a properly weighted scalar with boost-weight zero and spin-weight s. By
the above, we have that ¢ has spin-weight —s, and hence

lol” = vp (2.7)
is a true scalar with GHP type {0,0}. Introducing the inner product
(v, 0) = po, (2.8)

6In addition, there is the Sachs * operation, cf. [23].
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we may view spin-weighted fields as sections of a Riemannian vector bundle. The GHP covariant
derivative O, is real, in the sense that

0,9 = 0Oy (2.9)
and hence it is also metric, with respect to the inner product given by (2.8),
Va(p, 0) = (Qap, 0) + (¢, ©a0). (2.10)

2.2. Geometry of Kerr. The Kerr spacetime is of Petrov type D, which means that in a prin-
cipal dyad, we can write

Vapcp = 6¥3040BLCLD). (2.11)

The main feature of the Petrov type D geometry is encoded in the symmetric Killing spinor k45
found in [44], satisfying

Viat kpe) =0. (2.12)
In a principal dyad” the Killing spinor takes the simple form
KAB = — 2K10(AlB)- (2.13)

In the Kerr spacetime, k45 can be normalized so that the stationary Killing field with unit norm
at infinity is given by

§an = VP akan. (2.14)
The Eddington-Finkelstein (or Boyer-Lindquist) coordinate r can be defined covariantly by
r= —3(k +Fr). (2.15)
Similarly, we define the boost- and spin-weight zero quantities
A = —162k1°F1pp/, Y = 9r1Ry. (2.16)
In a principal tetrad this corresponds to the standard A and 3, which take the form
¥ = a®cos® 0 + 12, A =a*—2Mr+1r?, (2.17)

which can be used to define the coordinate . The remaining two coordinates can be chosen to
correspond to the two Killing fields of the spacetime.
We now give the concrete coordinate form of the Kerr metric in the ingoing Kerr coordinates

(v,1,0,0), cf. [33, Box 33.2]. In the Schwarzschild case, the ingoing Kerr coordinates coincide
with the ingoing Eddington-Finkelstein (IEF) coordinates, and we shall here use that term also
in the Kerr case. The principal Znajek [40] tetrad in IEF coordinates takes the form
2a(0y)® 2(a® +1%)(0,)*  A(0,)®
o VR0, VA 410, | AG)" 2,150
by > V2%
nt = — %(&)“, (2.18b)
i (0p)* n icsch(0y)" n iasin0(0,)* (2.18¢)

V2(r —iacos®)  2(r —iacosf)  V2(r —iacosh)’
with m® the complex conjugate of m®. The Kerr metric in IEF coordinates can be written using
(2.3) as

AMarsin® §
gav = — 2(dr)u(dv)y) + 2asin” 0(de) o (dr)y) + ————

A — a? sin? e(dv) (do) + a?sin”® A — (a® + r?)?

(d¢) (a (dv)b)

sin 0(dg)a (), — S(d8)a(d0).

z z
(2.19)
The volume element of g, is given by
sin 0¥ dvdrdfde. (2.20)
We shall often use w to denote the angular coordinates (6, ¢).
"Note that x1 and W can be expressed covariantly via the relations k4 gxAB = —2k12 and U 4 g p TABCD =

6\113. Hence, we can allow x1 and W2 in covariant expressions.
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Remark 2.2. The Killing vector fields
£ = ()%, C" = a*(0y)" + a(dy)", N =a"'¢" — al® = (94)", (2.21)

are naturally defined in terms of the Killing spinor, cf. [2], provided a # 0. The form of £°
given here agrees with (2.14). In the Schwarzschild case a = 0, defining an azimuthal vector field
N = (9y)® corresponds to a choice of rotation axis.

Remark 2.3. The only non-vanishing components, in a principal dyad, of the Killing spinor and
curvature in the Kerr spacetime are, in IEF coordinates,

k1= — 2(r —iacos#), Uy = — M(r —iacosf) 3. (2.22)
Remark 2.4. (1) The spin coefficients in the Znajek tetrad (2.18) are
k=0, k' =0, o=0, o' =0, (2.23a)
A , 1 tasin6 , tasin@
=—— - =227 7= (2.23b
SENoPNS ’ 3v2k1 9v2k12 V2% ( )
¢ =0, 5= cot § g= icscl(2a — 3icos 9%1/), (2.23¢)

 6V2Ry
_ 2A —6M~ky —9k2 - X%
T 6v2k1 2 '

(2) Due to the fact that ¢ = 0, the ingoing null leg n® is auto-parallel

n’Vyn® = 0, (2.24)

18\/5!%12

(2.23d)

i.e. it generates affinely parametrized geodesics.

Remark 2.5. (1) We make use of the covariant GHP formalism, and properly weighted
scalars, and hence our calculations are independent of a the specific coordinate system
and principal tetrad used. However, it is sometimes convenient to make use of the ingoing
Eddington-Finkelstein coordinate system and the explicit form of the Znajek tetrad.

(2) The scalar

A= (=3V2kp) 7t (2.25)
has boost-weight 1, spin-weight 0 and takes the value 1 in the Znajek tetrad.

In the subextreme case |a| < M, the event horizon 7 of the Kerr black hole is located at
r = r4, where

ry =M+ M?—a? (2.26)

is the largest root of A. The exterior, or domain of outer communications, of the Kerr black
hole, (M, gqp) is, in ingoing Eddington-Finkelstein coordinates, represented by (v,r,6,¢) € R x
(ry,00) x S2.

Past, and future directed causal geodesics that start in M and fall into the black hole cross
the past, and future parts, 2, " of the event horizon, respectively. The complement of
HCT U™ in A is the bifurcation sphere B.

Definition 2.6. (1) The tortoise coordinate r, = 7.(r) is defined by
‘Z;j‘ _ Zaz, ro(3M) = 0. (2.27)
Further, let 7# = r#(r) be defined by
drt = %, 4 (3M) = 0. (2.28)
(2) The Boyer-Lindquist time tp, is
thL = v — Ty (2.29)

Let ¢pr. = ¢ — r¥. The Boyer-Lindquist coordinate system is given by (tpr, 7,0, é51).
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(3) The retarded time w is

u=v—2r,. (2.30)

The outgoing Kerr, or Eddington-Finkelstein coordinates are (u,r, 6, ¢!) where the mod-
ified azimuthal angle is defined by ¢# = ¢ — 2rF.

Remark 2.7. We shall sometimes refer to v as the advanced time. However, neither u nor v
are time functions, in particular their level sets are weakly timelike, in the non-static Kerr case

(a #0).

For later use, we note that letting R = 1/r, the conformal rescaling R%g,, allows adding
a conformal boundary at R = 0. Future and past null infinity .#T,.#~ represent the set of
endpoints of future and past directed outgoing null geodesics that escape from M, respectively.
The complement of £~ U.#7T in the conformal boundary is called spacelike infinity, and denoted
ig. Finally, we denote future and past timelike infinity, which represent the asymptotic future
and past of causal curves in M that neither escape through .# nor fall through S, by i, and i_,
respectively.

The compactified outgoing coordinates (u, R,,¢*) extend to future null infinity .+, and
cover the past horizon #~. Similarly, the compactified ingoing coordinate system (v, R, 6, ¢)
covers past null infinity .# ~ and the future horizon J#+. Level sets of the Boyer-Lindquist time
tpr reach the bifurcation sphere B at r = r, and spacelike infinity i as » — oco. While the
conformally rescaled metric R?gq; is regular at .# ~ U .#*, which are smooth null surfaces, it fails
to be regular at ig. See figure 1.

t g1, = constant

FIGURE 1. The Kerr DOC, with tg,, v, and u level sets indicated.

2.3. Operators on spin-weighted scalars.

Definition 2.8. (1) A properly weighted scalar of boost-weight zero is called a spin-weighted
scalar.
(2) A properly weighted operator of boost-weight zero is called a spin-weighted operator.

Remark 2.9. The spin coefficient p’ is properly weighted with boost-weight —1 and spin-weight
0. By multiplying with powers of p’ or A from(2.25) we may de-boost operators and scalars, so
that they have boost weight zero. We shall apply this operation systematically.
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Definition 2.10. Define the following spin-weighted operators

2 = /
Ve \/@\(; — b 4 2581 (;:;v)pp v (2.31a)
Yo =V2\p, (2.31Db)
5(,0 = — 9Lepr1*T + 3sK1TY + 3K1 D, (2.31c)
8 o= — 9LepR1 2 — 3sRy o+ 3Ry D . (2.31d)

Remark 2.11. The operators V and Y represent derivatives along the principal null directions,

and are zero-weighted, while the operators é, 8§ are spin-weighted, but have boost weight zero.
In fact, when acting on zero-weighted scalars, the operators V and Y reduce to V*V, and Y*V,,.

Lemma 2.12. The Killing vector fields £*, (%, and n®, defined by (2.21) yield the following
spin-weighted Lie derivative operators,

Lep= —3k1p' P+ 3k1pD ¢+ 3k17 D — 3r170 @ + 25(Vor1 — Uaky1)p, (2.32a)
Lep =ik — 1)’ (0 b — pb ) — Zka (ki + Fr)* (7' 8o — 70 )

— %:S((/il + R1/)2(\I/2/<L1 — \Ifgﬁlr) + 8&12(—I€1 + er)pp/)(p, (2.32]2))
Lop=a'Lecp—alep. (2.32¢)

The following relation will also turn out to be useful

a
a2+ r?

Lep=Vo+ Yo Lnep. (2.33)

2(a? +12)

Definition 2.13. Define the following spin-weighted operators.

Ry =2(a®+ )YV - GQQ:L_TTQ J 4M‘(LZ j: ;f;j + 2 (2.34a)

Ry =2(a®* +r3)YV — %Ln + 4srV + %Y

4 3 2
S et o
Sy = 20 —9k127Le) (D —9R127Le) — 3(2s — 1) (k1 — Frr) L, (2.34c)
S, =289, (2.34d)
&, = R, — S,. (2.34¢)
Remark 2.14. (1) The standard d’Alembertian is related to [, via

ViV = ! So(Va2 + r2¢). (2.35)

SV T

(2) The operator R, has 1o explicit s-dependence. In particular, R, coincides with the radial
part of the d’Alembertian, acting on the radiation field.
(3) We have

[ES,SS] = [R,,Ss] =0. (2.36)

(4) The operators ]?Es, S, are related to the Teukolsky radial and angular operators.
(5) Ss = Ssasa— 0.

Lemma 2.15. Let ¢ be a spin-weighted scalar.

Ssp = 259 ¢ +2aLl,Lep+ L (4a® +9(k1 — R1r)?) LeLep — 3s(k1 — Rur)Leep.

Sso = S_sp — 25p. (2.37a)
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Lemma 2.16. Let ¢ be a spin-weighted scalar. In Znajek tetrad and ingoing Eddington-Finkelstein
coordinates, we have

Ay alypp

=0y + 227 a2 (2.38a)
Y= — 0, (2.38b)
Do = 8950+ \/—cscﬁﬁd)cp \/—scot O, (2.38¢)
5 o= 69(,0 f csc 00 + fs cot By, (2.38d)
Lep = &Jga, (2.38e)
Ly = 0g¢. (2.38f)
Sy = a?sin” 00,0, + 200,040 + OgOpp + csc? 00404 — 2ias cos 0,
+ cot 09y + 2is cot O csc 09,0 + s(s — sesc? § — 1)p. (2.38¢g)
Lemma 2.17. Let ¢ be a spin-weighted scalar. We have the commutator relations
YVp=VYp+ (GQZ#Q)QLU@ + %Ytp, LYo =YLep, (2.39)
and
Ydp=0Yy, Y§ p=10 Y, (2.40a)
Vdp= 0V, v po=3d Ve, (2.40b)
Lg%gﬁ = 35590, Le 3I<p = 315530, (2.40c¢)
59 = i) © — Sp. (2.40d)
2.4. Time functions. Define the vector fields
Ve = mza, Y = v2An". (2.41a)
Definition 2.18. We consider time functions 7 defined in terms of height functions k = k(r),
T=v—k(r) (2.42)

where v is the advanced time coordinate in the ingoing Eddington-Finkelstein coordinate system.
Let

R=1/r (2.43)
and let
K(R)=K(1/R)=K(r). (2.44)

(1) A time function 7 of the form (2.42) is a regular, future hyperboloidal time function, if

(a) k(r) is smooth in an open neighbourhood of [r;, 00).
(b) K(R) is smooth in an open neighbourhood of [0,1/r4].
(c) The level sets of T are strictly spacelike in M.
(d) The limit
2
exists and is positive.
(e)
lim YV, =2. (2.46)
T—00

(2)

A time function 7 of the form (2.42) with height function k = k(r) is horizon crossing if
(a) k(r) is smooth in (ry — €,00).

(b) The level sets of T are strictly spacelike in M.

(©) K(r) — (@ +17)/A = O(r~?).
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Lemma 2.19. Let Cj,y, > 1 and let t be given by (2.42) on M with k = h, where

3M2(ry —1)? Chyp — )M
# T+ oM arctan(w
rLT r

)

Chyp — )M
—2M arctan(w), (2.47)
T+
where r1 is given by (2.26). Then t is a reqular future hyperboloidal time function, cf. definition
2.18. Further,

h(r) =2(r —ry) +AM 1og(£) +

h(r.,.) = 0, (248&)
W(r)>0 forr>ry (2.48b)
h

lim ) o (2.48¢)

r—oo T

: r’
rli{lolo VGVGTW = Chyp. (248(1)

Proof. Tt is straightforward to verify (2.48). We have
4M M?(r — 2 —1)M?

Wiy =24 M S —ry) | 2(Chyp — ) (2.49)

r3 (Chyp — 1)2M? + 12’
Based on this and (2.47) is straightforward to verify points 1a, 1b of definition 2.18. Next, we
prove that ¢ has spacelike level sets. We have

b 2 a’sin®f  (a® +1r?)? a? +1r?\2
dtadtyg bZ =Xt~ (h’(r) -3 )
a2 (a2 Jr7,2)2 a? +r2\2
>4 7 (W) - . :
> - T4 (W) - =) (2.50)

Hence, t has spacelike level sets if and only if

a? + r? a?A a? + r? a?A
< 1—4/1— ————-— / 1 1——1. 2.51
0= A < (a® + 7’2)2> < () < A + (a®? +12)? (2.51)

Using the inequality < v/x for 0 < z < 1 one finds that a sufficient (but not necessary) condition
for the level sets X; to be spacelike is given by

2 2 .2 2
a , 2(a* +12) a
m <h (T) < A — o2 n 2 . (252)
Since Chyp > 1 by assumption, we have using (2.49)
2(a® +1?) a? , 6M2r,
A — e R(r) > 3 +J (2.53)
where
2(a? +r?) a? 4M  6M?
J: A 70/24—7“272777 712 . (254)

Collecting powers of 7 in A(a? +r2)r?J, and using r > r, > M > |a|, one finds J > 0 on M and
the right inequality in (2.52) follows. To see that the left inequality in (2.52) holds, note that

2 AM 2(Chyp — 1) M? a?
h/ _ a 2 - yp — . 255
) a? + r? Zet r (Chyp — 1)2M2 +72 a2+ 12 (2:55)
To bound the second term of the right hand side from below, we note that it is of the form
—2Mz/(x® + r?), (2.56)

with = (Chyp—1)M. For z > 0, (2.56) is bounded from below by —M /r. Further, a?/(a®+7?) <
1 is monotone decreasing for r > r. This gives

h/ (T) B 2 2

a 3M a
a2 +r? r a? +ri

M
>1+ 37 > 0. (2.57)
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Hence, the level sets of ¢ are strictly spacelike in M. The inequality (2.57) yields (2.48b). The
remaining points 1d, le of definition 2.18, and (2.48) can be verified by straightforward calcula-
tions. g

Lemma 2.20. Let k = h/2 with h given by (2.47). Then t 3+ = v —k is a horizon crossing time
function and

k(ry) = 0. (2.58)

Proof. Tt is straightforward to verify points 2a, 2¢ of definition 2.18. For point 2b we proceed as
in the proof of lemma 2.19, and note that a sufficient condition for ¢ -+ to have spacelike level
sets is given by (2.52) with A’ replaced by &/,

TGQ 5 < K'(r) < A2 417 o .

a? +r A a? + r?
It follows from the proof of lemma 2.19 that A’ > 0, and the second inequality in (2.59) holds
since from k = h/2 we have that ¥’ < h'. For the first inequality in (2.59), we have, following the
proof of lemma 2.19,

(2.59)

K — 7;2 s 2 Gy DM o
a? +r? r (Chyp — 1)2M2 472 a2 + 12
S 3M_
2 r a?+ri
> 0. (2.60)
This completes the proof. (I
Definition 2.21 (Time functions). (1) The Boyer-Lindquist time function tpy, cf. (2.29),

is given by (2.42) with h = r, where r, is the tortoise coordinate defined by (2.27).

(2) The horizon crossing time ¢+ is given by (2.42) with k& = h/2, where h is given by
(2.47).

(3) The hyperboloidal time function ¢ is given by (2.42) with h given by (2.47).

Remark 2.22. We shall consider only regular future hyperboloidal time functions, and refer to
these simply as hyperboloidal time functions.

Remark 2.23. (1) There is a constant ¢, such that the retarded time w and the hyper-
boloidal time ¢ satisfy
u—t=cp+ 20y, M?/r 4+ O(1/r?). (2.61)

(2) We have lim, o, Y*V,u = 2. Hence, the condition (2.46) implies that the level sets ¥;
are asymptotic to level sets of the retarded time wu.
(3) There is a constant ¢ such that the Boyer-Lindquist time and the horizon crossing time
t s+ satisfy
tpr — typ+ :Ck+chpr2/7’+O(1/7’2). (262)

(4) From h(ry) = 0 and (2.48b) we have that h(r) > 0 for r > ry. It follows that X, is
contained in the future of {t_ x+ =t1} N {r > r; } precisely when ¢t > ¢;.

Definition 2.24. (1) The future domain of dependence of a hypersurface ¥ C M is denoted
DT ().
(2) For a subset Q € M, let IT(Q),I () denote the time-like future and past of €, respec-
tively.

Definition 2.25. Let tg = 10M and define ¥;,;; by
Yinit = {tjf+ = to} N {7’ > 7’+}. (263)
For t € R, define Q%™ to be the intersection of the future of Yini¢ and the past of X,

init,t

Qo = D (Simie) N T (). (2.64)
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FI1GURE 2. Hyperboloidal regions, cf. definition 2.26 and surfaces used for inte-
rior estimates.

Furthermore, for Ry > 74, define

Qe Te = Q2 0 {r > Ro}, (2.65a)
Qealy Fo= Moo — early M [Ry — M < r < Ry} (2.65b)
Definition 2.26. (1) Given t; € R, 3; denotes the corresponding level set of the hyper-
boloidal timefunction ¢, restricted to DV (Zinit),
S, = {t =t} N DT (Zini). (2.66)
(2) The transition surface = is the set
E={r=t}N D" (Sini)- (2.67)
(3) Given —oo < t; <ty < oo and rq < 7o, define
it =% n{r <7}, (2.68a)
T =0 {r <r <, (2.68b)
Qo= J 3 (2.68¢)
ty <t<t,
Qi) = Qi N {1 <7}, (2.68d)
Qs = Qe N{rL <7 <o}, (2.68¢)
(4)
08, = Qi N{r > t}, (2.69a)
O, = Qe N {r <t} (2.69b)
Etyts = Quyp, N {r =1}, (2.69¢)
Tht =2y N{r>t}, (2.69d)
St =3 n{r <t} 2.69¢)

(
Remark 2.27. (1) For t1 > tg, the level set {t = t1} N {r > r, } is contained in D (i),
i.e. Etl = {t = tl} N {7’ > 7’+}.
(2) From the definition of the hyperboloidal time function, we have that on Z, r + h(r) = v.
Due to (2.48b), we have that r — r + h(r) defines a diffeomorphism [tg,00) — [tg +

h(to), 00).
Definition 2.28. Let vy > to + h(to).
(1) Define
Qe = Qoo N{v 2 01}, (2.70)

where v is the advanced time.
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early
init,to

Inj¢ iO

FIGURE 3. Early regions (¢ < tg), cf. definition 2.25

(2) Let te(v1) be the solution to the equation
te(v1) + h(te(vr)) = v1. (2.71)

Remark 2.29. For v; as in definition 2.28, te(v1) is well defined, and the point with hyperboloidal
coordinate (te(v1),te(v1),w) lies on Z; and is the point in = with ingoing Eddington-Finkelstein
coordinate (v1,te(v1),w). For v1 = tg + h(tg), this point lies on Xy,. Further, v; ~ te(v1) and
to ~ t + h(to).

2.5. Compactified hyperboloidal coordinates.

Definition 2.30. Let (v,7,6,¢) be the ingoing Eddington-Finkelstein coordinates, and let ¢ be
the hyperboloidal time function given by (2.42) with h(r) given by (2.47). Let the compactified
radial coordinate R be given by

R=1/r. (2.72)

The compactified hyperboloidal coordinate system is (¢, R, 8, ¢). We shall write
H(R) =R(r). (2.73)
Definition 2.31. The domain of outer communication is parametrized by (¢, R,w) € R X

(0,77') x S2. For e > 0, this can be embedded in R x (—¢,r}") x S2. When this is done,
define, for ¢t < to,

It =R x {0} x S (2.74a)
I, = [t ta] x {0} x S2. (2.74b)

Remark 2.32. The angular coordinates in the compactified hyperboloidal coordinate system
are those of the ingoing Eddington-Finkelstein coordinates. We have that .#T = {R = 0}. The
compactified hyperboloidal coordinates fail to be regular at ¢ .

Lemma 2.33. In the Znajek tetrad and the compactified hyperboloidal coordinates (t, R, 0, ), we

have
Yo = Hdp + R*0rp, (2.75a)
HR2A R*AdRpy aR%*dyp
Ve=(1- - 2.75b
o= 2(1+a2R2)) YT 51+ a?R?) | 1+a2RY (2.75D)
2a.l 21+ a’R2)V Lep(242a’R? — HR2A
dpp = 2on¥ (1+a"R) L ¢ (24 20 )- (2.75¢)

R2A RAA R*A
The operators 8,8,55,5”, Ss take the form given in (2.38).

Lemma 2.34. In the Znajek tetrad and the compactzﬁed hyperboloidal coordinate system (t, R, 0, $),
the radial part R of the spin-weighted wave operator E and the radial part of the TME R take
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the form

~ H(2+ 2a*R? — HR?A) 0,0
Ry(p) = ( = )00 | 2(1+ a’R? — HR*A)9,0py
+2aH010pp — R* AORORp + 2aR*OR0y4p

B 2R((1+4 a*R?)* — MR(3 + a*R?))0ryp N 2aRDyp

1+ a?R? 1+ a2R2
R(a*R+ a*R® + M(2 — 4a®R?)) ¢
- (2MH(1 - ———) + R?A0RrH)0,
(MHQ = o) + ) 0o + 1+ a2 R2)2 ’
(2.76a)
H(2 + 2a2R2 — HR2A)8t0t<p 2152 2
Rs((‘p) = 2 +2(1 +a“R°“— HR A)@taRgo+2aH8t8¢g0
oM
— R'AORORp + 2aR*0r0sp + 2R(—1 — s(1 — MR) + R(M — a®R + m))aw
2aR<9¢<,0
1+ a2R?
(2H(MR — Ma?R? — s(1— MR)(1 + a®R?)) + (1 + a®R?)(4s — R3AH’))8t<p
+ R+ a?R?
2MR —2s(1 — MR)(1 + a®>R? 2R*(1 —4MR + a’R?
Ml s( )(1+ a>R?) + a®R*( +a’R)e (2.76D)
(1 +a2R2)2

3. THE LINEARIZED EINSTEIN EQUATION

3.1. First order form of the linearized Einstein equations. Let dg,, be a solution of the
linearized Einstein equations on (M, g45), and let G apa/pr, % be its trace-free and trace parts.
The trace-free part has components
Goor = Gapl®1®,  Gio = Gupl®m®,  Giy = Gaym®m®, (3.1a)
GQO/ = Gabmamba Gor = Gabnamba Goo = Gabnanb (Slb)
and their complex conjugates. We have that Ggg, G117, G2 are real, while the remaining com-

ponents are complex.
The linearized connection has irreducible parts

$oa = VAP Goanp — EVeal, Qpca = — VP Gpoyan. (3.2)

We now formulate, following [10], the linearized versions of a commutator relation, the vacuum

Ricci relations and the vacuum Bianchi identity. The quantity 24pcas introduced in (3.2) is the

symmetrized part of the spinor 244/5¢ used in [10]. Let 9P 4pcp be the linearized Weyl spinor
in the sense of [10], where ¢ is the variational operator introduced in [10, Definition 1].

VA Uupoa = — %v(AA/?B)A’a (3.3a)

VAYS 44 =0, (3.3b)

VA9 gt = %GCDA/B/\PABCD + %V(A(A,QB)B/)v (3.3¢)

V(AA/QBCD)A/ = —1¢Vapcp — IV apep, (3.3d)

VP 400 apen = 29 apep®Par + LGP 4B Ve Wapep + 39 apP ey prar- (3.3e)

Define the following linear combinations of the components of the linearized connection,

B=—3b+ %, B =—1te %0, é=—3fo+%h, €= -3 -2, (34a)
2800 + o, P =20 — 1, (3.4b)
%?01' + 211/, 7= %?101 — Q0. (3.4c)

00’ 5 K = —Qa,

™
|

Q
~/
Qo175 o = — 90,

Rl
I

8 Recall that ;i denotes the dyad component of a symmetric spinor @ sg...pa’p’...ps defined by contracting
’
i times with ¢4 and 4’ times with ¢4 .
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The notation used here is inspired by the notation introduced for spin coefficients by Geroch,
Held and Penrose [23]. Note that the scalars defined in (3.4) are only the leading order terms of
the linearized spin coefficients, but as they are just components of the spinors 44 and @ apcar,
they have proper GHP weights in contrast to the linearized spin coefficients. Also note that none
of the quantities we study here depends on the linearized frame rotations. See appendix A for
the first order system of scalar equations which results.

3.2. Outgoing radiation gauge.

Definition 3.1. Let dgqp be a linearized metric on (M, gqp). We say that dg,p satisfies the dg - n
condition if

Sgapn® =0, (3.5)
and the trace-free condition if
9*°6gap = 0. (3.6)

If both (3.5) and (3.6) hold, then dg,s is said to be in outgoing radiation gauge (ORG). Replacing
n® by 1% yields the ingoing radiation gauge (IRG) condition.

Lemma 3.2 (Price, Shankar and Whiting [36]). Let dgap be a solution of the linearized vacuum
Einstein equation on (M, gap). There is a vector field v® such that the gauge transformed metric

0gab — 2V () (3.7)
is in ORG.

Remark 3.3. (1) The dg - n gauge condition (3.5), which consist of four conditions, can be
imposed for a general linearized metric on a background vacuum spacetime with repeated
principal null direction n®, by sequentially solving a system of four scalar equations, cf.
[36, Eq. (15)]. The analogous statement is valid for the dg-I condition. This is in contrast
to the ORG or IRG conditions which contain five conditions, and which can be imposed
only for linearized metrics on algebraically special background spacetimes, provided that
the linearized Einstein tensor satisfies additional conditions. In [36], it is shown to be
possible to impose IRG for solutions of the linearized Einstein equations dEqp, = 87074
on a Petrov type II or type D background with repeated principal vector [*, provided
0T,51%1° = 0. Analogously the ORG condition can be imposed provided d7T,;n%n® = 0.
Here we shall be interested only in the case of solutions of the linearized vacuum Einstein
equations E,, = 0 on the Kerr spacetime, which is Petrov type D.

(2) Imposing the gauge condition does not determine the vector field v* uniquely. In particu-
lar, there remains residual gauge degrees of freedom in v*, subject to constraint equations.
The vector field v¥* can determined uniquely along the flow lines of n® by specifying its
initial values on a hypersurface.

(3) The gauge vector field v* plays no explicit role in this paper.

Lemma 3.4. Let 6gqp be a solution to the vacuum linearized Finstein equations on (M, gap), in
ORG. Then, in the notation introduced in section 3.1, the following holds.

(1)

& =0, G =0, Gia =0, (3.8a)
Ga1r =0, Gao =0, (3.8b)
and
& =0, K =0, p=0. (3.9)
(2) The only nonvanishing components of the metric are
Goo = 0gapl™®,  Gio = 6gapl®m®,  Gay = dgapym®m®. (3.10)
Proof. These follow by direct computation. (I

The nonvanishing linearized metric, connection, and curvature components in the outgoing
radiation gauge are illustrated with their {p, ¢} type in figure 4.
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F1GURE 4. GHP weights of the nonvanishing components in ORG.

3.3. Equations of linearized gravity in the boost weight zero formalism. From the sys-
tem in appendix A, one can derive a system of transport equations relating the metric components
to the Teukolsky variable ¥W, via certain components of the linearized connection.

In order to perform estimates, it is useful to work with spin-weighted scalars, i.e. properly
weighted scalars with boost weight zero, since the modulus of a spin-weighted scalar is a true scalar
with boost and spin weight zero. Motivated by the above discussion, we shall derive a transport
system for spin-weighted quantities. The system is written in terms of the spin-weighted operator
Y introduced in section 2.3.

Definition 3.5. Let dg, be a solution to the linearized vacuum Einstein equation on the Kerr
exterior (M, gqp) and let 9T, 9P, be the components of the linearized Weyl spinor ¥¥ 4pcp of
boost- and spin-weights (2,2), (—2, —2). Define

o= ———09U 3.11
(R TETNEr (3.11a)
Do = Va2 +1r2(3k1)° p Iy (3.11Db)
Remark 3.6. (1) The Weyl scalars 9%y, 19\114 are given in terms of the linearized Weyl tensor

by equation (1.12). The fields ¥_o and 7,/1+2 have boost-weight zero and spin-weights —
and +2, respectively.

(2) Compared to the quantities in [31, Appendix A], we have 1[42 = i(a2+r )52 k1 %Ry 2(;50 Ma
where first factor i(a2 + 72)%/2 is to make the quantity nondegenerate at future null in-

finity and the other factor k12Ry 2 corresponds to a spin rotation of the frame.

Definition 3.7. Define the spin-weighted scalars

~/
&’ = %, GQ = Ggolﬁll, (3.12&)
= (1 )7 - g, = Gummy (3.12b)
2K ’ T ’ '
~ - N G ko SFr 02
:El’ Y 10’ﬁ + 5 20’77_ - T ), OzL -lzC
6/ ﬁ/ éG / %G / ~/ a 00’17 K17 p 3.192

r
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FIGURE 5. Structure of transport equations.

Lemma 3.8. Given a solution to the linearized vacuum Einstein equation on (M, gaup), let the
quantities &' GQ,T Gl,ﬁ GO be as in definition 3.7, and let w o be as in definition 3.5. Then
we have

R 12R1 0o
Y(6') = - —— 3.13a
O = Jrre (3.132)
Y(Gs) = — 24, (3.13b)
— 27 4 27)6"
y(#) = - 2@ 6;1: i (3.13¢)
~ 2612R1 27 KPRy 5—7‘—1—?’)@2
Y(Gi)=——73 ( 5,2 : (3.13d)
A él Hﬁ'ég
Y(B) = — 1
(ﬂ ) 61‘{112E1/2 6%1/2 (3 36)
~ 9-1)G G ?@_ 26121 (8 —7) B o -7 é_ 26171 2(0 =1’ B
Y(G@:_%__l_ L 2@ >ﬁ_<3_>1+ (@ )8
1 T T T K1/ r
(3.13f)

Remark 3.9. (1) The quantities 67, Go,#',G1, B', G have spin-weights —2, —2, —1, —1, —1, 0,
respectively.

(2) The definition of the quantities Go and Gy has the consequence that the linearized mass
0M and angular momentum per unit mass da appear as constants of integration in equa-
tions (3.13f) and (3.13d), respectively.

(3) The choice of 7/ is made so that it vanishes for a linearized mass or angular momentum
perturbation in ORG, cf. section B.1.1.

Proof. Throughout the proof we will use the relations

bl R1 = — Klpla b/ Ry = — El’ﬁla bl P/ = pl27 bl ﬁ/ = 5/25 (314&)
0K = — KT, ORy = K1T, 0p =2p'r, op =pr+p'7, (3.14b)
K1p = K1p, Ellﬁl = Hlpl, Ell’?l = — K1T, RyT = — HlTI. (314C)

For some calculations it might also be worth to notice

Uoky k1pp (a® +7r?) (k1 — R1r)
2 ’ 1 2 1pp 1 1
0r=7% Fr=3V— o=ty - T = e 4T, (3159
Uoky/ Kk1pp' (a® +r?) (k1 — R1/)
;2 r 1 271 / 1PP r 1 1 /
o7 =77 01'=35¥;— o +pp' — = + 77 = 62,3702 +77'.  (3.15b)
The ORG condition reduces (A.3¢) and (A.1j) to the transport equations
(13/ —ﬁl)&/ = YWy, (b/ —ﬁI)GQOI =25, (316)

However, &' has boost weight. We can compensate for this by defining 6’ = ‘;—:. Similarly the

choice ég = K1 Goor compensates for the lower order term in the left hand side. We then re-
express the transport equations in terms of the spin-weighted operator Y defined in (2.31b), we
get (3.13a) and (3.13Db).
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Under the ORG conditions, the equations (A.2j) and (A.4c) will yield expressions for b’ 7
and p’ #'. However, these transport equations are coupled, so we need to change variables. The
corresponding transport equation then reduces to

k1(d =37 + 7)5'
2R/

b/'f_l —

(3.17)

which can be written as (3.13c¢). Using (A.1b) and (A.1l) to express 7’ in terms of Gior and Gao
yields a transport equation for G
2 rb' Gio (k1?2 + kiR + 2R12)p Gro

- 6R1 4F1/2 B i(6 —7)Gao (3.18)

However, one can rescale G1¢o/ to produce a boost weight zero quantity él such that the contri-
bution from the linearized angular momentum in ORG gauge is r independent, cf. section B.1.1.
This also eliminates the lower order terms to yield the transport equation (3.13d).

The variable B’ is chosen so that B’ =K1 B, which follows from

T= - %p/Goy + %TIGOQ’ (3.19)

and (A.5). The transport equation (3.13e) for E then follows from the complex conjugate of
(A.2¢) subject to the ORG condition.

Taking a derivative of (3.19) and using the relations (A.1), (A.5) and the definitions of 7" and
# vield
4r?§
3[112
The relations (A.2a), (A.2h) and (A.4b) together gives

o7 = %plﬁlGQO/ + plﬁ + %/3/7'6'10' + + %ﬁ/T/GQy + ’T‘T/GQQ/ — 2’?‘? (320)
0= —pée—pe+pp+2r3—77 —ap +07 -3 B. (3.21)
This together with the definitions of 7 and 3’ and (3.20) yields

- —fm B . KTB/ _ T’E - 6B/ 8/5
0= —pe=pe+ 300 Goo +p'p+p'p— Ell,g + 307G + P 207 Gor — R R1

K1
(3.22)
With the help of (A.1lc) and (A.1g), this can be rewritten as a transport equation for Gy

3(/112 + E1/2)pIG00/ B 3(!112 — 3K1R1 — 2E1/2)TG10/ B 6%17’3’

!
Goyr = —
b Goo 2rRy 2rry rR1p
3(2k12 + 3k1F — R )T Gor 6RuT B 605 671 0 G
— ( ! ! 1_ ! ) o + ! /54’66’10/* /ﬂﬁLﬁ/Gl* ! Iﬂ
2rKry rK1P TK1p
(3.23)

This can then be expressed as (3.13f) in terms of spin-weighted quantities, where the scaling of CAJO
is chosen such that the contribution of the linearized mass in ORG gauge is constant, cf. (B.3).
This also eliminates the lower order terms to yield the transport equation (3.13f). (I

3.4. The Teukolsky equations. In GHP form the spin-2 Teukolsky Master Equations take the
form

(P—3p—p)p' —(0—37 — )0 —3V3) (k19¥) = 0, (3.24a)
((13/ —3pl - ﬁl) b —(6’ —37 — 77') 0 —3\112) (Iiﬂ?‘l/4) =0, (324b)
in the source-free case, cf. [I, Eq. (A.2ab)]. A calculation shows that in terms of the deboosted

variables ’lLiQ, equations (3.24) take the form given in the following lemma.
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Lemma 3.10. Let ¢_2,1ﬁ+2 be as in definition 3.5.

~ 8ar 5 - AM(a? —1r%)_ - 4(M —1)rip_o

S_2(Y_2) = — mﬁnw—z +8rVip_o + WYw_z + EEPCIC R (3.25a)
~ . S8ar - - AM(a® —r?)_ - dr(r — M)ipy
E2(¢+2) = WLU’L/J+2 — 8TV’L/J+2 — WYerQ + TTQ—i_ (325b)

3.5. The Teukolsky-Starobinsky identity. From the Teukolsky-Starobinsky Identities for lin-
earized gravity we have

0= Dp'b' PP (k1) —0000(k19V,) — L LTy, (3.26)

cf. [1, Eq. (A.5a)]. See [1] for the complete set of 5 Teukolsky-Starobinsky relations for linearized
gravity on Petrov type D spacetimes. Define the spin-weight 1 quantity 7 by

7= — 9%, (3.27)
where 7 is the GHP spin-coefficient. Then 7 satisfies
a(7) = 0, Le(7) =0, Y (#) = 0. (3.28)
The following lemma is proved by a calculation, starting from equation (3.26).

Lemma 3.11. In terms of the variables 1ﬁ_2 and 1/;+2 introduced in definition 3.5 and the spin-
weighted operators introduced in definition 2.10, we have
4

od ~ - 4\ ., cd—k N r 4
6 1/]_2 = — 3ML£(’[/J_2) — E (l{;) Tk 6 Lgkw—Q + %(Y + m) ’l/]+2. (329)
k=1

4. ANALYTIC PRELIMINARIES

4.1. Conventions and notation. The set of natural numbers {0,1,...} is denoted N, the
integers Z, and the positive integers Z™. Recall that tg = 10M, cf. definition 2.25.

Definition 4.1. Throughout the rest of the paper, let Chy, = 10° be fixed”.

Definition 4.2. The reference volume forms are

d%u = sin0dé A dg, (4.1a)
du = dr A d%, (4.1b)
du = dt A du, (4.1c)
dBuy = dt A d*u. (4.1d)

Let v be a 1-form. Let d3u, denote a three form such that v A d3u, = d*u.

Remark 4.3. The family of Kerr metrics, when written for example in ingoing Eddington-
Finkelstein coordinates, are such that, for any A > 0, the rescaling

(M,a,v,r,0,0) — (AM, Aa, Av, Ar, 0, @) (4.2)

takes a Kerr solution to a Kerr solution. Thus, if an estimate can be proved for a given value of
M = M, then the same estimate can be proved for another value M = Ms by rescaling with
A = Ms/M;. Furthermore, any statement in this paper involving (a,v,r) can be restated for
any given M as a statement in terms of (a/M,v/M,r/M). It follows from the definition of the
hyperboloidal time function that it scales as

t— At (4.3)
with respect to the rescaling (4.2).

Definition 4.4. (1) We say that a quantity @ has dimension M* if Q@ — A*Q under a
rescaling of the type (4.2). In particular, @ is said to be dimensionless if x4 = 0.
(2) In view of remark 4.3 it is sufficient to consider M = 1. This procedure will be referred
to as mass normalization.

9The results of this paper holds for any sufficiently large Cly-
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Definition 4.5. (1) Let ¢ denote a sufficiently small, positive constant.
(2) We shall use regularity parameters, generally denoted k, and sufficiently large regularity
constants K.
(3) Unless otherwise specified, we shall in estimates use constants C' = C(k, |a|/M, J).
(4) Let P be a set of parameters. A constant C'(P) is a constant of the form

C(P) = C(P; k, |al /M, ). (4.4)

Remark 4.6. (1) Throughout this paper, it is necessary to have many small parameters.
These typically arise because we are able to prove estimates for a range of estimates
but are unable to prove the endpoint estimate. These imply small losses in our decay
estimates. It is sufficient to replace all of these small parameters by the smallest of them
and, hence, to treat them all as a single parameter. This small parameter is denoted
6> 0.

(2) Unless otherwise stated, constants such as C, K can change value from line to line, as
needed, and the allowed range of values for § may decrease as needed.

Definition 4.7. (1) Let Fy, F> be dimensionless quantities, and let ¢ be a positive dimen-
sionless constant. We say that Fy < Fj if there exists a constant C such that Fy < CFs.
(2) Let Fy, F5 be such that F;/F5 has dimension M7. We say that Fy < Fy if Fy < MYCFs.
(3) Let P be a set of parameters. We say that F; <p F, if there is a constant C(P) such
that F1 5 C(P)FQ
(4) We say that Fy 2 Fs and Fy 2p Fy if Fo < Fy and Fy <p F}, respectively, and further
that Fy ~ Fy if it holds that Fy < Fy and Fy < Fy. For a set of parameters P, Fy ~p F
is defined analogously.

Definition 4.8. Let m € N.
(1) Let R be the compactified radial coordinate. We say that f(R,w) = Ox(R™) if Vj € N,
|0%f(R)| < C(j)R™>{m=3%  for R € (0,1/10M]. (4.5)
(2) We say that f(r,w) = O (r~™) if f(R) = Oxc(R™).

Definition 4.9. For any v € R, a bound involving the expression y— means that there is a
constant C' > 0 such that the bound holds with y— replaced by v — C§. Similarly, a bound
involving the expression v+ means that there is a constant C' > 0 such that the bound holds with
~+ replaced by v + C9.

Definition 4.10. Let t be the hyperboloidal time function, cf. definition 2.21. Define
(t)y = (M? + )12, (4.6)
4.2. Conformal regularity.

Definition 4.11. A spin-weighted scalar ¢ is said to be conformally regular if it is smooth in
the future domain of dependence of i,z and extends smoothly to R x [—e,rll) x S2 in the
compactified hyperboloidal coordinates (¢, R,w), for some € > 0.

Lemma 4.12. The coefficient H from definition 2.30 which arises in considering ¥, satisfies
(2 +2a°R* — HYR*A = 2C,, M*R? + M?O,.(R?). (4.7)

In the Znajek tetrad and the compactified hyperboloidal coordinate system (t, R, 0, @), we have for
a spin-weighted scalar ¢, which is smooth at R = 0,

Orp= —2R"2Vo+ MR 'Ox(1)Ve + MOus(1)Lyp + M?Oso (1) Lep. (4.8)

Lemma 4.13. Let by, bg,bo be real, conformally regular functions, let by be such that Rby is
conformally regular, and let ¢ be a conformally regular spin-weighted scalar. If ¢ is a solution of

~

s+ bv Ve + bpLyp + bop = 9, (4.9)

and if the initial data for p on Xini s smooth and compactly supported, then ¢ is conformally
regular.
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Proof. The essence of this proof is to apply standard local well-posedness results for linear wave
equations in both the hyperboloidal coordinates (¢,7,w) and the compactified hyperboloidal co-
ordinates (z%) = (¢, R,w). Working in the compactified coordinate system, one finds

Sa() = (4Chyp + MOoo (R)) M08, + (—2 + M2 O0uo (R?))0,0r¢
+ (4a 4+ M?000(R))9: 059 + O (R?)ORORY + MOo (R?)OrDsyp
+ (—2R + MO (R?))0rp + (2aR + M?Ouo(R*))0s4p
+ (4Chyp R + MO (R?))M?8yp + (2M R + M?O0 (R*)) 0 — Ss(¢p), (4.10)

where S, is given by (2.34¢). The principal part of @s can be written
WPy Dyp = WGP Dy Dy + RIS 0,0 0ys (4.11)
where
heP e Dy = (4ChgpM? — a? sin® 0)0,8, — 20,0, + 40,05 — DDy — sin~2 Dy, (4.12)

and h?’ﬁ has conformally regular components. One finds that h,s extends as a Lorentzian metric
across .# T and that the level sets of ¢ are spacelike with respect to hqg.

The lower order terms byL, + by in (4.9) regular across .# . Further, in view of (4.8), we
have that by V is regular across .# . Thus, W is an operator which is regular across #+ and
whose principal part symbol is given by the inverse conformal metric h%®, and equation (4.9) is a
spin-weighted wave equation in the extended spacetime.

Since the initial data for ¢ is assumed to be compactly supported, there is some ¢ and a smooth,
spacelike surface ¥ in the extended spacetime, which agrees with X; for large r, such that ¢ is
smooth and compactly supported on XN{R > 0}, and such that the future domain of dependence
of ¥ includes .#;7, = {R = 0} U (£,00). It follows that ¢ is smooth in the domain of dependence
of ¥, and in particular conformally regular. ([

4.3. Norms.

Definition 4.14. Let ¢ be a spin-weighted scalar. Its norm is defined to be
ol = @ (4.13)

If ¢ is a spin-weighted scalar, then |p|?> = @y has GHP type {0,0}. It follows that |¢| and
expressions like V,|p|? have an invariant sense, and we may use this fact to define Sobolev type
norms on spaces of boost-weight zero scalars. In this paper we shall consider norms and integrals
of boost-weight zero quantities only, see however [21, §3, point 4] for a definition of integrals of
properly weighted quantities.

Definition 4.15. Let n be an integer, n > 1, and let X = {X3, X5,..., X,,} be spin-weighted
operators. For an integer m > 0, let a = (a1, aq,...,a;) be a multi-index with a; € {1,...,n}
fori=1,...,m for m > 1, while for m = 0, a is the empty set. The length of a is |a| = m. Given
a multi-index a, define

X2 = X4, Xa, ... Xa (4.14)

If |a] = 0, X® is the identity operator.

Definition 4.16. Let X be a set of spin-weighted first-order operators, and let ¢ be a spin-
weighted scalar. For k € N, we define the order k pointwise norm

lolix = ) 1X%|*. (4.15)
la|<k

Having defined norms in terms of sets of operators, we now introduce the following sets of
operators. The operators in B have dimensions M ! as is standard for derivative operators. The
operators in the remaining sets have been scaled so that they are dimensionless.
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Definition 4.17. Define

B={Y,V,r18,r 191, (4.16a)
D= {MY,rV,8,3}, (4.16b)
S=1{3,3}, (4.16¢)
P={5,8, ML} (4.16d)

The following definition introduces weighted Sobolev spaces. Because the mass M provides a
natural length scale, we are able to ensure that the integrands in the weighted Sobolev norms are
dimensionless.

Definition 4.18. Let ¢ be a spin-weighted scalar. Let (2 denote a four-dimensional subset of
the domain of outer communication, and let ¥ denote a hypersurface in the domain of outer
communication that can be parametrized by (r,w). For an k € N and v € R, define

Il = [ M7l o (4.17a)
Il = [ M7l ot (4.17b)
Ielsn = [ leltods (117¢)

We shall refer to norms ||¢||W$(Qtlyt2) and ||<p||W¢(Zt) as weighted Morawetz and energy norms,
respectively. We say that ¢ € WF(Qy, ,,) if ||¢||W$(Qtlwt2) < oo and similarly for W¥(3,),
WE(Zt,00), WH(S5?), and so on.

Definition 4.19. Let ¢ be a spin-weighted scalar, and let £ € N and o € R.

(1) Let X denote a hypersurface in the domain of outer communication that can be parametrized
by (r,w). Define

el Finey = > | M-oret2RIm By (4.18)
: la|<k >

and introduce the quantity

ko
Linie () = ||<P||§{g;(zinit)- (4.19)
(2) Define the following norm on the surface Yinit
PiG(p) = sup Y M‘”‘T”‘”'a‘/ IB2p(t — h(r)/2,r,w)[*du. (4.20)
r€lr,09) ja <k 5

Remark 4.20. We have

||90||WC’§(Z;,M) S ||<P||H(’§+1(E;n;t)' (4.21)

Definition 4.21. Let ¢ be a spin-weighted scalar, and let & € N. Define
el = [ Mol g, (4.22)
4.4. Basic estimates. The operators 5,5/ are the spherical edth operators, cf. [18, 21] for

background. In particular, they are elliptic first order operators acting on properly weighted
functions on the sphere. For completeness, we recall some useful facts about 9,0 .

Lemma 4.22. Let ¢, be scalars with spin-weight s and s — 1 respectively. Then,

(1)
/ 08 pd = / (& ¥)pd. (4.23)
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(2) if s = —1 it holds

B pd%u = 0; (4.24)
5’2

(3) if s =1, it holds

5 ©d%u = 0; (4.25)
SQ

(4) we have the following relation between || 5‘:0HL2(52) and || 5/<p|\Lz(Sz):

° o/
/ |8 pl2d% = / 18 pf2d% s / 0% (4.26)
S2 52 S2

Proof. The first claim appears in [29]. The second follows from taking ¢» = 1, and the third
follows from complex conjugation. For the fourth claim, we multiply both sides of the commutator
relation (2.40d) by @, and use Leibniz rule to obtain

o/ o o/ o/ o/

30 pp) — 050 p=0(0pp) —D D¢ — s|p|. (4.27)

By integrating over S? and noting the facts that 5 wp has boost- and spin-weight 0, —1 and 5(,04,5
has boost- and spin-weight 0, 1, the integrals over S? of the first term on the left and the first
term on the right are both vanishing, hence the relation (4.26) follows. O

Lemma 4.23. Let ¢ be a scalar of spin-weight s. For any k > 0, it holds

k
Ll 3 [ 18iof e (4.25)
=0

Proof. Since 9 and 3’ are both in S, it follows from the relation (2.34d) that Zf:o s 15ip2d2u <
Js2 113, sd%u. Hence, we only need to show that for any k > 0,

k
[ letatins. 3 [ 1SioPan (4.29)
=0

The k = 0 case is trivial. We consider k = 1 case of (4.29). We multiply the relation (2.34d)
by @, integrate over S2, arriving at

° o o/ o o/
/ Ssppdu = / (20 W)d2u—/ 2050 pd’u
S2 S2 S2
o o/ o/
= 0(20 <p¢)d2u—/ 2|9 o*d*u. (4.30)
S2 S2

The first term on the right vanishes from point 2, lemma 4.22, and an application of Cauchy-
Schwarz inequality gives that

o/ 1 °
L8 bt < g [ (8P + o) (4.31)

Together with the identity (4.26), we obtain

1 o 1
/S2|g0|ig <3 /S SupP it (7 +1-5) [S i 2d%. (4.32)



STABILITY FOR LINEARIZED GRAVITY ON THE KERR SPACETIME 29

Instead, by multiplying Ségo on both sides of (2.34d) and integrating over S?, we obtain

1 o o of
1 et [ 150 opdi
:/SQ (600 99 5¢) 0 00/ 00) A
o o/ of o o/ of o o o 9
:/Sz (8(6 08 8g)— 8 @ 55<p+(s—1)5<p))du
o o/ of o o) of o o o/ of 9 o/ 2 2
= [ (360 0850~ 8@ w80 + 188 o = (s = 1T of?)
= [0 e 0= [ 18 e (4.33)

where the second, third, fourth, fifth steps follow from Leibniz rule in 5, the commutator relation

(2.40d), an application of Leibniz rule in 8/, and the points 2 and 3, lemma 4.22, respectively.
Combined with (4.31), this implies

[ apans [ (8 (B 12 ) 1o ) (434)

On the other hand, from the relation (2.40d), it holds

Sep + 250 = 25/5@. (4.35)
Hence, by multiplying the complex conjugate of the left of (4 35) on both sides, one argues
similarly to (4.33) but uses Leibniz rule first in 3 and then in 5 obtaining

1 o o o 5
1 Ve 2sePdtu= [ 1806F a1+ [ | 15oPdh (4.36)

This equality and the estimate (4.32) together imply there exists a constant C(s) such that

108 < 5 [ 18wekdrce) [ loPe (437)
SQ

Collecting the estimates (4.32), (4.34) and (4.37), and relations (2.34d) and (4.35), the estimate
(4.29) for k =1 follows.

We prove the general k cases of (4.29) by induction. Assume that the estimate (4.29) holds
for k =k’ > 1. Then for any multiindex b with |b| = 2k’, the above argument for k£ = 1 implies

1
[ Eerorcns. 3 [ sisard

‘ |<2
/ S+ [ 8°Suo i+ [ el s

k' +1
<s Z/ |15 0| 2d%. (4.38)

Here, we have used the commutation relation (2.40d) in the second step. Summing over all the
multiindices with |b| = 2" in (4.38), and together with the assumption that the estimate (4.29)
holds for k = &/, the k = k' + 1 case of (4.29) is proved, which then completes the proof of
(4.28). O

o o/ o o/
In the next result, we use known facts about 9,0 to give explicit estimates for 9,0 on WE
spaces.

Lemma 4.24 (Elliptic estimates for 5, 5I) If ¢ is a scalar of spin-weight s, then

S| — S o
el MR R MLERR (4.392)
s+ s o/
blxs [etatns [ 18 s (4.39b)
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and for a four dimensional spacetime region 2,

|s| — s .

5 1¢lve ) <19l @) (4.408)
|S| + s o/

5 el ) < 110 @il o)- (4.40b)

The first (second) case gives an estimate if ¢ has negative (positive) spin-weight.

Proof. We will prove the statement for fields with negative spin weight s. The statement for
positive spin weight follows by complex conjugation. We begin by proving that on the standard
sphere S? with volume element d?:, we have

1 5
/ o2 d%u < —/ |0 ¢|*d?u. (4.41)
52 [s| Js2
Expand ¢ in terms of spin-weighted spherical harmonics (see [35, Section 4.15])
oo l
0(0.0) = > > amYim(00). (4.42)
I=|s| m=-1

From [35, Eq. (4.15.106)] we have

0o l
0,0 = -3 > aim \/“”;W =) Yi(6.6). (4.43)

Through the orthogonality conditions [35, Eq. (4.15.99)] we get

o l
L lePdtn=ar > Y fanl, (4-442)

I=|s| m=—1
) l
o l+s+1)(l—s
/52 [SpPdi=4r>" > |a17m|2( 2)( ). (4.44b)
I=|s| m=-1

As (I4+s+1)(I—s) >|s| — s, this proves (4.41), and hence (4.39a).
Integrating in ¢, r gives the remaining results. O

Lemma 4.25 (Control of £, in L*(S?)). If ¢ is a scalar of spin weight s, then

1 8 52
3 [ewetans [ (8o + Siol?)
S2 S2

Proof. This follows from decomposing into harmonics equations Y; ,,, the relations |m| <[ and
|s| <, from equations (4.44a)-(4.44Db), and the fact that

(I4+s+1)(l—8)+s>=P—-s+1—8)+s=P+1-5>1*>m> (4.45)
O

Lemma 4.26 (Spherical Sobolev estimate). If ¢ is a scalar of spin-weight s, then
o S [ IeBodin (4.46)

Proof. This follows the standard argument for the Sobolev estimate on the sphere. The sphere
is a manifold, and the spin-weighted scalars are sections of a complex line bundle over it. The
desired Sobolev estimate follows from introducing a partition of unity subordinate to a collection
of local trivialisations of both the sphere and the spin s complex line bundles over it, applying
the R? Sobolev estimate in each trivialisation, writing the derivatives in the local trivialisation
in terms of a local orthonormal basis on the sphere, and then writing derivatives with respect
to that basis in terms of the corresponding é, él, and lower-order terms, the last of which are
controlled by the lower-order terms already in the right side of the Sobolev estimate. (I
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Lemma 4.27 (Integration by parts). If f is a smooth function with spin- and boost-weight zero
and if f vanishes at Ry, then

4, _
[ vitu-

t1,t2

to

/E . (dt,Y*) fd?’u] , (4.47a)

t t=t1

4 3 h r’ —a’ 4 1 3
1% = VO - M————fd'%u+ = d%up.
ty,tg t t=t, t1,t2 ty,tg
(4.47b)

Proof. In ingoing Eddington-Finkelstein coordinates, d%: = sin #d¢dfdrdv. The first claim fol-
lows from the fact that Y is —3, in ingoing Eddington-Finkelstein coordinates. The second claim

follows from the facts that, when acting on properly weighted scalars with zero boost and spin
weight, V = 8U+2(T2§_a2)8r+ﬂj_a2 Jp and that —0,(A/(2(r*+a?))) = =M (r?—a?)(r’*+a?)72. O

Lemma 4.28 (Weighted integration by parts). Let f be a smooth, real-valued function of r and
0 that vanishes at Ry and ¢ be a spin-weighted scalar.

to

1 1
/R R(fpYp)du = U"‘ (dtaY*)5 flpl*dn +/R 5O h)lel*d’n, (4.48a)
Q0 »ko 0
t1,t2 t t=tq t1,t2
1 " A
_ 4 — dta A 2d3 7/ . 2d4
L, mUeverdn= | [ @vngniean] [ o (fm ) ekl
1.2 t t=t; t1.t2
1
+7 / FlePPdus. (4.48b)
f+

Tty,ta

Proof. This follows from the previous lemma and the fact that R(f@V ) =V (5 flel?)—(V f)l¢l?/2,
and similarly for Y. O

The following lemma gives a standard one-dimensional Hardy inequality. The subsequent
lemma applies this to obtain a similar estimate on each Ef‘“M with an estimate in terms of the
operators V and Y.

Lemma 4.29 (One-dimensional Hardy estimates). Lety € R\ {0} and h : [ro,r1] — R be a C!
function.
(1) If rd|h(ro)|? < Do and v < 0, then

T

2y () + /

To

1 4 1
I A Pdr < ?/ Y8, h(r)|?dr — 2y Dy. (4.49a)
To
(2) If r]|h(r1)|*> < Do and v > 0, then

T

T1 4 1
27~ g |h(ro)|? Jr/ I A Pdr < —2/ T8, h(r)|?dr 4+ 2y Dy. (4.49b)
v

70 To
Proof. We integrate 0,.(r7|h|?) over [rg,71] to obtain:
1 h(r)]? —rg|h(ro)|* = 'y/ () Pdr + 2/ rYR{hO,h}dr. (4.50)
70 To

In the first case where v < 0, we apply a Cauchy-Schwarz inequality to estimate the last integral
term

‘ 2 / rIR{hO,h}dr

To

o T1 2 T1
< 77/ w*1|h(r)|2dr+—/ 710, h(r) 2dr (4.51)
_/7 T0

To

Collecting the above two estimates implies (4.49a). The estimate (4.49b) follows in the same
way. ([l
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Lemma 4.30 (Hardy estimate on hypersurfaces). Let ¢ > 0. There is an Ry > 10M such that
for Ry > Ry and all spin-weighted scalars ¢,

H@H;/BZ(EZ%*M) < (16 + E)HTVSQH?/VEZ(E:?(J*M) + EHMYW”?/VEZ(E?O*M) + ”50”?/[/00(2?0*1%30)'
(4.52)

Similarly for § > 0 and o € [6,2 — 6], there is a constant Ry = Ro(6) > 10M such that for
Ry > Ry and all spin-weighted scalars o,

2 2 2 2
||(‘0||W373(Ef“7M) 5 ||TV(p||W273(Ef0*M) + ||MY§0||W2571(E§?0*M) + H‘PHWé)(Efo*M,RU)' (4'53)
Proof. Let

X =n'V4(1—Ar/20r* +ad?))Y. (4.54)

Then X is tangent to ¥;. We may introduce new coordinates (f,é, (;3) on ¥; by taking 7 = r,
6 = 0, and gz~5 is constant along the flow lines of X such (;3 agrees with ¢ on r = Ry. In such
coordinates, one finds that X is 0;.

From the one-dimensional Hardy estimate (4.49a) with v = —1, one finds for sufficiently large

/ ()2l w)Pdr’ < 4 / X () 2 + 2o, ). (4.55)

T

Integrating this over r € (Ryg — M, Ry), and since Ry > 10M, one finds

M [ r2p)?d%u < 4M |X<p|2d3u+4MR51/

lpl?dp. (4.56)
Ro Ro—M s oM. Ro

From the definition of X in equation (4.54), the expansion for A’ in equation (2.49), and the
observation that the Y coefficient in X satisfies
AR

1-— m = MQOOO(T‘iz), (457)

it follows that for sufficiently large r, there is the bound 4|X¢|? < (16 + )|V p|? +eM?r=2|Y¢|?,
which completes the proof.
For « € [0,2 — §], a similar argument applies, except the bound @ — 3 < —¢ — 1 is used. The

constant in the one-dimensional Hardy estimate (4.49a) diverges as v = a — 2 goes to zero, but,
if o is restricted to an interval [4,2 — 4] the constant is uniform in «, but depends upon 4. O

Lemma 4.31 (Sobolev estimate on hypersurfaces). Assume ¢ is a scalar of spin-weight s, and
recall X is the vector field from the proof of the Hardy lemma 4.30. For v € R, we have

1/2
sl S ([ loBadt [ o beBed) [ M el s
t t

t 2 +
Ss llellwz,  wollrXelws,, ) + el o, (4.58)
In the case that v = 0, we have
suplel” Ss llelivs, - (4.59)

If 0 < v <1, we also have

Supll? S (el o + IV lvz, o) 2 Uelvs, oy + IVl e)'/% (460)
t
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Proof. Let X be as in the proof of lemma 4.30. For r1,ry € [r4,00), one has

/l(r2)|d2_‘/ al(p |2d‘ / 7"1|d2’
S2 T1 52
:‘//xw |d] /|<pr1|d2,
1/2
</ /S T7177|<p(r)|2d3u/ /S 7’1+’Y|7’x90(7")|2dgﬂ> / lp(r1)[Pd%u,
- 2 1 2

(4.61)

IN

where in the last step we have used Holder inequality. We integrate over ry from r4 to 10M and
the first line of (4.58) holds from the spherical Sobolev lemma 4.26 where the integral is taken to
be over the sphere with given ¢ and r. The second line of (4.58) holds since S C D.

The estimate (4.59) when v = 0 follows from applying Cauchy-Schwarz inequality to the right
of (4.58) and the fact that 7X is in the span of 7V and r~1Y with O (1) coefficients.

We now prove the estimate (4.60). Since v > 0, one can use the Hardy inequality (4.49a) to
arrive at

o) oM
[ Lormeerdis, [© [ e mempdi [T [t lempen g
T+ S2

Hence, by integrating (4.61) over r; from 7 to 10M, one finds for any r € [ry, 00)

IR <(// oo et [ [ et d3>
S2
10M
+/ /M*1|<p(r)|2d3ﬂ. (4.63)
T+ SZ

Since rX is in the span of rV and r~!'Y with O (1) coefficients, and since S C D and the
assumption v < 1, the estimate (4.60) then follows. O

/2

Lemma 4.32 (Anisotropic, spacetime Sobolev inequality). Let ¢ be a scalar of spin-weight s.
If limy oo |7t = 0 pomtwise in (r,w), then
r ol Ss lellwe, .o 1Le@llwe @, ) (4.64)

Proof. Using the fundamental theorem of calculus and the Cauchy-Schwarz inequality, we have
oo
el
t

<2 / eerllrld’
t

) 1/2 00 1/2
2 (/ |r1££ga|2dt’) </ |T1g0|2dt’) . (4.65)
t ¢

Now, from applying the Sobolev inequality (4.59) on each X, the result holds. ([

IN

Lemma 4.33 (Transition flux is controlled by bulk). Let f(t,r) be a spin-weighted scalar. For
any real value v and t' >ty > 1, it holds true that

/:o £ ()2t <, / / I f ()2 X f ()] dtdr. (4.66)

Proof. We make a change of coordinate r = ¢ + (. Fix any t' > t'. From mean-value principle,
we can find a ¢’ € [t/,2t'] such that

1 3 261 pt! 17
/ (E+ Y e+ CPdt < (7)) / / (t+ O f (e + ) Pdtdc
t/ £ '

<o [ [T er ot opaac @on
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Therefore,

t ¢ 0o 0o
/ (t+C)FEt+ )Pt < 4/ / (t+ )M (tt + QP dtdC. (4.68)
t’ 0 t’

Therefore, it follows from the fundamental theorem of calculus that
'+t
J RO
t/

b 4 t+t/
< /t (t+ CYIft+ ) |dt+/ /t 0, (1| £ (1, 7)[2)dtdr

<co) [T [T A P + ) Pdiar (4.69)
v J
Letting #/ go to infinity proves the estimate (4.66). O
Lemma 4.34 (Taylor expansion in L?). Let A >0, f € WJ((0,4)) N C"*(]0, A]) and
no_k
T
Py(z) = kZ 1), (4.70)
=0
Then for any —2n — 1 < a < 1, there exists a constant C = C(n,a) such that
f(z) — Pa(2) —a/2 p(nt1)
H zn+1+a/2 L2((0,4) < Cllz=*"f lz2((0,))- (4.71)

Proof. From the assumptions of function f(x), we have for any integer 0 <i < n + 1 that

Ill%l+ a;(f(ngr_ljn(x)) — f("+1)(0). (4-72)

Given any 0 < 7 < n, we do the replacements

(r,r0,71, h(r), ) = (2,0, A, 027 (f(x) — Py(x)), =25 — 1 — a) (4.73)

in lemma 4.29, point (1), and note from the requirement o € (—2n —1,1) and the fact (4.72) that
y=-2j—-1—-a<0, (4.74a)

Zlgxol (@RI (f(x) — Po(x)))? = 0. (4.74b)

Therefore, it follows that

A A
[ @ @) - P e < o [ @ (@) - Pa@) P
(4.75)
Collecting the estimate (4.75) for j =0, ...,n proves the desired estimate (4.71). (I
Lemma 4.35. For a spin-weighted scalar ¢ and for any k € N and o € R, there is the bound
P () Sa Tk (). (4.76)

Proof. From the definition and commuting r through the B derivatives, it follows that

Hk+1 a(w) _ Z / M—aTa+2|a\—1|Baw|2d3‘u

init
la|<k+1” >
Z / M 2|Ba( a/2+|a|—3/2 )|2d3 (4.77)
|a\<k+1 Linit

There are two importance consequences of this. First, one finds, from ignoring the case |a] = 0
and the divergence of [ r~tdr, that

Z/ MO |BR (/212 =3/2 ) 243, (4.78)
la|<k

as r — 00, at least along some sequence. Before considering the second, observe that there is
a vector field X that is parallel to ¥iu;¢ and has an expansion solely in terms of V' and Y with
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O (1) coefficients. As in lemma 4.30, this can be used to define a radial coordinate 7 such that
X = 07 on Xjnjt. Thus, there is the second observation that

() e D2 [ MO R ) (4.79)
la|<k ¥ Hinit

where we have taken into account the shift in i. Now applying the pointwise control in point
2 of Lemma 4.29 with v = 1, and using the limit (4.78) to drop the right-hand endpoint, one
concludes for any (¢,7,w) € Zinis,

H~k+1;a((p) za r Z M~ |Bara/2+\a|fl/2¢(t, r,w)|2d3u

init

lal<k 5
2o Y Mol [ Bt P (4.80)
lal<k 52
By taking the supremum in r € [r4,00) and ¢ = to — h(r)/2, this completes the proof. O

5. WEIGHTED ENERGY ESTIMATES

5.1. A hierarchy of pointwise and integral estimates implies decay. This subsection
provides some simple lemmas for treating hierarchies of decay estimates. Such hierarchies arise
both in the analysis of the Teukolsky equation and in the analysis of transport equations. The
The proof of these results relies on the (continuous) pigeon-hole principle.

For transport equations, the hierarchy of estimates is generally fairly straightforward, with a
weighted integral of a solution being controlled by a weighted integral of a source. However, for
wave-like equations, such as the Teukolsky equation, one finds that the weighted integral of a
function at one level of regularity is estimated in terms of another weighted integral at a different
level of regularity. For this reason, lemma 5.2 involves a function f(i’,«,t), which should be
thought of as being an integral involving a regularity ¢/, a weight «, and a time t¢.

The following lemma uses a single application of the (discrete) pigeon-hole principle and is
used in the proof of lemma 5.2.

Lemma 5.1 (Single step). Let f: {—1,0,1} X [tg,00) — [0,00) be such that f(i’',t) is Lebesque
mesurable in t for each i'. If there is a D > 0 and o € R such that, for all i’ € {0,1} and
le > t1 > o,

f(i/atQ) + / 2 f(ll - 1at)dt 5 f(ilatl) + t(ll—H/D’ (51)

then, for all t > 2t,
F0,t) < 2671 f(1,t/2) + 21l D, (5.2)

Proof. From mean-value principle, there is a ¢ € [t/2,] such that

-2 [t

f(0,t) < = f(0,¢")at’.
t Jiy2
Combining this with the integral estimate for i’ = 1 in hypothesis (5.1), one can control f at by
£(0,8) <2671 (£(0,¢/2) + (t/2)*TID) < 2t7' f(1,¢/2) + 2!*lt*D.
From the pointwise estimate for ¢ = 0 in hypothesis (5.1), one can control f at ¢ by
£(0,1) < £(0,8) + 1D < f(0,7) + 2/l D.

The lemma follows from combining the two estimates. (I

The following lemma proves that a hierarchy of decay estimates implies a decay rate for the
terms in the hierarchy. In applications, ¢’ represents a level of regularity, « represents a weight,
and t represents a time coordinate. The weights take values in an interval, whereas the levels of
regularity are discrete.
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Lemma 5.2 (A hierarchy of estimates implies decay rates). Let D > 0. Let oy, 2 € R with

a1 <as—1,and as —ay <i€Z'. Let F: {—1,...,i} X [a1 — 1, 2] X [tg, 00) — [0,00) be such
that F(i',a, t) is Lebesque measurable in t for each o and i'. Let v > 0.
If

(1) [monotonicity] for all i',4y,i, € {—1,...,i} with ¢4 < i), all B,p1,B2 € [a1, as] with
B1 < B2, and all t > 1o,

F(iy, B,t) S F(iy, B,1), (5.3a)
F(ilvﬂla t) 5 F(ilvﬂQa t)? (53b)
(2) [interpolation] for all i’ € {—1,...,i}, all a, B1, P2 € [a1, aa] such that B1 < a < fa, and
all t > to,
By—«a a—p1
F(i',a,t) S F(i', B1,t)2=Pr F(i!, 8o, t) P2=P1 (5.3¢)
(8) [energy and Morawetz estimate] for all i’ € {0,...,i}, @ € [a1,a2], and ta > t1 > to,
ta
Fi',a,ts) +/ F(i' —1,a—1,8)dt < F(i!,a,ty) + D377, (5.3d)
t1
and
(4) [initial decay rate] if v > 0, then for any t > to,
F(’i, o, t) St (F(Z, ag,to) + D) s (536)
then, for all i’ € {0,...,i}, all « € [max{a1,as —i'}, as], and all t > to,
F@i—d a,t) St (F(i,az,t9) + D), (5.4)

where the implicit constant in < can depend on ag and .

Proof. If v = 0, then from the energy hypothesis (5.3d), one finds that the initial decay hypothesis
estimate (5.3e) holds. Thus, in all cases, one finds for ¢ > ¢,

F(Za 042,t> 5 t (F(Zv a2, tO) + D) : (55)
First, consider ag —a € N. Let [ = |aa — 3] > 1. For ¢/ € {1,...,I} and k € {0,1}, observe
that F(i —i' + k,ae — i’ + k, t) satisfy
ta
Fli—i +ka —z”+k:,t2)+/ Fli—i+k—1ay—i +k—1,t)dt
ty
SE@i—i +kog—i +kt)+t7 " D,

This combined with lemma 5.1 implies

Fi—i' og—it) StVFGi—i' + 1,00 —i' +1,¢/2) + t 777D, (5.6)
We will now see that for all ¢ € {0,...,I} and ¢t > ¢ the bound
F(i—i ay— i, t) St (F(i,as,to) + D) (5.7)

follows by induction in ¢’. The base case follows from (5.5) with ¢ = 0. The inductive step
follows from (5.6) for ¢ > 2ty and from the basic energy hypothesis (5.3d) and the monotonicity
hypotheses (5.3a)-(5.3b) for ¢ € [to, 2to]-

Now, consider the case a@ > ag — |2 — a1 ]. Consider i’ € {0,...,I} and ¢ € [0,¢']. From the
interpolation hypothesis (5.3¢) with & = aa — (, 1 = ag — ', f2 — «, we get that for all t > g,
Fi—i' 00— Ct) SF(i— 4 a0 — i/, )7 Fli — ' an, t) 7

SECT(F (i, az, to) + D)7 F(ian,t) 7
St CTV(F (i, a,t0) + D). (5.8)

Making the substitution o = g —{ > as — i’ > as + k — i and using the monotonicity hypothesis
(5.3b), one finds, for k € {i — I,... i}, o € [aa + k — i, az], and t > to, there is the bound

F(k,a,t) < 1972 (F(i, ag, to) + D). (5.9)

This gives the desired estimate for the cases k > i — I.
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If ag — ay < i, then I < ¢, and since oy +1 > as + (i — I) — i, we have from the conclusion of
the previous paragraph

F(i—I,a1 4+ 1,t) St 7(F(i, g, ) + D).
Combining this with the energy and Morawetz hypothesis (5.3d) and lemma 5.1, one finds
F(i—1—1,a1,t) <t 2Y(F(i, as, to) + D).
Interpolation now gives for all o € [ag, a1 + 1] and ¢t > tg
F(i—1—1,a,t) <t*=°2=Y(F(i, as,to) + D).

This combined with (5.9) implies for all ¢/ € {0,...,I + 1}, all @ € [max{ay, as — '}, as], and all
t 2 to,

F(@i—d a,t) St Y(F(i,a,to) + D). (5.10)
The other monotonicity hypothesis (5.3a) then gives the desired estimate in the remaining cases.

O

The following lemma states the ng norms squared satisfy the monotonicity and interpolation
conditions for f(i’, a,t) in lemma 5.2.

Lemma 5.3. Let i',i},i, € N and o, 3,51,82 € [0,00). Let ¢ be a smooth spinor field. Let
t,t1,t2 € R.
(1) [monotonicity] If i}y < i% and B1 < Ba, then

2 ) < 2 )
2 ) S Nl

2 < 2
[l £ (o) S llll ¥ (S

(2) [interpolation] If 81 < a < B2, then

2— 081 27P1
||90||Wgy(2t) S ||‘P||Wg1(zt)”‘p| Wi (S)

(8) [relation of spatial and spacetime norms/

to
2 _ —1 2
o8y = M [ el

Proof. The first monotonicity result follows from summing fewer non-negative terms. The second
monotonicity result follows from the fact that 1 < B implies rP < rP2. The interpolation result
follows from Holder’s inequality. The relation between the spatial and spacetime norms follows
from the definition of d3u and d*u. O

5.2. Spin-weighted transport equations. Now we state a general lemma which provides en-
ergy and Morawetz estimates for the ingoing transport equation with source term satisfying energy
and Morawetz estimates.

Lemma 5.4 (Y estimate). Let v be a positive real number and k be a non-negative integer k.
Let bo(r) be a non-negative, smooth function defined in DOC such that bo(r) = MOs(r~1).
If ¢ and f are smooth, spin-weighted scalars and ¢ satisfies

MY +bo(r)p = f, (5.11)
then for all to > t1 > to,
2 2 2 2
||<P||Wj;(zt2) + ||<P||Wj;71(gzt1,t2) s ||<P||Wj;(zt1) + ||f||W_$+1(Qtl’t2)ﬂ (5.12&)
2 2 2 2 2
HSQHWA?(E;YZ“) + ||<'0||W$,1(Qit“1°,t2) s ||<P||Wj’v(z§;1t) + ||f||ka+1(Qitn1t,tz) + ||<'0||W$(Et1,t2)’
(5.12b)
2 2 2 2 2
||90||W§(Et1,t2) + ||‘P||W¢(zg;t) + ||@||W¢71(Q§Tft2) S ||(p||ij(Z§’1‘t) + ||f||W5+I(Q§;§t2)a (5.12¢)

2 2 2 2
||90||W§(2§’U‘t) + ||90||W’$71(Qie:irtl,yto) S ||<P||W¢(zi,,it) + ||f||W’$+1(Qiejirtl,yf0), (5.12d)
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and for t > to + h(to) as in definition 2.28,
Do oer y + 1By + 190308 ey S IlBncer o) + 1B, ey (513)
The implicit constants in the above estimates depend on only v and k.

Proof. Consider the case k = 0 first. Multiplying (5.11) by M ~1r7@, taking the real part, and
applying the Cauchy-Schwarz inequality, one obtains

Y(rel?) + (3 + M Irbo(r)r ™ of* = r7R{M ™ o}
< Il T M fR, (5.14)

Absorbing the |p]? on the right by the left and multiplying with M =7~ gives
Y(5MT7TH @)+ (5 + M b (r)) MO P < 4TI 0D f2 0 (5.15)

The energy and Morawetz estimate (5.12a) for & = 0 then follows from integrating over £, 4,
with the measure d%u and the fact that dt,Y* = h/(r) is uniformly equivalent to 1. Here, we
have dropped the positive flux at future null infinity. In an analogous way, the k = 0 case of the
rest estimates in (5.12) follows by integrating (5.15) with the measure d’u over Q%, , Q¢*% and

Qfﬁftb; , respectively, and the k = 0 case of (5.13) follows from integrating with the measure du

over Q% and QP N {t' < t} such that the first integration gives the first and third term on
the left of (5.13) and the second integration gives the second term on the left. Here, we made use
of the facts that (dt, —dr,)Y* =1+ /() and dt,Y* = h/(r) are both uniformly equivalent to
1 and dv,Y* = 0.

Now assume the result holds for some £ > 0. From the fact that the operators ML, 5, 5/
commute with Y, it follows that the estimates (5.12) and (5.13) hold for & but with (¢, f) replaced
by these derivatives operated on (¢, f). Hence, the estimates (5.12) and (5.13) hold for &k but

. o ° o/ o/
with (¢, f) replaced by any of {(¢, f), (MLep, MLef), (09,0 f), (@ #,0 [)}.
If we commute (5.11) with V(r-), then, because of the first relation in (2.39), we have

MYV (rg) + (5 +bo(r))V (re)
=V(rf) + M) f 4 (W(M — 120, (bo(r))) — =S (M + rbo(r))) T
=V(rf) + %f + MOo (1) + M20u0 (1) L. (5.16)

This equation is in the form of equation of (5.11), so it remains to control W¥,  (Q) norm squared
of the right-hand side of (5.16), Q being the region Q, 4,, QP , QF Qearly or QP one

t1,t2? init,to?
integrates over. The WJ ¥ 1(€) norm squared of the first two terms is clearly bounded by the

Wﬁ_rll (Q) norm squared of f itself. For the last three terms, they are bounded by

12612 oy + I 2800l o)
S ||50||WW’“71(Q) + ||L7750||W$73(Q)
S el o I8l o+ 18 eliZe o (5.17)
Therefore, the right hand side is bounded by
171y + 19130y + 100 oy + 18 ol o (5.18)

We have estimates for the last four terms from the previous paragraph, and by adding those
estimates, the desired estimates (5.12) and (5.13) hold for k£ + 1. By induction, the estimates
(5.12) and (5.13) hold for all 0 < k € Z. O

5.3. Spin-weighted wave equations. The following is a standard rP argument following the
ideas originally given in [15]. Essentially one uses the vector-field method with the vector M (1 +
Mor=%)Y + M~V with § > 0 small and « € [§,2 — 4]. Since we use p for a spinoral weight,
we use « for the exponent traditionally denoted by p in the 7P argument.
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Lemma 5.5 (r? estimates for spin-weighted waves in weighted energy spaces). Let § > 0 be
sufficiently small. Let s € {—3,...,3}.1% Let by, by, and by be real, smooth functions of r such
that

(1) Jby,—1 € R such that by = by,_17 + MO (1) and by, _1 > 0,

(2) by = MOx(r=1), and

(3) 3[)070,50,1 € R such that by = b070 + bo,lMT_l + M2OOO(7“_2) and bo,o + |S| +s5>0.
Let x1 be decreasing, smooth, 1 on (—00,0), and 0 on (1,00), and let x = x1((Ro — r)/M).M
Given these, there are constants Ry = Ro(bo,bgs,bv) and C = C(bg,bg,by) such that for all

scalars ¢ and ¥ with spin weight s, and if

~

o+ by Ve +bpLlyp +bop =1, (5.19)
then for all Ry > Ry, to <ty < ta, and a € [5,2 — 4],

2 2
IVl ooy 1Ol o)

a—3 —1-4

2 2
+ HQOle (QiOth) + HMYQOHWO (QiOth)

2
+ |‘<P|‘Fo(ﬂt+1,t2)
<C{lIrvVel} roy +l0ll3,0 or
- Wi_,(2°) Wh(2:°)

+ HSDH?/V[}(QRO’;;\LRO) + Z HSDH?/V;(ERO—ALRO) + |19||$/V£S(QROM)). (520)

t t tq,t
! te{ti,ta} 1

Proof. The proof uses the method of multipliers with a multiplier that is a cut-off version of
M(14 M%r=9)Y + M'~2r®V. Within this proof, the relation < is used to denote Sho,bs by, Ro-
Because the smooth and compactly supported functions are dense in the W spaces, by ap-
plying a density argument, it is sufficient to assume that ¢ and the initial data for ¢ are smooth
and compactly supported. In particular, it is sufficient to assume that ¢ is conformally regular.
This simplifies the treatment of certain terms on ..
Step 1: Set up the method of multipliers. From (2.34e) and (2.37a), the spin-weighted
wave equation (5.19) can be expanded out as

(20 + @)YV + by V + (by + cg) Ly + (bo + o)) @

+ (=208 —f1(0)LeLe — F2(0)£nLe — f3(0)Lc) o — 9 =0, (5.21)
where
_ 2ar _ (a* —4AMa?r + a®r? + 2Mr?)
€= T @y ¢ = (a® +12)2 )
f1(8) = a®sin? 6, f2(0) = 2a, f3(0) = —2iascosf. (5.22)

Observe that the f; are smooth functions on the sphere such that £, f; = 0. Thus, the spin-
weighted wave equation (5.19) can be rewritten as

9
> I =0, (5.23)
=1

where
L =2(r*+a®)YVe, L=byVey, I3 = (by + )Ly, Iy = (bo + co)ep,
o of
Is = —200 o, Is = — f1(0)Lelep, It = — f2(0)LpLep, Is= — f3(0)Leep,
L= —. (5.24)

Following the standard method-of-multipliers procedure, one can multiply the spin-weighted
wave equation (5.23) by x2M '~ (V @) +x2M (1+ M°r=?)(Y @), multiply by a further factor of

10The range of s is essentially arbitrary, but a larger range of s requires redefining ¢ with larger values of Cl,y,,.
HThis implies that x vanishes for r < Ryp — M and is identically 1 for » > Rp.
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M?/(r? 4+ a?), take the real part, integrate the resulting equation over ngth, and then estimate
the various terms. To do so, it is convenient to introduce, for ¢ € {1,...,9},

M? M?
_ 2 l—a, .« - _ 2 5,.—6 —

Forie {l,...,9} and X € {V,Y}, the term I, x is said to be put in standard form when there
are P; x, II; x principal, and II; x error such that, for any region 2 with boundary 09,

/ IiaXd4M = / VaPi?ng v+ / (Hi,X,principal + Hi,X,error)d4ﬂ- (526)
Q o0 Q

After the method of multipliers in the first step of this proof, step 2 is to isolate the principal
terms, both in the bulk Qﬁ“;M and in energies on the Zf‘)*M. The I v and Iy contribute the

dominant [V¢|? terms both on the Zf"*M and in Qﬁ?t;w[, the 1y term contributes the dominant
o/
|Y | term on the F°~M and in Qg"jt;M, the I5y term contributes the dominant |3 ¢|? term on

2o~ M but the Iyy and Iy terms together contribute the dominant |p|? and |5/<p|2 term in
Qg"jt;M. Step 3 is to define the remaining, nonprincipal terms.

The Is and I terms are particularly difficult to treat. The Isy and I7y contribute terms
that do not decay in r faster than those that arise in the principal terms. To handle these, it is
necessary to exploit the largeness of Chyyp,, which is set in definition 4.1. Step 4 treats the principal
part in Qg”;M Step 5 treats the energy on each ¥, and in particular the Iy and I7y terms.
Step 6 treats the flux through .#. Step 7 treats the remaining bulk terms, which completes the
proof.

The remainder of this proof uses mass normalization, as in definition 4.4.

Step 2: Definition of the favourable terms. Within this proof, the favourable terms are
those that contribute a nonnegative, leading-order term, either in the bulk or on hypersurfaces.
To isolate pure powers of r in the principal bulk terms, instead of powers of r? + a2, it is useful
to observe

1 1 a?

2 r2+a2 r2(r2+a?)

Integrating I v = x?r*(r? + a®>)"1R((Vp)(2(r? + a®*)YVp)) and applying Y integration-by-
parts formula (4.48a), one finds Iy is in standard form with

(5.27)

Py = xX"r|VelYe, (5.28a)
Hl,V,principal = X2Ta_la|v<,0|2, (528b)
Hl,V,error = aT(X2)Ta|V(‘0|2. (528C)

The term Iy = x?r%(r? + a®)7'R((V@)(byV¢)) can immediately be put in standard form
with

Py, =0, (5.29a)
IL2, v principal = X°1% " 'by,—1|V|?, (5.29b)
7bV,1Ta2 bV — TbV,1
II error — Zpe ’ . 14 2. 5.29
2,V, xXr <T2(T2 + ag) + r2 + a2 | 50| ( C)

Integrating I; y and applying commutator formula (2.39), one finds

[ Divdli= [ 220 RV Ve) b
Qfto—M Ro—M

ty,ty ty,ty

- / 2 (L+ )R ((YR) (VY ) d'p

t1,t2
2 N r? —a? Vot
o 2X (1+77%)( w)m( p)d

2 - _ 2ar 4
+ /QRWM 2°(1+r°)R <(Y¢)m(angp)) d'u. (5.30)
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Now, applying V integration-by-parts formula (4.48b) to the first term on the right and noting
the cancellation of the (Mr — a?)r—3 terms, one finds I; y in standard form

Py = (1 + 7"76)|Y<P|2Va, (5.31a)
1
Hl,Y,principal = §6X27'_6_1|Y90|2, (531]:))
Iy error = 1y (v,v) + Uiy, (v, (5.31c)
1 A
I — —_Z5 2,.,—6—1 67‘ 2,.—0
2 -5 r’ —a? 2
+2 (147 )m Yol (5.31d)
_ 2ar _
Hl,Y,(Ym) = 2X2(1 +7r 6)m% ((Y(,D)(Ln(p)) . (5316)

o o/
The term I5 v can be rewritten, using 8 =9 ¢, as

Iy = — 2% (8 <X2ra V)@ w))) +oR <x27’a L _ v o)@ <,0)> . (5.32)

T2 +a2 T2+a2

Thus, applying the dand V integration-by-parts formulae (4.24) and (4.48b), one finds I5 y is in
standard form with

1 o/
a _ 2. .« 217a
sy =xr"5-5 +a2|5 @l Ve, (5.33a)
2—«a _ a8/
1_15,V,p1rincipad = TXQTQ 3|Ej (,0|2, (533b)
2—« A o
I error — Zpa=3 T = 2- .
5,V, < 5 X 7 (x r 207 +a2)2>) |0 ] (5.33¢)
Similarly, for the I5y term,
Ly = (622" vod o)) 120 (L v 506 o) (5.34)
5Y — XT2+G2 2 2 XT2+G2 "2 "2 ) .
so that Y integration-by-parts formula (4.48a) gives the standard form with
Poy =2 (142 ) 2§ ppye (5.35a)
sy =X ) ra2” ’ '
H5,Y,principal = 0, (535b)
1 o/
_ 2 -5 2
H5,Y,error = (ar (X (1 +r )m)) |8 (,0| . (535C)

Integrate the Iy v = x?r*(r? + a®) ' R((V)(bo + co)p) term and applying V integration-by-
parts formula (4.48b), one obtains the standard form with

1 r¢

a 2y/7a
Py = §m(bo + o)V, (5.36a)
2 —« _
H4,V,principa1 = 4 bO,OX2ra 3|(P|2a (536b)
2—« _ o A
H4,V,err0r = (_ 4 bO,0X2Ta 3 + ar (7" m(bo + CO))) |(‘0|2 (536C)

For (i, X) € {(2,Y),(3,V),(3,Y),(4,Y),(6,V),(6,Y), (7, V), (7,Y), (8, V), (8Y),(9,V),(9,Y)}
-that is, for all (¢, X) for which II; x principal has not yet been defined- let

Hi,X,principal =0. (537)
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Step 3: Define the remaining terms. Considering Iy and isolating a total £ derivative, one
finds

oy = — X207 +a%)7 (L4 1R (V) A1(0) eLco)
-
— 2 (TSR ORO) e

21+r_5

X e (YLep) f1(0)Le) - (5.38)

Now integrating and applying Y integration-by-parts formula (4.48a), one obtains the standard
form for Iy with

" o1+ r9 _ u
P6,Y = =X r2+a2 fl(o)éR((Ysﬁ)Lgsﬁ)g
1 ,1+07° 2va
X 2 108 Y, (5.39a)
1 ,14779
HG,Y,error = (ar <§X2m)> |'C’ESD|2f1(9) (539b)

(Recall all the principal terms were defined in the previous step.)
The term I7y can be rewritten as

G 14770 _
- X m%((ysﬁ)fz(e)ﬁnﬁﬁsﬁ)
e (P R (Y P ) £a9) ) + R (LY D) fa(8) )
= EX?‘2+LL2 w)J2 n¥ Xr2+a2 e )J2 n¥
_5 -6
= 2 (P RO PROL) ) +Y (PR (S 20,0
) -5
0,03 L OR (Ee@)ne) — X R (LR O)Y L)
) )
= 2 (P RO PROL) ) +Y (PR (S 08,0
2T R (Lo oo (LT R (e £ (0)Y
+ 0r(x T2+a2)f2() (Le@)Lne) — Ly | X o) ((Le@) [2(0)Y @)
G 14770 _
+ X r2+a2§R((L£Ln<P)f2(9)Y‘P)- (5.40)

Now, identifying the final term as the opposite of the term on the first line, one can integrate to
obtain the standard form for 7y with

1 ,1477°
X 72 + a2
21+r“5
r2 4+ g2

Pry = R((YP)f2(0) L) £

TR (L) 0Ly Y, (5.412)

1 G170 _
H?,Y,error = 567‘ X m R ((Lg(p)fQ(e)Ln(p) . (541b)

Is v can be rewritten, by isolating a total £ derivative, as

(6% {03

Ioy — L (—x2f1(9) %<V¢L5<w>>)+x2f1<e> R(VEP)(Lew).  (542)

7’2+(12 T2+a2

Since L¢ acting on a scalar and in the (¢,r,w) parametrization is just 9, if one integrates the
first term in ¢ and applies V integration-by-parts formula (4.48b) on the second, then one obtains
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Is,v in standard form with

(0%

SR VELD) € + 5P (0)

r2

TOL

r2 4 a?

Fgy = = x*f1(9) |Lep|?V, (5.43a)

1 . A
H6,V,error = - Zar <f1(9)7’ m) |£/§§0|2 (543b)

This type of analysis can be applied to I7y . Term I7y can be rewritten using the Leibniz rule
in L¢, V, and £, as

(6%

Inv = — x*f2(0) R(VEL,yLe(p))

r2 4+ g2

= Le¢ (—X2f2(9)

(63 {03

R (LeV () Ln(9))

T2+(12 7’2+a2

)
_ e (—x2f2<e>L R wcn(@)) ‘v (fﬁ(@)L% <Lg<w>an<¢>>)
)

r? + a? r? +a?
— VOC L) )R (Le() £ () — P Lol0) R (Ee(0) L,V (@)
— e (0 s ROVPEL)) +V (X 1al) 55 R (Sl (P)) )
VRO FE R (EEP) - £y (0 TR eV ) )
L0 R (L Le()20V (7). (5.44)
Identifying the last term on the right with the opposite of the term on the left, one obtains
2ry = = 2¢fol0) 3R (VL Le(9)
— e (RO RVPE) ) +V (P Al0) 5 R (Ecl0)2 (@)

(o3 (63

—z, (x2f2(9) %(cgwww))) VO h0) VR (Le(0)£n(@)) - (5.45)

7’2+a2 T2+(12

Since L¢ and £, are 0y and Jp in the (t,7,0,¢) coordinates, from the V integration by parts
formula (4.47b), one obtains the standard form for I7y with

1 a . 1 a _ .
Phy = = 3x2fo0) RV (Ea0))E + 5° o(6) 5 ——R(Leplyo)V?,  (5.460)
_ L, re A _
H77V16TT0Y - (aT (5)( f2(9) r2 +a2 2(7“2 +a2)>) %(LECPLWCP) (546b)

For (i, X) € {(2,Y),(3,V),(3,Y),(4,Y),(8,V),(8,Y),(9,V),(9,Y)} — that is, for all (¢, X) for
which Py has not yet been defined — let

Py =0. (5.47)
Step 4: Treat the principal bulk term. Let
Hprincipal = Z Hi,X,principal

i€{1,...,.9},Xe{V,Y}
= Hl,V,principal + HQ,V,principal + Hl,Y,principal + 1_15,V,p1rincipad + 1_14,V,p1rincipad
1
2 a—1 2 2, —6—1 2
= (@4 by )X Vel™ + 5ox T Yyl

4

2—« Y a _
+TX27’a o ol* + bo,oX T || (5.48)

ol
Since by,—1 > 0, by assumption, that term can be dropped. It is convenient to rewrite [0 |2

as (|5/ o> — ls‘$|<p|2) + ‘Sl% |o|? and to observe that, when integrated over spheres, both these
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summands are nonnegative from the lower bound on 8 in lemma 4.24. T hus,

_ 1. 5
/R . Mprincipad e > /R Y x> (ar”‘ Wl + 557" =Ly ?
Qtlot2 Qt107t2
2 — s
+ 5 @ pa=s (|6’ o — —|S|2+ Slsol2>

2 —
+ a (bo,o + |s] + ) 7“0‘_3|<p|2)d4u. (5.49)

4

Thus, a very small multiple (relative to §) of the the Hardy inequality (4.49a) with v = a — 2,
one finds, for some positive constants Cy, Cs, Cs5, Cy,

Lo dd C 2 -
/QRO*M principald |4 + 1H<)0HW01(Q?;0¢21VI,R0)

ty,t2

> /QRHI (C2r°”‘1|Vsol2 +Car Y pf?

ty1,t2
2—a o35 2 lslts, o
L% a 5 _151Ts
t—r (I ol 5|l

2 —«
+ T (b0,0 + |S| + s+ 04) ra_3|<p|2)d4u. (550)
Since the hypothesis of the theorem assumes that b o+ |s| +s > 0 and Cy > 0, all the coefficients
are strictly positive. Furthermore, the terms that they multiply are all nonnegative. Given that

|s|+s
2

there are positive multiples of |5/ o|? — |o|? and |¢|?, both with coefficients of r®=3, these

can be lower bounded by positive multiples of |5/ ¢|? and |¢|?. Hence, there is a constant C,

11 rinei 1d4 +C 2 Ro—M,R,
/QRO N principa H |‘<P|‘W01(Qt10vt2 > 0)

t1,t2

R / (r”‘ll‘/sﬁl2 + Y P+ o3 +7“”“3|90|2)d4u- (5.51)
The relation (2.33) gives L¢ = V+£YY 4+£7L,, with coefficients satisfying the bounds €Y < 1,
and [£7| < Mr~2, from which it follows that

[ 0P S [ Ml el g e (5.52)
Q0 Qey 0
Step 5: Treat the energy on hyperboloids. On hyperboloids the energies can be decomposed
into the principal and error terms. Unfortunately, the error energy for the Isy and I7y terms
are of the same order as those in the principal part. Fortunately, we can use Cly, as a large
parameter to dominate these error terms by the principal parts. All the remaining terms are
strictly lower order and, hence, easily dominated.
First, define the principal terms. To do so, it is also useful to recall, cf. (2.48d), (2.46), that

lim dt,Y® =2, (5.53a)

r—00

,r2
Jlim —5dt,V = Clyp, (5.53b)
On the hyperboloids, let
€1,V,principal = 2X2TQ|V<P|27 (554&)
€1,Y,principal = Chypx2r_2|Y80|2’ (554b)
o/

€5,Y,principal = 2X27"_2|6 (P|2 (554C)

V), (2,Y), 3,V), B,Y), (4,V), (4,Y), (5V), (6,V), (6,Y), (7,V), (7.Y),
(8, V), ( ) ), (9,V), (9,Y)} — that is for all (i, X) for which e; x principal has not been defined —
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let
€i,X ,principal = 0. (555)
Let

€principal = § €i, X

i€{1,...,9},Xe{V,Y}

= €1,V,principal + €1,Y,principal + €5,Y,principal
o/
= 2%V p|? + ChypX®r 2|V |? + 23210 o> (5.56)

There are some useful lower bounds to observe. First, note that since r* can be taken to be
larger than any given constant by taking r sufficiently large, and since Chyp > %, it follows from
the Hardy lemma 4.30 that for any sufficiently small € if Ry is sufficiently large, then

Xr 2 elPd% < (16 +¢) XCIVelPdu + e Xr Y elPdu
»hRo—M pio-M )

Ro—M
t
2d3
[ s ol
t

< /X:RO*NI eprincipaldgﬂ + /ERU*IVLRU |(p|2d3:u“ (557)
t t

t

Lemma 4.25 controls the integral of |£,¢|? on the sphere. Integrating in r and then applying
equation (5.57), one finds

2.-2 213 2 —21%" 12 2.-2.21, 12\ 13
/ERWMXT Iﬂnwldué/zRofM@xr [0 |” +x7r Sle)du
t t

2 o 3 2 213
<(1+s )/EfoM eprincipald J + /EfoM,RO ol "d . (5.58)

Furthermore, due to equation (2.33) and since |a| < M, for Ro/M sufficiently large relative to
Chyp and s, one has, for r > Ry,

3
Lepl” <3[Vel” + 7Vl + |Lnepl?. (5.59)

1
Ohyp(1 + 5%)
Multiplying by x2r~2, integrating in 7, using the bound (5.58) to control the final term, the
definitions of €1,y principal @a0d €1,y principal to control the first two terms, using the largeness of r*
in €1,V,principal and the factor of Chyp in €1,Y,principal, ON€ finds

4 1
2r21Lep)?d3u < / rincipald® / 2d3%u. .
/EfoMx 7| Lep"dn < Chyp Joya-ss CPrinciva “ G EfowaRolsﬂl 14 (5.60)
Let
€1,V,error = (*2 + (dtaya))xzra|v<,0|27 (561&)
€1,Y,error — X2 ((7cvhyp7"72 + (dtava)) + (dtava)ria) |Y§0|2, (561b)
1 1
€4,V,error = (dtaVa)Ta§m(50 + Co)|<,0|2, (5.61c)
a @ 1 =4
€5,V,error — (dtav )X2T 72+ 2 | 0 <P|2, (561(1)
2 dt,Y" . 1\
€5,Y,error = X2 (_7’_2 + 2 T a2 + (dtay )ﬁm) |6 (,0|2, (5616)
€6,V,error = €6,V,(V¢) T €6,V,(¢¢)s (5.61f)
e6,V,(Vf) = - (dtafa)XQfl (9) T2 + a2 R (Vaﬁg(@» 5 (561g)
1 a r
e6.vi(ce) = 5 (VN [1(0) 5 Lewl”, (5.61h)

€7,V,error = €7,V,(Vn) + €7.V,(€n)s (5611)
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1 re _ .

erv,(vp) = ~ (dta§“)§X2f2(9)m%((V@)(LW@)), (5.61j)
1 «

€7 V,(én) = (dtaVa)§X2f2(9)m%(55¢5n@), (5.61k)

and, turning to the terms that are harder to estimate, let

€6,Y,error = €6,Y,(Y¢) T €6,Y,(¢¢)s (5.62a)
ay 21+ r0 _

€y, (ve) = — (dtag”)x mfl(ﬁ)%((wmw, (5.62b)

a1l o140
e6,v,(¢6) = (dtaY )§X27T2 T F1(0)| Lel?, (5.62c)
€7,Y,error = €7Y,(Yn) + €7.Y,(&n)» (562(21)
1 o 1+77? _

ery,(vn) = — §X2(dta§ ) 2 OR(YP)Lne), (5.62e)
1 Y _

erven = 5 (ALY ") Tz fo(O)R (Le@) Lyg) (5.621)

For (i,X) € {(2,V), (2,Y), (3,V), (3,Y), (4,Y), (6,V), (6,Y), (7,V), (7,Y), (8 V), (8,Y),
(9,V), (9,Y)} -that is for all (¢, X) for which e; x error has not been defined- let

€i,X error = 0. (563)

For r sufficiently large, one has |dt,Y | < 4, |dt,£%| < 2, and 1+77% < 2. Independently of r,
one has |f1(0)] < M? and |f2()| < 2M. Thus, from the previous bounds

‘ / o (esyive) s viee) Feny o +enyen) A
3, 0~
< [ @RVl + 2 Leo)
s,

b [ @Yl + 8572 el pl) (5.64)
Zto

Every one of these terms has a factor of either |L¢p| or [Y¢|, so that one obtains a factor of
Ch_ylp/ % either from the coefficient of |Y p|? in the definition of €1,y,principal Or from the bound on
|Lep|? in inequality (5.60). Thus, from the Cauchy-Schwarz inequality, from introducing a factor

of C};,lp/ % on the L, derivatives when applying the Cauchy-Schwarz inequality, and from equations
(5.54b), (5.58), (5.60), one finds

3
‘ /ERWM (e.v.(ve) + €o.v (o) T eryv. (v + eny,em) d u‘
t

1/2 1 -
< /ER07M ((2 + QCh}/;p) |YSD|2 + (2 + 4+ 4Ch}/,p) |L§(,0|2) r 2d3ﬂ
t

2 4 2,213
Jr/ZRo*M (—01/2 + —01/2> |Loel*r~=d p

hyp hyp

1/2 1/2
2 + 2Chyp i 4(6 + 4Chyp) " 6(1 + 52) / . ldglu
Chyp Chyp Cl/2 25071\4 principa

hyp

6+4C)72 652 -
+ < Ch + L /RO?M,RU|<,0| du. (5.65)
yp hyp 5

IN
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Since s? is bounded by 9, and since Chyp is chosen to be 10° in definition 4.1, it follows that, for
some constant C, on any hyperboloid there is the bound

‘ / Ro—M (€6.v.(ve) + €6.v.(ce) T €r.v.(vn) + €rv () A
;0

1 3 2313
< 5/23R07M eprincipaldM+C/XJR07NI,RU|SD| d,U/ (566)

It can now be shown that the remaining error terms can be made arbitrarily small relative to
Eprincipal DY taking r sufficiently large. One way to show this is to show that the term consists of a
norm squared appearing in €principal but with a lower exponent. For example, in €1,y error, there is
a factor of |V ¢|? with an exponent that vanishes at a rate of 7*~! (since —2 + dt,Y® vanishes as
r~1), which decays faster than the 7 coefficient of [V |? in €pyincipal. Another, similar, method
is to show that the term involves the (real part of) the inner product of two terms involving ¢,
each of which appear in eprincipal, and that the coefficient of this inner product vanishes faster
the geometric mean of the corresponding coefficients for the terms in eprincipal. For example, the
term eg v, (ve) has a factor of R((V@)(Lep)) multiplied by a coefficient that vanishes as r*~2.
The geometric mean of two terms that decay with a particular exponent decays with an exponent
that is given by the arithmetic mean. The energy eprincipal, dominates || and r_2|55<p|2, and
the exponents satisfy o — 2 < ((a) + (—=2))/2, so, by taking r sufficiently large, one can ensure
that €6,v,(Ve) 18 arbitrarily small relative to eprincipal. Thus, for all the error terms, it is simply a
matter of checking the relevant exponents, which are given in the following table.

5
:

Exponent Exponent from eprincipal
a—1 o
—5—2 -2
(-2)+ (a«—2) -2
(-2)+ (a«—2) -2
—5—2 -2
) a=2 (@) +(=2))/2
; (=2)+(x—2) -2
)

SSSEFEECT
SISSSISSS

) (=2)+(a=2) ((o) +(=2))/2
(-2)+ (@ —2) -2

On the level sets of , one has that v can be chosen to be dt. Furthermore, one has d3u, = du.
From this and the definitions in the previous paragraph, one finds for all (z, X) that

a 3 3
/R " Va]Di,Xd v = /R o (ei,X,principal + ei,X,error) d 22 (567)
2,07 =07

Thus, one can conclude

3 3 2
/Ro eprincipald H ,S /RU*M g VaPﬁXd v+ |‘SD|‘W&(Z?07NI’RO)’
b 3 . 2

t2 2 i€{l,...,.9},Xe{V.Y}

(5.68a)
a 3 < L. 3 2

Lo X bttt s [ comanadlit Il s s

ty i€{1,...,.9}, Xe{V,Y} by

Step 6: Treat the flux through f;{h. In this step, it is useful to treat ftttz as the limit as
r — oo of a sequence of surfaces given in hyperboloidal coordinates by [t1,t2] x {r} x S? but to
think of this in the conformal geometry.

The only nonvanishing P’y arise from (i, X) € {(1,V), (1,Y), (4,V), (5,V), (5,Y), (6,V),
6,Y), (7,V), (7,Y)}. The normal to the surfaces of constant r is v = dr, so v, Y* ~ —1,
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v Ve ~ 1, and 1,£* = 0. From conformal regularity, one finds that 7*~2|p|7 — 0. Thus,

0= / Vo PPy d3u, :/ Vo P2 A3, :/ Vo P2y d¥u, :/ Vo Py d3u,
AN ’ AN ’ AN ’ Tt ’

ty,tg ty,tg ty,ta ty,tg

— /ﬁ Vo Py &P, = / . Vo Py du, = / . Vo Py A, = /ﬁ VaPYyd®u,, (5.69)

Tyt ‘ﬁhyfz ‘]t1yt2 Tyt

and the only nonvanishing term is

/ Vo Py d®u, = / [V ol2d3us > 0. (5.70)

‘ﬂjl,fz ft,f2

Step 7: Treat the remaining terms in the bulk via the Cauchy-Schwarz inequality.

The same type of analysis can be used to show that the bulk error terms are all small relative
2

to fgi(,;M Hprincipa1d4ﬂ + H‘PHwol(Qfot*MvRO)' The following table shows that the exponents satisfy
o 1:t2

the relevant bound, with —oo standing in when the error term decays faster than polynomially or
is compactly supported. Note that many of the relevant exponents arise from the cancellation of
leading-order terms. Note also that (1,Y,(Y,Y)) and (1,Y,(Y,7n)) are used to denote I1; y,(v,y)
and II; y (y,,) respectively.

5
o
£

Exponent Exponent from eprincipal

(1,V) —00 a—1

(2,V) o—2 oa—1

(1,Y,(Y,Y)) —0—2 —-6—1

(LY, (Y.n) -3 (=6 —=1)+ (a—3))/2
(5,V) oa—4 oa—3

(5,Y) -3 a—3

4,V) a—4 a—3

(6,Y) -3 —6—1

(7,Y) -3 —6—1

(6,V) oa—3 —6—1

(7,V) a—3 (=0 —1)+ (a—3))/2
(3,V) a—3 ((a—1)+ («—3))/2
(8,V) oa—2 ((a=1)+(=6-1))/2
(2,Y) -1 (=6 =1)+ (a—1))/2
(3,Y) -3 (=0 —1)+ (a—3))/2
(8,Y) -2 (=6 -1)+(-0-1))/2

It remains to treat the Iy terms. For any € > 0,
o v| S ex®r® HVpl* + e X273, (5.71a)
oy | S ex?r ' 0V + 73 0o, (5.71b)

For ¢ sufficiently small, the first term on the right of each of these bounds is dominated by
Iprincipal- Thus from the fact that all the error terms can be made small relative to the principal
terms (plus some additional term for r € [Ry — M, Ry]), one finds

E 3 4 213
/ VaPZ-aXd v+ / 1_Iprincipadd (L / |Y(10| d 254
sRo—M ’ Qo gt
' ie{l,..9h,Xe{V,Y} t1ats 4.t
< > vo Py d? 2
~ /ZRO*]W at ,X v+ ||S0||W01(Qf10,;21wwR0)

t1 ie€{l,...,9},Xe{V,Y}
a—3 3
T /QRO—JM " |19|d K- (572)
t1,t2

The result now follows from the estimates (5.68b) and (5.68a) and the fact that we can add an

extra term |3 (‘0”34/0 @) to the left because of the relation (4.26). O
a— b1, t2
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5.4. Spin-weighted wave equations in higher regularity. This section proves the analogue
of the rP estimate for spin-weighted wave equations, from lemma 5.5 but in higher regularity.

Lemma 5.6 (Higher-regularity rP-estimates for waves in weighted energy spaces). Under the
same assumptions of lemma 5.5 except that we now assume ¢ has spin weight s € {—2,—1,0,1,2},
for any k € N, there are constants Ry = Ro(by,bg,bv) and C = C(bg,bg,by) such that for all
spin-weight s scalars o and 9, and if (5.19) is satisfied, then for all Ry > Ry, to < t; <ty and
a € (0,2 — 0], there is

2 2
HTVQOHW572(ZZO) + HQOHWE;I(EZO)
2 2
. MY
+ ||¢||W§té(9io,t2) + || SQHWEI—S(Q’iO,tQ)

2
+ ||50||Fk(yt+l,t2)
2 2
: C<HTWHW§2<2?;°> el o)

+ HSDH?/VUkJrl(Q?U;MxRU) + Z ||(10||?/V§+1(E?0*M’R0) + ||’l9HI2/Vk S(Q?OtM))‘ (573)
1,t2 te{tiota} a— 1,t2

Proof. For a given set of operators X, consider the estimate

a 2 a, |12
> (VoI + 1K1 oo

+ X2, XM )2,

Ro Ro
73(Qt1,t2 7175(Qt1,t2

b Meseplats )
AN
<C X2 2 NG 2
<0y (e TP s S
a 2 a 2 a 2
Iy + 3 Il g + 1% M o )
1,02

(5.74)

This lemma will be proved by proving the bound (5.74) for an increasingly large sequence of sets
of operators until the estimate is proved for X = ID, which will complete the proof.

Step 1: X = {MXL,}. Since ML, commutes through the spin-weighted wave equation (5.19),
any number of compositions of M L¢ can be applied, and the original r” bound (5.20) will hold
with ¢ and ¥ replaced by (MZL¢)'@ and (ML¢)"9, which proves the higher-regularity 7?7 bound
(5.74) with X = {ML¢}.

Step 2: X =) with at most one angular derivative. If the spin weight is negative, s < 0,

then, commuting the original spin-weighted wave equation in its expanded form (5.21) with 5
and using the commutation relation (2.40d), one finds

(2(7~2 +a? )YV 4 by, 5V 4 (by g + o) + (by g + co)) Gl
+(—208 —f1(0)Lele - f2(0)LnLe — f3(0)Lc) 8 o — 0y =0, (5.75)
where
by =bv, b,y =bs byy =bo—2(s—1),

%(aeﬁ(@))ﬁgﬁsw - %(%J%(@))Lg% (5.76)

and ¢y, co, and the f; are given in equation (5.22). While in the case of s > 0, one can commute

o/
Dy =09 -

(5.21) with 9 and apply the commutation relation (2.40d) to find that 5(,0 satisfies an equation
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of the form (5.75) with bV7§/’ b¢73/, bo and Jg replaced by

bvé = by, b(;s,% = by, boé = by + 2s,

L O0f1(0))Lekew — (00 f3(6)) Lo, (5.77)

Vs = 00 —
0 V2 V2

respectively.

These are in the form of the spin-weighted wave equation (5.19) from the 7P lemma 5.5. It is
clear that if the first two assumptions in lemma 5.5, on the asymptotics of by and by, held for the
original wave equation, then they hold for bv,é’ and b 6.5 OF for bvé and b 6.5 respectively. The

scalars 3 ¢ and é(p have spin weight s — 1 and s + 1 respectively, and their spin weights lie in
{=3,---,3}. Furthermore, the leading-order parts of by 5 and b 5 satisfy

bog ot ls—1+(s=1)=boo—2s+2=(boo+[s]+s)+2, for s <0,
bosot s+ 1+ (s+1)=boo+4s+2=(boo+|s|+s)+25+2, for s > 0, (5.78)

which means that if bo,0+[s|+s > 0, then b, g +[s—1[+(s—1) > 0 and by 5 o +|s+1|+(s+1) > 0.
In particular, if by from the original equation (5.19) satisfies assumption (3) from the r* lemma
5.5, then so do b 5 from the commuted equation (5.75) and and b, 5 from the analogue for 3.
Thus, if the original spin-weighted wave equation (5.19) satisfies the hypotheses of the P lemma
5.5, then so do the 3 or & commuted equations.

Hence by applying the rP lemma 5.5, the bound (5.20) holds if we replace ¢ and ¢ by 5 v and

the sum of & ¢ and a O (1) weight times at most two compositions of ML¢ acting on ¢. The
terms involving compositions of M L¢ acting on ¢ can be estimated by the higher-regularity r?
bound (5.74) with X = {M L}, which proves the higher regularity 77 bound (5.74) with X = S in
the special case where the multiindex a is restricted so that there is at most one angular derivative
and it is either 3/ if s <0and 9 if s > 0.
Step 3: X = ) without restriction on the number of angular derivatives. Since any
D e {MQLgﬁg, MZLeLy, £,L5,Ss} commutes with the homogeneous part of the wave equation
(5.19), the r? estimate (5.20) follows trivially if we replace ¢ and ¥ by D¢ and D1, respectively.
In view of the relation (2.37a) between S5 and S,, the estimate (5.20) holds if we replace ¢ and
Y by Dy and DY, respectively with D € {M?L¢Le, MLe Ly, LyLo, S}

Consider now the higher-regularity r? bound (5.74) with X = [J. First, consider the case where
there is a sum upto an even order 2¢ of angular derivatives. By lemma 4.23, the corresponding
norms can be replaced by norms involving S;, and such norms were already controlled in the
previous paragraph. Now, consider the case where there is a sum upto an odd order 2 + 1 of
angular derivatives. By the previous argument, all the terms of order upto 2¢ can be replaced by
norms defined in terms of S;. Since the lower-order terms are controlled, by equation (4.26) and
the previous argument, the terms involving 2¢+ 1 derivatives can be controlled by terms involving
lower-order terms and terms involving Sg and either 3 or depending on whether s < 0 or s > 0.
Such terms can be controlled by combining the arguments of the previous paragraph and step 2.

Note that in step 2 in equations (5.76)-(5.77), ¥ was replaced by the sum of one angular
derivative acting on ¥ and a Os(1) coefficient of at most two compositions of M L¢ acting on ¢.
Applying compositions of M L¢, £y, or S, of total order k — 1 to an angular derivative of ¥ will
give terms bounded by |19|i,m. Similarly, applying compositions of M L¢, £, or S, of total order

k — 1 to at most two compositions of ML¢ acting on ¢ will give terms bounded by |B*9)2, in
which either |a| < k — 1 or such that at least one term in " is a M L¢ derivative. In either case,
by first proving the r? bound (5.74) to order k with X = {M L} and then proving the bound
with X = I with increasing orders i < k, one finds that all the terms arising of the form [H*9?
are controlled by earlier bounds.

Step 4: X={ML,, 3, 8/, rV}. Commuting the original wave equation (5.21) with rV and using
the commutator relation (2.39) for Y and V, one finds that V¢ satisfies

20 + )YV + by, vV + (bp,rv + ¢4) Ly + (borv + c0)) (V)
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+ (=208~ [1(0)LeLe — f2(0)L0Le — [5(0)Le) (1) = Dy =0, (5.79)
where
by,v = by + M, by, rv = by — 7124%, borv =bo + 1, (5.80a)
Uy =1V — = a:2) (jLAag 2 YV~ 2(7,;7%@(% +¢g)Lne
_ (w;iiﬁ)ar(?"_lbv) + Tf]‘f; - 2”2; “2> (rVep) — w;i%ar(bo + o)

(5.80Db)

and the ¢y, cp, and f; are again given in equation (5.22). The commuted wave equation (5.79)

can be rewritten as

~

Ss(rVo) +byvV(iVe) + by rvLy(rV @) + borv (rV) = Yry. (5.81)

The YV term in ..y can be expanded using the spin-weighted wave equation that ¢ is assumed
to satisfy. Doing so, one finds that 9,y is the sum of »V applied to ¥ and a sum of terms given
by O (1) coefficients multiplied by terms of the form either S with |a] < 2 or rV.

Again, this is in the form of equation (5.19) from the 7P lemma 5.5, and again, it is clear that
the first two assumptions in lemma 5.5, on the asymptotics of by and by, hold for the commuted
equation (5.81) if they held for the original equation (5.19). The scalar rV ¢ has the same spin as
¢, and the condition on leading-order coefficient in b v is 0 < bg yv,0+ |s|+5 = boo+ |s| +s+1,
so that assumption (3) from lemma 5.3 holds for the commuted equation (5.81) if 0 < by o+ |s|+ s
holds, which was assumption (3) for the original equation. In particular, if one starts with a spin-
weighted wave equation of the form (5.19) that satisfies the three hypotheses of the rP lemma
5.5, then commuting with 7V will give a new equation of the same form that also satisfies the
three hypotheses.

Thus, for any multiindex a, when considering {M L, 9, 3/, rV }2, there will be some number of
operators from ) and some number of compositions of V. Since if ¢ satisfies the hypotheses of
the rP lemma 5.5, then so does rV g, it follows by induction on the order of the composition of rV’
that each X?¢ (where X = {MLe, é, 5/,TV}) satisfies a spin-weighted wave equation satisfying
the three hypotheses of the r? lemma 5.5.

It remains to treat the corresponding ¥ terms. From applying rV, there is one term involving
7V and additional terms of the form either %y with |a] < 2 or rV. Recall from step 2, the

terms arising from commutation with 8 were cither the & o or % with |a| < 2, and similarly for
9. Thus, from commuting {MLe, 9, 3/, rV}2 through the spin-weighted wave equation (5.19), the
terms that arise are of either of the form {M L, 9, 5/, rV 129 or of the form {M L, 9, 5/, rV1bo.

All such {MZL¢, D, 31, 7V }P arise from the additional terms in equation (5.80b) from commuting
with rV, from the additional terms in equation (5.77) from commuting with 9, or from the

additional terms in equation (5.76) from commuting with §. n commuting {MLe¢, D, 5/, rvi}a
through the spin-weighted wave equations, the operators can at most once be applied so that
they generate terms arising in one of the three equations (5.76), (5.77), or (5.80b), with all other
factors either being applied to ¢ or to one of the coefficients. If the 9,1 equation (5.80b) is
applied, then either the number of 7V terms is reduced or the total order is reduced. If the Jy
or ¥ equation (5.76) or (5.77) is applied, then the number of 7V terms is unchanged, and either
the number of angular derivatives is reduced or the total order is reduced. Thus, by applying a
triple induction on total order, within that order of S derivatives, and within that order of M L¢

derivatives, one obtains that the the rP estimate (5.74) holds with X = {M L, 3, 31, rV}.

Step 5: X =D. In the domain of consideration r > Ry — M, the operator MY can be expanded
in terms of M Ly, 5, 5/, rV and, conversely, the operator M L¢ can be expanded in terms of MY,
é, él, rV. The coefficients appearing in these expansions are all at most Ooo(1), which implies
the equivalence of the norms generated by these two sets of operators. To complete the proof,
note that, on .#, rV vanishes on conformally regular functions and that MY = 2M L. (I
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5.5. Spin-weighted wave equations in the early region. The following lemma allows norms
on the hyperboloid ¥, to be estimated in terms of norms on the hypersurface Xy, which extends
to spacelike infinity. It is convenient to introduce first the following definition.

Lemma 5.7 (Controlling the early region). Under the same assumptions of Lemma 5.6, for any
k € N, there are constants Ry = Ro(bo, by, bv) and C = C(bg, by, by ) such that, if ¢ and ¥ are
spin-weighted scalars with spin weight s that satisfying (5.19), then, for all Ry > Ro, « € [§,2—46],
and t < tg,

2 2
IVl oy + 122 s o)

+ H(,OHWkH(QLMtl,yt,RU) + HMYQ&H?NEPS(QLMW o)

init,t

+ H(pHFk(‘]joo,t)

lrut

< O+ Il o0+ Bl ooy + 191y sy )

(5.82)
Proof. Throughout this proof, < is used to mean <y p,,- The method for increasing the
regularity that appeared in the proof of the higher regularity r? lemma 5.6 applies in exactly the
same way. Thus, it is sufficient to modify the proof of the original P lemma 5.5. The only change
that must be made is in step 5, where the energy on the Eﬁ“iM must be replaced by an energy
on Yini;. The energy densities e; x can be estimated following the same ideas appearing in the

step 5 of the proof of the P lemma 5.5. The major change is that on the Cauchy slice v,V ~ 1
instead of M?r~2. It remains the case that d¢,£* ~ 1 ~ dt,Y®. Thus, one finds

/ S Y whd,

Zinit =1 Xe{V,Y}

< / <J\4_a7"a|"80|2 +Yol? + M2 o2 4 M‘°”+27’°“‘2|<P|2)d3u
Yinit

5 / Z M7a+2ra72+2\a||18a80|2d3ﬂ. (583)
b))

init |a‘S1

The stated result now follows from the fact that, for any k,

J

which completes the proof. (I

Z M7a+27,a72+2|a\|Bansﬁ|2d3ﬂ </ Z Mfa+2ra72+2|a\|Ba<P|2d3M, (584)
init |a‘S1 ‘b‘gk Einit \a|§k+1

6. THE SPIN-WEIGHT —2 TEUKOLSKY EQUATION

In this section, we consider the field 1ﬁ_2 of spin-weight —2 that solves the Teukolsky equation
(3.25a).

6.1. Extended system. This section introduces a collection {z/} S o of conformally regular

derivatives of ¢_, a collection of rescalings {go 2} _, that are (depending on the index) divergent

or vanishing at the horizon, shows that the ¢ A(z) satisfy a system, and finally shows that the

WS(ZZO) norms of the 1/1(_2 and go(_)Q are equlvalent for sufficiently large Ry.

Definition 6.1. Let 7,/;,2 be a scalar of spin-weight —2. Define

A~ . 2 2 /L ~
P = (%@ s, 0<i<d. (6.1)
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Definition 6.2. Let 7,/;,2 be a scalar of spin-weight —2 and {1/3@2 ;1:0 be as in definition 6.1.
Define

A N2

~(0 0

(‘07% g (T2+a2) ’[/](72)7 (62&)
S0 _ 2 (e i 1<i<4 (6.2b)
Y2 T A v-2 - '

Remark 6.3. Compared to the quantity in [31, Appendix A], we have gb(_O% = V2 4 a2k 2k 2900
where the first factor v/r2 + a2 is to make the quantity nondegenerate at future null infinity and
the other factor &1/2x1 2 corresponds to a spin rotation of the frame.

Lemma 6.4. If 1ﬁ_2 is a solution to (3.25a), then the variables gZa(_O%, ey gZa(_g satisfy the system
(0 A (0 (0 (0
29 29 2% 2%
(1 (1 A(1 (1
i 843 84 84
Hoof % | =a] o8 [+BL,| o5 [+ov | % |, (6.3)
~(3) ~(3) ~(3) ~(3)
$_2 $_3 ‘P—42 $_2
(4 (4 . (4
) ) 0% 0%
with
4r(M+r) 4AM (Ma®*+a?r—3Mr34+r3)
- a2 ,,.2 l12+7‘2 2
6r(a4+3]\/1azr+a2T2—MT3) 2(a4—12Ma27‘—2a27‘2+4]\/1r3—3r4)
o M(a24r2)2 (@1r2)2
A — _ 6a*(a*+6Ma*r—10Mr3—r?) _20a*(Ma*+a*r—3Mr°+r?)
- MZ(a2+12)2 j M(aZ+r2)2
1242 (3Ma*—2a*r—24Ma®r® —2a%r*+5Mr*)  24°®(—13a*4+82Ma*r—30Mr34+13r*)
- ]\/13(a2+r2)2 M2(a2+7"2)2
24a* (a*+30Ma’r—34Mr3 —r*) 128a* (Ma2+a’r—3Mr24r3)
I\/[4((l2+’f’2)2 MS(a2+T2)2
0 0 0
2, 2. 243
42M(]\/Ia2(-1-1§+7;‘22)?;2]\/1 +3) 4 0 0
2(a*—12Ma Z[;iarg);réll\/[r —3r") 0 0
_2(20Ma*+17a*r—69Ma’r>+17a*r*+3Mr?) _ 4r(M+r) 0
M(a2+r2)2 (l2+’l"2
60a2(7a4+10Ma2r76M7"3+r4) _40a2(Ma2+a27"731V[r2+r3) _4(a4791\/[a27"+a2r2+7M7"3)
M2(112+T2)2 M(a2+'r2)2 (112+T2)2
(6.4a)
AM3r 0 0 0 0
9 3M?%(a® —r?) 2M3r 0 0 0
B= — — —12Ma?r AM2 (a2 — 12) 0 0 0 ,
M3(a®+72) | 19422 —#2)  —28Ma?  3M2(a®—+%) —2M% 0
480’y —40a%(a® — %) —40Ma?r 0 —4M3
(6.4b)
0 0 00O
0 0 00O
4(Ma? 2p —3M7r? 413
sz(aJ’“TA "4 0 0 0 0 0 (6.4c)
0 00 1 0
0 00 0 2
(0)

Proof. The rescaling in the variable =5 eliminates the Y terms of (3.25a) to yield the first row

of the system. Repeated application of the commutator

~ (CL2 + 7“2)2 B (a2 + 7“2)2 N dar (a2 + 7“2)2
ES(TV(P) = TVES(SD) + W2 112 77( A V(p)
4(Ma® + a®r —3M7r? +13) __ (a® + r?)?
- A Vi—F3x—V»)
ala —r)(a+) 2(a* — 10Ma*r + 6Mr3 —r?)
T P X Ve
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(2Ma* + a*r — 9Ma?r? + a®r3 + Mr*)p
(a2 + 12)2

(6.5)
gives the remaining rows. O

Lemma 6.5. Let 7,/;,2 be a scalar of spin-weight —2 and {1/;9)2};1:0 be as in definition 6.1. Let
{95@2}?:0 be as in definition 6.2. Let k € N, 5 € R, Ry > 10M and 0 < i < 4. We have

||1/;92)|‘ k(o H Hwk Ro (6-6)
wh () ™ )’
i'=0

Furthermore, for a € [0, 2],

Z (||7’V1/3(—12)HW§:$(E?“) + WQHWL(Ef“))

i/ =0

~ Z (1Y@ ypms o, + 162 01 ) - (6.7)
i'=0

Proof. The first step is to prove that, given Ry > 10M sufficiently large, each gb(_z)Q is a linear

combination of the 1ﬁ(_i2) with 0 < ¢’ < i and coefficients that are analytic in R and vice versa.

Let V. = M “1(r? + @)V and extend this analytically through R = 0. First, observe that
A2%(r? + a?)~! and its inverse are analytic in R on intervals corresponding to r > Ry and R
not excessively negative. Second, observe that go(o) = A?(r? + a2)721/;_2. Third, observe that
w(_z) VQ/J(Z Y and ¢ A(z) = 2(A(r? +a?)7 1)~ 1V(,o(_z2 Y for 1 < i < 4. Fourth, observe that if
the operator V is apphed to any function that is analytic in R on an interval extending through
R = 0, then the result is also analytic in R on the same interval. The claim holds for ¢ = 0
from the first two observations. From the third and fourth observations and induction, the claim
follows for 1 < < 4.

Since the 1/1( Y and ¢ pU ) are linear combinations of each other with bounded coefficients (for
r > Ry, which prevents the divergence or vanishing of powers of A), it follows that, for any «,

an o gsro) ~ an Do oy (6.8)

Since, for any a € R, the operators rV, Y, 5, and 3 take Oco(r%) functions to O (r®) functions,
the same estimate remains true when increasing the level of regularity from 0 to k. This proves
estimate (6.6).

Now consider estimate (6.7). From estimate (6.6) with § = —2, there is the equivalence

of ZE/:0||1/39/2)||?/V52(2?0) and Z oll® 57 )”Wk =Ty’ Observe that if a prefactor f is analytic

in R = r~1, then its V derivative is On(r=2) and rV f is O (r~!). Thus, when considering

VL 1/)(12 and 7V Y, ¢(12) the difference is bounded by a linear combination of the 1/39;)
5

or of the ¢ 5 each with coefficients deca‘ymg like r . Since (a—2)—2 < —2, the lower-order terms

arising from comparmg S 0||rV1/J( 5 HWO (70 and >0, _ 0||TV¢(i;)||W0 L(nfoy are dominated
-2

by S 0|| ||W0 L(mf0y ™ S 0||1/J g HWO _(nFoy- The same holds after commuting with rV', Y,

3, and &' , which completes the proof. O

6.2. Basic energy and Morawetz (BEAM) condition.

Definition 6.6. Let X be a smooth, achronal hypersurface. Let v be a local map from ¥ to TM
such that v is always normal to X. Let ¢ be a spin-weighted scalar field. Define

Bi(¢) = M / (WY Vel + V)Y ol + (Ve + Y2186 + 1 ¢l2)) du, (6.9)
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where d3u, denotes a three form such that v A d%u, = d*u. Further, for k € Z¥, let
Ei(p)= > MRELB). (6.10)

la|<k—1

Definition 6.7. Let 1,15 € R, t; < t2. Let ¢ be a spin-weighted scalar. Define

Bgm(gp): M3r—3§ B2 p|?dtu + Mr=3|p|*d*u. (6.11)
QIOIM Q
ty,tg la]=1 t1,tg

Further, for £ € N, let

Bfl,tz (SD) = Z M2|a‘Btll,t2 (]Bago) (612)
la| <k—1

Definition 6.8 (BEAM condition for ¢_s). Let ¢_5 be a scalar of spin-weight —2 and {1ﬁ(_i2}§:0

be as in definition 6.1. Assume 1[),2 satisfies the Teukolsky equation (3.25a). We shall say that
the BEAM condition holds if for all sufficiently large k € N and all £y < t; < t5,

2 2
> (BE, (69 + B L (0D) < 3 B, (1), (6.13)
=0

=0
Definition 6.9 (Spin-weight —2 data norm on ). Let § > 0 be sufficiently small. Let 1)_o

be a scalar of spin-weight —2 and {1/3(71'2};1:0 be as in definition 6.1. For k € ZT, the initial data
norm for 1ﬁ_2 on Yinit, with regularity k is

4
Py = > (109013 s,y + IV s, ) - (6.14)
i=0
6.3. Decay estimates. This section proves three results. The first is the boundedness of various
weighted norms. These bounds are proved using the rP lemma 5.6. The second is a series of
pointwise-in-t decay-estimates for various energies. The third gives improved rates of decay when
Lé is applied. Because of the form of the BEAM assumption, the components 1/;(_12 fori € {0,1,2}
are treated together. Further estimates are proved when ¢ = 3 and then 7 = 4 are also included.

Lemma 6.10 (r? estimate for 7,/;9%) Let § > 0 be sufficiently small. Let 1)_o be a scalar of spin-

weight —2 and {1/3@2 ;1:0 be as in definition 6.1. Assume 1[),2 satisfies the Teukolsky equation
(3.25a). For i’ € {0,...,4}, define £(i") = max(0,i —2). Leti € {2,3,4} and § < a < 2 — 4.
Assume the BEAM condition from definition 6.8 holds. If k € N is sufficiently large, then
to < t1 < to, there is the bound

k3 A(’L’) 9 A(’L'/) 2 ’\(1”) )
g (R0 s,y + IV I s ) + I s )
< - 2@ 2 ) ~(i') 12 )
> (e L TP | (6.15)

Proof. Consider the {gﬁ(fQ}fZO which are defined in definition 6.2 and satisfy the 5-component
system (6.3). The central idea in this proof is to apply the (higher-regularity) r? lemma 5.6
to each component of the 5-component system (6.3). To do so, it is necessary to relate the
components of the matrices of coefficients A, B, and C in (6.3) to the coefficients by, by, by in
the hypotheses of the r? lemma 5.6. The diagonal components of A all converge to nonpositive
components, so (when the corresponding gﬁ(f)Q terms are moved from the right of the equation to
the left) the condition by + |s| + s > 0 is always satisfied. The diagonal components of B are all
Ooo(r™1). The diagonal components of C/r all converge to nonpositive limits, so the condition
by,—1 > 0 always holds. The off-diagonal components of the A, B, C couple each gb(f;) to the
other gb(f)Q, which can be treated as inhomogeneities ©/. There are no off-diagonal terms in C,
so these do not need to be treated. All the subdiagonal terms in A and B are O (1). The

only superdiagonal terms are the (0,1) and (1,2) components of A, and these are both Ou. (r71).
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Treating these as inhomogeneities, ¥, will contribute ||g0 2|| ) terms on the right with

3(2f2
i € {1,2}; it is convenient to also add an ¢ = 0 term to the rlght. In the 7P lemma 5.6, the &

flux, and the space-time integrals of Yga( ") are not needed to achieve the statement of the lemma
and can be simply dropped. From all of this, the 7P lemma 5.6 implies, for each i € {0,1,2,3,4}
and k, there are constants Ry > 10M and C '? such that, with a € [§,2 — 6],

IrVEllie o) + 185205 s o) + 1955 s
sc(nw%n? oy I8 s e

1P s oy + D0 195 oo
tE{thtz}

1—1
+ 2 1RSI oy + Z 160835 oraey + Z | (QRUM))
/=0 t1.tg

=0
(6.16)

From lemma 6.5, the (‘5(_1)2 may be replaced by Q/AJ(_Z% Furthermore, given an estimate of the form

(6.16) for some i up to n, then, for ¢ = n+1, one can control the terms involving the sum ZZ,;IO by
the previous estimates, at the expense of a further implicit constant. Furthermore, when making
such a sum, for ¢ > 2 and 0 < a < 2, the integral over Qf"t_M in the final term can be divided

into QR" M:Bo and QF ’t,» With the integral over in’”t M:Fo absorbed into the other integral over
Qﬁ’ OtzM R” , so that the final integral over Qf"[ M can be treated as an integral merely over Qﬁftz.

Thus, using the trivial bound ||1/)(l )|| one finds, for i € {2, 3,4},

@) 2
(QRU y — ||/l/}Z ||Wk+1(QRU )
there is a constant C such that
i

5 (I o+ 10 g oo, + 03 )

i/ =0

<30 (VI o) + 19 o
i'=0

I Rty + 3 I8 o)

te{ti,ta}

+ZIIT‘1 e, )). (6.17)

Consider ¢ = 2. Recall that the implicit constant in the bound (6.17) is independent of Ry.
Thus, for ¢ = 2, by taking Ry sufﬁciently large, r~! can be taken sufficiently small relative to the

implicit constant, and the | M r1gl 112 terms on the right can be absorbed into the

WE_,(@f,,)

||7/’(l2|| @, ) terms on the left. Because the energy Z?/:o E% (1/39;)) controls all derivatives,
-3

and because for r < Ry, there is a constant C(Ro,p) such that 1 < rP < C(Rg,p), one finds

that, for any 3, there is the bound ||1p QHWk(z” o, < C(RO,B)EQHYRO (1&@2) Similarly, for
t = 2, the integrals over Q:;;};’” in the bound (6.17) can be controlled by Z?:o E§t1 (1/;9)2) if the
BEAM condition from definition 6.8 holds. Thus, under these conditions, the claim of the lemma,
inequality (6.15), holds for i = 2.

A similar argument holds for ¢ € {3,4}; however, it is no 1onger true that the energy appearing

in the BEAM condition, Z?/:o E;T+w30 (’L/AJ(j/ ), controls Hw el To overcome this, one
t

Wz 0y

121y application of r? lemma 5.6 to each subequation of the system (6.3), the Ry and C for each i is different,
but we can take Rg and C stated here to be the maximal value among the sets of different Ry and different C,
respectively, such that the estimate (6.16) holds for all 7 € {0,1,2,3,4}.
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can apply 'V € D, so that, with ¢ € {3,4}, £ =i — 2, for any k, 3,

2
7)) 12 k 7))
023 5o gvomo) St gE (%), (6.18)

and similarly for the spacetime integral over Q;f;fo if the BEAM condition from definition 6.8
holds. Furthermore,

i y 2 }
D9 I smas oy ~Ros D B (95, (6.19)
=0 =0

which is needed at t = ¢;. From these and the previous arguments, inequality (6.15) holds for
i=1{3,4}. |

Lemma 6.11 (Decay estimates for 7,/;(71% with 7 € {2,3,4}). Let § > 0 be sufficiently small. Let
1[),2 be a scalar of spin-weight —2 and {7,/3@2 1 o be as in definition 6.1. Assume 7,/;,2 satisfies the
Teukolsky equation (3.25a). Fori' € {0,...,4}, define £(i") = max(0,i' —2). Leti € {2,3,4} and
0 <a<2—4§. Assume the BEAM condition from definition 6.8 holds. If k € N is sufficiently
large, then for t > tqy, there is the bound

K2
i’go(”w(—z;”ivkzz(is)e(ﬂ)(zt) + ||TV1/J(_12)||3V§j§(i,5)4(i/)71(2t) + ||w(_12)||$/V§ir§(¢75)4(i’)71(9t7x))
< o 10490+(2-20)ik (6.20)

Proof. The strategy of the proof is to apply the pigeon-hole lemma to the r? bound (6.15). Let

K2

Fik,o,t) = 3 (109120 s,y + IV ki) (6.21)
=0 -2 t a—2 t

for > ¢ and F(k,«,t) = 0 for @ < §. Here the 7 denotes how many of the 1/3(71/2) are to be treated,
k the level of regularity, and « the weight.

Observe that, since rV is in the set of operators used to define regularity D, and since (o +
1) — 3 > —2, one has that

(4 t2 2 (i 2 (i
[ / (I sy + IV U2 s ) (6.22)

(a+1)—3 th

Thus, the r? bound (6.15) can be written in the form
Fi(k,a,ty) + M—l/ Filk—1,a—1,t)dt < Fi(k,a,t) (6.23)
t1

for @ € [0,2 — §]. This is the hierarchy of estimates is in the form treated by the pigeon-hole
lemma 5.2, and the assumptions (1) and (2) in the pigeon-hole lemma 5.2 are easily seen to be
satisfied from lemma 5.3.

Consider now the case i = 4. From applying the pigeon-hole lemma 5.2 to the hierarchy (6.23),
one finds F*(k —2,a,t) <t 20 F4(k, 2 —§,ty). Applying this decay estimate and the r bound
(6.15) a second time, one obtains the bound

4
DR mamrir g, ) SHTHOF (R 2= ,to). (6.24)
i'=0 o =

A third application shows that F4(k,2—d,t) is bounded by I¥ ,. This proves the desired inequality
(6.20) in the case ¢ = 4.

Consider now lower i. Observing that W_@l) = M~1(r*+ aQ)Viﬁ(_i)Q, 7?2 +a% = O (1?), one
finds

VA(l) 2 s < 2 (1+1) 2 i . 6.25
(|7 w—QHWfS”) = = s HWfQi(ﬁ (=) (6.25)
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Additionally, one also has the trivial estimate
it+1

;)|\w9;||§vzwzt) < 72_0|w92>||§v$w2t)- (6.26)

Thus, one finds Fi(k,2 — §,t) < FitY(k,d,t). In particular, F3(k — 2,2 — §,t) < F4(k — 2,6,1)
< t72+20Tk - Applying the pigeon-hole lemma 5.2 that treats hierarchies where the top energy is
known to decay a priori, one finds F?(k — 4, a,t) < to‘_(2_5)_(2_25)}1132. The spacetime integral
and estimate by the energy of the initial data are estimated in the same way as in the i = 4 case,

which proves inequality (6.20) in the case i = 3. Observing F?(k — 4,2 — §,t) < F3(k — 4,6,t) <

te—4+39k  and iterating the same argument once more proves inequality (6.20) in the case

= 2. (I
Lemma 6.12 (Decay estimates for Ljd;(i;), 1 € {2,3,4}). Let § > 0 be sufficiently small. Let

w o be a scalar of spin-weight —2 and {1/1(12} _o be as in definition 6.1. Assume 1/1 2 satzsﬁes the
Teukolsky equation (3.25a). For i,i’ € {0,...,4}, define £(i,i") = 2(i — 5) — max(0,¢' — 2). Let
i€{2,3,4} and 6 < a <2 —4. Assume the BEAM condition from definition 6.8 holds.

(1) Ifk,j € N are such that k—3j is sufficiently large, then there are the energy and Morawetz
estimates for t > to,

;}(HL 1&(””2 T ||7“LJV¢ ||2 kosioea 1 (g ) T ||ng(_12>||iv§:§j,m,m,1mm))
< (0 10+96+(2-28)i~(2-26)jk (6.27)

(2) If k,j € N are such that k — 3j is sufficiently large, then there are the pointwise decay
estimates for t > tg

—1,—(1—=8)(2+j—i
Z'L w )|k 3j—0(3,3")— 7]DJ< 1t (1=8)(z+s )+6(HE2)1/2' (628)

Proof. Observe that L¢ is a symmetry of the Teukolsky equation (3. 25a) Furthermore, if ¥_5 is
replaced by £l 1/1 2, then the {1/1(1 } in definition 6.1 are replaced by £ w . From the P estimate
(6.15) fOI'LJ’L/J g,onehasfor § <a<2-46, k€N, and i € {2,3 4}

3.2
2o TIFEV=2 ”W(’i:;*‘“’)(mlm)

> ("Léﬁ(—z2)||3vf;/»’w>(zt ) T ||7’VU1/J(Z)||2 k1o

=0
$ 3 (I8 e, + VLD Ry iy, ). (6:20)
=0
Similarly, the basic decay lemma 6.11 gives

Z(nz BN st gy IV D2 iy -acra,
/=0
5 ta_10+96+(2_26)i]111-5j. (630)

262
) + ||'C 7/) ” k+2(z 5)—£(i’)— 1(th))

Rearranging the expansions (2.38a)-(2.38b) for V' and Y, for r sufficiently large, one can write

Y as a weighted sum of L¢, V, and r=2£,, all with O (1) coefficients. Using this to eliminate
Y from the Teukolsky equation (3.25a), recaling equation (2.34¢) for i, and isolating the term
2‘/551/) 2, one can write r2VL§1/) 5 as a weighted sum of (rV)2¢_o, 7Vh_o, 77 1L, (rV)1)_a,
15771/1 9, Ssth_s, 551/) 5, and ¥_o all with O (1) coefficients. Rewriting Lﬁ again as a weighted
sum of Y, V, and r—2£, all with O (1) coefficients, one finds that r*V L¢1)_5 can be written as
a linear combination with O (1) coefficients of r =1L (er/AJ 2) and terms of the form X2X11/A1_2
with X1, X5 € DU{1}. Since the commutator of the operator M ~1(r? + a?)V used to construct
the w 5 with any of the operators rV', L¢, £;), Ss, 1 appearing in the expansion of the r? Vﬁgw 2,
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induction implies that a similar expansion exists for each of the 7’2V1/A1(j)2, but also involving the

previous 1/;(_1/2) with ¢’ < 4. Thus,

Z||7’VLJ+1’I/}(Z)H2 k 2— E(-L)(Et) 5 Z||T2VL2+11/)(12)||?/VEEE;E(1/

/=0 =0

i
S DI i s,
i'=0 o

)(Et)

S DI nin (6.31)

Since L¢ is a linear combination of Y, V and ’I“_QLU with O (1) coefficients, one also finds
1,502 (i"))2
,ZOHL 1/1 || k 1— [('L,)(Z ) ~ ZHL ||Wf;[(’i,)(zt)' (632)

Combining these results, one finds

ZHLJJA ”2 i) +Z||7’VLJ+11/}(1)”2 iy S Z||Lgi/382>||3vk%,)(zt).
=0 =0 -2
(6.33)

With these preliminaries proved, one can now consider the proof of the energy and Morawetz
estimate (6.27). The j = 0 case is proved in Lemma 6.11. If inequality (6.27) is known to hold
for j, then inequality (6.33) implies for i € {2,3,4}

i
. 1 AL 1
Z||Lé+ 1/1(_12)”12/1/5;2(1;5)73;‘714(1 + ZHTVLJ+ H2 k+2(i75)7317272(i’)(2t)
St_10+106+(2 26)i— (2—25)]‘]1]12. (634)

The hierarchy (6.29) and the bound at the top of the hierarchy (6.29) provide the hypotheses
necessary to apply the pigeon-hole lemma 5.2, an application of which implies

i
. 1 AL 1
DI B a5, + anvw 2 szmn s,

< o 12+116+(2 28)i— (2—26)J’]1112, (6.35)

Writing —12 + 116 — (2 — 2§)j = =104+ 95 — (2 — 26)(j + 1), one obtains inequality (6.27) for
j + 1, so inequality (6.27) holds for all j € N by induction.

From the Sobolev inequality (4.60) with v = § and the energy estimate (6.27) with a =1+ §
and a = 1 — 6, one finds

SISy S U, (6.36)
=0

Alternatively, having already established the limit as ¢ — oo is zero, one can now apply the
anisotropic spacetime Sobolev inequality (4.64). Applying this, the trivial bound —3 < —3 + 4,
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and the Morawetz estimate (6.27) with o = 4, one finds

_ — 7 1/2 1 — 1/2
ZW PR mwzw W g, TSI

i 1/2 7 1/2
< an T RN e s At
1/2 g+1 1/2
S ZHL W’“' (oo HL HW’“' 5(Qt.00)
§t (1 B)(11+2j-20)1k (6.37)

Combining the two pointwise estimates and observing v=! < min(r=1,¢#71) gives the desired
estimate (6.28). O

6.4. Improved decay estimates. In this section, we build on the results in lemma 6.12, and
improve the decay estimates for £7 1/) @) forie {0,1} in exterior region (where r > t) and interior
region (where r < t), respectwely Th1s is done by rewriting the first two lines of (6.3) as an

A()

elliptic equation of @5 with source terms each of which either contams at least one L¢ derivative

(which has extra t~ 1+5 decay from lemma 6.12) or have an extra r—! prefactor. We exploit this
extra t~ 119 decay and r~! prefactor in the source terms, and an elliptic estimate yields improved

pointwise-in-t decay estimates for Léz/;(_g (i =0,1) and their certain spacetime norms in different
regions.
The decay estimates for all £ 1/)(1) (1=0,...,4) are as follows.

Theorem 6.13 (Decay estimates with improvements for 1&@2 for i € {0,1}). Let 6 > 0 be suffi-

ciently small. Let 1ﬁ_2 be a scalar of spin-weight —2 and {1/}(_1')2};120 be as in definition 6.1. Assume

1[),2 satisfies the Teukolsky equation (3.25a). Assume the BEAM condition from definition 6.8
holds. There is a reqularity constant K such that the following holds. If k,j € N are such that
k — 3j — K is sufficiently large, then with k" =k —3j — K,

(1) In the exterior region where r > t, we have for i € {0,...,4} and 6 < o < 2 —§ the
energy and Morawetz estimates for t > tg

— () g2 i) 2 NG
;) (||551/)_2 ||WE'2'(2‘2"°) + eV, ”W’“” 1 (gt +ILg =y ”W’“” g, ))
5 toz—10+95+(2—26)i_(2—25)j]1]i2’ (638)

and pointwise decay estimates for t > tg
ZIL R el A A S ) (6.39)

(2) In the interior region where r < t, for i € {2,3,4}, and 6 < a < 2 — 6, there are the
energy and Morawetz estimates for t > tg

> (620 ey + 1LV 12 s ey + 1D s )
/=0
< ta710+96+(2726)1'7(2726)”152, (6.40)

and pointwise decay estimates for t > tg

D ILL0 D o p £ ot UOEROR ()2, (6.41)
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Moreover, we have for t > ty that

|L 1/) sl S —1424,, 1t7(1—6)(§+j)+6(152>1/27 (6.42a)
182 lfynr ey S OFPOTOROLL,, (6.42b)
Iﬁji/f(,g)lku,m < oyl A-OG I (k)12 (6.42¢)
[rettie] [y < ¢~ (E+2) (= Fagk (6.42d)

(ant ) ~

Proof. We prove the point (1) first. Note that the estimates (6.38) and (6.39) have been proven
for ¢ = 2,3,4 in lemma 6.12. In ¢ = 0,1 cases, these estimates improve pointwise-in-¢ decay
compared to the pointwise estimate (6.28) and Morawetz estimate (6.27), hence they hold trivially
if 7 < 10M since then ¢ < 10M is finite. Therefore, we shall only consider the exterior region
intersected with » > 10M. Starting from the first two lines of (6.3) and making use of (2.34e),
we get the following elliptic equations with source terms on the right

289 ¢ — 40

2Ma (1) 6ar ~(0)

_ (0) 51 (1)
= —2aL,Lep s +2MLep 5 + 2—1—7“2577('0 5+ 22 L@y —2MV O,

3(a* + a?r? — 2Mr3)g" (O)

L(4a® + (k1 — 711)?) LeLep%) — 6(k1 — R )Lep') —

(a% +12)?
~(1
2M (Ma? + a®r — 3Mr? + 7“3)@(_% 7 (6.432)
(a2 +T2)2
~(1 ~(1
288 ¢ — 6
_ (1) 2, 2Ma_ o) 2ar @y 6a(a®—1?) (g
= — QGLUL“D_Q + 2ML§(,0_2 + 02 T -2 1377(,0_2 + 02 T -2 1377(,0_2 + WLW()D_Q

— 2MV¢(_2% — i(4a2 +9(k1 — 1%1/)2)[)565(,5( —6(k1 — fﬁ/)Lgp(l)
6r(—a* — 3Ma*r — a®r? + Mr®)p" (0) (7a —20Ma?r + 7ar? + 6 M1r3)p (1%
M (a? 4 r2)? (a2 + 12)2
It is then manifest that
288 —4)")
= 0o (r M2 1L, 0" + O (r Y M1V S + One (r MY + O (r )M £,,3°)
+ O (r M@ + One (ML, L) + O ()M?LELE*OMO (1) ML)
+ Ono ()M L"), (6.44a)
289 —6)p")
= O (r™ )MTV(,O(Q) + One (M7 L6 4 Ono (r ML, 2"} + Ono (r )M ")
+ O MM L Lep") 4+ One (M2 LeLe @) + Ono (VML) + O (1) ML)
+ 000 (1)9) + 00 (1)£,0'%, (6.44b)

. (6.43b)

and commuting with 7V gives
288 —4)rv )
= Ono (r™ )M L1V @) + O (1) ML, 0"} + O (r " YM1V (rV3Y)) + One (r ) MrV 1)
+ 0 (" HYMrV G + Ose (r" MY + Ose (r™ )M L,y rV )
+ O (r ML, G) + One " HYMIVEE) 4+ 0o (r 1) M )

F Oue (MM L LerV G + O (1)M2LeLerV 3% + O (1 )MLETVQO(O) + One (M LerV e,
(6.45a)
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288 —6)rvel)

= Ooo(r HYMrV (rV A(2)) + Ooo(r™ )Merp(Q) + Ooo (r 2)M?L,rV @' A(2) r2)M A(Q)
+ One(r™ MLy VY + O (r )M LY + One (r™ ) M1V Y] + O (v 1) M)
F One (MM L LerV @) + O (ML LerVP) + One ()M LerV e + (1)ML§7~V¢( )

+ One(MrV 3 4+ 0ne (rm MG} 4+ 00 (1) L7V 3% + One (r 1) M £,,3). (6.45b)

For r > 10M, the left side of each subequation in both (6.44) and (6.45) is a strongly elliptic
operator (with its maximal eigenvalue uniformly bounded away from zero) over the field. On the
right sides of both (6.44a) and (6.45a), the source terms involving £¢ derivatives have better ¢ ~1+9
pointwise decay, and when obtaining pointwise, energy and Morawetz estimates for the terms on
the right side, r inverse coefficients will give ¢ inverse decay since r > ¢ in the exterior region.

Hence we apply an elliptic estimate to (6.44a), and this together with the pointwise estimate
(6.28) yields

|Lé¢—2|k—17—3j,]l)> S o~ 0@/ (k)12 (6.46)
Here, the nonzero j cases come from the fact that £, is a symmetry of the systems (6.44) and

(6.45). We can also obtain an energy and Morawetz estimate for § < a < 2 — ¢ from the energy
and Morawezt estimate (6.27) that

||'C’ 1/} 2||Wk 10—3j ngt) + ||TL2V1/)*2”?/VC’::211*SJ'(EQ¢ + ||'C’ 7/’ 2||Wk 11 SJ(qut)
< ¢~ (=0 E+2Z)ta—ogk (6.47)

Substituting these two estimates into (6.44b) and (6.45b), and applying again elliptic estimates,
this yields improved exterior estimates for 521/;(_12) ford <a<2-4¢:

£ ) ho1s—ajp S rom T AO@/2HD+0 1k 172 (6.48a)
L LA Al P T /o L] WP
< ¢~ (1-0)E+2)ta—opk (6.48Db)

The above four estimates together prove the ¢ = 1 case of the estimates (6.38) and (6.39). We go
back to (6.44a) and (6.45a), and utilize these improved exterior estimates (6.48a) and (6.48b) of

£ w(l) and the obtained estimates (6.46) and (6.47) of £ 1/1 2 to conclude from elliptic estimates
the following estimates

|Lg1/3,2|k,21,3j,m < po~ (0G24 401k )1/2 (6.49a)

||L 1/1 2||wf;14*3j(zgxt) + ||7"L%V¢—2||%/V§:;5731(E$xt) + ||L w 2||Wk 10 3](Qext)
5 t7(176)(10+2j)+a76]lli2, (649b)

which justify the ¢ = 0 case of (6.38) and (6.39).

Let us turn to point (2) now. The estimates (6.40) and (6.41) are proved in lemma 6.12, so
we consider only the estimates (6.42). We note that these estimates only improve the r decay
compared to the pointwise estimate (6.28) and Morawetz estimate (6.27), hence in the following
proof we will restrict to » > 10M region where the left hand sides of (6.44) are both strongly
elliptic operators over the field.

From the pointwise estimate (6.28) and Morawetz estimate (6.27), an elliptic estimate applied
to (6.44a) gives that for 6 < a <2 —4,

|Lé~1/; 2|k—17-34,D < PPyl (=G HHS (- )1/2, (6.50a)
||'C ’l/) 2||Wk 11 SJ(th ) <t (176)(64»2].)1[52- (650b)
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Turning to (6.44b), we make use of these estimates of ng/;_g, the pointwise estimate (6.28) and
Morawetz estimate (6.27), and obtain for § < a < 2 — § from elliptic estimates that

|5 RS 2|k 18-3;,0 S 700 “Lm =GN+ Tk )1/2, (6.51a)
”'C ”Wk 12 SJ(th ) St (- 6)(6+2j)ﬂlig- (651b)

Notice that the first estimate is exactly the estimate (6.42c). From the estimate (6.51b), it follows
that for any [ € Nand 0 < o < (6 + 25)(1 — 9),

1623 < (24)~(6+2)(A=d)+afk (6.52)

D112, 1235 (e <
Wo_ (Q2lt,2l+1t)

Summing over these estimates from ! = 0 to oo, this proves (6.42d).
In the same manner, we have for any 0 < a < (6 + 2;)(1 — 9)

||'C ’l/) QHWk 11 3J(th )~ N t7(6+2j)(176)+a]llig- (653)

Substituting the pointwise estimates (6.50a) and (6.42c) and Morawetz estimates (6.53) and
(6.42d) back to (6.44a), we conclude from elliptic estimates that the estimates (6.42a) and (6.42b)
hold. (]

7. THE SPIN-WEIGHT +2 TEUKOLSKY EQUATION

In this section, we consider the field 1,5 that satisfies equation (3.25b).

7.1. Basic assumptions. Let us first introduce two different basic energy and Morawetz (BEAM)
conditions and one pointwise condition.

Definition 7.1 (BEAM conditions and pointwise condition for 7,/;+2 ). Let 7,/;+2 be a spin-weight
+2 scalar that is a solution of the Teukolsky equation (3.25b). For a spin-weighted scalar ¢ and
k € Z*, let the energies E¥ () and EX  (¢) be defined as in definition 6.6, and the spacetime
integral W , [¢] be defined as in definition 6.7. Two BEAM conditions and one pointwise
condition are defined to be that

(1) (First BEAM condition) for all sufficiently large k € N and any tg < t; < to,

S (B, (M P (r ) + B (MY ) ()
1=0

S SEE (MY (). (7.1)

i=0
(2) (Second BEAM condition) there is a §p € (0,1/2) such that for all sufficiently large k € N
and any to < t1 < to,

1

> (Ezt (M5 =3 Y),,) + B tZ(MH* T2 Yi7/;+2>)
i=0
+ Ezt (M2Y2¢+2) + Btl to (M2Y21/1+2)

1
S DBk, (MF R TR Y ) + BE, (M?Y?.s). (7.2)
=0

(3) (Pointwise condition) for all sufficiently large k € N,
im ((dsalegl ) = 0. (73)

The pointwise condition (3) in definition 7.1 is one of the basic assumptions used in section
8, and either of the two BEAM conditions in the above definition together with the assumption

that H:ft is bounded will be shown in theorem 7.8 to imply this pointwise condition.
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Remark 7.2. The quantities ¢’,, (i = 0,1,2) in [31] and quantity U4 are related by
rgl, = Z Ooo (D)(M™12Y ) (MU~ 5). (7.4)

As a preliminary, the following relations between the two BEAM conditions are useful.

Lemma 7.3. Let 0 < 6y < 1/2 be fized. The BEAM condition (1) in definition 7.1 implies
BEAM condition (2) in definition 7.1.

Proof. For ease of presentation we will here use mass normalization as in definition 4.4. The
lemma follows from adapting the proof of [31, Proposition 3.1.2] to our hyperboloidal foliation.
By arguing in the same way as in the proof of [31, Proposition 3.1.2] except that the integration is
over Qﬁ?;M, it holds from (7.4) that there exists a constant Ry > 10M such that for any k > 1,

1
. S . ~ ~
S| Bl 2 Y o ) [0 S BV () P
=0 2 Qfl ta la|<k
1

Z<E o E YV 02) + B (7 (V) )

-1 a(, 4—2i/ 2y \i(,.—4,7 214
+/ng~ofM*R°r |Z<k|B (R OY) T ) )P (7.5)
1.t2 al<

The k > 1 case here follows from commuting the Killing symmetry L¢ (which is timelike for
r > Ry — M > 9M) and elliptic estimates. Combining the BEAM condition (1) with the above
estimate (7.5) and from the following facts

(Y +2>= e (V™ i), (7.6a)

-7 (r2Y)(r 12) = Ouc(1)r™ 3 Y00 + Ono (r )™ F4h 40, (7.6b)

(P2 )2 10) = Ono (DY 2 + O (r B )r= B ¥ g + O (12 )0~ F by, (7.6¢)

the estimate (7 2) is valid. O

7.2. The estimates. This section uses the P lemma 5.6 to obtain decay estimates for 1[42. One
can perform a rescaling to 149 as follows such that the governing equation of the new scalar can
be put into the form of (5.19) with ¢ = 0, to which the r? lemma 5.6 can be applied.

Lemma 7.4. Given a spin-weight +2 scalar 7,/Aj+2 that satisfies equation (3.25b), the quantity gp( )

defined by
50 = (a® + 7)o

+2 A2 (7-7)
then satisfies
~ (0 8ar 0 8(Ma?+a*r —3Mr*+13)_ 0
E+2(<Psr2)) = m n<PSr2) - A VSDSF%
4r(9Ma® + a®r — TMr? +r )(,03_% (78)

(a® + r2)2
Before proving weighted P estimates for (7.8), we state some equivalent relations between the

energy norms of 1[42 and 958?2)’ which turn out to be useful in translating rP estimates of gpsr% to
rP estimates of 1ﬁ+2.

Lemma 7.5. Let 1/;+2 be a spin-weight +2 scalar. Let gb%) be as in equation (7.7). Let k € N,
B €R and Ry > 10M. There is the bound

(0) 7
||50+2HW§(Z§?0) ~ ||1/}+2HW§(E§U) (79)
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Furthermore, for a € [0,2] and k > 1,
NC 4(0) - 5
IV & i oy + 168 e oy ~ 7V dzllygams o) + 192l groy.  (7.10)
Proof. These estimates follow easily by arguing in the same way as in lemma 6.5 and taking into
account the relation (7.7). O

Now we are ready to apply the 7P lemma 5.6 to equation (7.8) and to state the a-weighted

estimate, which is a combination of the rP estimate for go(o) and the BEAM estimate (2) in
definition 7.1.

Lemma 7.6 (a-weighted estimate for 7,/3+2). Let 1[42 be a spin-weight +2 scalar that is a solution
of the Teukolsky equation (3.25b). Assume either of the BEAM conditions from definition 7.1
holds. Then, for all sufficiently large k € N, any 0 < § < §p, a € [6,2 — 8] and to < t; < ta,

. " 5 a0
1s2llyrsis,, ) + IVl s, + B (MY 202 Y 00)
+ BRI (MPY ) + [b+2lfe (o, 0

~ ~ S s ~ ~
S ||¢+2||3Vf;1(gt1) + ||TV¢+2||3V572(ZH) + E§:1 (M2 2 Yayo) + Egzl (M?Y?s).
(7.11)

Proof. From lemma 7.3, we only need to prove this lemma under the assumption that BEAM
condition (2) from definition 7.1 is satisfied. In the following, we assume that such an assumption
holds.

By putting equation (7.8) into the form of (5.19), we see that ¥ = 0 and the assumptions in
lemma 5.6 are satisfied with

by_1=8>0, by = MOy (r™1), boo+2+2=0, (7.12)

and the spin weight is +2. Thus, we apply the 7 lemma 5.6 and obtain that for any k € N,
tg <ty <t9,0<d<dpand o € [§,2 — ], there are constants Ry = Ro(k) > 10M and C = C(k)
such that

~(0 0
||TV S»%”Q (ERU) + ||90( )||Wk+1 RO)

</ ~(0)
+ ||Ej (104»2” (QRU ) + ||SD || (QRU )
ty,to

0 ~(0
< c(nrv@( D0 o)+ ||sai;|\wk+1@ao)

~(0 ~(0
UG s grosnmay + D5 18831 WI(EfUM,RO)). (7.13)

te{tl tQ}

This is an P estimate for <pi2) From lemma 7.5, gb%) can be replaced by ’L/AJ+2 in this estimate.

By adding this 7 estimate of 1,5 to the assumed BEAM estimate (7.2), the estimate (7.11)
follows. O

Lemma 7.7. Under the same assumptions of lemma 7.6, the estimate (7.11) holds as well if we
replace the right side by IFT% 1(1/)+2).

init

Proof. For ease of presentation we will here use mass normalization as in definition 4.4. To prove
this result, we just need to show the following estimate which bounds the norms on 3;, by those
on Einit:
TP
sl s + 1PV 2l s,y
~ Tinit

+E§;1(T77Y7/)+2) +E§:;1(Y21/1+ ) STk (V42)- (7.14)

Applying lemma 5.7 to the spin-weighted wave equation (7.8) in the early region, and from

the relation between gb:(_)% and ’L/AJ_,_Q norms in lemma 7.5, it follows that for a € [d,2 — §], there is
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a constant Rg = Ro(k) > 10M such that
||TV1/J+2||?/V1€ 2(2R0) + ||w+2||?/Vk+l(ZRU) + ||w+2||?ﬁ/k‘+1((zea”wao)
a— to

S 12l + W2l e romvmo) + 2l es oo (7.15)

init init, tq

Since Ry is bounded, ||1/}+2||Wk+1(9(““1y Ro—M.Ro and ||1/}+2”W’“+1(2§10*M’R0) are both bounded by

init, tq

a multiple of an initial norm ]Im";t 1(1p+2) by standard exponential growth estimates for wave-
like equations. For the same reason, the sum of ||7°V1p+2||3vk L) and ||w+2||Wk+l(Er+ o, is

bounded by IFHY ! (4, 5) as well. For the first term on the right of (7 15), since o < 2 — 4, it holds
that

/ Z a+2\a| 2|Ba’l/) / Z —d+2a| |Baw 2| dS
Yinit \a|§k+1 Yinit \a|<k+1
STk (). (7.16)

Thus, for any « € [§,2 — 4],
2 7 k+1;1
IV dsals ) + 1952mg s, ) S Tt (hy2). (7.17)
In addition, since MY belongs to the operator set D,

_So - 5 5 5
BERL Yha0) + B (Y 212) S IV hsalpns, ) + 1052l

Hﬁ:tg ' (1[}4’2)7 (718)
where the second step follows from (7.17). The above two estimates together imply the inequality
(7.14), which then completes the proof. O

Theorem 7.8 (Decay estimates for Lézzurg). Let ’L/AJ+2 be a spin-weight +2 scalar that is a solution
of the Teukolsky equation (3. 25b) Assume either of the BEAM conditions from definition 7.1
holds. Assume furthermore that ]Imlt (¢+2) is finite for all k € N. Under these conditions:
(1) the pointwise condition (3) in definition 7.1 holds;
(2) furthermore, there is a regularity constant K such that for all j € N, sufficiently large
k—K—-3j,0<d<dg,d <a<2—90, andt > ty, there are the energy and Morawetz
estimates

Vddsalyo sy + IV LD e rmig + 12l s msq,
S e CEEIEE (Pe), (7.19)
and pointwise decay estimates

L salimk—rjp S ro” T ATDGFDHO(IEL (4] 5))1/2, (7.20)

init

Remark 7.9. The pointwise condition (3) in definition 7.1 is the main result in this section
which is used in section 8. This theorem implies that the assumption of the pointwise condition
(3) from definition 7.1 can be replaced by an assumption of either of the two BEAM conditions
from definition 7.1 together with the assumption that IF (¢,) is finite for any &k € N.

Proof. For ease of presentation we will here use mass normalization as in definition 4.4. A standard
Sobolev imbedding shows that for any k € N, if ]Ifcnftg 1(1ﬁ+2) is finite, then the supremum norm of
|7”%1/A’+2|k,112}> is finite. Therefore, as one approaches the spatial infinity, |1ﬁ+2|k7m goes to zero, which
proves that lim;,_ (|1ﬁ+2|km’]+) — 0 holds for any k£ € N. In the meantime, it is obvious that
the pointwise decay estimates (7.20) implies that lim;_, (|1/;+2|k,]ﬂ)‘y+) — 0 holds for any k € N,
and hence the first claim holds. Based on the above discussion and from lemma 7.6, to prove this

theorem, we only need to show the second claim under the assumption that the conclusions of
lemma 7.6 are valid.
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For a general spin-weighted scalar ¢, define

2 k—2¢ % k—2 yr2 - _
Flohat) — {nsonwkm IVl + BE 20 HY o) + BE2(12) itae(62-0

0 ifa<é
(7.21a)
Gk, ot) = lolZe ) (7.21b)
We shall prove that the energy and Morawetz estimates (7.19) follows if we can show
F(Llya,k —6—Tj,a,t) + / G(Litsa k=9~ Tj,a—1,¢))dt/
t
SO G (D). (7.22)
Estimate (7.11) in lemma 7.6 can be stated as, for a € [§,2 — 4],
t‘z — N — N
F(¢+27k+37047t2)+/ G(¢+2ak704* 1,t)dt§F(’l/)+2,k+3,0{,t1), (723)
t1
and note from (7.21) that
é(’l/A)Jr?akva*lvt) zﬁ(ﬂ;w,k,a* Lt)v (724)
hence for any k1 < ke N, 6 <a<2-90, and tg < t; < o,
t‘z ~ N ~ N
I A / Fdio ko — 1,8)dt S F(tha, k + 3,0, 11). (7.25)
t1

This can be put into the form of (5.3d) by taking D = v = 0 and performing the following
replacement

5 o, 2— 68— ao, F(thyo,k +3,0,t) = F([ 23], a,1). (7.26)
An application of lemma 5.2 then yields for « € [§,2 — 4],

F(tio,k —6,0,t) + / Ghyo, k— 9,00 — 1,8)dt' <t 2P F(hyg, k2 — 6, to). (7.27)
t
From the lemma 7.7 (or the estimate (7.14)), it holds that

(1/}4’2’ k 2- 5 to) ~ 1n1t(1/)+2) (728)

hence this proves the j = 0 case of (7.22).
We prove the general j case of (7.22) by induction. Assume that the estimate (7.22) holds for
j =174, so that

ﬁ(Lé/ Uiz, k=6 = Tj',0,1) ST (D). (7.29)
Since L¢ is a symmetry of (3.25b), it holds that for any j € N, 0 < 6§ < dp, 6 < <2 —4 and
to <ty < o,

t2~

F(Llbga, k+3,00t2) + [ G(Llhia, ko —1,t)dt S F(Lltpia, k+3,0,t1). (7.30)

ty
One can argue similarly to the proof of lemma 6.12 to obtain better decay estimates for 521&4_2

as follows. Rescaling equation (2.34¢) for [Hy, we can isolate the term TQVLy/A)H from (3.25Db)

and write 7“2VL§’¢+2 as a weighted sum of (V)24 0, rVeia, 7= L, (rVehia), 7~ Lot g, Seibya,
L§w+2, and ¢+2 all with O (1) coefficients. Therefore,
PV EL alZ ) S VL alBis ) S 16T alli, e (731)

which furthermore implies

FEL i k=T — 75,2 = 6,8) S F(LL thya, b — 6 — 75, 6,t) S 72 20= =200 180 () ),
(7.32)
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A repeated application of lemma 5.2 as above to (7.30) but with j — j'+1 and k — k— 10— 75’
then yields

ﬁ(zg'“mz, k—7—17j—6,a,t)+ / G(Lg'“mg, k—7—177 —9,a—1,t)dt
t
ta 248—2+425—(2—28)5" chmlt(w-i'Q)' (733)

This proves the j = j'+ 1 case of (7.22), which completes the induction and justifies the estimate
(7.22) for general j € N cases and hence the estimate (7.19).

As to the pointwise decay estimates, the proof is the same as the one for lemma 6.12. From
the Sobolev inequality (4.60) with v = § and the energy estimate (7.22) with @« = 1 + § and
a=1—4, one finds

1
2

[Ciselioi_rjp S (F(cgmz, k—6—T7j,1+0,0)F(Lltpya, b —6— 74,13, t))

< ¢~ =002 () ), (7.34)

Alternatively, having already established the limit as t — oo is zero, one can now apply the

anisotropic spacetime Sobolev inequality (4.64) and the Morawetz estimate (7.22) with o = ¢ to
obtain

|L 7/}+2|k 19-75,D ~ ||[*] 717/42” k 16—7j ||[*]Jrl 717/42” k 16—7j
wk (4,00 wk (Q,00)

SIELDalllV3 e rs W“mﬂ“

k 7 —7(3
WET Q00 Fats (U (Q4,00)

< t7(175)(3+2j)}1ﬁii1t(1[)+2>. (7.35)

Combining the two pointwise estimates and observing v=! < min(r—!,¢71) give the desired
pointwise decay estimate (7.20). (I

8. THE METRIC AND CORE CONNECTION COEFFICIENTS

We shall now use the results presented in Sections 7 and 6 to prove pointwise, energy and
Morawetz estimates for linearized gravity from the transport form of the equations of linearized
gravity in ORG gauge, derived in section 3.3. We shall work in terms of the compactified hyper-
boloidal coordinate system (¢, R, 0, ¢) where t is the hyperboloidal time introduced in section 2.4,
R = 1/r, and 0, ¢ are the angular coordinates in the ingoing Eddington-Finkelstein coordinate
system. We shall sometimes use the notation w = (,¢). In terms of this coordinate system,
future null infinity .# 7 is located at R = 0. For our considerations here, we may without loss of
generality consider compactly supported initial data, in which case the solution of the Teukolsky
equation is smooth at .#* in the compactified hyperboloidal coordinate system, cf. section 4.2.

Definition 8.1. A set of linearized Einstein fields is defined to consist of the following:

) a linearized metric dg,p,
2) linearized metric components Gp;s from section 3.1,
3) linearized connection and connection coefficients from section 3.1,
4) linearized curvature components from (1. 12)
5)
6)

rescaled linearized curvature components w o and ¢+2 from definition 3.5, and

(1
(
(
(
(
(6) the core quantities 6’ Gg, 7 Gl, 6 , and GO from definition 3.7.

Definition 8.2. An outgoing BEAM solution of the linearized Einstein equation is defined to be
be a set of linearized Einstein fields as in definition 8.1 such that
(1) 0gap satisfies the linearized Einstein equation (1.3) in the outgoing radiation gauge (1.5),
(2) t_o satisfies the BEAM condition from definition 6.8,
(3) 1o satisfies pointwise decay condition, point 3 of definition 7.1.
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8.1. Expansions at infinity and transport equations.

Definition 8.3. Let f be a spin-weighted scalar on .#+ which decays sufficiently rapidly at g,
and define

Af)(tw) = / F(t )t

For a non-negative integer %, define I* by
I'=IoI!,
with I° the identity operator.

It is now possible to define an expansion at null infinity. This depends on a constant D2, a
level of regularity k, an order of the expansion [, an order m up to which the expansion terms
vanish, and a rate of decay «y. Technically, the rate a; is only a decay rate for a; > 2/ + 1. In
the case that m = [ 4 1, then all the terms in the expansion vanish, and the scalar is estimated
solely by the remainder term.

Definition 8.4 ((k,l,m, a;, D?) expansion). Let k,I,m € N be such that 0 < m <1+ 1. Let
a; € R. Let D > 0.

In the exterior region where 7 > ¢, a spin-weighted scalar ¢ is defined to have a (k,[,0, oy, D?)
expansion if, for i € {0,...,[}, there are functions ¢; on .#* and there is a function prem; in the
exterior such that

l

R’L
V(t rw) o(t,r,w) Z z_'% (t,w) + @remy(t, r,w), (8.1a)
1=0
< 2
H‘Prem-l”wk () S D=, (8.1b)
< 2
H‘Preml” B(Qne::lyto ~ D 5 (81C)
vt € R, Vi€ {0,...,1}: / i (t, W)} yd®u S D*()* 1+, (8.1d)
S2 ’
V(t,w),0<i<j<l+1|a <k: Jim (=% p;) (t,w) = 0. (8.1e)
—00

If, furthermore, for m € Z™, the expansion terms up to order m — 1 > 0 vanish, i.e.
VieR,Vie{0,...,m—1}: wi(t,w) =0, (8.2)
then we say ¢ has a (k,l,m, a1, D?) expansion.

Because Yt = h/(r), when trying to solve Y = ¢ in terms of expansions from null infinity,
one finds that the expansion coefficients for ¢ are coupled through the expansion coeflicients in
K/ (r). The following lemma handles this coupling.

Lemma 8.5. Given anyl € N, for k € {0,...,1}, define ar and bi(R) to be such that
!
= Y aR* + bi(R) R, (8.3)
k=0
and define b_1(R) = 1/h/(r).

Let o and ¢ be smooth, spin-weighted scalars. Let piniy be a smooth, spin-weighted scalar on
Yinit-

If ¢ solves
Yo =o, (8.4a)
Ol Sinie = Pinit (8.4b)
with o having the expansion
J
RZ
:Z_'Qz t w +Qrem]; (85)

=0
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then ¢ s given by

where

J
bi—i1(R
Prem;j—1 = Z Jil()R (Pz(t W) + (prem,g + (phom,]a

1!
=0
@0(@ W) = IQO (ta CU),

i—1 . .
N ai—p—1(1—1)i! _ .
QDz(t,W):I(QZ(t,W)_ § i 1]£| ) (,Dk(t,W)), 1§’L§j
k=0 ’

@rem;j 18 the solution of
j .
Y Gremsj = Cremsj — Z 7 (05— L(R)R + jbj i 1(R)) R @i (t, w),
i=0

Prem;j |Sinie — 0,

Phom;j 5 the solution of

Y@hom;j = 07

j .

- R

@homsj (tinit (1), 75 W) = @inite (1, w) — E ) @i (tinit(r), w),
i=0

where tinit(r) = to — h(r)/2 is the value of t on Tinit at r.

Proof. Make an ansatz

Y= Z ’L'h/ t w) + (Prem,j + (Phom,g

This gives

] R, ) )
YSD Z(Y(’L'h/ )Soz(t,W) + 7at801(t,W)) + Ygorem;j + Ygohom;j-

We set [ = j —i—1in (8.3) and calculate

h(r)

Substituting this into (8.13) gives

i !
Y ( R > = Z ar(i + B)RTM 4 (W(R)R + (i + 1+ 1)by(R))RFHH2,
k=0

j—i—1

i al + ) Ri+k+1 pi(t,w)

J

R J
Y@ZZ OBt w) +

i=0 k=0

=0
1 _
+ Z 5( ;—i—l(R)R + jbj—i—l(R))R]Jrl@i(taw) + Y@rem;j + Y()bhom;j

=0

R ! Aj—f— i~
T 0y i (t,w) + Z i )R o (t, w)
i=1 k=0

I
gM“

+ i1

M-
ﬁl}_;

-
Il
=)

(b; i—1 (R)R + jbj*ifl(R»RjJrl@i (tv w) + Y@rem;j + Y@hom;j-

(8.7a)

(8.7b)

(8.7¢)

(8.7d)

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)
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If one now imposes conditions (8.7c) and (8.7d) on the @;, then

00(t,w) = Opo(t,w), (8.16a)

i 1)il _ o
0i(t,w) = 8t<pztw+z%gak(t,w), 1<i<j. (8.16b)

If one further imposes that @Grem; and @hom;; satisfy the differential equations (8.8) and (8.10)
respectively, then equation (8.15) becomes Y = o. If one imposes the initial conditions (8.9) on
@Prem;; and (8.11) on @hom;j, then one finds that ¢ satisfies the initial condition ¢, ;, = @init-

Now applying the expansion (8.3) for (h')~! with [ = j —i — 1 in equation (8.12), gathering
like powers of R, and putting the R! term with the remainder term, one finds that

j j—i—1 an i b 1(R>
2 k —i— P ~ -
- Z Z _IR ol t’w) + Z ’ il R]gﬁi(t,W) + Prem;; + ®Phom;j
i=0 k=0 ;
Jj—1 i
- Sﬁk t w + Z j — 1 @i(tvw) + @rem;j + @hom;j- (817)
i=0 k=0
By comparing this expansion with the expansion (8.6), we finally get (8.7a) and (8.7b). O

Lemma 8.6 (Propagation of expansions). Let 6 > 0 be sufficiently small. Let D[p] > 0. Let ¢
and o be spin-weighted scalars. Let oinit be a spin-weighted scalar on Yinit. Let k[o],1[o], m[o] € N
and aq[o] be such that l[p] > 1 and 2l[p] + 3+ 6 < ay[o] < 2l[o] +4 — 6. If ¢ solves

Yo =op, (8.18a)
init — Pinit (8.18b)

and o has a (k[o],1]o], m|o], a10], D[0]?) expansion, then the following hold:
(1) With

Pl

klp] = Kld], (8.19a)
lg] = 1[o] — 1, (8.19b)
m[e] = min(m[g],l[p] + 1) (8.19c¢)
a1lp] = aag] — 2 — 0, (8.19d)
D[g]? = D[g]? + L T3 (), (8.19¢)

]
¢ has a (klg], U[g], m[e], a1[p], D[¢]?) expansion.
(2) For any q € {0,1}, and t > tg, ¢ satisfies

186l st o, _, St DIt (5.20)
and in the exterior region where r >t that
for m[e] <o, [Pl p1—3.p Sty Dlp]?r el calelrizamlel, (8.21a)
for mlo] =1[o] + 1, |kt —s.p Sife) Dlglr~ e+, (8.21b)

Proof. For ease of presentation we will here use mass normalization as in definition 4.4, and
throughout this proof, < is used to mean ;). Since, by assumption, ¢ has an expansion, one

can apply lemma 8.5 to obtain an expansion for ¢. In the following, for simplicity, we use k to
denote k[y] = k[o].
Step 1: Treat the ¢;. We first show in this step that

vVt € R,q € {0,1},i € {0,...,1[o]}, /52|Lg¢i(t’“)|i—q,md2ﬂ < D[g]X(t)2—onld+3-20  (8.99,)
V(t,w),0 <i<j<lg la] <k, Jim (D@ (t,w) = 0, (8.22b)

and

Vit e R,Vi € {0,...,m[o] — 1},¢; = 0. (8.23)
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From (8.7¢) and (8.7d), it is clear that (8.23), and hence (8.22) holds true for i € {0, ..., m[g] —

1}. Furthermore, if mlg] = {[g] + 1, all the {@;}, 5 [Q] vanish and (8.22) is manifestly valid. Hence,
we only need to prove (8.22) below for m[g] <14 < l[ 0

The other m[g] < i <[] cases are treated by induction. Since ay[g] > 2I[g] + 3 > 2l[p] + 3,
the expression (8.7d) of ¢; and the integrability and decay conditions for g,,[,] give, for any t > o

BB (£ ) = / B2 gy (1, )t /mgm,ﬂtw) (8.24a)

M) LSWW[Q]( aw) = M) Om|[g] (t,w), (824b)
Jim (PP G,0)(t,w) = lim (FH B 0,1)(tw) =0, 0<j <o) —mlg],|a] <k, (8.24c)

and for any t > tg

[ eebmiat ) u < [ lonalt o)l s
S2 S2

< Dot~ ealelti+amlel, (8.25)
2

[ematstyans [ ([ lomat olsat) d
S2 S2 t

00 1/2 2
(/t (/S2|Qm[g](tlaw)|i,md2ﬂ) dt’)

00 2
5 (D[Q]/ (t/)—oq[Q]/2+1/2+m[g]dt/)
t

< Do)t~ lel+3+2mlel (8.26)

IN

where the second step of (8.26) follows from Minkowski integral inequality. Similarly, for ¢t < —tg
and ¢ € {0,1}, one has [ |L{Pmy(tw) ifq,uzbdQM < DJg?|t|erld+3+2mle]=2a  and, for t €
[—to, to], one has that [ |LPm,) (t,w)|_q pd’u is bounded. These prove the i = m[g] case of
(8.22).

For induction, let I’ < I[g] and suppose that the estimates (8.22) hold for m[g] < i <1' — 1.
From the expression (8.7d) of the @;, the decay and integrability conditions for g;, the assumption
that aq[o] > 2l[g] + 3, and the inductive hypothesis, one finds that, for any m[o] < i <1 < [g],
g € {0,1} and t > o,

t 1—1
a ~ a a;
Pt = [ @ &-(t',mz%w 5 (1)) dt
e —~
—\ai_j_1(i — 1)il
:/ (B0, w) Z I e (W)t (8.27)
t =0
/ |LEi(t,w)lr_, pdn
2
o a; 1
< /S2 / |L§Ql(t w |k q]ﬂ)+z+|£‘ (pj(tlaw”qu,]ﬂ) dtl d2ﬂ
t =0 .
. 1/2 2
< / /Sz (Lot w)[2_ quIL Gt wi_ | | at’
7=0
2
< D l ‘11[9]/2+1/2+Z J aifo]/2+3/2— Q)dt

7=0

D th o [e]+3-2q (8.28)
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Similarly, for ¢t < —to, one finds [q,|L{@i(t,w)7_ mdQ D|g]?|t|?*—ealel+3=24 and, for t €

[—to,to], one has that [g, |LEpi(t,w) oD d?u is bounded These together imply

e

Vt € R,Vi € {mlg],....l'},Vq € {0,1} : /S LEpi(tw)[F_ % S D[] (£ dtam2e,
(8.29)

IN

S
o
=
@
=)
=
o,
»n

Furthermore, for ¢ satisfying mfo] <i < j <!l

i—1 . .
. i—g ~ . i—i ~ ai—y—1(1 —1 il i—i ~
Jim (F7B°)(t,w) = lim (U ) 1) - Y il U2 Jim (P ) (8, w) = 0.
(8.30)

Thus, by induction, the @; satisfy (8.22) for m[o] < ¢ < [g]. This then completes the proofs of
(8.22) and (8.23).

Next, we consider the estimates of the flux and bulk integrals of @;. Since a1 [p] < min(2{[g] +
2, a1[p] — 2), the above implies, for any 0 < i <[], ¢ € {0,1} and ¢’ > o,

|- 11e) LgtleWk oo )5 /cht a1 [p] —3—21[g] |L£<Pz|k qu,u
< D[@]Q/OO /OO poalel=3=2llely2i—onlel+3-29 4,44
t/
< Dlof*(#)~° 2. (8.31)

Since the operators in D are linear combinations of operators in ) and ROg with coefficients
Oso(1), and ROz commutes with the operators in I, it follows that

Ir=1ele <Pz||Wk o

SPOES o) A R e L

[e%} —2-—21 ~ 12 2
< /t /S el Gt (8.32)

where in the last step we used the fact that @, is independent of r. Hence, for any 0 < i < {[g],
q€{0,1}, and ¢’ > tg

> D[Q]2ta1 [e]—2—21[0] t2i—o¢1 [g]+3—2th
t/

< D[P ()02, (8.33)

]
||T Q[*g%”Wk q B (: ) 5

Gathering together these estimates for ¢;, we obtain for any 0 <1 <l[g] and ¢ € {0,1}, t > to
Hr_l[g (PZHWk Le—2(Ct0 + Hr_l Q]LE(PZHWk (-3 (%) < D[9]2t_6_2q' (8.34)
Similarly, for any 0 < i <[], ¢ € {0,1}, and ¢ > o,

(| tlel= 1Lq 512 < D[o]?t™0724. (8.35)

Wk q o B(Qext )~

Step 2: Treat the ;. If m[g] > l[g], it follows from (8.23) that @; = 0 for any 0 < ¢ < m]p] — 1
and hence formula (8.7a) implies ¢; = 0 for all i € {0,...,1[o] —1}. Instead, when m]o] < [o] —
the expression (8.23) and the formula (8.7a) together give ¢; = 0 for any i € {0,...,m[o] — 1}.
Therefore, p; =0 for any i € {0,...,m[p] — 1} and any (¢,w).
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For any m[g] <i <l[g] —1=1[¢], t € R, and ¢ € {0, 1}, since a1[g] > 2I[o] + 3, formula (8.7a)
can be used to obtain the estimate and relation

/SJLE‘Pi(taw)ﬁ_q,mdQ 5 Z/Szlﬁg@j (t’w)|i—q,md2u S D[Q]2 <t>2j—a1[</7]+1—6—2q
i= j=0
D]ty leFa2, (8.362)

[

hm (IJ B0 (t, w) Z az l, hm (T~ B @y ) (t,w) = 0, mlo] <i < j <lol.

In particular, the estimate (8.36a) holds for any 0 < i < [¢]. These together verify the conditions
(8.1e), (8.1d) and (8.2).
The estimates for ¢; in the above step, together with the uniform boundedness of the coef-

ficients “aki!*k in the expression (8.7a) of ¢;, imply that for any 0 < i < [[p], ¢ € {0,1} and
t> th
—iprq 2 irq < 2,—5—2q
s ey I EE Ry g S Dl (3.37)

Step 3: Treat (remg. Since each b, ;(R)R + jbj—;—1(R) is uniformly bounded, from the
estimates (5.12¢) and (5.12d) in lemma 5.4, one finds that, for any ¢ € {0,1} and t2 > t; > ¢

||¢rem§l[9] ||$/V§1[so]fz(5t1,tz + ||90rem Uol ”Wk (ng‘z + ||90rem el ||Wk [] (Q?l(ttZ)
<3 2 ; Z = v
< ||(Prem;l[g]||W§1[w]72(2§"1‘t) + ||Qrem;l[g] ||W( ol42)— d(Q ty) + ||’I“ ” Llel+2)— 3(9t1 )’
(8.38)
||(prem il o] ||Wk (Ee"t) + ||(prem itle] ||Wk (Qle::tl}:so)
< N BrematallI? I’ Z e
~ ||<)01‘em1l[9]||W§1[¢]72(Zinit) + ||Qrem,l[9]||W(k [¢]+2) 3(9?;?:3%0) + HT ( 1lel+2)— S(Q?‘?‘T‘Iyto).
(8.39)

From the assumption that a;[p] +2 < ai[g], there is the bound | 0rem;i] HWk (Qext ) S
1[p]42) =3\t ,to

DJo]? for the second term on the right of (8.38). The third term on the rlght of (8.38) were
bounded by D][g]? in the first step. Thus, one finds, for any ¢ > ¢,

> 2 > 2 > 2

||90rem;l[g] ||W§l[‘p]72(5tyoo) + ||90rem;l[g] ||W§1[‘p]72(2$xt) + ||90rem;l[g] ”W(L¥ 3(Q8%)

1lel—
5 D[Q]Q + ||¢rem;l[g] ||%V§1[w]*2(2§;t)- (840)

From the assumption that o has a (k[o],![o], m[o], a1[0], D[o]?) expansion and the estimate
(8.29) of @, it follows that

2 < 2

||Qrem o] || ol S(Q]L:lrtlyto) ~ D[Q] > (841&)
2

||Qrem;l{g]||w(k (o] +2)— B(Q ext ) S D[Q] 5 (841b)

< D[o)?, (8.41c)

U[o]

E —1[o]— 2
T ear

i:oH ” 1le]+2)— S(erutly;fo) ~

1

Let2) -2

o
(nrl G

tel=1g 112 oy | < Do) 8.41d
> o HITIB e ) DI (sa10)
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Moreover, it holds that r» ~ —¢ on X, and since aq[p] < min(2l[o] + 2, a1[0] — 2), hence it
follows that

U[o] oo
2”7’_191'”?/[/’“*1 ) 5 D[Q]Q/ Ta1[<p]r—21T21—a1[Q]+1dT
= orp [ (Hint vy
< Dla)?, (8.42a)
llo o
ZHR”@ Mss 5y SDIPY [ iz psizenidsag
i=0 U7+
< Dlo]*. (8.42b)

Since Prem;l[o] vanishes at Yj,;; from the assumption, all the tangential derivatives to i, of
Prem;l[o] are also vanishing. Each of the operators in D at ¥j,;; can be written as a sum of the
tangent derivatives and O (1)rY, therefore, we have from the expression (8.9) and the estimates
(8.42) that

|Prermtie ”W’“ o (Simie) ™ ”Y‘Preml@]”W Ty (Tinie)
U[e]
l 2
~ ||Qrem o] HW’“’ ](Em.c) ZHR o]+ (t w)HWj;[;](Zinn)
< Dlo]?. (8.43)

Combining the estimates (8.38), (8.39), (8.40), (8.41) and (8.43) gives that for any ¢ > ¢,
||¢rem;l[g] ||?/V§1[¢]72(E oo + H‘Prem o] ”W’“ (EL’“ + ||90rem o] ”W’C (Qﬂxt ) 5 D[ ] ) (844&)
ety ) S Dl[o]®. (8.44b)

||50rem;l[g] ||W§1 [w]fi’»( e

[¢]72(Z§;t) + ||50rem;l[g] HWSI

An application of lemma 4.33 together with the estimate (8.41b) implies

”Qreml[g]“wk 1 L (Erioe) ™ HQrem o] ||Wk Q) /S D[Q]Q' (844C)

1le]-3

Hence from the assumption, the equation (8.8) and the estimates (8.41), we have for any ¢ > to,
||Y¢rem;l[g] ||?/Vk71],2(5t, + ||Y¢rem;l[g] ||$/Vk ]73(9??(;0)

= ||Qreml[g]||Wk 1 (_t ) + ||Qremlg]||W

s (2)

< ||Qrem;l[g] ||W§;[z],4(5t,oo) + ||Qrem;l[g]||W§1[9]75(Q?;o

+ ||Y80rem o] ||Wk o]42)— J(SZLXE ))
< D[gt?, (8.44d)

<t (nmem”@]nw(k 1

[o1+2) -2 (Bt.o0

where the third step follows from the assumption that o has a (k[g], o], m[o], a1]o], D[0]?) ex-
pansion and the fact that » > ¢ in the exterior region. It then holds that for any ¢ > ¢

~ 2
||'C’Esarem;l[g]||W:;[;]72(Et + ||'C’Esarem o] ||Wk 1 (Qext )

5 ||Y¢rem;l[g]||?/vk‘*1 (Bt.00) + ||Y90rem;l[g]||wk*1
agp]—2 B o

1[%]73((2?;0)

~ 2 ~ 2
+ ||(prem;l[g]||W§l[¢]7272(5tyoo) + ||90rem;l[g] ||W§1[¢]7273(Q?‘(§0)
< D[o]*t™2. (8.45)
Hence, together with (8.44a), this implies for any ¢ € {0,1} and ¢ > to,
~ 2 ~ 2 2,-2
||L§‘Prem;l[e]||W§;[g,]72(am) + ||Lg‘prem;l[elHW{’:[‘;FS(Q?;O) < Dlo]*t™=1. (8.46)

For any t > to+ 1, there exists an i € N such that t € [tg+2¢, ¢ +2°t1]. We apply the mean-value
principle to the first term of (8.46), with the time interval replaced by [to + 2¢,t9 + 21, to
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conclude there exists a t(;) € [to + 2°,to + 2"!] such that
ald=2 - 2 2 2 iy—1 2,-1
. ltay ® Premulel (E(i)s tay> W)k pd i S Dlo]"(to +2') 7" < Dlo] "t (8.47)
From fundamental theorem of calculus,

—2
|t @rele](t t,w |k 1]D)d [N S / |t @rele] (t(z)at(z)v )|i71,]1))d2ﬂ

—t,00

< Dot (8.48)

~ 2
+ HL&‘Prem;l[Q] HWL’:;[;FZ(: ) + H(prem;l[g]||W:1[¢]7272(Et,00)

Similarly we have for ¢ € [tg, to + 1] that f52|¢rem;l[g} (t,t, w)|i_17Dd2ﬂ < DJo]?. Therefore, for any
t Z th

|t (prem ;o) (t t w)'k 1 ]D)d [N S D[ ] (849)

Notice from (4.61) and (8.44a), we have in the exterior region that for any t > to,

o [e]—
SQ|T 2 Sarem ;o] (t T, w)|k 1 ]D)d M
ajfe]l—1
/S SZ|T 2 @rem iLo] (t 3 w)|k 1 ]D)d 2 + ”Sarem o] ”W’“ (Euxt)
< D[Q] . (8.50)

From lemma 4.26, the following pointwise estimates then hold for any ¢ > ¢¢ in the exterior region
|<Premlg]|k ap S DI o]?r~(ealel =), (8.51)

Step 4: Treat Ppom;- Given a point p € Q?i(,ttz with coordinates (¢,r,w), let v denote the
integral curve along Y through the point. The value of Lg@hom;l[d is constant along ~, so its
value at p is equal to its value at the intersection of v and Xj,i;. Since the rates of change of
—t and r are comparable along ~, it follows that the coordinates (tg,79,wo) of the intersection
of v and i, satisfy —tg ~ rg ~ t + 2r. From the decay rates for Lgtpinit and Lg@i, and since
agfo] —3 < 2l[p] + 1 = 2l[p] + 3 and a1[p] = a1[g] — 2 — 4, one finds for any ¢ € {0, 1},

/ o Broml) [P A S (¢4 2r) el am2apekes = ) 4 DloJ2(¢ 4 2r) menlel 32
S

init
< (¢4 27l (B ) 4 DlgP?) (8.:52)
The quantity Pm[ﬁ] 21[¢]+3((p) in the above estimates can be replaced by Hln[ﬁ]ﬂ;m[w“g(go) from
lemma 4.35, implying that
/ £ Bhomitial|*d S (8 + 2r) A== D], (8.53)
SZ

° o/
Applying a Y derivative to Lg@hom;l[d gives zero. Differentiating along rV or applying 0 or 0
corresponds to differentiating along a vector of length r on the initial data. Since derivatives decay
one power faster, this means that fSZ |ng2hom;lm] |i_q,Dd2u decays at the same rate, although the
constant depends on the k norm, i.e. for any g € {0,1},

/32 |88 Phomstiel [h—qpd’n S (¢ + 2r)~a PIH1=0=2a D)2, (8.54)
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As with the £{@;, since a1[p] < a1[o] — 2, one finds that, for any g € {0,1} and ¢’ > t,,

etomtalBys g, S [ [ DI 2y b2y

S D)%, (8.55)

”Lg‘ﬁhom;l[g]nivff}i] (B o) S D[)Proalel=2 (¢ 4 o) mealelti=o=24qy

_o (5t o +

< Dlpl(t) 0%, (8.55b)
q,~ 2 > 2, .a1[p]—2 —a[p]+1-56—-2
||L§(phom;l[9] ||W§;[‘;]72(E?ct) 5 /t’ D[(p] r v (t + 2T) v 4dr
S DleP(t') =02, (8.55¢)

init, tq

||L§<Phom l[g]”Wk “ S(Qudrly ) S / ! D[cP]QTm[«P]fB(t + 2T)7a1[¢]+17672qdrdt
- t
< D[p)?. (8.55d)

Step 5: Treat ¢remyj,- One can combine the results for the {ngaz}l[do, for Lg@em;l[g], and
for £¢Pnom;ijg)- Combining these bounds with uniform bounds on b;—;—1(R), and noticing I[¢] =

I[o] — 1, one finds, for any ¢ € {0,1}, and ¢ > o,

12 remital 2 e, )+ 18 PremtialPrs (qoms , S DlplPt™™, (8.562)
aqp]-2\Ttee aqp] =317t 00
gearty ) S DIy]?. (8.56b)

2
|| Prem;l[y] H Wo’fl (013 (Pinic.to

From lemma 4.26 and rewriting 7V from (4.8), the estimates of L?(S?) norm of {Lipitido el and
L{Promi(g) imply that in the exterior region, for any ¢ > to, any i € {m[o] + 1,...,1[o]} and any
n €N,
k—2
B ap S STV R,
3=0
k—2 _
5 Z|(R8R)J(Rn)¢i|i_2_j7m
7=0
< / R34t w) 2 0%
S Do ¥ 23, (8.57)
| Phomitlellt—_2.p S Dlg]> R 1673, (8.58)

Together with the pointwise estimates of @rem;g) and the uniform boundedness of by —;—1 (R),
it follows that in the exterior region, for any ¢ > t,

for m|o] < I[o], |oremitlollh—sp S Dlp]?r~2Helgealelti+2ilel (8.59a)
Z[Q] + 1; |(prem R AP]|1€ 3.D ~> S D[@]Qr_al[(ﬂ]—i_l‘ (859b)

for m[g]

Step 6: Treat p. Combining the results for the {Légaz}l ‘pé and L{ ¢ em;ijy) gives for any ¢ € {0,1}
and t > t,

a—aq| —iprq
1eolsy e,y S I3 oy

< D[gp]?t”;. (8.60)

+ ||(prem l[gp]HWk q L Ete)

Ht oc)
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For any i < m[g] — 1, ¢; = 0, and for any m[g] < i < l[o] — 1 = I[p], we have from (8.57) with

n = 4 and the uniform boundedness of {ai}ﬁ[jé that in the exterior region, for any ¢ > to,

i i

IRiGiliop S Y IR G ap S Y ¥ lddS < DloP R - ealelts, (8.61)
Jj=0 Jj=mlp]+1
We have then from the pointwise estimate for ¢ em.i.1, the fact that the {¢; 7-1[9]71 vanish and
il[e] 1=0
the above pointwise estimates for {‘Pi}li[fr]n[g] that in the exterior region, for any ¢ > tq,
for m[g] < I[a, |pliosp S Dlp)Pr—2ealelgmealeltit2anlel (8.62a)
for mlg] = Ulo] + 1, 6l _ap S Dlpl2r b+, (8.62b)

Therefore, we conclude that ¢ has a (k[g],[o], m[¢], a1[¢], D][p]?) expansion, and for any ¢ €
{0,1} and ¢ > tp, the estimates (8.20) and (8.21) hold true. O

Lemma 8.7 (Transformations of expansions). Let D > 0. Let k,I,m € N, and 0 < m <1+ 1.
Let oy be such that 21+ 3 < a1 < 2l + 4. Let g be a spin-weighted scalar.
(1) If 0 < K <k, 0 <m < m and o has a (k,l,m,a1,D?) expansion, then o has a
(K',1,m’, a1, D?) expansion.
(2) If 01 and o2 both have (k,l,m, a1, D?) expansions, then o1 + o2 has a (k,l,m,ay, D?)
expansion.
(8) Let n € Z, n+m >0, and n+1 > 0. Let f be a homogeneous rational function of
r, Vr? + a2, k1, and R1 of degree —n that has no singularities for R € [O,RO_I]. Then
there is a constant Cy > 0 such that if o has a (k,l,m, a1, D?) expansion, then fo has a
(k,l+n,m+n,ar + 2n,CyD?) expansion.
(4) If 0 has a (k,1,m, a1, D?) expansion and has spin-weight s, then 7o and 7o have (k,l +
2,m+ 2, a1 + 4, D?) expansions and have spin-weight s + 1, and 7o and 7o have (k,l +
2,m + 2,01 + 4, D?) expansions and have spin-weight s — 1.
(5) If 0 has a (k,I,m,a1,D?) expansion and has spin-weight s, then k100 has a (k —
1,1,m, a1, D?) expansion and has spin-weight s+ 1, and 1 0" 0 has a (k—1,1,m, oy, D?)
expansion and has spin-weight s — 1.

Proof. If k' < k and m’ < m, then the condition to have a (k,l,m, a1, D?) expansion is strictly
stronger than the condition to have a (k',1,m’, a1, D?) expansion, so the former implies the latter,
which implies point 1.

Point 2 follows directly from summing the expansions, summing the bounds, and noting the
linearity in both the integrability condition (8.1e) and the condition (8.2).

Now consider point 3. Observe that if ¢ has a (k,I,m, a1, D?) expansion, then ¥ = r~"p
has a (k,I +n,m + n,a1 + 2n, D?) expansion, where 9; = 0 for i < n+m, ¥; = g;_, for
i >n+m, and Yremyin = 7 "Orem;- Thus, it is sufficient to show that if f is a homogeneous
rational function of degree 0 and g has a (k, [, m, a1, D?) expansion, then fo has a (k,[,m, oz, D?)
expansion. Expanding f as an order [ power series in R and multiplying the expansions for f and
o together, one obtains an order [ expansion for fp. Because f is rational with no singularities
on R = 0, each of the expansion terms in f are smooth functions of the spherical coordinates
alone. Thus, the expansion terms for fp have the same decay and t¢-integrability conditions as
0. The remainder term of f decays as r—‘~!. The remainder term for fp consists of products of
expansion terms of f and of o, of expansion terms of f and the remainder for o, of the remainder
for f and the expansion terms of p, and of the remainder term for f and the remainder term for
0. The expansion terms for f and the remainder are all homogeneous rational functions without
singularities in the region under consideration and with a characteristic rate of decay. Since f is
t independent, L¢(fpo) = fLep and similarly for higher derivatives. All four types of products in
the expansion of fp will have bounded integrals for ¢ < t; when integrated over Qfxoto Thus, all
the conditions for a (k,1,m, a1, D?) expansion are satisfied.

In point 4, the claim about the spin weight follows from properties of products of spin-weighted
quantities. The bounds can be calculated in the Znajek tetrad using the argument from the
previous paragraph and the fact that, in the Znajek tetrad, 7 and 7’ is a sin 6 times a homogeneous
rational function in k1 and K1/ of degree —2.
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Similarly, in point 5, the claim about spin follows from the fact that x; and %1/ are spin-weight
zero quantities, and & and & are spin +1 and —1 operators. The bounds follow from the relations
(2.31d) and (2.31d) that k1 0 o is a linear combination of 0 g, kK?7L¢ 0, and K170 and K1/ 0 o is a
linear combination of 5/ 0, R1'7L¢0, and R1/Tp, and the fact that the operators 5, 5/ and L¢ are
in D, the number of which is measured by k. O

8.2. Integration on .# and the Teukolsky-Starobinsky identity.

Definition 8.8 (Taylor expansion at .#1). Let ¢h_s,1745 be as in definition 8.1. Working in
the compactified hyperboloidal coordinate system (¢, R, 0, ¢) and restricting to the Znajek tetrad,
let the spin-weighted scalars A4;, i = 0,...,3, Bg on .#T be the Taylor coefficients of ¢_2,1ﬁ+2
defined by

A =0h_a| ., i=0,....3, (8.63a)
By =142l ., (8.63b)
and let Arem;3, Brem;o be the corresponding remainder terms such that
. 3 R
Py = ZO —7 Ai(t,w) + Arems, (8.64a)
Y12 = Bo 4 Bremo- (8.64b)
Lemma 8.9. Let a be a multiindex. With A;, i =0,...,3, By as in definition 8.8, assume that
lim LgmaBO = lim Lguzj)aBO =0, j=0,...,4 (8.65a)
t——o0 t—o0
and
lim LIP*Ap = lim LIP° Ao =0, j=0,...,4. (8.65b)
t——o0 3 t—o0 ¢

Then with I defined as in definition 8.3,
Jim UP°Ag=0, j=1,...,4. (8.66)

Proof. We first prove the statement for a = 0. Passing to the Znajek tetrad, we may replace L¢
by 0; for spin-weighted scalars on .# 7. Equation (3.29) yields, after using the expression (2.75a)
for Y and taking the limit R — 0, that on .,

4

o _ 4 04—

64 AO = — 3M8t(A0) — Z (k) 'f‘k 64 k atkAO + 46;130 (867)
k=1

Integrating (8.67) j times from ¢ = —oco, we have by (8.65)

4
o . . _ 4 04— . .
' PA = — 3MTI0,(Ag) — Z (k) #ol " VoFAy+ 4V} By, j=1,...,4. (8.68)
k=1
From definition 8.3 we have that for a function f satisfying (8.65),
OIf =10, f = f. (8.69)

For j = 1 we have

4

. _ A

§' 140 = —3M A, — (k) #8791 Ay 1 493 B,. (8.70)
k=1

Recall that A, and hence A( has spin-weight —2. Acting on a spin-weighted spherical harmonic

_oYp, we have

o4 (0 +2)!
0 oY, = m+2yem (8.71)

o4
and hence, since we may restrict to considering £ > 2, we find that the operator 0 has trivial
kernel when acting on fields of spin-weight —2. Taking the limit ¢ — oo on both sides of (8.70),

-4
and after using (8.65) and the fact that 0 has trivial kernel on spin-weighted functions on 2
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with spin-weight —2, this gives the statement for j = 1. For j = 2,...,4, the statement can be
proven in a similar manner, using induction with j = 1 as base. This proves the lemma for a = 0.

We prove the lemma for a # 0 by induction on |a|, with a = 0 as base. Thus, let £k > 1 be
an integer, and assume the lemma is proved for |a] = k — 1. Applying D* to both sides of (8.67)
yields

4
o4 _a o4 _a a - 4\ ,p 24—k a
0 B A = [0, P Ag — 3MO, (B Ag) — > (k>rk6 8, ™ Ay
ke

1
! 4 k a of o4—k Ahd
-3 L) B*, 73 "]Ao + 48D By. (8.72)
k=1

The commutators on the right hand side of (8.72) can be evaluated by noting that 9, commutes
with 9, and making use of the identities (3.28) and the commutation formula (2.40d). By the
induction hypothesis, we have that each term on the right hand side satisfies the assumptions of

the lemma. Therefore, we can proceed as above, and inductively prove (8.66) for j = 1,...,4.
This completes the proof of the lemma. ([
Lemma 8.10. Let a be a multiindex, and let the assumptions in lemma 8.9 hold. Assume that
Jim B A;(t,w) =0, i=0,...,3. (8.73)
Then ‘
Jim VP A;(t,w) =0, i=0,...,3, j=0,...,4—1i. (8.74)
Proof. We first consider the case a = 0. Taylor expanding the Teukolsky equation (3.25a) at %+
and using (8.64) gives a recursive set of equations for L¢A;, ¢ = 0,...,3, which after passing to
the Znajek tetrad takes the form
(9tA1 = 2A0 + 4M(9tA0 + QC’hprQ&&AO + 2a8t8¢A0 — %S,Q(Ao), (875&)
O4Ag = — MAg+3A;1 +2(4 — Chyp) M?0,Ag + AM Oy Ay + 2Chy, M?010; Ay + 4M addg Ag
+ 200,05 A1 + adpAg — $S_2(A1) + (16M® — AMa* — 1H3)(0))8,0; Ao, (8.75b)

01 Az = —3a®Ag + 3As + (16M? — 2a%)0; Ay + 4M Oy Ag + 201y, M?0,0; As
+ 4M2a(4 — Chyp) 90 Ao + 8Maddp A1 + 200,05 A + 4ads A1 — $S_2(As)
+ (32M° — 8Ma* — $H™(0))0,0, A1 + (16M® — 4Chy, M — 12Ma® + LH®(0))0, Ao
+ (64M* — 4C2  M* — 32M%a® + 4Chyp, M?a® — LH™(0))0,0, Ao. (8.75¢)
The system (8.75) is of the form
O A; = Lk Ay, (8.76)

where, by inspection, L;/ is a strictly lower-triangular matrix of operators on .#% with en-

tries which are linear combinations of symmetry operators of order up to two of the TME, i.e.

S_o, 07,0404, 04,0, and constants. The coefficients are bounded constants, and depend only on

M, a, Chyp, and the Taylor terms H3(0) and H*(0), where H is given by (2.73) and (2.49).
From (8.76) we get the recursion relation

t 1—1
Ai(t,w) = tiir}loo Ai(t,w) +/ ZLikAk(t',w)dt', i=1,2,3. (8.77)
— k=0

Lemma 8.9 shows that ¢ = 0 case of (8.74) is valid. We consider the case ¢ = 1. From (8.77) and
(8.73) we have

o0
lim A, = / L, T Ao (¢, w)dt’. (8.78)
t—o00 o
From Lemma 8.9, the right of (8.78) vanishes for j = 0,1, 2, 3, yielding the ¢ = 1 case of (8.74) is
valid. Repeating this argument proves the statement for ¢ = 2,3 in the case a = 0.

For the general case, we use induction on |a|. Let m be a positive integer, and assume the
statement has been proved for multiindices of length |a] < m — 1. Apply B* to both sides of
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the Teukolsky equation, and Taylor expand the result at .# *. This yields a version of (8.75) for
B*A;,i=0,...,3, which again has the form

OB A; = LD Ay + D7, L% Ay (8.79)

The last term in (8.79) can be expressed in terms of P Ay, with |b] < m—1and k < ¢. This means
that we can argue as above, and use the fact that the system L;* is strictly lower triangular, to
get the statement for |a| = m. This completes the proof of the lemma. O

8.3. Expansion for the spin-weight —2 Teukolsky scalar.

Lemma 8.11 (Control of the Teukolsky scalar at and prior to Xy,). Let ’L/AJ 2 be a scalar of

spin-weight —2 and {1/1( 2} o be as in definition 6.1. There is a reqularity constant K such that
the following holds. Let j,k € N such that k — j — K s sufficiently large. Assume the BEAM
condition from definition 6.8 holds. Let 1*, be as in definition 6.9, and let ]Ilkn?t(w 2) be as in
definition 4.19.

(1)

It 4+an%nwk s oy S T (P-2): (8.80)

init,

(2) Forie€{0,...,4}, and for any t < to,

9+2i—2j5+1.7 |12
/2 |7 1/)12|k i Kmd < (1) o+ J+Hw72l\H§(Zm). (8.81)
t,00
Pr_oof. Consider estimating norms on ¥; by those on X, for ¢ < t3. The basic estimate on
w(_Z)Q in lemma 6.10 can essentially be repeated. In particular, from lemma 5.7, on spin-weighted
wave equations in the early region, from the 5-component system (6.3), and from the relation

between ¢ A( ) and w( norms in lemma 6.5, it follows that there is a constant Ry such that for all
(NS [5,275], RO > Ro, andtﬁto,

4

5= (VI mtoy + 10 sty + 10 g )

g nit,
4

< DI g

=0

4
»
- angnww ooy + DO s - se

+ Z”M _11/1(12|‘Wk+1(9ear1y Ro— M) (882)

init,t
=0

To treat the last term on the right hand side, note that we can take Ry sufficiently large such

that || Mr—1")2 can be absorbed into the [|)"}||2 carly, mo, berms on the left,

Wk+1((2?jirtly,Ro) Wk+1(Qinit,t’ 2 )

leaving ||Mr_11/1(12|| carly o - M. o For all ¢ < ¢, since Ry is bounded, the terms

Wt (@i
L N N [ 1 ey
W (3 ) Wo T3 (Qp; )

can be bounded by a multiple of the initial norm

11 (5,0

by standard exponential growth estimates for wave-like equations. Similarly, since Qler‘fftl}; Nn{r<

Ry} is bounded in spacetime, standard exponential growth estimates can be used to bound the



82 L. ANDERSSON, T. BACKDAHL, P. BLUE, AND S. MA

energy on the upper boundary. Thus,
4

> (V9o + 18 gy + 10 ey

1=0
ZHQ/J(BHH’WA o)’ (8.83)

In particular, with a = 2 — §, and recalling the 1&@2 are related via derivatives with an 72 weight,

but the norms ||g0||§1k S ar€ based on an r' weight for each derivative, (8.83) for t =t yields

F5 + an%nw s ) S Z||w<’2||Hk+1@ S -2l 8:84)
=0
Reindexing, and using the notation introduced in definition 4.19 gives (8.80).

For ¢ very negative, it is possible to prove stronger estimates by following the proofs of decay
for the spin-weight —2 Teukolsky scalar in section 6. In particular, for ¢ € {2,3,4}, one follows
the proof of lemma 6.11, and, for ¢ € {0, 1}, one follows that of theorem 6.13 in the case of the
exterior region.

Let ||1/)(12||2 P be as in definition 4.21. Let r(¢) denote the value of r corresponding to
the intersection of Em]t and ¥;. For Ry fixed and t sufficiently negative, we have that r(¢) > Ro

and 7(t) ~ —t. Recall that the proof of (8.82) and (8.83) is based on lemma 5.7, and in particular
an application of Stokes’ theorem, and hence we may add a term of the form

ZHII/J(ZQHF%(]JF t) (885)
on the left of (8.83), and replace Yinit by Z;fft) = Yt N {r > r(t)}. Further, the resulting
inequality holds with the summation over i € {0, ..., 4} replaced by summation over i’ € {0, ... 7}

for i € {2,3,4}. We now have, for a € [4,2 — 4],

(i) 2 @) 2
an [ >NZ||¢ s rcoy

=0
< ||1/1 2||Hk+é+1l(zr(t) (886)

lnlt

With a =2 —§, i =4 we get the weight 9 — ¢ as in (8.80). On the other hand, taking o = §, we
have, one finds for i € {2, 3,4},

)2
_[Z”d’—2 ||Fk(]joo, )~ < ||¢ 2||Hk+21+7'1(2m,tﬁ{r>r(t)})

5 T(t)_10+2i+26 ||1/J—2 ||§i§j;+i(2initm{r>r(t)})

—10+2i4+25 )7, |2
<1 12l (8.87)
The case i = 2 of (8.87) gives, after renaming i’ to 4, the estimate
7@ 6+25 .
”1/} 2||Fk(;/+ ,t < |t| ||1/1 2||Hk+3(2 ¢)’ fori € {07 L 2} (888)

Since L¢ commutes with Teukolsky equation, but each derivative is weighted With r~tin L? in

the definition of ||1/1 2||Hk+1+1(2 ,)» one obtains an improved decay rate for £ 1/)

ZHL POy SO NI s s ntrsron)

R I (2N

H:jg+3 (Einit), fOI‘ j e N. (8.89)
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Restricting the system (6.43) to ., using (6.44), yields a system of the form, where

) ) < 0 >
L AL Y2 +B( . ). 8.90
<1/)(1) Y L' (590)
with
LO 0
L= <6 + 6L, L<1>) (8.91)
and
L =258 —2(2+4), i=0,1 (8.92)

and where A is a matrix of operators of maximal order 1 involving L¢, £, and constants, and
with bounded, ¢-independent coefficients, and where B € R. In particular, the first row of (8.90)
is of the form

LOPO) = 400 £,45) 4 40D g1 (8.93)

where A% A are operators of maximal order 1 involving L¢, £, and constants, with bounded
t-independent coefficients.

The operators L), i = 0,1 are invertible on Sobolev spaces on the cross-sections S2 = .#+ N
{t = 7}. Thus, since L is lower triangular and the off-diagonal term has maximal order 1 with the
first order part involving only derivatives tangent to .S;, we find that L is invertible on Sobolev

spaces on SZ. In particular, we have
(a0
7
()

1
M
This estimate yields corresponding estimates for the semi-norms F*(.#7_ ). Using (8.89) and

00,t
(8.90), this gives

(o2 - st S 752Nl (e fori € {01}, G EN. (8.95)
( t) 9—s(Zinit)

(8.94)

~

L2(87) L2(87)

Finally, using (8.93) and (8.95) gives
120 s ey ST a5, forj €N (8.96)
In particular, with j = 0, we have
1 sty S T2l 50)- (8.97)
Reindexing and using 7,/;(702) = 1/3,2, gives
188 2lfumson oy ST alliyy (5,0 (8.98)

From the fundamental theorem of calculus, the Cauchy-Schwarz inequality, and the definition
of the F'* norm, one finds,

(AR VPP L L A R I AT TP T

—o0,t
17
< ||L wZQHFK i—K(gt )||L]+ Z2||Fk i=K(sE )
s
< |t 1R ||1/J(12||H’“ (i)’ (8.99)
Taking the square root and applying the fundamental theorem of calculus again, one finds

IELD D lwr-i-x 52y S T2 N0 e (i)
9— 6

(8.100)

which gives (8.81). O
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Lemma 8.12 (The Teukolsky scalar 1ﬁ_2 has an expansion). Let 1/;_2 be a scalar of spin-weight
-2 and {1/;9)2};1:0 be as in definition 6.1. Assume ¢_o satisfies the Teukolsky equation (3.25a).

Let 1ﬁ+2 be a spin-weight +2 scalar that is a solution of the Teukolsky equation (3.25b). There is
a regularity constant K such that the following holds. Assume the pointwise condition (3) from
definition 7.1 holds. Assume the BEAM condition from definition 6.8 holds. Let k € N such that
k— K is sufficiently large, and let on[th_o] = 10—.

Then 1_o has a (k— K, 3,0, a1[1/;,2], D?) expansion where D? = 9 (1/) 2).

init

Proof. Before considering 1/3_2, for a general spin-weighted scalar ¢, consider Taylor expansions
in the R variable. Recall Taylor’s expansion lemma 4.34. In particular, consider n € N, A > 0,
f e L*((1/A,00),dr) N C"T1((1/A,0)), and P, the order n Taylor polynomial. Observe that

dR = —r~2dr, so if the L? norms are defined in terms of dr, we get from Taylor’s expansion
lemma 4.34 that for —2n — 1 < 8 < 1, the following Taylor remainder estimate:
7" PP2(F = Pa)llzaa/ascey) Sns 177271 D 121,00 - (8.101)

Consider now a spin-weighted scalar ¢ defined in the Kerr exterior and j € N. The Taylor
remainder estimate implies that if there is the expansion

j )
Rt
Y= E 7()01(ta W) + Prem;j, (8102)
=0

we get, for —2j — 1 < B < 1,

| ¢rem;llweo 0 () S ||rit+A/2 ‘premJ”WU(Qe"‘
i ||7"ﬂ/2 1(8R)j+190||W°(Q§j‘O‘O)
Sis 1R llwe ,(ape - (8.103)
Substituting 8 = a — 1, one finds, for —2j < a < 2,
Ioremsliws, ..oty s 10RY ollwe_cap ). (8.104)

Commuting with the D operators only introduces lower-order terms, so that, for —25 < a < 2
and k € N,

[

ot ) Sja [Or)  ollws_aem ) (8.105)
Arguing in a similar way, we have for 72] <a<2and k eN,

remsllws, ., o ) Sia RV ellys_ qumns (8.106)

2j—l+a( init init, tq

Now, consider the existence of an expansion for ¢_,. From the expansion of 95 in (4.8), for
r > 10M and i € {0,...,4}, one has

i i—1 i—1

Otha =Y M 0P + 3 M0 ()Y + 3" M0, (1)£,4Y,.  (8.107)
1=0 1=0 1=0

Since for bounded r, in particular for r € [r;,10M], one has O is in the span of Y, V, £,,, one

finds that, for all r, equation (8.107) remains valid. Since the 8}31/;,2 exist for i € {0,...,4}, the

following Taylor expansion exists

3 i )
Z 5 “2)i + (V_2)rems3. (8.108)
=0

Z'

This proves condition (8.1a) in the definition of the expansion.
Using (6.38) in theorem 6.13 and (8.80) in lemma 8.11, and taking o = 2 — ¢, one finds for any
t> th

4—1q
IK)zmmmmNZW)MMWMJ$<MWﬂ (8.109)
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Therefore, from the Taylor remainder bound (8.104), we conclude for any ¢ > ¢
7 k;9
||(w—Q)TGm;glﬁ/V;“:JK(QgT;O) 5 H(aR) 2||Wk K (Qext )~ ]Ilmt(w 2)’ (8110)
from which it follows that, letting
o[th_o) =10 — 116 (8.111)

and noting that (10 —11§) —3=5+2— 116 < 7 — 4, we have for any ¢ > o,

n 2 k;9 /7
H(w—Q)Temf’||W§;[g72]73(gﬁc;o) 5 ]Iinit(w—Q)’ (8112)

which proves the remainder condition (8.1b) in the definition of an expansion.
In the region Q%Y using the bound (8.106), the estimates (8.106) and (8.80), and taking

init t[)’
a=2-—4, we conclude

H("/) 2)rem 3||Wk K(chrly ),S ”(aR) QHWk K(chrly )

init,tq init,tq

4
S Z'“”““'vv’“ < (e, )
S ]Lkni (P_2). (8.113)

Hence, by letting be as in (8.111) and noting (10 —116) —3 =5+2— 110 < 7 — 4, it follows that

H("Z) 2)rem 3||Wk K (Qeerly )N]Ilkn?t(i/J 2), (8.114)

aq[h_g]—3" linit.tg

and this proves the condition (8.1c) in the definition of an expansion.
Consider the Taylor expansion terms (¢)_2); (¢ = 0,1,2,3). From the pointwise bound on the
1&@2 in inequality (6.39), one finds that there are the decay estimates, for ¢ € {0,...,3}, for t > to,

N@2)ilt W) S 07O (). (8.115)

For t > tg, this proves that there are the decay estimates for the expansion terms, which is

condition (8.1d). For ¢ < tg, the same argument applies using the decay estimate in equation
(8.81). Thus, condition (8.1d) holds for all ¢ € R.

From the assumptions on 1[42 and 1/3,2, lemmas 8.9 and 8.10 can be applied, and equation

(8.74) states the vanishing of the integral along .# of the 1/;(_12 From the relation between the 1/;(_12

and the (¢)_5); in equation (8.107), it follows that the integral of the (¢)_); along .# vanishes.

Thus, condition (8.1e) holds, and ¥_ has the desired expansion.
O

8.4. Estlmates in the exterior region. This section proves decay estimates for &’ @2, 7! CAv'l,
A, and Go in the exterior region 7 > ¢. The proof consists of three major components. Flrst
1[) 2 has an expansion by lemma 8.12. Second, the scalars ¢’ GQ, 7! Gl, ﬁ GO are related to each
other by the transport equations in the first-order formulation of the Einstein equation in lemma
3.8. Third, lemma 8.6 states that if the source for a transport equation has an expansion, then
the solution has an expansion and satisfies decay estimates. Thus, iterating through &6/, ég, 7
él, B’ , and éo one finds each of these has an expansion and decays.

The following indices are useful in this iteration process. These indices are such that, for ¢,
s[p] is the spin weight of ¢, and {[p] and m]p] will be the | and m arguments in the expansion of

®.
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Definition 8.13. Define

s[o] = -2, I[h—o] =3, m_s] =0, (8.116a)
slo’] = -2, o'l =2, m[6'] =0, (8.116b)
s[Ga) = —2, [[Ga] =1, m[Ga] = 0, (8.116¢)
s[i']= -1, 1+ =3, m[#'] = 2, (8.116d)
s[Gh) = — 1, 1[Gh] =0, m[G1] =0, (8.116¢)
s[B]= -1, 181 =2, m[f] = 3, (8.116f)
s[Go] = 0, I[Go] = 1, m[Go] = 2 (8.116g)
Y|

MP ] = l[g], m[MP ] = m[p].
Definition 8.14 (Initial data norms). Define the following set of dimensionless fields
& = {Mip_y,6', M~ Go, M#', MGy, 8/, MGy} (8.117)
For any k € N, define
= I (). (8.118)

1n1t init
ped

Lemma 8.15 (Exterior estimates). Consider an outgoing BEAM solution of the linearized Ein-
stein equation satisfying as in definition 8.2. There is a regularity constant K such that the
following hold. Let k € N such that k — K is sufficiently large. For ¢ € ®,
(1) ¢ has a (k — K, 1g),mle], 21[e] + 4=, I, [@]) eapansion,
(2) for q € {0,1} and t > to,
146§ @I\Wk Ko (2 S T[], (8.119)

L (Bto0) ™

(8) andt > tg and r > t,
|l p Sr2mielgpmlel =2l E, (o). (8.120)

Proof. For ease of presentation we will here use mass normalization as in definition 4.4, and
throughout this proof, K denotes a regularity constant that may vary from line to line.. The
overall strategy of this proof is to use the expansion for 1[),2 from lemma 8.12, the hierarchy of
transport equations (3.13), lemma 8.6 to conclude that solutions of the transport equation have
expansions if the source does, and lemma 8.7 when a transformation of the expansions for the
source is required. The details now follow.

From lemma 8.12, {_5 has a (k—K,3,0,10—, D[1/A),2]2) expans}on where D[1/A) 0% = Hﬁ]?t(w,g)
< IF . [®]. The decay estimates of the transition flux for ¢ = 1)_5 follow from integrating the

pointwise estimates (6.39) on Z; o, and making use of (8.80), while the pointwise decay estimates
(8.120) for ¢ = 1)_5 follow directly from the estimates (6.39) and (8.80).

. ~ . Ay 12Ryip_s Ry

Consider ¢’. The transport equation (3.13a) states that Y (¢') = ~/ - The factor ==

is a rational function in Ry /+/r? + a? of homogeneous degree 0. Thus, lemma 8.7 implies that

—% also has a (k — K, 3,0,10—,1E . [®]) expansion. Thus, lemma 8.6 implies that 6’ has a
(k— K,3—1,0,(10 — 2)—,IF .. [®]) expansion, that is a (k — K,2,0,8—,1F .. [®]) expansion.

» Hinit » Hinit
Consider G3. The transport equation (3.13b) states Y(ég) = —3& . From this, lemma 8.6
implies that G has a (k — K,2 — 1,min(0,3 — 1), (8 — 2)— ,IF . [®]) expansion, that is a (k —
K,1,0,6— ,]Ilmt[tl)]) expansion.
Consider 7. The transport equation (3.13c) states

k1(0 =271 + 27)6’

Y(’]A'/) = — 6%1/2

1
62 (k106" — 27K16" + 27 K167 . (8.121)
1/
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The operator k1 86’ can be expanded in terms of D with rational coefficients of order at most 0.
Thus, x1 06" has an expansion with indices (k— K, 2,0,8—,1F .. [®]) = (D% k—K,2,0,8—,1¢ .. [®]).
The terms —27k16’ and 27'k16’ have similar expansions, where the regularity index can be
trivially lowered to match that for k1 3 6’. The coefficient E;Q has homogeneous degree —2. Thus,
from the expansion for ', one finds that the right side of equation (8.121) has an expansion with

indices (k—,2+2,0+2,8+4—,1F . .[®]) = (k— K, 4,2,12+4— 1F .. [®]). Thus, 7' has an expansion

) “init ) “init
with indices (k — K,4 — 1,2, (12 — 2)—, I} . [®]) = (k — K, 3,2,10—, IF . [®]).
Consider G;. The transport equation (3.13d) states
~ 2/112%1/272/ H12E1/ (6 —T + 7_'/)@2
Y = . 122
(Gh) r2 + 2r2 (8.122)
The term involving 7/ has an expansion with indices (k— K,3—2,2—2, (10 —4)—, I .[®]) = (k —
K,1,0,6—,1¢ .. [®]). The term with G5 has an expansion with indices (k — K, 1,0,6—,1F . [®]) =
(k—K,1,0,6—,1% .. [®]). Thus, the right side has an expansion with indices (k—K, 1,0,6—,1F .. [®]),
and G has an expansion with indices (k—K,1—1,0, (6 —2)—,I¢ . [®]) = (k— K,0,0,4—,1% .. [®]).
Consider /. The transport equation (3.13e) states
~ 617’ éQHlT
Y(B) = . 8.123
(8" == (8.123)

The term involving Gy has an expansion with indices (k — K,0+ 3,0+ 3,4+ 6-) = (k —
K,3,3,10—,I% . [®]). The term involving G has an expansion with indices (k — K,1 + 3,0 +

’» Hinit

3,6 + 6,18, [®]) = (k — K,4,3,12—,IF . [®]). The first of these is more restrictive. Thus,
the right side has a (k — K, 3,3,10—,T¢ . [®]) expansion, and (' has an expansion with indices
(k K,3 1735 (10 7 2) 5]Ilkn1t[ ]) (k K’ 273 8— ’]Ilmt[q)])'
Finally, consider Gg. The transport equation (3.13f) states
. A A A = 91 270 (5 —7) B I \NA Qi Tors2 I NAr
e e c Y T Y A TN . A

3K1 r r r 3Ry r

(8.124)

Complex conjugation does not change the indices in an expansion. The terms involving Gh
have an additional level of regularity and coefficients with homogeneous degree —2, so that the
expansion has indices (k — K,0+ 2,0+ 2,4 +4— 1. [®]) = (k- K,2,2,8—,1F . [® ]) The terms
involving B’ also have one derivative but coefficients with homogeneous degree 0, so that the
expansion has indices (k — K,2,3,8—,1¢ .. [®]) = (k — K,2,3,8—,1F.[®]). Thus, the right side
has an expansion with indices (k — K, 2,2,8—,1¢..[®]), and Go has an expansion with indices

» “init

(k—K,2—1,2,(8—2)—,1F []) (k—K,1,2,6—,1F . [®]).

» Hnit » Hinit
For each of o GQ, 7! Gl, ﬁ GO, lemma 8.6 was applied to obtain the expansion. This lemma
also gives estlmates for the integral on Z; . and for pointwise norms. The pointwise bound
(8.21b) is stronger than the bound (8.21a), so in all cases, one can apply the bound (8.21a).
(Because of this observation, it is not necessary to track which of the two bounds holds, although
a carefully tracking of this would reveal that the bound (8.21b) never holds in this argument.) O

8.5. Estimates in the interior region.
Lemma 8.16. Let ¢ and ¢ be spin-weighted scalars which solve
Yo =y, (8.125)

and let 0 < a < @ be given. Let ty =ty + h(to).
Assume that fort > tg, a <a <@, g€ {0,1} and 1 <k € N, ¢ and o satisfy

2;a—a—2
1£8el3yn-as, ) S D 9 (8.126a)
2 0—T—2
1£¢ QHWk a(agenry S D7 9, (8.126h)
then, for t > tg, and o < o <@, the following holds. For g € {0,1},1 <k €N,
2a—a—2
[ [ S o ] ~s(qpensy S D7t 9, (8.127a)
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and for 4 <k €N, t > to, and (t,r,w) € QIeT

t,00 7

l1—a

_ o ot
|<10(tﬂ T, w)|k74,]]]) ,S D2%r 3¢ 3

(8.127b)

Remark 8.17. Let g be as in lemma 8.16. Then, for t > tg, ¢ is determined in Q%Y by o and

Ete(t),00

Proof. For ease of presentation we will here use mass normalization as in definition 4.4. For
t > to, the inequality (5.13) gives

||'C SDHWk Q(th) + ||'C QDHWK Q(Qnear)
S ILgelly- “(Eu o) T ||550Hwk a(apenr)
< Demem, (8.128)

which proves (8.127a). Here we have used (8.126) and te(t) ~ t.
The estimate (4.59) gives for ¢ > {,

a2 o 2 2
[r2elisp S lIr <P||Wfl(gitnt) S ||80||W§1+a(gitnt)- (8.129)

Since —1+a < a, we find, in view of (8.127a) that r 2 ¢ tends to zero as t ,* co. We can therefore
apply lemma 4.32 which gives

(3 o o
|7"2 ‘P|%74,]DJ s ||7"2 SQHWE;l(Qitr,‘;O)HTZ Lf@”wﬁ;l(gitr:go)

<|r® 80||Wﬁ;1(9gfg) T%LESﬁ”Wﬁ;l(ngg)
Lf@”w{f:i((z;‘f;ﬂ’ (8.130)

which using (8.127a) proves (8.127b). O

S lellwe-1 (penr

Lemma 8.18. There is a reqularity constant K such that the following holds. Consider an
outgoing BEAM solution of the linearized Finstein equation as in definition 8.2, with regularity
k € N and k — K sufficiently large. Let ¢ € @, let m[y], l[p] be as in definition 8.13, and set

alg] = 2max{mlg] - 1,04+, alg] = 2[¢] +2 - (8.131)
The following hold for t > tg.
(1) For q € {0,1}, and for all o satisfying

ale] < a <@y, (8.132)

there are energy and Morawetz estimates in the interior region,
[E AP 1L J i et (8.133a)
&0l apene) S e[ @712, (8.133b)

(2) There are pointwise-in-time estimates in the interior region,
lo(t,r Wik p S el EAHDHAILL, (o], (8.134)

Proof. For ease of presentation we will here use mass normalization as in definition 4.4. We put
all the equations of the system (3.13) into the form of (8.125), and denote the corresponding right
hand side of each equation of ¢ € {5’, @2, 7! (A?l,ﬁ CAT‘O} by o[¢]. The general strategy is to use
the estimate (6.42b) for LJ’L/J 2, the estimates (8.119) for the transition flux, and the lemma 8.16
applied to each transport equatlon in the system (3.13) to iteratively conclude that the estimates
(8.133) and (8.134) are valid. Since the part of the interior region {r < t}, to the future of Xjy;
and to the past of X7 is compact, we can without loss of generality state our estimates in terms
of T .. [®]. We will now discuss the proof of the energy and Morawetz estimate (8.133) for each
of the fields, and comment on the proof of the pointwise estimate (8.134) at the end of the proof.
For ease of reference, we recall for ¢ € @, the values of afy] and @[]
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¢ | aly] | aly]
—o | O+ 8-
6’ 0+ 6-
Gs | 0+ 4-
7 24+ 8-
Gy 0+ 2-
B 4t | 6
Go | 2+ 4-

In applying lemma 8.16, we shall freely make use of the fact that since » =t on the transition
surface =, the estimate (8.119) can be restated in the form with explicit time decay, (8.126a) with
the range of weights 04+ < o < @[], for ¢ € P.

The case 1)_o. From (6.42b), we get after a straightforward change of parameters, using 6— =
ali_s] - 2, for alp_s] < a < ald_a),

”[JQ,‘/) QHWk Koy S <o alp_o]— 2qun [ ], (8.135)
which is (8.133a). Further, from (6.40), taking the lower limit of the weight, « = 0+, multiplying
both sides by 2, using r < ¢ in the interior region, and reparametrizing, using 10— = a[ﬁ_g] +2,
gives

”ngszIQ/V(ffqu(Ei“t) 5 ta_a[w 2= 2qH{€n1t[ ] (8136)

which is (8.133b), and hence proves point 1 for ¢_s.

The case . From (8.119) we get (8.126a) for a[6'] < o < @[6”]. From (8.133b), for g[6"] = fi)_o
with f = Ox (1), we get after a reparametrization (8.126b) for the same range of weights. An
application of lemma 8.16 proves point 1 for &'.

The case ég. The argument for the 62 follows exactly the same pattern, which establishes point
1 for GQ.

The case 7'. From (3.13c), we have,

1£¢0

£l Myn—sc—a g ) S I1CESII

WK a (i) (8.137)

Making the substitution « —3 =a+1—2m[7'] = —1, or 8 = a — 2(m[7'] — 1), we find using
(8.133b) for &', after a reparametrization, that o[7’] satisfies (8.126b) for the range of weights
alf'] <a < a[ '], where

af#'] = a6’ + 2(m[#'] — 1) = 2+, (8.138a)
al#'] =ale’] + 2(m[#'] —1) = 8 —. (8.138b)

On the other hand, we have that (8.126a) holds for the range 0+ < a < @[#/]. We may thus
apply lemma 8.16 for the intersection of these ranges, a[7'] < a < @[#'] to prove point 1 for 7.

The case él. We have that

(el

2oy S N6 (8.139)

bt + IEGE

W @)’
We consider the second term on the right side first. Writing o+ 1 = 5 — 1 and using (8.133Db) for
G2, we have after a reparametrization,

”LgGQH;C’:;f*Q(Q?’m )~ < e (a[GQ] 2= 2q]Ilkm [ ]

(8.140)
for g[ég] —2<a< a[ég] — 2. Here we must restrict the lower limit to zero, which yields the
range 0+ < a < 2—. From the first term, we get after the substitution « —3 = 8 — 1 and using
the estimates for 7/,

L e L) (8.141)
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for the range a[7'] +2 < o < @[#'] + 2, and hence this term is negligible compare to the second
one. Thus we find that (8.126b) holds for p[G;] for the range of weights a[G1] < o < @|G4] with
a|G1] = 0+, @[G1] = 2—. This proves point 1 for Gj.

The case 8. We have
Hg[ﬁ/]llwk K Q(th ) ~ ||’ch1||W7¥‘*K*Q(Qint ) + ||LqG2||?/VK‘*K*Q(Qint ) (8142)

Making the substitution o —5 = $—1, we get estimates for the ranges o[G1]+4 < a < alGi]+4,
and a[G2]+4 <a< O([Gg] +4, respectlvely Here the case Gy gives the more restrictive range, and
we find that (8.126b) holds for p[3'] for the range a[f'] < a < @[f'] with a[f'] = 2(m[3] — 1)+ =
4+, E[B’] = QZ[B’] + 2— = 6—. This proves point 1 for B

The case éo. We have
Golll? b re—amt pim S NG h ko LB kg o - 8.143
HQ[ 0]||w§+f( q (Q;?;o) ~ || ¢ 1||w§7§( Q(Q?’l;o) + || 56 ||W§+f( Q(Q;r,x;o) ( )
Proceeding as above yields for the first term

162Gl < (o @I 20k (g) (8.144)

Wk K q(th )~

for the range g[@l] +2<a <G 1] +2,i.e. 24 < a < 4—. Analogously, for the second term we
get for the range a[f'] -2 < a <@[F] — 2, ie 24+ <a <4—,

”LgB HW" Foaqint ) ST (@l51-2)- 29 [@] (8.145)

This proves (8.126b) for the range a[Go] < a < @[Gy), with a[Go] = 2(m[Go] — 1)+ = 2+,
a[Go] = 21[Go] + 2— = 4—, and hence completes the proof of point 1 for ¢ € ®.
It remains to consider point 2. For ¢ € ®, this follows from (8.127b) with o = afy]. O

8.6. Proof of the main theorems 1.1 and 1.5. This section completes the proofs of the
theorems from the introduction.

Proof of theorem 1.5. If dg satisfies the linearized Einstein equation in the outgoing radiation
gauge and satisfies the basic decay condition of definition 1.3, then it corresponds to an outgoing
BEAM solution of the linearized Einstein equation as in definition 8.2. Thus, lemmas 8.15 and
8.18 can be applied. These yield that, for ¢ € {éi}fzo, and k € N sufficiently large,

ol < rm2emielmiel—2—2Ule e 2 (9] if r > t, (8.146)
¥ r2 max{m[«p]71,0}7t7(2l[ap]+3)+2 max{m[ap]fl,O}JrH{Cn—itQ [q)] ifr <t :
Equation (3.12) relates the él to the G40 by a rescaling by some rational factor that grows as a
particular power in 7, which will be denoted by p[y] in this paragraph. From definition 8.13 and
equation (3.12), the relevant parameters are given in the following table:

Thus, one finds in the exterior region

|Gaor|* S 22 (@), (8.147a)

Gror[? S v I (@), (8.147b)

|Goor|* S %t HIE2 (@), (8.147¢)
and, in the interior region,

|Gaor > S r 27tV 2 (@), (8.148a)

Gro > STt (@), (8.148b)

|Goor|? < r 4t 312 [a]. (8.148c)
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Recall that the fields ¢ € ® are defined in terms of the linearized metric dg,p and its derivatives
up to second order as specified in section 3.1. From these definitions, and using (1.10) to define
1691l 2% (51s0)» 1t is straightforward to verify that

Lo (2] S 10901k 5y (8.149)
This completes the proof of theorem 1.5. (I
Proof of theorem 1.1. From [30], it is known that, for |a|/M sufficiently small, and k € N suffi-

ciently large, the BEAM condition for 1[),2 from definition 6.8 holds, and, also, the BEAM condi-
tion 2 for 9,5 from definition 7.1 holds. Moreover, there is a bound IF 3 1(1p+2) < H(Sg||H,€(E )

init
which is finite by the assumption. Thus, theorem 7.8 implies, for |a|/M sufficiently small, the
pointwise condition 3 for 1/;+2 from definition 7.1 holds. The BEAM condition from definition 6.8
for 1[),2 and the pointwise condition 3 from definition 7.1 for 7,/;+2 imply the basic decay conditions
of definition 1.3. Since the basic decay conditions of definition 1.3 holds for |a|/M sufficiently
small, theorem 1.5 immediately implies the desired estimates, which completes the proof. ([
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APPENDIX A. FIELD EQUATIONS

A.1. Linearized Einstein vacuum equations. In this appendix, we give the component form
in GHP notation of the linearized Einstein field equations which are used in this paper. The
structure equations (3.2) in general takes the form

B=50b+2p—p)Gia — (b +p = 20")Gor — §(0+27 = 27)Grvv + (0" =7+ 7)Goo + 150 &,
(A.la)

B = = 1(b+p—2p)Gar + (' +20" — ) Gro + O +7 — 7)Gaor — (0 =27 +27) G/
+L9¢, (A.1b)
é¢=1(b+2p-2p)Gr — 3 (V' +p" = P )Goor — (0427 — 7)Gro + 1(0' =27 +7)Gorr + %_%Ablz:;

&= i(b +p —p)Gao + %(b/ +2p" = 20" )Gy + i@ +7 = 27)Gar — i(al —7+27)Gr
+ 15 D' &, (A.1d)
&= 1(b-2p)Gor — £(0—7)Goo, (A.le)
R = %(b/ —2p')Gor — 5(0' —7)Ga, (A.1f)
p= —3Goop + 3G +5(b—2p)Grr — 5(0—7)Gro — 5 b &, (A.lg)
p'= —3pGay + 37Gov + 5(b' =27)G11 — 3(0 —7)Grz — 5 ' &, (A.1h)
& = 3(b—p)Goz — 5(@—27")Gov, (A.1i)
& =L —§)Gao — 38 —27)Gor, (A1)

= — %plGoy + %T/GOQI + %(b —ﬁ)Glgl — %(6 —277'/)6'11/ — %6$, (A H{)
= — épGgl/ + %TGQ()/ =+ %(bl *ﬁ/)Glol — %(6/ 727_')G11/ — é 6/ $ (A 11)

il

Rl
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The linearized vacuum Einstein equations (3.3b) and (3.3c) are

~(b—p =P+ (b—p =) — (V= )et+ (W~ D)5+ (@7 7

— @7 =)+ (@ -7 -1 - (@ -7 —1)F, (A.2a)
0=(p —p)6 — (0—7)F — 1Gox Vs + 275, (A.2b)
0= (b’ —0)B+ (B —7)& + Gy — 7 — p'7, (A.2¢)

- =0 +@—-1)F — —\IIQGQQ’ +2¢p, (A.2d)
0= —(b—p)p+ (0 —7")k — 5¥2Goo + 2¢p, (A.2e)
0= —Lb—p+p)f+i® ' +7)i—3@—7+7)p+ 10 +7 - 7)6 — 3VaGor + Bp + e,

(A.2f)
0=(b—p)f + (0 —7")é + UsGro — 7'p — p7', (A.2g)
0=3(b—p+p)&+ 30 =o'+ 7N+ 30 -7 +7)8 + 30 +7 = 7)8 + WoGrr — 305 — 307

— 277 — 377, (A.2h)
0=(p P)5/ - (81 *7/)7:/ - %\IIQGQO’ + 27/5/, (A.2i)
O=ib—p+p)i — L1 —p +0)7 +1@-1+7)5 — 3@ +7 - 7)) — LWaGor + p'B + 7€

(A.2j)
The remaining Ricci relations (3.3d) are
Vo = (b—p) — (3 -7k, (A.3a)
U1 = 3(b+p—p)B+ 1 (b+p—p)F — F(B' +3p' = §)R — 3 (047 — 7)e— (0 +7 —7)p
+ 10" =7+ 37)3, A.3b)
Wy = — Ui — 5 (b+2p — p)& — 5(b+2p — p)F — 3(P' +20" — p)e— (b +20 — )

+3@+2r —7)F + F@+2r — 7)F + 30 -7+ 27)B+ F(0 -7+ 27)F, (A3
1(b+3p = )R + 5 (b +p' = 05 + 3B +0 = D)7 + 1 (0437 — )5
(8I*T+T) & — 10 —7+71)0, (A.3d)
20y = ()5 — (@ 7).

We also have the commutator relations (3.3a)

0=2(b—p—p)B—(b+p—p)7+ b —p =)k —20 -7 —7)e+ (O +7—7)5— (0 -7 — )&

Dy =

N[ »Jkl

(A.4a’)
0= —(b=p)F + (' =75+ (077 — (0 =7)7 + 2p& — 2p'e — 273’ + 273, (A.4b)
—(b—p—p)F —206"—p =P )B' + (b +p' — P)F + (-7 —7)& +2(0 -7 — )¢

- @ -7+, (A.dc)

and reality conditions $44 = $44

EF=¢—p B_F=j -7, B -F=f—7 T_T=¢—j. (A.5)
Furthermore, the linearized vacuum Bianchi equations (3.3e) take the form
0= (13/ —pl)ﬂ\lfo — (8 —47‘)19‘1’1 — %\Ifngogl — 3Wy0 + %\1127’001/, (A6a)
0= (b/ 72[/)19\1/1 — (5 *37’)19\1/2 + 3G12¥ap + %\ng/Goy —3G11/ VYT — %\IIQT/GOQ/ + 3WaT,
(A.6b)
0= (13/ —Spl)ﬂ\lfg — (6 —27‘)19‘1’3 — %\IIQPGQQ/ — S\IIQpIGH, — 3\I/2ﬁ/ + %\1127’021/ + 3‘1’2T’G12/,
(A.6¢)
0= (13/ —4p/)19\113 — (6 —7‘)19‘1’4 + 3\112,‘7&/ + %‘I’Qp/Ggl/ — %\IIQT/GQQ/, (AGd)

0= (p—4p)9¥;, — (3" —7" )9V + 3Wsi + 3WpGor — 3VsTGoor, (A.6e)
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0= (13 —3p)19\112 — (6/ —27'/)19\111 — 3\I/2pG11/ — %\IIQP/GOO/ - 3\I/2ﬁ + 3‘1’27‘G10/ + %WQT’GOl/,

(A.6f)
0= (p—2p)9V¥5 — (3" =37")9Ws + 3WspGars + 3Vsp'Gro — 3WorGay — 3UaT' Gr1/ + 3Us7F,

(A.6g)
0= (pb—p)9W4 — (0" —47")IV3 — 3Wsp' Gy — 3W26" + 3Us7'Goyr. (A.6h)

A.2. Linearized Einstein field equations in ORG. A calculation using the relations (3.8b)
and (3.9) yield the following lemma, which we state for completeness. Observe however that the
proof of lemma 3.8 is directly referring to the equations in appendix A.1.

Lemma A.1. Under the ORG condition the vacuum linearized Finstein equations can be orga-
nized as the transport equations

b Goy = —4E+2p — 2p — 2G0T — 2Go1 T + Gou 7' + Gro 7, (A.7a)
(b’ —p")Gorr = — Goor 7 + 27, (A.7b)
(b' =p")Goz = 257, (A.Tc)
(b’ —p)Gro = — Gog7 + 27 (A.7d)
(b' —p")Gaor = 257, (A.7e)
(B —p + )7 =260 + (@ -1 +7)5, (A.7f)
(b =20 = )3 = p'7 — p'F + (0-7)5, (A.7g)
(b’ —=p')a" = 0y, (A.7h)

(b —p' = P)p=ép +& + 1Goop'P + 287+ $Gr0p'T — Govp'T' — LG 7T + 7F
— @7, (A7)

(b'+0")F = 3Go1¥s + Go%fml/ —2Bp — 2Gov pp’ — 261 — $Goo p'T + L Goz p7’

+ Goppr' + 370 —7 —7)Gor + (-7 +7)p— (0 +7 — 27')6 — 39’ 0 Goor,
(A.T))
(b’ —20)é = B'1 — BT — B’ — LGorp't' + LGoo7? — F7 — (@ -1 — 7)F, (A.7K)
(b —p")B = — 3Gorp” + $Goa p'7, (A.T])

(b =05 = 3Go2 Vs — Go%lel + $Goz pp’ — 3Goxpp' — 267 — 30/ (0 +7)Gov
+ 178Gz, (A.7m)
(b' —4p") 93 = (0 - )19‘1'4, (A.Tn)
(b' =3p" )00y = (0 —27)0Ws, (A.70)
(b' =20 )0%;1 = (3 —37)0Ws, (A.7p)
(b’ —p" )9y = §G02/\Ilgp + 3Uy0 — —Goylllgr + (0 —47)90y, (A.7q)

together with the set
B=—1Gop + 3Goup — 17 + 1(@ +7)Goo, (A.8a)
B = 1Giop + 37 + (0 -7)Gao, (A.8D)
R = 5(b—2p)Gov — 3(8-7)Goo, (A.8c)
p= —2Goop + 1Gou 7 — 3(0-7)Gro, (A.8d)
&=1(b-p)Gox — 3(0—-27)Gov, (A.8e)
7= —1Gorp + 3G, (A.8f)
(b—p)p = — 3Goo Vs + 2¢p + (0 —7')R, (A.8g)
(b—2p—p)B = — 3Gor (V2 + pp’ — pp') + ip + 3Goz (p— p)7 + (0 —F)é + (8 —7')5 — 3 j,

(A.8h)
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(b—p)B' = = Gro Vs + pr’ + p7' — (' —7')é, (A.81)
(b—p)5’ = 3Go0 Wy — 287" + (' —7')7, (A.8j)
=p+p)—pp— @7 + @ -2\ +3p, (A.8K)
Iy = (b—p)5 — (3 —7)F, (A.8])
VU, = —kp +57 4+ (b—p)B — (37, (A.8m)
Iy = — 280" + 267" + (377, (A.8n)
Iy =260 + (p — g7 +3d, (A.80)
0 =3Uy%k + %Goylllgp — %Goorllfgr + (b —4p)9¥; — (0 —7")IW,, (A.8p)

0= —2Gooy Wop' — 3Usp + 3G10VaT + 2Go1 War’ + (b —3p)9Vs — (3" —27")90y,
(A.8q)
0 =3G10Vap' — 3Ga0 Vot + 3Wa7 + (b —2p)9 W3 — (8 —37)0 W, (A.8r)
0= —3Ga0Uap' —3U25" + (b —p)IVy — (0 —47")I V3, (A.8s)

and the reality conditions

—p=i-p f-F=pf -7, G -F=p-7 (A.9)

™l

APPENDIX B. LINEARIZED PARAMETERS

B.1. Linearized parameters in ORG.

B.1.1. Linearized mass. Performing a variation 6 M of the mass parameter of the Kerr metric in
Eddington-Finkelstein coordinates yields

dng

Sgap = — —T 5, (B.1)
which satisfies the ORG condition. Thus, we have in the Znajek tetrad, the only non-vanishing
metric component is Goyr = —4r¥~16M. The only non-vanishing components of the linearized

connection, cf. (3.4) and curvature are

1 iv2arsin 6 2r oM
‘ 9\/5%12 ’ " 9’1122 ’ P 3!112 ’ 2 27%13 ( )
The rescaled metric components are

Gy =0, Gy =0, Go= — Z0M. (B.3)

B.1.2. Linearized angular momentum. Performing a variation da of the angular momentum pa-
rameter per unit mass a of the Kerr metric in Eddington-Finkelstein coordinates and transforming
to ORG gauge'? yields in the Znajek tetrad the non-vanishing components

4Ma(l + cos? O)r 2iMrsin6 2iMrsind
;= ) i) = ————da. B4
Goo w2 a,  Go Sy 0 Gio 3y ¢ (B.4)
The non-vanishing components of the linearized connection and curvature are
G M sint95a7 5= iM sin (k1 + 2E1/)5a, (B.5)
6\/5:“&12 6\/5!%122
s iMrsin@(sa, = 1M sin 6 a. (B.5b)
V2x? 27v/2k13
Mar sin® 0 M (a® + 1r2)sin 6
oo Mo, ou, = e L)l (B.5¢)
3v2k, 22 48611
M (a + ircosf) iM sin 0
Wy = ————F—24 I3 = — ——da. B.5d
2 81k1° @ 3 5454 a ( )

V2ar sin2 0 i
T x MeT 45

V2

13The generator for the transformation is v, = sin@mg + % sin O0mg.
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The rescaled metric components are

~ ~

Gi = — £iV2M sin6sa,

INDEX

|- [rx, 27

| ' |gE7 3

[l - ||WJ;(Q); 27

- llwe(s2y, 27
- w sy, 27
||'HFkL¢jw¢)’28
[+ e (s), 27

I N e (Simie) s 3
<,25

8,8, 11
B, 22

8.8, 20
B, 5, 27

Chyp, 3

A, 2,10
0gab, 2, 19
6§aba 2

dZu, 25
du, 5, 25
d3u,, 5, 25, 55
d?’p,y, 25
d4u, 5, 25
D+, 16
D, 5, 27
D, 5, 27

EL, 5, 55
€€, 11
&, 20
n*, 2,11
5,8, 4,13

Go, G, G, 22
Gab, 2

Gior, 2
Gapap, 19

@, 19

h(r), 3,15
H", 3
S, 2
H,18

i, 3
I (), 27

I*,, 55
7,3

. 2Ma(1 + cos? )
Go= 22 T2 )
81X

I+, 18
It 18

K, k', 11
k1, 10, 11
kaB, 10
7,7, 20

12,2, 10
A 11
£y, 13
e, 13
e, 13

me, 2, 10
M, 2

n®, 2,10

O (+), 25
Qtl ytos 17
Q5 16

Qext 17

ti,t2

Qint 17

ti,t27

Qnear 1 8

V1,00

D, 86
Sﬁi?@rem;j; 70
¢\, 53

@ia (ﬁrem;j; 70
PFe 28
YW, 3

YWy, 3

YW agcD, 19
Uyg, 4, 21
Yoo, 4
Voo, P, 21
¢%), 64

U5, 10, 11
Yapep, 10

aBcar, 19
Paar, 19

R, 14

p,p's 11
ps s 20
T+, 2

da.
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R, 4 7', 22

R, 13 7,24

Ty, 16 7,7, 20

tpr, 16

. 2. 10 (t), 26

o,0, 11 twet, 3

inity 3 t, 3

&', 22 te(v1), 18

5,6, 20

S, 27 V, 4,13

Q.. 13 Ve 14

g ‘11’313 Wk(Q), 27

z‘z’ 17 Wi(SﬁT), 27

Egct’ 17 W’Y (2), 27

e, 17 €, 2,10

Dinit, 16 Sty 17

s[-], 86

Y, 4,13

7 11 ve, 14

REFERENCES

[1] S. Aksteiner, L. Andersson, and T. Backdahl, “New identities for linearized gravity on the
kerr spacetime,” Phys. Rev. D 99, 044043 (2019), arXiv:1601.06084 [gr-qc] .

[2] L. Andersson, T. Béckdahl, and P. Blue, “Spin geometry and conservation laws in the
Kerr spacetime,” in One hundred years of general relativity, edited by L. Bieri and S.-T.
Yau (International Press, Boston, 2015) pp. 183-226, arXiv:1504.02069 [gr-qc] .

[3] L. Andersson and P. Blue, “Hidden symmetries and decay for the wave equation on the Kerr
spacetime,” Ann. of Math. (2) 182, 787-853 (2015), arXiv:0908.2265 [math.AP] .

[4] L. Andersson and P. Blue, “Uniform energy bound and asymptotics for the Maxwell field on
a slowly rotating Kerr black hole exterior,” J. Hyperbolic Differ. Equ. 12, 689-743 (2015),
arXiv:1310.2664 [math.AP] .

[5] L. Andersson, P. Blue, and J. Wang, “Morawetz estimate for linearized gravity in
Schwarzschild,” (2017), arXiv:1708.06943 [math.AP] .

[6] L. Andersson, S. Ma, C. Paganini, and B. F. Whiting, “Mode stability on the real axis,”
J. Math. Phys. 58, 072501 (2017), arXiv:1607.02759 [gr-qc] .

[7] Y. Angelopoulos, S. Aretakis, and D. Gajic, “A vector field approach to almost-
sharp decay for the wave equation on spherically symmetric, stationary spacetimes,”
Ann. PDE 4, Art. 15, 120 (2018), arXiv:1612.01565 [math.AP] .

[8] T. Bickdahl, “SymManipulator,” (2011-2018), http://www.xact.es/SymManipulator.

[9] T. Backdahl and S. Aksteiner, “SpinFrames,” (2015-2018), http://xact.es/SpinFrames.

[10] T. Béckdahl and J. A. Valiente Kroon, “A formalism for the calculus of variations with
spinors,” J. Math. Phys. 57, 022502 (2016), arXiv:1505.03770 [gr-qc] -

[11] D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space,
Princeton Mathematical Series, Vol. 41 (Princeton University Press, Princeton, NJ, 1993)
pp. x+514.

[12] P. T. Chrusciel, J. L. Costa, and M. Heusler, “Stationary Black Holes: Uniqueness and
Beyond,” Living Reviews in Relativity 15, 7 (2012), arXiv:1205.6112 [gr-qc] .

[13] M. Dafermos, G. Holzegel, and I. Rodnianski, “The linear stability of the Schwarzschild
solution to gravitational perturbations,” (2016), arXiv:1601.06467 [gr-qc] .

[14] M. Dafermos, G. Holzegel, and I. Rodnianski, “Boundedness and decay for the Teukolsky
equation on Kerr spacetimes I: the case |a| < M,” (2017), arXiv:1711.07944 [gr-qc] .

[15] M. Dafermos and I. Rodnianski, “A new physical-space approach to de-

cay for the wave equation with applications to black hole spacetimes,” in
XVIth International Congress on Mathematical Physics (World Sci. Publ., Hackensack, NJ,


http://dx.doi.org/ 10.1103/PhysRevD.99.044043
http://arxiv.org/abs/1601.06084
http://dx.doi.org/ 10.4310/SDG.2015.v20.n1.a8
http://arxiv.org/abs/1504.02069
http://dx.doi.org/ 10.4007/annals.2015.182.3.1
http://arxiv.org/abs/0908.2265
http://dx.doi.org/10.1142/S0219891615500204
http://arxiv.org/abs/1310.2664
http://arxiv.org/abs/1708.06943
http://dx.doi.org/10.1063/1.4991656
http://arxiv.org/abs/1607.02759
http://dx.doi.org/ 10.1007/s40818-018-0051-2
http://arxiv.org/abs/1612.01565
http://www.xact.es/SymManipulator
http://xact.es/SpinFrames
http://dx.doi.org/ 10.1063/1.4939562
http://arxiv.org/abs/1505.03770
http://dx.doi.org/10.12942/lrr-2012-7
http://arxiv.org/abs/1205.6112
http://arxiv.org/abs/1601.06467
http://arxiv.org/abs/1711.07944
http://dx.doi.org/10.1142/9789814304634_0032

STABILITY FOR LINEARIZED GRAVITY ON THE KERR SPACETIME 97

2010) pp. 421432, arXiv:0910.4957 [math.AP] .

M. Dafermos, I. Rodnianski, and Y. Shlapentokh-Rothman, “Decay for solutions of the
wave equation on Kerr exterior spacetimes. III: The full subextremal case |a|] < M.”
Ann. Math. (2) 183, 787-913 (2016), arXiv:1402.7034 [gr-qc] .

R. Donninger, W. Schlag, and A. Soffer, “On pointwise decay of linear waves
on a Schwarzschild black hole background,” Comm. Math. Phys. 309, 51-86 (2012),
arXiv:0911.3179 [math.AP] .

M. Eastwood and P. Tod, “Edth-a differential operator on the sphere,”
Math. Proc. Cambridge Philos. Soc. 92, 317 (1982).

F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, “Decay of solutions of the wave equation
in the Kerr geometry,” Comm. Math. Phys. 264, 465-503 (2006), arXiv:gr-qc/0504047 .

F. Finster and J. Smoller, “Linear stability of the non-extreme Kerr black hole,”
Adv. Theor. Math. Phys. 21, 1991-2085 (2017), arXiv:1606.08005 [math-ph] .

J. Frauendiener and L. B. Szabados, “The kernel of the edth operators on higher-genus
spacelike 2-surfaces,” Class. Quant. Grav. 18, 10031014 (2001), arXiv:gr-qc/0010089 .

H. Friedrich, “On the existence of n-geodesically complete or future com-
plete solutions of Einstein’s field equations with smooth asymptotic structure,”
Comm. Math. Phys. 107, 587-609 (1986).

R. Geroch, A. Held, and R. Penrose, “A space-time calculus based on pairs of null directions,”
J. Math. Phys. 14, 874-881 (1973).

G. Harnett, “The GHP connection: a metric connection with torsion determined by a pair
of null directions,” Class. Quant. Grav. 7, 1681-1705 (1990).

P. Hintz and A. Vasy, “The global non-linear stability of the Kerr—de Sitter family of black
holes,” Acta Math. 220, 1-206 (2018), arXiv:1606.04014 [math.DG] .

P.-K. Hung, J. Keller, and M.-T. Wang, “Linear Stability of Schwarzschild Spacetime: Decay
of Metric Coeflicients,” (2017), arXiv:1702.02843 [gr-qc] .

R. P. Kerr, “Gravitational Field of a Spinning Mass as an Example of Algebraically Special
Metrics,” Phys. Rev. Lett. 11, 237-238 (1963).

S. Klainerman and J. Szeftel, “Global Nonlinear Stability of Schwarzschild Spacetime under
Polarized Perturbations,” (2017), arXiv:1711.07597 [gr-qc] .

S. W. Leonard and E. Poisson, “Radiative multipole moments of integer-spin fields in curved
spacetime,” Phys. Rev. D 56, 4789-4814 (1997), arXiv:gr-qc/9705014 .

S. Ma, “Uniform energy bound and Morawetz estimate for extreme components of spin
fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity,” (2017),
arXiv:1708.07385 [gr-qc] .

S. Ma, “Analysis of Teukolsky equations on slowly rotating Kerr spacetimes,”
Ph.D. Thesis, Potsdam University (2018).

J. Metcalfe, D. Tataru, and M. Tohaneanu, “Pointwise decay for the Maxwell field on black
hole space-times,” Adv. Math. 316, 53-93 (2017), arXiv:1411.3693 [math.AP] .

C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman and Co., San
Francisco, Calif., 1973) pp. ii+xxvi+1279+iipp.

E. Newman and R. Penrose, “An Approach to Gravitational Radiation by a Method of Spin
Coefficients,” J. Math. Phys. 3, 566-578 (1962).

R. Penrose and W. Rindler, Spinors and Space-time I & 11, Cambridge Monographs on
Mathematical Physics (Cambridge University Press, Cambridge, 1986).

L. R. Price, K. Shankar, and B. F. Whiting, “On the existence of radiation gauges in Petrov
type II spacetimes,” Class. Quant. Grav. 24, 2367-2388 (2007), arXiv:gr-qc/0611070 .

Y. Shlapentokh-Rothman, “Quantitative Mode Stability for the Wave Equation on the Kerr
Spacetime,” Ann. Henri Poincaré 16, 289-345 (2015), arXiv:1302.6902 [gr-qc] .

A. A. Starobinskii and S. M. Churilov, “Amplification of electromagnetic and gravitational
waves scattered by a rotating “black hole”,” Sov. Phys—JETP 38, 1 (1974).

H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt,
Ezact Solutions of Einstein’s Field Fquations, 2nd ed., Cambridge Monographs on Math-
ematical Physics (Cambridge University Press, 2003).


http://arxiv.org/abs/0910.4957
http://dx.doi.org/ 10.4007/annals.2016.183.3.2
http://arxiv.org/abs/1402.7034
http://dx.doi.org/ 10.1007/s00220-011-1393-8
http://arxiv.org/abs/0911.3179
http://dx.doi.org/ 10.1017/S0305004100059971
http://dx.doi.org/10.1007/s00220-006-1525-8
http://arxiv.org/abs/gr-qc/0504047
http://dx.doi.org/ 10.4310/ATMP.2017.v21.n8.a4
http://arxiv.org/abs/1606.08005
http://dx.doi.org/ 10.1088/0264-9381/18/6/303
http://arxiv.org/abs/gr-qc/0010089
http://dx.doi.org/10.1007/BF01205488
http://dx.doi.org/10.1063/1.1666410
http://dx.doi.org/10.1088/0264-9381/7/10/004
http://dx.doi.org/10.4310/ACTA.2018.v220.n1.a1
http://arxiv.org/abs/1606.04014
http://arxiv.org/abs/1702.02843
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://arxiv.org/abs/1711.07597
http://dx.doi.org/10.1103/PhysRevD.56.4789
http://arxiv.org/abs/arXiv:gr-qc/9705014
http://arxiv.org/abs/1708.07385
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414781
http://dx.doi.org/ 10.1016/j.aim.2017.05.024
http://arxiv.org/abs/1411.3693
http://dx.doi.org/10.1063/1.1724257
http://dx.doi.org/10.1017/CBO9780511564048
http://dx.doi.org/ 10.1088/0264-9381/24/9/014
http://arxiv.org/abs/gr-qc/0611070
http://dx.doi.org/10.1007/s00023-014-0315-7
http://arxiv.org/abs/1302.6902
http://www.jetp.ac.ru/cgi-bin/dn/e_038_01_0001.pdf
http://dx.doi.org/ 10.1017/CBO9780511535185

98

L. ANDERSSON, T. BACKDAHL, P. BLUE, AND S. MA

[40] J. Sterbenz and D. Tataru, “Local energy decay for Maxwell fields Part I: Spherically

symmetric black-hole backgrounds,” Int. Math. Res. Not. IMRN , 3298-3342 (2015),
arXiv:1305.5261 [math.AP] .

[41] D. Tataru and M. Tohaneanu, “A local energy estimate on Kerr black hole backgrounds,”

Int. Math. Res. Not. IMRN , 248-292 (2011), arXiv:0810.5766 [math.AP] .

[42] S. A. Teukolsky, “Rotating Black Holes: Separable Wave Equations for Gravitational and

Electromagnetic Perturbations,” Phys. Rev. Lett. 29, 1114-1118 (1972).

[43] S. A. Teukolsky and W. H. Press, “Perturbations of a rotating black hole. III - Interaction

of the hole with gravitational and electromagnetic radiation,” ApJ 193, 443-461 (1974).

[44] M. Walker and R. Penrose, “On quadratic first integrals of the geodesic equations for type

{2,2} spacetimes,” Comm. Math. Phys. 18, 265-274 (1970).

[45] B.F. Whiting, “Mode stability of the Kerr black hole,” J. Math. Phys. 30, 1301-1305 (1989).
[46] R. L. Znajek, “Black hole electrodynamics and the Carter tetrad,”

Mon. Not. R. Astron Soc. 179, 457-472 (1977).

E-mail address: laan@aei.mpg.de

ALBERT EINSTEIN INSTITUTE, AM MUHLENBERG 1, D-14476 PoTspAM, GERMANY

E-mail address: thomas.backdahl@oru.se

SCHOOL OF SCIENCE AND TECHNOLOGY, OREBRO UNIVERSITY, SE-701 82 OREBRO, SWEDEN
ALBERT EINSTEIN INSTITUTE, AM MUHLENBERG 1, D-14476 PoTsDAM, GERMANY

E-mail address: p.blue@ed.ac.uk

MAXWELL INSTITUTE AND THE UNIVERSITY OF EDINBURGH, PETER GUTHRIE TAIT ROAD, EDINBURGH, EH9

3FD, UK

E-mail address: siyuan.ma@sorbonne-universite.fr

LABORATOIRE JACQUES-LOUIS LIONS, UNIVERSITE PIERRE ET MARIE CURIE, 4 PLACE JUSSIEU, 75005 PARIS,

FRANCE

ALBERT EINSTEIN INSTITUTE, AM MUHLENBERG 1, D-14476 PoTsSDAM, GERMANY


http://arxiv.org/abs/1305.5261
http://dx.doi.org/ 10.1093/imrn/rnq069
http://arxiv.org/abs/0810.5766
http://dx.doi.org/10.1103/PhysRevLett.29.1114
http://dx.doi.org/10.1086/153180
http://dx.doi.org/10.1007/BF01649445
http://dx.doi.org/10.1063/1.528308
http://dx.doi.org/ 10.1093/mnras/179.3.457

	1. Introduction
	2. Geometric preliminaries
	2.1. Notation and conventions
	2.2. Geometry of Kerr
	2.3. Operators on spin-weighted scalars
	2.4. Time functions
	2.5. Compactified hyperboloidal coordinates

	3. The linearized Einstein equation
	3.1. First order form of the linearized Einstein equations
	3.2. Outgoing radiation gauge
	3.3. Equations of linearized gravity in the boost weight zero formalism
	3.4. The Teukolsky equations
	3.5. The Teukolsky-Starobinsky identity

	4. Analytic preliminaries
	4.1. Conventions and notation
	4.2. Conformal regularity
	4.3. Norms
	4.4. Basic estimates

	5. Weighted energy estimates
	5.1. A hierarchy of pointwise and integral estimates implies decay
	5.2. Spin-weighted transport equations
	5.3. Spin-weighted wave equations
	5.4. Spin-weighted wave equations in higher regularity
	5.5. Spin-weighted wave equations in the early region

	6. The spin-weight -2 Teukolsky equation
	6.1. Extended system
	6.2. Basic energy and Morawetz (BEAM) condition
	6.3. Decay estimates
	6.4. Improved decay estimates

	7. The spin-weight +2 Teukolsky equation
	7.1. Basic assumptions
	7.2. The estimates

	8. The metric and core connection coefficients
	8.1. Expansions at infinity and transport equations
	8.2. Integration on Scri+ and the Teukolsky-Starobinsky identity
	8.3. Expansion for the spin-weight -2 Teukolsky scalar
	8.4. Estimates in the exterior region
	8.5. Estimates in the interior region
	8.6. Proof of the main theorems 1.1 and 1.5
	Acknowledgements

	Appendix A. Field equations
	A.1. Linearized Einstein vacuum equations
	A.2. Linearized Einstein field equations in ORG

	Appendix B. Linearized parameters
	B.1. Linearized parameters in ORG

	Index
	References

