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Abstract 

Glycosphingolipids are major constituents of cellular membranes, fulfilling both structural and 

functional roles. Modifications of the basic glycosphingolipid glucosylceramide (GlcCer) result 

in numerous complex glycosylated and sialylated glycosphingolipids, which are highly 

abundant in the central nervous system (CNS). Glycosphingolipid homeostasis is tightly 

regulated and the non-lysosomal glucosylceramidase GBA2 plays a central role as it 

hydrolyzes GlcCer to glucose and ceramide. Recently, mutations in GBA2 have been identified 

in human patients suffering from autosomal-recessive cerebellar ataxia (ARCA), hereditary 

spastic paraplegia (HSP), or Marinesco-Sjögren-like Syndrome (MSLS). How these mutations 

impair enzyme function and might cause locomotor dysfunction is not known. I could show that 

all these mutations – beside one – cause a complete loss of GBA2 activity, indicating that also 

the human patients potentially lack GBA2 activity. Detailed analysis of the structure-function 

properties of GBA2 revealed that its activity is encoded in the protein’s tertiary structure, 

including the N-terminal domain, linker region, and C-terminal domain. GBA2 proteins interact 

and form oligomers, a characteristic that might also be crucial for enzyme function. However, 

in vivo experiments did not reveal severe locomotor dysfunction or morphological defects in 

the cerebellum in GBA2-knockout mice, pointing towards species-dependent differences in 

GBA2-regulated metabolism of GlcCer and GlcCer metabolites in the CNS. However, acute 

pharmacological inhibition of GBA2 in murine cerebellar neurons in vitro impairs neurite 

outgrowth, suggesting a potential mechanism how loss of GBA2 activity results in ataxia and 

spasticity in ARCA, HSP, and MSLS patients carrying mutations in GBA2. In vivo in the mouse, 

compensatory mechanisms might occur, preventing severe neurological manifestation after 

genetic loss of GBA2. 

 



 

 
 

  

 



 

 
 

Zusammenfassung 

Glycosphingolipide sind Hauptbestandteile zellulärer Membranen und erfüllen sowohl 

strukturelle als auch funktionelle Aufgaben. Modifizierungen des einfachen Glycosphingolipids 

Glucosylceramid (GlcCer) bringen zahlreiche komplexe glycosylierte und sialylierte 

Glycosphingolipide hervor, die besonders im zentralen Nervensystem (ZNS) vorkommen. Die 

Glycosphingolipid-Homöostase unterliegt einer starken Regulation, wobei die nicht-

lysosomale Glucosylceramidase GBA2 eine zentrale Rolle spielt, da sie GlcCer zu Glucose 

und Ceramid hydrolysiert. Kürzlich wurden Mutationen im GBA2-Gen in Patienten identifiziert, 

die an autosomal-rezessiver cerebellärer Ataxie (ARCA), hereditärer spastischer Paraplegie 

(HSP) oder dem Marinesco-Sjögren-ähnlichen Syndrom (MSLS) leiden. Ob und wie diese 

Mutationen die Funktion des Enzyms beeinträchtigen und möglicherweise die lokomotorische 

Dysfunktion in ARCA, HSP und MSLS verursachen, ist nicht bekannt. Ich konnte zeigen, dass, 

bis auf eine, all diese Mutationen zu einem kompletten Funktionsverlust von GBA2 führen, was 

darauf hinweist, dass auch in den Patienten ein Verlust der GBA2-Aktivität zu verzeichnen ist. 

Eine detaillierte Analyse der strukturellen und funktionellen Eigenschaften von GBA2 zeigte, 

dass die Aktivität in der tertiären Proteinstruktur, einschließlich der N-terminalen Domäne, der 

Linker-Region und der C-terminalen Domäne, kodiert ist. GBA2-Proteine interagieren 

miteinander und bilden oligomere Komplexe, eine charakteristische Eigenschaft, die auch für 

die Funktion des Enzyms wichtig sein könnte. In vivo Experimente, zeigten jedoch keinen 

eindeutigen Defekt in der lokomotorischen Funktion oder morphologische Veränderungen des 

Cerebellums in GBA2-knockout Mäusen, was womöglich auf spezies-spezifische 

Unterschiede im GBA2-regulierten Metabolismus von GlcCer und GlcCer-Metaboliten im ZNS 

zurückzuführen ist. Ein akuter pharmakologischer Block der GBA2-Aktivität in murinen 

cerebellären Neuronen in vitro inhibierte jedoch das Neuritenwachstum, was darauf hindeutet, 

dass ein solcher Effekt auch die Grundlage für die Entwicklung von Ataxie und Spastik in 

ARCA, HSP und MSLS-Patienten sein könnte. In vivo in der Maus scheinen hingegen 

kompensatorische Mechanismen zu greifen, die eine schwere neurologische Manifestation 

durch den Verlust von GBA2 verhindern.  
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1 Introduction 

1.1 Glycosphingolipids 

Major constituents of cellular membranes comprise glycerophospholipids, cholesterol, and 

sphingolipids (van Meer et al., 2008). Glycerophospholipids consist of a diacylglycerol (DAG) 

backbone modified by different alcohol head groups, with choline being the most abundant one 

in eukaryotes (Holub and Kuksis, 1978; van Meer et al., 2008). Cholesterol accounts for about 

20% of the total lipid species in eukaryotic plasma membranes and is an important regulator 

of membrane fluidity and permeability (Cooper, 1978; Raffy and Teissie, 1999). The four-ring 

steroid is built from the hydrocarbon precursor squalene in complex modification and 

cyclization steps (Bloch, 1992). Sphingolipids are structurally based on ceramide, which can 

be synthesized in three distinct metabolic pathways: 1.) in the de novo synthesis, 2.) by 

sphingomyelin hydrolysis, or 3.) in the salvage pathway of complex glycosphingolipids. 

In the de novo synthesis of ceramide in the endoplasmic reticulum (ER), palmitoyl-coenzyme A 

(CoA) and serine are condensated by the serine palmitoyl-transferase (SPT) to form 3-

ketosphinganine (3-KS) (Figure 1) (Mandon et al., 1992).  Reduction of 3-KS in a NAPDH-

dependent manner by the 3-KS reductase results in sphinganine (Stoffel et al., 1968), which 

is subsequently acylated by ceramide synthases to dihydroceramide (Rother et al., 1992). Acyl 

chains of different length can be attached to sphinganine; this reaction is catalyzed by one of 

the six identified ceramide synthases (CerS), which use a fatty acyl-coA of a certain chain 

length as a donor (Levy and Futerman, 2010). Thus, ceramides vary in the length, 

hydroxylation, and saturation state of the fatty acid attached to the sphingoid base (Stults et 

al., 1989). The synthesis of ceramide is finalized by the ceramide desaturase (DES), which 

introduces a trans double bond between C4 and C5 of the sphingoid base (Geeraert et al., 

1997). In distinct metabolic pathways at the ER and Golgi, ceramide is further modified to form 

sphingomyelin and glycosphingolipids, which contain hydrophilic sugar moieties (Stults et al., 

1989). At the luminal side of the ER, ceramide is galactosylated at the C1-hydroxyl group by 

the galactosylceramide synthase (Schulte and Stoffel, 1993; Sprong et al., 1998). 

Galactosylceramide (GalCer) is used as a building block for the synthesis of sulfatides, which 

are important structural components of myelin sheaths (Cuzner and Davison, 1968; 

Thudichum et al., 1884). Moreover, GalCer is highly abundant in epithelial cells, e.g in the 

kidney (Simons and van Meer, 1988). For the synthesis of sphingomyelin and the 

glycosphingolipid glucosylceramide (GlcCer), ceramide is transported from its site of synthesis 

at the ER to the Golgi. The transport of ceramide to the Golgi for sphingomyelin synthesis is 

mediated by the ceramide transport protein (CERT), which binds ceramide and via its 

pleckstrin homology (PH) domain recruits the lipid to the phosphatidylinositol 4-phosphate 

(PIP4)-rich trans Golgi membrane (Hanada et al., 2003; Sugiki et al., 2012). In the Golgi lumen, 

sphingomyelin is synthesized by addition of phosphocholine to the C1-hydroxyl group of 



Introduction 

2 
 

ceramide (Futerman et al., 1990) and, thus, shares both phospho- and sphingolipid 

characteristics. The hydrolysis of sphingomyelin by sphingomyelinases allows recycling of 

ceramide (Okazaki et al., 1989), which can be further degraded to sphingosine or re-used for 

the synthesis of various sphingolipids. At the cytoplasmic side of the cis and medial Golgi 

(Futerman and Pagano, 1991; Schweizer et al., 1994), the glucosylceramide synthase 

glycosylates ceramide at the C1-hydroxyl group to GlcCer (Basu et al., 1968; Morell and Radin, 

1969), the precursor for all complex glycosphingolipids of the ganglio and globo series. These 

glycosphingolipids themselves serve as a ceramide source and can be re-used after their 

hydrolysis in the salvage pathway for the synthesis of different glycosphingolipid species 

(Tettamanti et al., 2003).  

 

 

Figure 1: Synthesis of glucosylceramide as the precursor for complex glycosphingolipids. In the de novo 

pathway, serine palmitoyl-transferase (SPT) condensates serine and palmitoyl-coenzyme A (CoA) to 3-
ketosphinganine (3-KS), which is subsequently reduced by the 3-ketosphinganine reductase (3-KS Reductase) to 
sphinganine. Ceramide synthases (CerS) acylate sphinganine to form dihydroceramide. Desaturation of 
dihydroceramide by the ceramide desaturase (DES) gives rise to ceramide. The glucosylceramide synthase (GlcCer 
Synthase) glycosylates ceramide to glucosylceramide (GlcCer) using uridine diphosphate glucose (UDP-Glc) as a 
donor. GlcCer is then used as a building block for the synthesis of complex glycosphingolipids. GlcCer is hydrolyzed 
by the β-glucosidases GBA2 and GBA1 to glucose and ceramide. Figure modified from Woeste and Wachten, 2017. 

 

1.2 Glucosylceramide: key lipid in glycosphingolipid metabolism 

For the synthesis of all complex glycosphingolipids of the ganglio and globo series, GlcCer is 

translocated from the cytoplasmic to the luminal side of the Golgi (Brade et al., 2000) by a yet 
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unidentified flippase at the ER (Chalat et al., 2012) or at the Golgi (D'Angelo et al., 2007). In a 

first step, galactose is attached to GlcCer by the lactosylceramide synthase (LacCer Synthase) 

to form lactosylceramide (LacCer) (Lannert et al., 1994; Takizawa et al., 1999). Addition of one 

(mono, “M”), two (di, “D”), or three (tri, “T”) N-acetylneuroaminic acid (NeuAc) moieties 

generates the gangliosides (Klenk, 1951) of the a-, b-, and c-series with GM3, GD3, and GT3 

being the most basic lipids, respectively (Figure 2) (Svennerholm, 1956; 1963; 1980). In the 

globo series, LacCer is further galactosylated to Gb3 (Hildebrand and Hauser, 1969). 

Sequential addition of N-acetylgalactosamine (GalNAc), galactose (Gal), and NeuAc moieties, 

catalyzed by specific transferases residing in the Golgi cisternae and the trans Golgi network 

(Schwarzmann and Sandhoff, 1990), forms various glycosylated and sialyated 

glycosphingolipids (Figure 2) . 

 

 

Figure 2: Synthesis of glycosphingolipids of the ganglio and globo series. In a first step, glucosylceramide is 

galactosylated by the lactosylceramide synthase (LacCer) to lactosylceramide (LacCer) and then gives rise to more 
complex glycosphingolipids of the ganglio and globo series. Sequential addition of one, two, or three N-
acetylneuraminic acid residues (NeuAc) yields gangliosides of the a-, b-, or c-series, respectively. Galactosylation 
of LacCer is performed to build lipids of the globo series. For both ganglio and globo series, consecutive addition 
of N-acetylgalactosamine (GalNAc), Gal, and NeuAc by specific transferases results in glycosphingolipids of 
different structural complexity and function. Modified from Woeste and Wachten, 2017. 

 

With their hydrophobic ceramide anchored in the external leaflet of the plasma membrane and 

their complex hydrophilic sugar and sialic acid head groups, glycosphingolipids induce a 

spatial segregation of incorporated lipids and shape a positive membrane curvature (Brocca 

and Sonnino, 1997). Moreover, these lipids together with cholesterol and sphingomyelin 

cluster in specific microdomains, so called lipid rafts (Simons and Ikonen, 1997). In lipid rafts, 

glycosphingolipids and cholesterol reside in the external leaflet, whereas glycerophospholipids 

are especially localized in the internal leaflet of the plasma membrane (Simons and Toomre, 
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2000). Cholesterol was shown to be required for the formation of these membrane domains, 

as depletion of cholesterol from the membrane using cyclodextrin disrupted lipid raft formation 

resulting in release of raft-associated proteins (Ilangumaran and Hoessli, 1998; Sheets et al., 

1999). Interaction of cholesterol with phospho- and sphingolipids, in particular with species that 

contain saturated acyl chains, is thought to be involved in lipid raft formation (Ali et al., 2007; 

Samsonov et al., 2001; Slotte, 1999). Resistance of the membrane to detergents is proposed 

to be attributable to lipid rafts (Brown and Rose, 1992). However, it is still debated whether 

detergent-resistant membranes, indeed, resemble the lipid rafts or whether these are different 

entities (Lichtenberg et al., 2005). Nonetheless, glycosphingolipid-rich membrane domains 

play an important role in signaling as they harbor a variety of proteins, including 

transmembrane receptors (Bethani et al., 2010), palmitoylated proteins (Levental et al., 2010), 

and glycosylphospatidylinositol (GPI)-anchored proteins (Sargiacomo et al., 1993). Moreover, 

proteins can be selectively excluded from these domains, e.g. prenylated proteins or proteins 

modified by multiple unsaturated acyl chains are barely incorporated into lipid rafts (Wang et 

al., 2001). 

Rearrangement of the membrane induced by changes in glycosphingolipid metabolism 

perturbs the function of membrane-associated proteins. Gangliosides modify the activity of 

receptors: GM3 inhibits phosphorylation of the epidermal growth factor (EGF) receptor, thereby 

impairing receptor dimerization and EGF signaling (Zurita et al., 2001). A similar effect was 

observed for the insulin receptor in adipocytes: Addition of the glycosphingolipid GM3 to 

cultured adipocytes negatively affected insulin signaling by impairing tyrosine phosphorylation 

of the insulin receptor (Tagami et al., 2002). Interestingly, obese mice that are insulin resistant 

reveal increased GM3 synthase mRNA levels in adipose tissue (Tagami et al., 2002). Insulin 

resistance in cultured adipocytes, induced by the tumor necrosis factor-alpha (TNF-α), was 

also accompanied by increased GM3 synthase activity. Apart from GM3, Gb3 and LacCer were 

shown to regulate receptor signaling: The first apoptosis signal (Fas) receptor contains a 

glycosphingolipid-binding domain and binds Gb3 and LacCer (Chakrabandhu et al., 2008). 

Disturbing the interaction by mutating the binding domain, impaired clathrin-mediated 

endocytosis of the receptor, but promoted an alternative internalization that finally induced a 

non-death signal (Chakrabandhu et al., 2008). 

The oligosaccharide chains, emanating from the plasma membrane, make glycosphingolipids 

accessible to toxins and non-enveloped viruses: Shigatoxin and choleratoxin bind to Gb3 and 

GM3, respectively (Jacewicz et al., 1986; Kuziemko et al., 1996); the human rotavirus contains 

a sialic-acid binding site (Delorme et al., 2001) and binds to GM1, promoting internalization via 

the endocytic pathway (Taube et al., 2010). 

Massive remodeling of glycosphingolipid species is observed during development, especially 

during neurodevelopment: Simple gangliosides (e.g. GD3) are predominantly generated during 
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embryonic brain development, whereas complex gangliosides (e.g. GD1a and sulfatides) are 

synthesized in later developmental stages (Ngamukote et al., 2007; Yu et al., 1988). This 

remodeling relies on a tight regulation of transferase and hydrolase expression and activity, 

and the transport of the glycosphingolipids and their precursors to the synthesis and 

degradation machinery residing in different cellular compartments. 

 

1.2.1 Degradation of glycosphingolipids 

Glycosphingolipids are degraded in a sequential manner by specific hydrolases that remove 

the sugar and sialic acid moieties from the ceramide backbone (Schwarzmann and Sandhoff, 

1990). These hydrolytic pathways not necessarily implement complete elimination of 

glycosphingolipid metabolites, but rather serve as a huge source of sphingoid bases and sugar 

residues that can be re-used for the synthesis of new glycosphingolipids (Tettamanti et al., 

2003). This salvage pathway is especially dominant in slowly dividing cell types (Gillard et al., 

1998). 

The majority of the glycosphingolipid hydrolases reside in the endosomal and lysosomal 

compartment, implicating that lipids need to be internalized, e.g. via the endocytic pathway 

(Kolter and Sandhoff, 2010). Plasma membrane lipids are majorly engulfed in endocytic 

vesicles into the cytosol, which fuse with early endosomes (Pryor and Luzio, 2009). During 

maturation, this compartment acidifies and forms the late endosome (Grabe and Oster, 2001; 

Maxfield and Yamashiro, 1987), which finally fuses with the even more acidic lysosome. The 

former plasma membrane lipids are accessible to the glycosphingolipid hydrolases on intra-

endosomal and -lysosomal vesicles (Furst and Sandhoff, 1992). Finally, the β-glycosidic 

linkage of GlcCer is cleaved by β-glucosidases and releases glucose and ceramide, which can 

be further degraded to the sphingoid base and fatty acid. GBA1 and GBA2 that are also termed 

lysosomal and non-lysosomal glucosylceramidase (Figure 3), respectively, catalyze the 

hydrolysis of GlcCer (Figure 1). Moreover, a third cytosolic β-glucosidase GBA3 (Figure 3) 

has been identified (Hayashi et al., 2007); however, its natural substrate to date is unknown. 
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Figure 3: Cellular localization of glucosylceramidases. GBA2 is associated with the membrane of the ER and 
cis Golgi, facing the cytosol, whereas GBA1 is located in the lysosome. GBA3 is present in the cytosol. GBA1: 
lysosomal glucosylceramidase, GBA2: non-lysosomal glucosylceramidase, GBA3: cytosolic glucosylceramidase. 

 

1.2.1.1 The lysosomal glucosylceramidase GBA1 

Human GBA1 is encoded by the GBA1 gene (NM_000157) on chromosome 1. The enzyme is 

synthesized at the ER and undergoes several posttranslational modifications, the first one 

being N-linked glycosylation at distinct asparagine residues (N19, N59, N146, and N270) in 

the ER lumen (Berg-Fussman et al., 1993). However, solely glycosylation at N19 is required 

for GBA1 function, whereas mutating the other asparagine residues did not affect enzyme 

activity (Berg-Fussman et al., 1993). GBA1 binds to hydrophobic helices in the luminal domain 

of the lysosomal integral membrane protein (LIMP)-2 for transport to the Golgi (Reczek et al., 

2007; Zunke et al., 2016). At the Golgi, GBA1 is further modified by high-mannose 

oligosaccharides and sialic acid residues, resulting in the 69-kDa mature GBA1 protein 

(Bergmann and Grabowski, 1989). In a complex with LIMP-2, GBA1 is translocated to the trans 

Golgi network, where the proteins bud off the membrane by a clathrin-mediated vesiculation 

and shuttle to the lysosome (Fujita et al., 1999; Reczek et al., 2007). The GBA1/LIMP-2 

interaction is highly pH dependent: Acidification, resembling the pH in the late 

endosomal/lysosomal compartment, was shown to induce dissociation of the complex (Zachos 

et al., 2012). However, the nature of the pH sensing moiety is still unclear. In the lysosome, 

the catalytic activity of GBA1 is dependent on its interaction with the activator protein saposin C 

(Berent and Radin, 1981; Ho et al., 1973). GBA1 exhibits optimal activity at pH 4 (Körschen et 

al., 2013) and can be inhibited by conduritol B epoxide (CBE), which irreversibly binds to the 

active site of the enzyme (Grabowski et al., 1986). 

 

1.2.1.2 The non-lysosomal glucosylceramidase GBA2 

Human GBA2 (hGBA2) is encoded by the GBA2 gene (NM_020944.2) on chromosome 9 and 

comprises 927 amino acids with a calculated molecular mass of 104.6 kDa (Matern et al., 
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2001). GBA1 and GBA2 do not share any primary or tertiary structural similarities. To date, the 

structure of mammalian GBA2 is unknown. According to domain predictions using InterPro 

(Finn et al., 2017), hGBA2 bears an N-terminal domain, spanning amino acid 151 to 455, and 

a catalytic glucosylceramidase domain at the C terminus, spanning amino acid 521 to 886 

(Figure 4). Moreover, the amino acid sequences aa453-890 and aa562-877 reveal high 

homology to the 6-hairpin glucosidase-domain and 6-hairpin glucosidase-like domain, 

respectively, which are present e.g. in glucoamylases and endo- and exocellulases in 

homology superfamilies of GBA2 (Finn et al., 2017). The two domains differ in the number of 

circular arranged hairpins, with up to 6 or up to 7 hairpins for the 6-hairpin glucosidase-domain 

and 6-hairpin glucosidase-like domains, respectively (Finn et al., 2017). A similar domain 

topology is predicted for mouse GBA2 (mGBA2) (Figure 4). Of note, hGBA2 and mGBA2 are 

highly conserved, sharing 87% sequence identity (supplementary information: Figure 79) 

(Finn et al., 2017). 

 

Figure 4: Postulated domain structure of human and mouse GBA2. Human GBA2 (hGBA2; 105 kDa) bears an 

N-terminal domain (aa151-455), a predicted catalytic glucosyceramidase domain (aa521-886), 6-hairpin 
glucosidase domain (aa453-890), and 6-hairpin glucosidase-like domain (aa562-877). Accordingly, postulated 
domains in mouse GBA2 (mGBA2; 103 kDa) include an N-terminal domain (aa142-446), a predicted catalytic 
glucosyceramidase domain (aa512-877), 6-hairpin glucosidase domain (aa442-877), and 6-hairpin glucosidase-
like domain (aa555-862). Functional domains assigned according to InterPro (Finn et al., 2017) and protein sizes 
are indicated. Modified from Woeste, Master thesis, 2015. 

 

GBA2 is ubiquitously expressed with highest expression levels in brain, liver, and testis in mice 

(Yildiz et al., 2006). GBA2 was identified as a β-glucosidase in human liver, hydrolyzing bile 

acid 3-O-glucosides (Matern et al., 1992; Matern et al., 1997). However, the enzyme was later 

identified as a non-lysosomal glucosylceramidase that hydrolyzes GlcCer to D-glucose and 

ceramide (Boot et al., 2007; van Weely et al., 1993). Initially, GBA2 was supposed to be a 

single transmembrane protein localized at the plasma membrane (Boot et al., 2007) or ER 

(Matern et al., 2001). However, we could show that GBA2 is a membrane-associated protein, 

located at the cytosolic side of the Golgi and the ER (Figure 3) (Körschen et al., 2013). Several 

activity studies demonstrated that GBA2 – in contrast to GBA1 – is active at a less acidic pH 

(Körschen et al., 2013; Matern et al., 1997; van Weely et al., 1993), depends on the presence 
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of phospholipids (Matern et al., 1997), and is easily disturbed by the presence of detergents 

(Körschen et al., 2013). Membrane solubilization or the absence of membranes was shown to 

be crucial for GBA2 function (Boot et al., 2007; Körschen et al., 2013). GBA2 is not inhibited 

by 1 mM CBE, which blocks GBA1 activity, but rather by the iminosugar N-butyl-

deoxynojirimycin (NB-DNJ) (Overkleeft et al., 1998; van Weely et al., 1993). The IC50 of 

NB-DNJ towards GBA2 in murine liver, brain, and testis accounts for 20.9 ± 1.3 nM, 18.2 ± 

0.3 nM, and 19.2 ± 0.4 nM, respectively (Körschen et al., 2013). 

 

1.3 Glycosphingolipid-associated disorders 

1.3.1 Lysosomal storage disorders 

Deficiency in acid hydrolases, which degrade sphingolipids in the lysosome, or lack of 

glycosphingolipid transport proteins results in severe lysosomal storage disorders (Platt et al., 

2012). To date, more than 50 different diseases have been identified that are mostly inherited 

as an autosomal-recessive trait (Filocamo and Morrone, 2011). Disease symptoms are very 

heterogeneous, however, patients often reveal neuropathological defects (Hoffmann and 

Mayatepek, 2005). Lack of the galactosylceramidase caused by mutations in the GALC gene 

in Krabbe’s disease leads to muscle weakness and motor defects due to demylination and 

degeneration of neurons induced by the accumulation of GalCer metabolites (Suzuki, 2003). 

Tay-Sachs disease patients, suffering from impaired GM2 degradation (Hoffman et al., 1976; 

Kolodny et al., 1969), exhibit neuronal loss in the central nervous system (Huang et al., 1997). 

Mutations in the GBA1 gene underlie Gaucher disease, a lysosomal storage disorder 

characterized by an accumulation of GlcCer (Grace et al., 1994; Scriver, 1995). A common 

symptom seen in Gaucher patients is organ enlargement of liver and spleen caused by 

excessive storage of GlcCer in resident tissue macrophages (Cox, 2001; Pennelli et al., 1969). 

Gaucher patients suffering from the neuronopathic form also exhibit severe neurological 

defects and die early during childhood (Brady et al., 1993; Scriver, 1995). Recently, both 

heterozygous and homozygous carriers of GBA1 mutations were shown to have an increased 

risk to develop Parkinson’s disease (Migdalska-Richards and Schapira, 2016), a 

synucleinopathy evoked by an accumulation of misfolded α-synuclein, predominantly in 

neurons (Breydo et al., 2012). Different models propose that either mutant GBA1 directly 

interacts with α-synuclein causing its aggregation (Sidransky and Lopez, 2012) or that the 

accumulated GlcCer and GlcCer metabolites promote α-synuclein aggregation (Blanz and 

Saftig, 2016; Migdalska-Richards and Schapira, 2016; Sidransky and Lopez, 2012). 

To date, enzyme replacement therapy (ERT) is a commonly used therapeutic approach to 

ameliorate lipid accumulation in these lysosomal storage disorders (Rohrbach and Clarke, 

2007). 
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1.3.2 GBA2-associated disorders 

1.3.2.1 Male subfertility in GBA2-knockout mice 

Loss of GBA2 in mice causes an accumulation of GlcCer, especially in brain, liver, and testis 

– the tissues with highest GBA2 expression levels (Yildiz et al., 2006). The main phenotype is 

male subfertility due to morphological defects that occur during sperm development, resulting 

in a round, globozoospermic rather than sickle-shaped sperm morphology (Figure 5) (Yildiz et 

al., 2006). Moreover, the acrosome, which contains hydrolytic enzymes packed in secretory 

vesicles, was completely disordered (Yildiz et al., 2006). Mitochondria that are normally tightly 

aligned within the sperm’s head and sheath along the tail, were also misaligned (Yildiz et al., 

2006). 

 

Figure 5: Impaired sperm morphology in GBA2-knockout mice. Electron micrograph of a sperm from a wild-

type (WT) mouse displaying a normal sickle-shaped head (left panel), and a GBA2-knockout (KO) mouse displaying 
a round-shaped (globozoospermic) head (right panel). Localization of the acrosome, nucleus, and mitochondria 
along the tail are labelled exemplarily in the WT sperm. Scale bars are indicated. Modified from Yildiz et al., 2006.  

 

A similar phenotype was evoked by pharmacological inhibition of GBA2 in wild-type mice (van 

der Spoel et al., 2002). In this study, a three-week oral administration with a daily dose of 

2,400 mg/kg of NB-DNJ, resulting in a blood serum concentration of 57 µM NB-DNJ (Platt et 

al., 1997), inhibited GBA2 activity and caused an impaired spermatogenesis accompanied by 

GlcCer accumulation. This effect could be reversed after withdrawal of the inhibitor for at least 

3 weeks (van der Spoel et al., 2002). 

Recently, we identified the mechanism underlying impaired spermatogenesis in GBA2-

knockout mice and revealed that GlcCer accumulation in sperm and Sertoli cells alters the lipid 

stacking of the plasma membrane (Raju et al., 2015; Yildiz et al., 2006). More precisely, the 

lipid organization of the plasma membranes shifts to a more ordered state, which in turn 

dysregulates the cytoskeletal dynamics: Microtubules persisted longer and, in particular, actin 

dynamics were altered (Raju et al., 2015). Using fibroblasts as a model system, we could show 

that actin polarization is augmented in GBA2-knockout (KO) cells. When fibroblasts were 

seeded on CYTOO chips that force cells to grow on a certain shape, GBA2-KO fibroblasts 

failed to follow this shape and exhibited extended actin protrusions, namely filopodia and 

lamellipodia (Figure 6) (Raju et al., 2015).  
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Figure 6: Analysis of the actin cytoskeleton in GBA2-knockout mouse dermal fibroblasts. A) Representative 

images of fibroblasts isolated from wild-type (WT) and GBA2-knockout (KO) mice were seeded on CYTOO chips 
with fluorescently labeled fibronectin patterns (purple) and F-actin and nuclei were stained using Alexa Fluor 
Phalloidin 488 (green) and DAPI (blue), respectively. Scale bar is indicated. Modified from Raju et al., 2015. B) 

Illustration of the cellular actin cytoskeleton, including filopodia (spike-like actin protrusions), lamellipodia (actin 
mesh at the periphery), and stress fibers (actin bundles).  

 

We hypothesized that these changes in the actin dynamics are evoked by a change in the 

activity of the small Rho GTPases Cdc42 and Rac1 (Raju et al., 2015). Filopodia formation is 

regulated by the Cdc42, whereas lamellipodia formation is regulated by Rac1 (Hall, 1998; 

Nobes and Hall, 1995; Ridley et al., 1992). Both Rho GTPases are active in a GTP-bound state 

at the plasma membrane (Boivin and Beliveau, 1995; Fleming et al., 1996). Accumulation of 

GlcCer, resulting in an altered lipid stacking of the membrane, might affect their recruitment to 

the plasma membrane and, thereby, their activity. 

 

1.3.2.2 Mutations in GBA2 in neurological disorders 

GBA2 not only plays a pivotal role during sperm development in the testis, it is also prominently 

expressed in the brain (Yildiz et al., 2006). However, so far, studies shedding light on the role 

of GBA2 in the brain, are lacking. Recently, several mutations in GBA2 in human patients 

suffering from autosomal-recessive cerebellar ataxia (ARCA), hereditary spastic paraplegia 

(HSP), or Marinesco-Sjögren-like Syndrome (MSLS) have been identified (Citterio et al., 2014; 

Hammer et al., 2013; Haugarvoll et al., 2017; Martin et al., 2013; Votsi et al., 2014).  

Homozygosity mapping and whole-exome sequencing of three Tunisian families with seven 

patients suffering from ARCA of unknown genetic origin, unveiled a mutation in exon 5 of the 

GBA2 gene (c.1017C>T) in two families (Hammer et al., 2013). According to protein domain 

predictions using InterPro, this mutation results in the truncated protein R340*, lacking the C-

terminal catalytic domain (Figure 7). Moreover, a mutation in exon 17 (c.2618G>A), resulting 

in the amino-acid substitution R873H (Figure 7) and in exon 2 (c.363C>A), resulting in the 

truncating Y121* (Figure 7) were identified in the third family and three siblings in a cohort of 

21 Tunisian individuals, respectively (Hammer et al., 2013). None of the three mutations was 

present in 50 healthy control Tunisian families nor 330 controls of the Human Genome 
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Diversity Project (HGDP) (Hammer et al., 2013). Furthermore, three ARCA patients in a Cypriot 

family have been identified using homozygosity mapping and exome sequencing of 

chromosome 9 to carry a GBA2 mutation in exon 11 (c.1780G>C) or 15 (c.2201G>A) (Votsi et 

al., 2014). These mutations result in the amino-acid substitutions D594H and R734H (Figure 

7), respectively, and co-segregated in the three affected patients (Votsi et al., 2014). The 

D594H mutation was absent in 264 Cypriot controls, R734H was found in four individuals of 

52 controls and in five of 4300 control genomes of the Single Nucleotide Polymorphism 

database (dbSNP) and Ensemble database (Votsi et al., 2014). However, in all these 

individuals the R725H was solely present in a heterozygous state. 

Interestingly, GBA2 mutations were also identified in HSP patients (Citterio et al., 2014; Martin 

et al., 2013; Sultana et al., 2015). A mutation in exon 13 (c.2048G>C) was identified by 

screening of 46 Italian and African families with cases of complicated HSP (Citterio et al., 

2014). This mutation, resulting in the amino-acid substitution G683R, was not observed in any 

of the 600 controls of Italian origin nor the genome databases dbSNP or 1,000 Genomes 

(Citterio et al., 2014). Moreover, studies of Martin and colleagues revealed four GBA2 

mutations in HSP patients with additional ataxic symptoms (Martin et al., 2013). In two families, 

six individuals carried the mutation c.700C>T in exon 4, resulting in the truncated protein 

R234*, missing the C-terminal catalytic and parts of the N-terminal domain (Figure 7) (Martin 

et al., 2013). In another family, GBA2 mutations in exon 3 (c.518G>A) and 9 

(c.1471_1474dupGGCA) were identified (Martin et al., 2013). Also these mutation result in a 

C-terminal truncation to W173* and T492R*9, respectively (Figure 7). 

Recently, a mutation in GBA2 was also identified in two Norwegian families and one unrelated 

individual suffering from MSLS (Haugarvoll et al., 2017). Using whole-exome sequencing, 

Haugarvoll and colleagues identified the mutation c.1528_1529del, leading to the amino-acid 

substitution M510V*16 (Figure 7) (Haugarvoll et al., 2017). This mutations was absent in 500 

control exomes and 195 control blood samples (Haugarvoll et al., 2017). 

Of note, besides the mutations F419V and R870* (Sultana et al., 2015), and T492R*9 and 

W173* (Martin et al., 2013), which co-segregated in affected patients in a heterozygous state, 

all other mutations were only pathogenic in a homozygous state (Citterio et al., 2014; Hammer 

et al., 2013; Haugarvoll et al., 2017; Martin et al., 2013; Votsi et al., 2014).  
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Figure 7: Mutations in hGBA2 identified in human patients. Wild-type hGBA2 (top) and the hGBA2 variants 

with a missense mutation R873H, R734H, G683R, R630W, D594H, and F419V, and the nonsense mutations 
R870*, M510V*16, T492R*9, R340*, R234*, W173*, and Y121* are depicted. Functional domains were assigned 
according to InterPro (Finn et al., 2017) and protein sizes are indicated. Modified from Woeste and Wachten, 2017.  

 

Although patients carrying mutations in the GBA2 gene were diagnosed with different 

neurological disorders, they all shared spastic and ataxic symptoms with an onset in childhood 

or early adulthood (7 ± 5 years) and slow disease progression (Citterio et al., 2014; Hammer 

et al., 2013; Haugarvoll et al., 2017; Martin et al., 2013; Votsi et al., 2014). In addition, more 

than half of the patients displayed peripheral neuropathy impairing sensory or motor functions 

caused by axonal damage or demyelination (Hammer et al., 2013; Haugarvoll et al., 2017; 

Martin et al., 2013; Votsi et al., 2014). Magnetic resonance imaging (MRI) of the brain revealed 

atrophy in the cerebellum, cerebrum, and/or the corpus callosum in several patients. 

Furthermore, reflex tests at the lower or upper limbs provoked brisk reflexes in the patients, in 

some cases a Babinski or Hoffman sign was observed, indicating defects in the corticospinal 

tracts (Citterio et al., 2014; Hammer et al., 2013; Martin et al., 2013; Votsi et al., 2014). Less 

common symptoms included amyotrophy, dysathria, and tremor of the upper limbs or head 

(Citterio et al., 2014; Hammer et al., 2013; Haugarvoll et al., 2017; Martin et al., 2013). Taken 
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together, patients developed quite diverse symptoms during disease progression with 

predominant ataxia and spasticity. 

 

So far, first attempts to decode the role of GBA2 in locomotion have only been performed in a 

zebrafish model (Martin et al., 2013). When injecting antisense zGba2 mRNA into larvae to 

depress GBA2 expression, malformation of the tail and motor coordination defects was 

observed in 12.5% of the animals (Martin et al., 2013). Detailed analyses of the motor neurons 

in the zebrafish spinal cord revealed defective axon growth that could be rescued by injection 

of wild-type, but not R630W hGBA2 mRNA (Martin et al., 2013). Moreover, lymphocytes or 

leukocytes isolated from three human patients carrying the R630W mutation, did not show any 

GBA2 activity, at least in the experimental set-up used (Martin et al., 2013). A first functional 

study of the GBA2 mutations using a luciferase-based activity assay revealed that the hGBA2 

variants Y121*, W173*, R234*, R340*, F419V, D594H, R630W, G683R, R870*, and R873H 

are devoid of GBA2 activity (Sultana et al., 2015). However, also the expression levels of the 

mutant proteins in transfected COS-7 and HeLa cells were decreased compared to wild-type 

hGBA2 (Sultana et al., 2015). 

 

1.4 Aim of this thesis 

A variety of mutations in the GBA2 gene of ARCA, HSP, and MSLS patients have been 

identified. In my thesis, I analyzed whether these mutations in GBA2 result in a loss of function 

of the enzyme, leading to defects in the central nervous system and, in turn, locomotor 

dysfunction. Two studies have already shown that 1.) some GBA2 mutations identified in 

ARCA and HSP patients result in a loss of function of the enzyme (Sultana et al., 2015) and 

2.) zebrafish lacking GBA2 display motor coordination defects and impaired axon outgrowth in 

the spine (Martin et al., 2013). However, a direct link between a defect in GBA2 function and 

locomotor dysfunction in mammals, to date, has not been described and the underlying 

mechanisms remain enigmatic. Moreover, a structure-function relationship for GBA2 has not 

been precisely defined. Using mice as a model system, I aimed to 1.) characterize the GBA2 

mutations identified in human patients, 2.) analyze the structural and functional properties of 

GBA2, and 3.) define the role of GBA2 in controlling locomotor activity in vivo.



Material and methods 

14 
 

2 Material and methods 

2.1 Chemicals 

Chemicals in pro analysis quality were purchased from AppliChem (Darmstadt), BioRad 

(Munich), Eppendorf (Hamburg), GE Healthcare Life Sciences (Munich), Invitrogen 

(Karlsruhe), Merck (Darmstadt), Piramal Healthcare (Bethlehem, USA), Polysciences Inc. 

(Pennsylvania, USA), Quiagen (Hilden), Roth (Karlsruhe), Sigma (Steinheim), and Thermo 

Scientific (Waltham, USA). Oligonucleotides were generated and ordered from Eurofins MWG 

Operon (Ebersberg). Enzymes and corresponding buffers were purchased from Cell systems 

(Troisdorf), Novagen (Darmstadt), New England Biolabs (Frankfurt), Sigma (Steinheim), and 

Roche (Mannheim). Primary and secondary antibodies were purchased from Abcam 

(Cambridge, UK), Cell Signaling (Massachusetts, USA), Cytoskeleton Inc. (Denver, USA), 

Dianova (Hamburg), BioLegend (San Diego, USA), LI-COR Biosciences (Nebraska, USA), 

Sigma (Steinheim), and Thermo Scientific (Waltham, USA). PVDF-membrane Immobilon-P for 

protein transfer via Western blotting was purchased from Merck Millipore (Darmstadt). 

 

All buffers and solutions were prepared using double-distilled water (ddH2O). Autoclaving for 

sterilization was performed at 121°C for 20 min, if necessary. Sterile-filtering of buffers was 

achieved using 0.45 µm or 0.22 µm pore filter membranes (Millipore) in a vacuum filtration. 

 

2.2 Cell culture material 

The CHO K1 cell line was purchased from European Collection of Cell Cultures (ECACC). 

Cryo tubes were purchased from Thermo Scientific (Waltham, USA), media and buffers were 

purchased from Thermo Scientific (Waltham, USA), cell culture supplements were purchased 

from Biochrome (Berlin), Pan Biotech (Aidenbach), Sigma (Steinheim), and Thermo Scientific 

(Waltham, USA). 

 

2.3 Antibodies 

2.3.1 Primary antibodies 

Commercially available primary antibodies from Abcam (Cambridge, UK), BioLegends (San 

Diego, USA), Cell Signaling (Massachusetts, USA), Cytoskeleton Inc. (Denver, USA), and 

Sigma (Steinheim) were used for immunocytochemical (ICC) stainings and Western blot 

analysis (WB) (Table 1). The monoclonal rat antibodies against GBA2 were generated as 

described in Körschen et al., 2013. The polyclonal rabbit antibodies against GBA2 were 

generated as described in Schonauer et al., 2017. 
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Table 1: Primary antibodies used for immunocytochemistry and Western blot analysis 

Antibody kDa Species Type Dilution 

ICC       WB 

Producer Catalog # 

β-Actin 42 ms  - 1:5000 abcam ab8224 

β-Actin     AC-15 42 ms mAb - 1:10,000 abcam ab6276 

Calnexin 90 rb pAb - 

1:1000/ 

1:5000/ 

1:10,000 

Sigma C4731 

Caveolin-1 21 rb pAb - 1:1000 
Cell 

Signaling 
3238 

Cdc42 21 ms pAb - 1:1000 Abcam ab64533 

Desmin 
50-

55 
ms mAb - 1:500 Sigma D1033 

Flag M2 - ms mAb - 
1:1000/ 

1:2000 
Sigma F1804 

HA (R001 3F10) - rt mAb 1:1000 1:5000 EKr n.a. 

HA-7 - ms mAb 1:500 - Sigma H9658 

GAPDH-71.1 37 ms mAb - 1:30,000 Sigma G9295 

GBA2-5kb 103 rb pAb - 

1:500/ 

1:1000/ 

1:5000 

HGKö n.a. 

GBA2-4kb/5kb 103 rb pAb - 
1:2000/ 

1:5000 
HGKö n.a. 

GBA2-2F8 103 rt mAb - 1:10 EKr n.a. 

MBP-7G4 - rt mAb - 

1:1000/ 

1:3000/ 

1:10,000 

EKr n.a. 

Rac1 21 ms mAb - 1:1000 Abcam ab33186 

Rac1 21 ms mAb - 1:1000 
Cytoskel

eton Inc. 
ARC03 

α-Tubulin B-5-2-1 55 ms mAb - 1:5000 Sigma T5168 
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Antibody kDa Species Type Dilution 

ICC       WB 

Producer Catalog # 

β-Tubulin 2.1 55 ms mAb - 
1:1000/ 

1:10,000 
Sigma T4026 

β-Tubulin III, 

neuronal (TUJ1) 
50 ms mAb 1:500 - 

BioLege

nds 

MMS-

435P 

EKr: E. Kremmer (HZ München), HGKö: Dr. Heinz Gerd Körschen, ICC: Immunocytochemistry, WB: Western blot, 
MW: molecular weight, kDa: kilo Dalton, mAb: monoclonal antibody, ms: mouse, pAb: polyclonal antibody, rt: rat, 
rb: rabbit, kb: Körschen, Bonn 

 

2.3.2 Secondary antibodies 

Secondary antibodies used for immunocytochemical stainings (ICC) and Western blot analysis 

(WB) were purchased from Dianova (Hamburg), LI-COR Biosciences (Nebraska, USA), and 

Thermo Scientific (Waltham, USA) (Table 2). 

 

Table 2: Secondary antibodies used for immunocytochemistry and Western blot analysis 

Antigen Antibody Species Type Dilution 

ICC       WB 

Producer Catalog # 

ms 
ms Alexa 

488 
gt pAb 1:400 - 

Thermo 

Scientific 
A11029 

ms 
IRDye 

680RD 
dk pAb - 1:20,000 LI-COR Biosc. 926-68072 

ms 
IRDye 

800CW 
dk pAb - 1:20,000 LI-COR Biosc. 926-32212 

ms ms HRP sh pAb - 1:5000 Dianova 515-035-062 

rb 
IRDye 

680RD 
dk pAb - 1:20,000 LI-COR Biosc. 926-32223 

rb 
IRDye 

800CW 
dk pAb - 1:20,000 LI-COR Biosc. 926-32213 

rb rb HRP dk pAb - 1:5000 Dianova 711-035-152 

rt 
rt Alexa 

488 
dk pAb 1:500 - Dianova 712-545-153 
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Antigen Antibody Species Type Dilution 

ICC       WB 

Producer Catalog # 

rt 
IRDye 

680LT 
gt pAb - 1:20,000 LI-COR Biosc. 926-32229 

rt 
IRDye 

800CW 
gt pAb - 1:20,000 LI-COR Biosc. 926-32219 

rt rt HRP gt pAb - 1:5,000 Dianova 112-035-068 

ICC: Immunocytochemistry, IRDye: infrared dye, kDa: kilo Dalton, mAb: monoclonal antibody, ms: mouse, MW: 
molecular weight, pAb: polyclonal antibody, rt: rat, rb: rabbit, gt: goat, dk: donkey, sh: sheep, WB: Western blot 

 

2.3.3 Dyes 

 

Table 3: Dyes used for immunocytochemistry 

Dye Dilution ICC Producer Catalog # 

Rhodamine-conjugated 

Phalloidin 

1:500 Life Technologies R415 

Alexa FluorTM 488-

conjugated Phalloidin 

1:500 Life Technologies A12379 

4',6-Diamidino-2-

Phenylindole (DAPI) 

1:10,000 Life Technologies D1306 

 

2.4 Molecular biology 

2.4.1 Cloning of wild-type and mutant mGBA2 proteins 

2.4.1.1 Vectors 

The vectors pcDNA3.1(+) (Invitrogen; pcDNA3), pET21a (Novagen; pET21), and pET28 MBP-

tev (provided by Prof. Dr. Matthias Geyer) were used to generate plasmids for the expression 

of wild-type and mutant mGBA2 proteins in mammalian cells and bacteria. 

 

2.4.1.2 Primers 

Primers were synthesized by Eurofins MWG Operon (Ebersberg; Table 38). The lyophilisate 

was dissolved in TE buffer to a final concentration of 100 µM and stored at -20°C. The pcDNA6 

mGBA2-Flag (Dr. W. Bönigk, 2014; pcDNA6/V5-HisA, Invitrogen) and pcDNA3 mGBA2-HA 

(Dr. W. Bönigk, 2012) plasmids were used as a template DNA. Mutant mGBA2-x-HA plasmids 

(listed in Table 4) served as a template to generate mGBA2 2A peptide constructs (Table 4). 
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Table 4: Primers used to generated mGBA2 constructs 

Internal 

construct # 

Vector Expresses Internal primer # Producer 

371 pcDNA3 mGBA2-R864H-HA C1067/C2068; C2069/C0609; 

C1067/C0609 

CMa 

365 pcDNA3 mGBA2-R864K-HA C1054/C2444; C2445/C1997; 

C1054/C0609 

WBö 

364 pcDNA3 mGBA2-R864Q-HA C1054/C2446; C2447/C1997; 

C1054/C0609 

WBö 

388 pcDNA3 mGBA2-R725H-HA C1054/C2477; C2478/C0609; 

C1054/C0609 

WBö 

372 pcDNA3 mGBA2-R621W-HA C1067/C2066; C2067/C0609; 

C1067/C0609 

CMa 

363 pcDNA3 mGBA2-R621K-HA C1054/C2440; C2441/C1997; 

C1054/C0609 

WBö 

362 pcDNA3 mGBA2-R621Q-HA C1054/C2442; C2443/C1997; 

C1054/C0609 

WBö 

386 pcDNA3 mGBA2-G674R-HA C1054/C2475; C2476/C0609; 

C1054/C0609 

WBö 

387 pcDNA3 mGBA2-D585H-HA C1054/C2473; C2474/C0609; 

C1054/C0609 

WBö 

597 pcDNA3 mGBA2-F410V-HA C1054/C3635; C3636/C1055; 

C1054/C1055 

MWo 

370 pcDNA3 mGBA2-T483R*9-

HA 

C1054/C2070; C1054/C2071; 

C1054/C0609 

CMa 

369 pcDNA3 mGBA2-R331*-HA C1054/C2065; C1054/C0609 CMa 

368 pcDNA3 mGBA2-R225*-HA C1054/C2064; C1054/C0609 CMa 

367 pcDNA3 mGBA2-W164*-HA C1054/C2063; C1054/C0609 CMa 

366 pcDNA3 mGBA2-Y112*-HA C1054/C2062; C1054/C0609 CMa 

406 pcDNA3 mGBA2-Q882*-HA C2474/C2665; C2474/C0609 WBö 

396 pcDNA3 mGBA2-aa442/918-

HA 

C2609/C0609 MWo 

397 pcDNA3 mGBA2-aa512/918-

HA 

C2610/C0609 MWo 

404 pcDNA3 mGBA2-aa126/918-

HA 

C2663/C0609 MWo 
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Internal 

construct # 

Vector Expresses Internal primer # Producer 

405 pcDNA3 mGBA2-aa136/918-

HA 

C2664/C0609 MWo 

567 pcDNA3 mGBA2-WT-Flag-

2A 

C3462/C1055; C1056/C3463; 

C3464/C3476; C1056/C3477; 

C3464/3478; C3464/C3479; 

C3462/C3480 

WBö 

573 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-WT-HA 

Ligation of restricted #567/ #373 WBö 

615 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-R864H-

HA 

Ligation of restricted #567/ #371 WBö 

696 pcDNA3 mGBA2-R864H-

Flag-2A-mGBA2-

R864H-HA 

C3462/C3463; C3464/C2436, 

C3464/C3476; C3464/C3477; 

C3464/C3478; C3464/C3479; 

C3462/C3480 

WBö 

617 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-R725H-

HA 

Ligation of restricted #567/ #388 WBö 

693 pcDNA3 mGBA2-R725H-

Flag-2A-mGBA2-

R725H-HA 

C3462/C3463; C3464/C2436, 

C3464/C3476; C3464/C3477; 

C3464/C3478; C3464/C3479; 

C3462/C3480 

WBö 

613 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-

R621W-HA 

Ligation of restricted #567/ #372 WBö 

675 pcDNA3 mGBA2-R621W-

Flag-2A-mGBA2-

R621W-HA 

C3462/C3463; C3464/C3480 

C3462/C3480 

WBö 

634 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-G674R-

HA 

Ligation of restricted #567/ #386 WBö 

676 pcDNA3 mGBA2-G674R-

Flag-2A-mGBA2-

G674R-HA 

C3462/C3463; C3464/C3480 

C3462/C3480 

WBö 
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Internal 

construct # 

Vector Expresses Internal primer # Producer 

619 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-D585H-

HA 

Ligation of restricted #567/ #387 WBö 

674 pcDNA3 mGBA2-D585H-

Flag-2A-mGBA2-

D585H-HA 

C3462/C3463; C3464/C3480 

C3462/C3480 

WBö 

636 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-F410V-

HA 

Ligation of restricted #567/ #597 WBö 

672 pcDNA3 mGBA2-F410V-

Flag-2A-mGBA2-

F410V-HA 

C3462/C3463; C3464/C3480 

C3462/C3480 

WBö 

609 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-

T483R*9-HA 

Ligation of restricted #567/ #370 WBö 

673 pcDNA3 mGBA2-T483R*9-

Flag-2A-mGBA2-

T483R*9-HA 

C3462/C3800; C3462/C3801; 

C3462/C3477; C3462/C3478; 

C3462/C3479; C3462/C3480 

WBö 

609 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-R331*-

HA 

Ligation of restricted #567/ #369 WBö 

671 pcDNA3 mGBA2-R331*-

Flag-2A-mGBA2-

R331*-HA 

C3462/C3804; C3462/C3805; 

C3462/C3477; C3462/C3478; 

C3462/C3479; C3462/C3480 

WBö 

623 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-R225*-

HA 

Ligation of restricted #567/ #368 WBö 

670 pcDNA3 mGBA2-R225*-

Flag-2A-mGBA2-

R225*-HA 

C3462/C3866; C3462/C3867; 

C3462/C3477; C3462/C3478; 

C3462/C3479; C3462/C3480 

WBö 

611 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-W164*-

HA 

Ligation of restricted #567/ #367 WBö 
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Internal 

construct # 

Vector Expresses Internal primer # Producer 

669 pcDNA3 mGBA2-W164*-

Flag-2A-mGBA2-

W164*-HA 

C3462/C3802; C3462/C3803; 

C3462/C3477; C3462/C3478; 

C3462/C3479; C3462/C3480 

WBö 

625 pcDNA3 mGBA2-WT-Flag-

2A-mGBA2-Y112*-

HA 

Ligation of restricted #567/ #366 WBö 

668 pcDNA3 mGBA2-Y112*-

Flag-2A-mGBA2-

Y112*-HA 

C3462/C3802; C3462/C3803; 

C3462/C3477; C3462/C3478; 

C3462/C3479; C3462/C3480 

WBö 

n.a. pET21 mGBA2-His C1061/C1055; C1056/C1216; 

C1056/C1217 

WBö 

417 pET28 MBP-tev-mGBA2-

126/882 

C2793/C2794; C2795/C2796; 

C2793/C2796 

WBö 

CMa: Carina E. Marx, HA: hemagglutinin, pcDNA3: pcDNA3.1(+), pcDNA6: pcDNA6/V5-HisA, pET21: pET21a, 
MWo: Marina A. Woeste, WBö: Dr. Wolfgang Bönigk, WT: wild-type 

 

2.4.1.3 Polymerase Chain Reaction (PCR)  

Polymerase chain reaction (PCR) was performed to amplify DNA fragments of interest using 

sequence-specific primers (Table 4). The reactions were performed in a Thermocycler 

(Labcycler, SensoQuest) using the KOD Hot Start DNA Polymerase (Novagen) and the 

corresponding buffer and kit components in a 50 µl approach as listed in Table 5. Prior to 

amplification in repetitive cycles, the DNA was initially denatured at 94°C for 2 min. During the 

repetitive cycles (35 to 40), denaturation was accomplished at 94°C in 45 sec. Annealing of 

the primers was allowed for 45 sec at a temperature closest to the lowest melting temperature 

(Tm) of the two primers, which is calculated as follows: 

 

𝑇𝑚 = (
𝐺

𝐶
) x 4°C + (

𝐴

𝑇
) x 2°C − (𝑏𝑎𝑠𝑒𝑝𝑎𝑖𝑟 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠) x 4°C − 4°C 

 

Elongation of the DNA was performed at 72°C for 1 min per 1000 bp, before cycles were 

repeated starting with DNA denaturation. A final extension was allowed at 70°C for 2 min, then 

PCR mixture was cooled to 8°C. To validate DNA amplification, 5 µl of the PCR product was 

subjected to agarose gel electrophoresis (2.4.1.4). 
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Table 5: Pipetting scheme for PCR reactions 

PCR master mix 

50 ng plasmid DNA 

5 µl KOD Hot Start DNA Polymerase buffer (10 x; Novagen) 

5 µl dNTP (2 mM; Novagen) 

2 µl MgSO4 (25 mM; Novagen) 

3 µl forward primer (5 pmol/µl) 

3 µl reverse primer (5 pmol/µl) 

1 µl KOD HOT Start DNA Polymerase (1 U/µl; Novagen) 

fill up with ddH2O to 50 µl 

 

2.4.1.4 Agarose gel electrophoresis for detection of nucleic acids 

DNA fragments were separated according to their size in an agarose gel electrophoresis. 1% 

(w/v) agarose gels were prepared for analyzing 500- to 10,000-bp DNA fragments. Agarose 

was dissolved in 1 x TAE buffer by heating in a micro wave. After cooling down to 

approximately 60°C, ethidium bromide was added to a final concentration of 1 µg/ml and the 

gel was poured into a gel chamber with inserted comb. The samples were prepared with 10 x 

loading buffer (final 1x; Table 6). Lambda DNA/EcoRI+HindIII Marker (Thermo Scientific) or 

GeneRuler 1 kb DNA ladder (Thermo Scientific) served as a size standard (10 µl loaded per 

lane; Figure 8). 1 x TAE buffer served as a running buffer for gel electrophoresis, which was 

performed at 120 V for 20 to 25 min. Finally, DNA fragments were visualized with UV light 

using a gel documentation system (Vilber Lourmat). 

 

Table 6: Buffers used for agarose gel electrophoresis 

TAE buffer (50 x) Loading buffer (10 x) 

2 M tris/acetate pH 7.5 10 x TAE buffer 

50 mM EDTA 50% (v/v) glycerol 

 0.25% (v/v) xylene cyanol 
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Figure 8: DNA standards used for agarose gel electrophoresis. A) Lambda DNA/EcoRI+HindIII Marker 
(Thermo Scientific) and B) GeneRuler 1 kb DNA Ladder (Thermo Scientific).  

 

2.4.1.5 DNA purification using Sure Clean 

DNA was purified for subsequent cloning procedures using the Sure Clean Plus Pink reagent 

(Bioline) according to the manufacturer’s protocol at room temperature. An equal volume of 

the reagent was added to the DNA sample, mixed thoroughly, and incubated for 10 min. The 

DNA was pelleted at 14,000 x g for 10 min and washed with 2 x DNA sample volume of 70% 

ethanol. The mix was vortexed for 10 sec, then ethanol was removed in a subsequent 

centrifugation (14,000 x g, 10 min). The DNA pellet was air-dried and finally dissolved in an 

appropriate volume of TE buffer (Table 7) or ddH2O. 

 

Table 7: TE buffer used to dissolve DNA 

TE buffer 

10 mM Tris/HCl pH 8.0 

1 mM EDTA 

 

2.4.1.6 Restriction digest of plasmid DNA 

To enable subcloning of generated plasmid DNA into the vector of interest, both had to be 

digested by restriction endonucleases. 1 to 3 U/ µg DNA of restriction enzyme, purchased from 

New England Biolabs (Frankfurt) or Roche (Mannheim), was used for the digestion. Buffers 

were used according to the manufacturer’s protocol and digestion with two or more enzymes 

at once was only performed if the enzymes were compatible with one and the same buffer. If 

an enzyme was known to lose its activity using another enzyme’s buffer, restriction digest was 

performed in a two-step approach including a DNA fragment purification via agarose gel 

electrophoresis after the first restriction digestion. Restriction digest was performed at 37°C (if 
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not stated otherwise in the enzyme’s data sheet) for 1 to 1.5 h. The entire volume of the 

restriction digest was loaded for agarose gel electrophoresis (2.4.1.4) and the DNA fragments 

of interest were extracted (2.4.1.7). 

 

2.4.1.7 Extraction of DNA from agarose gels 

DNA was extracted from agarose gel using the NucleoSpin Kit (Macherey-Nagel) according to 

the manufacturer’s protocol. In short, gel slices containing DNA fragments of interest were 

dissolved in 200 µl NTI buffer per 100 mg gel at 50°C for up to 10 min. The sample was loaded 

onto a filter column, centrifuged for 30 sec at 11,000 x g and washed twice with NT3 buffer. An 

additional centrifugation allowed the column to dry and remove residual washing buffer. Finally, 

column-bound DNA was eluted in 30 µl TE buffer in a 1-min incubation at room temperature 

and subsequent centrifugation at 11,000 x g for 1 min.  

 

2.4.1.8 Ligation of DNA fragments with vector 

DNA fragments were ligated with the pcDNA3.1(+) (Invitrogen), pcDNA6/V5-HisA (Invitrogen), 

or pET28 MBP-tev vector (Prof. Dr. Matthias Geyer) using the T4-DNA ligase (Roche) in an 

1- to 2-h incubation at 37°C. To do so, 0.5 µl T4-DNA ligase (Roche), 1x ligation buffer (Roche), 

1 µl 25 mM MgCl2 (Thermo Scientific), 50 ng digested vector, and 2 x to 5 x molar excess of 

insert DNA (determined by agarose gel electrophoresis of digested vector and insert in 

comparison to a standard with known DNA quantity) was prepared in a total volume of 10 µl. 

 

2.4.1.9 Determining nucleic acid concentrations by spectrophotometry 

Using a spectrophotometer (Hitachi U-1900), the DNA concentration was determined in DNA 

diluted in TE buffer at OD260 in comparison to a blank sample. 50 µg/ml DNA result in an OD260 

of 1, according to this, the DNA concentration in the measured sample can be calculated. As 

a read-out for the purity of the DNA sample, the OD280 was determined additionally. A 260/280 

ratio smaller than 1.8 indicates low purity of the DNA but high contamination with e.g. proteins. 

Similarly, the DNA concentration was determined using 1.5 µl of the DNA sample in the 

NanoDrop ND-1000 spectrophotometer (NanoDrop Products).  

 

2.5 Escherichia coli culture 

2.5.1 Bacterial strains 

The Escherichia coli (E.coli) strain XL1-Blue (#200249, Stratagene, California, USA) and One 

ShotTM TOP10 (#C404010, Invitrogen, California, USA) was used to amplify plasmid DNA. The 

E.coli strain BL21 (DE3) pLysE (#69389-3, Novagen, California, USA) and BL21 CodonPlus 

(DE3) RIPL (#230280, Stratagene, California, USA) was used for the expression of MBP-tev-

mGBA2-126/882 and wild-type mGBA2, respectively. 
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2.5.2 Culture medium 

E.coli bacteria were grown at high density in liquid culture using lysogeny broth (LB)-medium 

(Roth; Table 8) or isolated as individual colonies on solid LB-agar plates. LB-agar plates were 

prepared by addition of 15 g/l agar (Sigma) to the LB-medium. Both LB-containing media were 

autoclaved at 121°C for 20 min to prevent bacterial contamination. After cooling down to 50°C, 

antibiotics were added to the LB-agar suspension to a final concentration of 100 µg/ml 

(ampicillin) or 30 µg/ml (kanamycin). LB-agar plates were stored at 4°C, LB-medium at room 

temperature until further use. 

 

Table 8: E.coli culture medium 

Lysogeny broth (LB)-medium (Roth) 

10 g/l Tryptone 

5 g/l Yeast extract 

5 g/l NaCl 

pH 7.0 ± 0.2 

 

2.5.3 Generation of competent E.coli 

CaCl2 transformation of E.coli was performed to enable incorporation of plasmid DNA and was 

performed according to a modified protocol based on the technique established elsewhere 

(Mandel and Higa, 1970). 50 ml bacterial culture was grown to an OD600 of 0.4 resembling a 

cell density of approximately 2 x 108 cells/ ml. Cells were allowed to acclimate on ice for 30 min 

before they were pelleted at 5,000 x g for 10 min at 4°C. The pellet was resuspended in 1 ml 

ice-cold 0.1 M CaCl2 and filled up to a final volume of 25 ml. Cells were incubated with CaCl2  

for 20 min on ice, pelleted again as described before, resuspended in 1 ml ice-cold 0.1 M CaCl2 

containing 25% glycerol. Finally, the stock of competent cells was brought to a volume of 5 ml, 

incubated for 2 more h on ice, and aliquoted to be stored at -80°C (after snap-freezing in liquid 

nitrogen) until further use. 

 

2.5.4 DNA amplification in E.coli 

2.5.4.1 Transformation of competent bacteria 

50 µl competent bacteria were transformed with 1 µl plasmid DNA or 5 µl ligation mix precooled 

with 5 µl CM buffer (100 mM CaCl2/ 400 mM MgCl2) in ddH2O to make a final volume of 100 µl. 

DNA/E.coli mix was incubated on ice for 20 min prior to a heat shock at 42°C for 1 min. 200 µl 

prewarmed LB medium was added and bacterial suspension was incubated at 37°C for 

30-45 min. Transformed bacteria (50 to 100 µl) were plated on LB agar plates containing 

antibiotic (100 µg/ml ampicillin or 30 µg/ml kanamycin) and grown overnight at 37°C. Colonies 



Material and methods 

26 
 

were then picked to finally inoculate 250 ml or 500 ml LB after growing a preculture in 5 ml LB 

overnight at 37°C on an orbital shaker. Transformed bacteria were used to isolate amplified 

plasmids (2.5.4.2, 2.5.4.3) or express recombinant protein (2.11.5, 2.11.5.2). 

 

2.5.4.2 Small-scale (Mini) plasmid preparation via alkaline lysis 

Plasmid DNA was extracted from 5 ml overnight cultures via alkaline lysis in a Mini prep 

(Birnboim and Doly, 1979). All steps were performed at room temperature with centrifugations 

at 20,000 x g. Bacteria grown in 2 ml of the overnight culture were pelleted by centrifugation 

for 1 min and resuspended in 150 µl solution I by vortexing (Table 9). Subsequently, 180 µl 

solution II was added and gently mixed by inverting the tube to lyse the cells (Table 9). 

Immediately, proteins were denatured by addition of 225 µl solution III (Table 9). The sample 

was then centrifuged for 5 min and the supernatant was transferred to a fresh reaction tube to 

precipitate the plasmid DNA by addition of 1.5 ml 100% ethanol. The solution was centrifuged 

for 5 min and the pellet was washed with 1 ml 75% ethanol. The final DNA pellet was allowed 

to dry at 37°C and dissolved in 20 µl TE buffer containing 8 µg/ml RNase Cocktail (Ambion) at 

37°C for 15 min. A test digest was performed to verify amplification of subcloned plasmid DNA 

via agarose gel electrophoresis. 

 

Table 9: Solution used for alkaline lysis of bacteria to isolate plasmid DNA 

Solution I Solution II Solution III 

25 mM Tris/HCl pH 8.0 0.2 M NaOH 3 M CH3CO2K pH 4.8 

10 mM EDTA 1% (w/v) SDS  

50 mM glucose   

 

2.5.4.3 Sequencing of amplified plasmid DNA 

Sequencing was performed at Eurofins Genomics (Ebersberg) and 7.5 µl plasmid DNA diluted 

in ddH2O to a total volume of 15 µl was sent. If needed, primers for sequencing were added in 

15 µl aliquots of a 2 pmol/µl dilution prepared in ddH2O. Sequences of all DNA constructs used 

for this study were validated (data not shown).  

 

2.5.4.4 Large-scale (Midi/Maxi) plasmid preparation 

Large-scale amplification of plasmid DNA was performed in 250 ml or 500 ml overnight cultures 

of bacteria (2.5.4.1). DNA isolation from the bacterial cultures was performed using the 

NucleoBond Xtra Midi or Maxi Kit (Macherey-Nagel) according to the manufacturer’s protocol. 

For Midi preparation from a 250 ml culture, bacteria were first pelleted by centrifugation at 

6,000 x g for 15 min (4°C) and resuspended in 20 ml resuspension buffer supplemented with 

RNase A prior to use. Cells were lysed by addition of 20 ml lysis buffer by gently inverting the 
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tube and incubating for 5 min at room temperature. Solution was neutralized with 20 ml 

neutralization buffer and subsequently loaded onto the equilibrated filter column. The column 

was washed with 25 ml equilibration buffer and 25 ml washing buffer after sample has run 

through via gravity flow. The plasmid DNA was eluted with 15 ml elution buffer and precipitated 

by addition of 10.5 ml isopropanol by inverting the tube. Finally, DNA was pelleted by 

centrifugation at 15,000 x g for 45 min (4°C), washed once with 5 ml 70% ethanol, air-dried, 

and finally dissolved in 200 to 300 µl TE buffer. 

 

2.6 Mice 

All experiments were performed in agreement with the German law of animal protection and 

local institutional animal care committees (Landesamt für Natur, Umwelt und 

Verbraucherschutz, LANUV; Az 84-02.04.2014.A194). Mice were maintained in individually 

ventilated cages in the mouse facility of the Center of Advanced European Studies and 

Research (caesar), Bonn. Animals were given water and complete diet (sniff Spezialdiäten) ad 

libitum. Perfusion of mice was approved by LANUV Az 84-02.04.2017.A246. 

 

2.6.1 Isolation of genomic DNA from mouse tails 

Tail tips from mice were taken to isolate genomic DNA for genotyping polymerase chain 

reaction (PCR). 250 µl or 500 tail lysis buffer (Table 10) was added to tail tips from early 

postnatal or adult mice, respectively, and lysis was performed at 56°C for 4 h or overnight. 

Lysed tissue was then centrifuged at 14,000 x g for 5 min at room temperature and supernatant 

was transferred to the same volume of isopropanol. Inverting the tubes enabled precipitation 

of the DNA, which was subsequently pelleted by centrifugation for at least 30 min at 14,000 x 

g at 4°C. Next, pellets were washed in 70% ethanol followed by a 10-min centrifugation at 

14,000 x g at 4°C. At 37°C DNA pellets were dried for maximum 15 min, DNA was 

resuspended in 30 to 100 µl TE buffer (Table 10), and dissolved for 1 h at 37°C. Isolated 

genomic DNA was stored at room temperature until further use. 

 

Table 10: Buffers used for genomic DNA isolation 

Tail lysis buffer TE buffer 

10 mM Tris/HCl pH 8.0 10 mM Tris/HCl pH 8.0 

100 mM EDTA 1 mM EDTA 

0.5% (w/v) SDS  
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2.6.2 Genotyping of mice by PCR 

Genotyping of mice was performed by polymerase chain reaction (PCR) with 1 µl genomic 

DNA using the DreamTaqTM Hot Start Green DNA polymerase and the DreamTaqTM Green 

buffer (Thermo Scientific). Annealing temperature (TA; °C) and elongation time (tE; sec) were 

adjusted as listed in Table 11 and implemented in the PCR program depicted in Table 12. 

 

Table 11: Primers used for genotyping of mice 

Mouse line PCR Primer # TA (°C) tE (sec) 

GBA2-KO GBA2 
C0895/ C0896/ 

C0897 
60 60 

GBA2-EUCOMM 
GBA2-EU WT C2152/ C2153 62 40 

GBA2-EU lacZ C2154/ C2155 60 30 

Neuron-specific GBA2-KO 
GBA2-EU WT C2152/ C2153 62 40 

Cre-deleter C0098/ C0099 51 60 

Muscle-specific GBA2-KO 
GBA2-EU WT C2152/ C2153 62 40 

Cre-deleter C0098/ C0099 51 60 

EU: EUCOMM, KO: knockout, TA: annealing temperature, tE: elongation time 

 

Table 12: Pipetting scheme for PCR reactions and PCR programs 

  PCR program 

DreamTaqTM Master Mix PCR mix 

Step Temp. 

(°C) 

Time 

(sec) 

300 µl DreamTaqTM 10x 

buffer 

1 µl DNA Initial denaturation 95 300 

32 µl DreamTaqTM 

Polymerase (5 U/µl) 

1 µl of each primer 

(10 mM) 

Denaturation 94 45 

50 µl 100 µM dNTPs 8.3 µl DreamTaqTM 

Master Mix 

Annealing x 45 

868 µl H2O 

 

ad 20 µl with H2O 

 

Elongation 72 x 

  Final elongation 72 600 

  Cooling down 8 ∞ 

dNTPs: deoxynucleoside tripshophates, Temp.: temperature, U/µl: Units/µl 

 

35x 
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2.7 Mammalian cell culture 

2.7.1 Buffers and media used for cell culture 

Cultured cells were washed with phosphate buffered saline (PBS; Table 13) and maintained 

in DMEM (Gibco) or F12 medium (Gibco) with 10% FCS (Biochrome). Neurobasal-based 

medium (Gibco) with 2% horse serum (Pan Biotech) was used for culturing cerebellar neurons 

(see 2.7.5). All cell lines were kept in an incubator (SanyO) at 37°C in the presence of 5% CO2 

at 95% humidity. For maintenance and transfection procedures cells were handled under 

safety work benches (Herasafe, Thermo Scientific) using gloves. 

 

Table 13: Phosphate buffered saline (PBS) used for cell culture 

1 x PBS 

137 mM NaCl 

2.7 mM KCl 

6.5 mM Na2HPO4 

1.5 mM KH2PO4 

adjust to pH 7.4, autoclave 

 

2.7.1 Cell line  

Chinese Hamster Ovary (CHO) K1 cells were used to express mGBA2 proteins (Table 14). 

 

Table 14: CHO cell line. 

Cell line Producer Catalog # Growth medium 

CHO K1 
European Collection of 

Cell Cultures (ECACC) 
85051005 F12 + 10% FCS 

    

2.7.1 Preparing back-ups of cultured cells 

For long-term storage, cultured cells were cryopreserved in cell culture medium containing 

10% DMSO. Therefore, CHO cells were washed in PBS, trypsinized, and pelleted by 

centrifugation at 200 x g for 5 min at room temperature. Pellet was resuspended in DMSO-

containing cell culture medium as mentioned before and at least 1x106 cells were transferred 

to cryogenic vials (Thermo Scientific). Cells were frozen in a freezing container (Mr. FrostyTM, 

Thermo Scientific) at -80°C overnight and then transferred to liquid nitrogen for long-term 

storage. 
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2.7.1 Re-culturing of cells frozen as back-ups 

1 ml cell suspension frozen as a back-up was thawed at 37°C in a water bath and directly 

substituted to 20 ml pre-warmed cell culture medium. To remove residual DMSO, the cells 

were centrifuged at 200 x g for 5 min at room temperature. The pellet was resuspended in cell 

culture medium and seeded on cell culture dishes for maintenance. 

 

2.7.1 Poly-L-lysine (PLL) coating of glass coverslips 

13 mm glass coverslips prepared in 4-well dishes were coated with poly-L-lysine (PLL; Sigma) 

for 30 to 60 min in 500 µl of 0.1 mg/ml PLL. After incubation, the coverslips were washed twice 

in PBS and directly used or stored at 4°C in PBS until further use. 

 

2.7.2 Transient transfection using PEI 

8 x 104 and 1.5-2.5 x 106 cells were seeded on a 4-well plate or 9 cm plate, respectively, one 

day prior to transfection to reach 90-95% confluency. Plasmid DNA, polyethylenamine (PEI; 

Sigma), and OptiMEM (Gibco) were prepared in a sterile Eppendorf tube as depicted in Table 

15 and incubated for 10 min at room temperature. Cell culture medium was replaced by 

starvation medium containing only 2% FCS. The DNA/PEI mix was added to the cells drop-

wise and cells were kept at 37°C/5% CO2 overnight. 

 

Table 15: Pipetting scheme for transient transfection using polyethylenamine (PEI) 

Dish DNA (µg) PEI (µg) OptiMEM (µl) Starvation medium (µl) 

4-well plate 0.7 1 50 200 

9 cm plate 13.16 20 940 4000 

 

2.7.3 Stable cell line expressing mGBA2 

Stable cell lines were generated by Dr. Heinz Gerd Körschen via electroporation (Neon™ 

Transfection System 100 µl Kit, Invitrogen) using the pc3.1-mGBA2-HA plasmid (Table 16). 

The detailed protocol is described elsewhere (Körschen et al., 2013). 1.5-2.5 x 106 were 

seeded on a 9 cm plate one day prior to the experiment. 

 

Table 16: Stable cells line expressing mGBA2 

Clone # Cell type Expressed protein Producer antibiotic resistance 

G4A11 CHO mGBA2-HA H. G. Körschen G418 (geneticin) 
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2.7.4 Isolation of murine dermal fibroblasts 

Isolation of dermal fibroblasts from mouse tails has been performed by Dr. Diana N. Raju 

according to an earlier published protocol (Raju et al., 2015). Tail was thoroughly sterilized 

with 70% ethanol and cut into three pieces of similar size. Lysis of the tissue was allowed in 

3 ml fibroblast growth medium containing 1 mg/ml collagenase (Sigma) in a 3-h incubation at 

37°C/ 5% CO2. Afterwards, the supernatant was pelleted in a 5-min centrifugation at 600 x g 

(room temperature). Resuspension of the cell pellet was performed using fibroblast growth 

medium (Table 17) and suspension was plated on cell culture plates. 24 h later, medium was 

changed and fibroblasts were grown to 70% confluency before splitting. Depending on the 

growth rate, 6 to 8 x 105 cells were seeded on a 9 cm plate for maintenance. For the 

experiments, cells were grown for 24 h after seeding. 

 

Table 17: Fibroblasts cell culture growth medium 

Fibroblast growth medium 

DMEM/GlutaMax (Gibco) 

10% FCS 

1 mM sodium pyruvate (Gibco) 

2 mM L-glutamine (Gibco) 

100 U/ml penicillin (Gibco) 

100 µg/ml streptomycin (Gibco) 

 

2.7.4.1 Transient transfection of murine fibroblasts via electroporation 

1 x 106 murine fibroblasts were resuspended in 100 µl transfection buffer (Neon transfection 

system, Life technologies) and transfected with 4 µg plasmid DNA using a microporator mini 

(Digital Bio Technology, MP-100). 10 µl cell suspension was electroporated in two pulses 

(20 sec each) of 1000 V and seeded on PLL-coated glass coverslips or on CYTOO chips 

(CYTOO Cell Architects, #10-900-13-06) in a 35 mm cell culture plate. 

 

2.7.5 Isolation of murine cerebellar neurons 

Isolation of neurons from mouse cerebella was performed by Dr. Sina Stern in the research 

group of Prof. Dr. Frank Bradke (DZNE, Bonn). Cerebellum was dissected at postnatal day 

P7-P9 and directly placed in sterile HBSS supplemented with 7 mM HEPES. Meninges were 

carefully removed using fine forceps and the cerebellum was mince into small pieces. Tissue 

was dissociated in 1 ml Trypsin/DNase solution (Table 18) and incubated for 10 min at room 

temperature. Trypsin was inactivated by addition of 5 ml DMEM/GlutaMax/ 5% heat-inactivated 

horse serum (Pan Biotech). Afterwards, the tissue was washed thrice with HBSS in the 
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presence of 0.005 µg/ml DNase (Roche). Next, cells were dissociated using 4% BSA (Sigma)-

coated glass Pasteur pipettes, centrifuged at 800 x g for 5 min at 4°C, and washed twice with 

HBSS supplemented with 7 mM HEPES. Finally, cell pellet was resuspended in 5 ml complete 

Neurobasal Medium (Table 18) and seeded on PLL-coated coverslips at a density of 

30,000 cells per 13 mm coverslip, which were provided per well on a 4-well plate. The cells 

were kept at 37°C/ 5% CO2. 

 

Table 18: Buffers and medium used for isolation of murine cerebellar neurons 

Calcium- and magnesium-

free (CMF-) PBS 

Trypsin/DNase solution Complete Neurobasal 

Medium 

137 mM NaCl CMF-PBS Neurobasal Medium (Gibco) 

4 mM KCl 1% (w/v) Trypsin (Cell 

Systems) 

2% (v/v) B-27 supplement 

(Gibco) 

11 mM glucose 1 mg/ml DNase (Roche) 2 mM L-glutamine (Gibco) 

4.2 µM Na2HPO4 0.9 mM MgSO4 1% PenStrep (Gibco) 

1.8 mM K2HPO4 0.6% (v/v) 1 N NaOH 2% heat-inactivated horse 

serum (Pan Biotech) 

0.004% (w/v) NaHCO3   

pH 7.4   

 

2.7.5.1 Treatment of cultured cerebellar neurons with NB-DNJ or AMP-DNM 

When the isolated cerebellar neurons adhered to the coverslips they were seeded on, medium 

was exchanged and 5 µM NB-DNJ (stock: 5 mM in PBS; Sigma-Aldrich) or 30 µM AMP-DNM 

(stock: 50 mM in DMSO; kindly provided by Prof. Dr. Johannes Aerts, Leiden University) 

(Overkleeft et al., 1998) was added. Cells were incubated for 48 h with the GBA2 inhibitors 

and incubated at 37°C in the presence of 5% CO2. Control cells were treated with PBS or 

DMSO at the same concentrations. 

 

2.8 Immunocytochemistry 

2.8.1 Fixation of cells 

One day after transfection, cells were washed once in PBS and fixed in fresh-prepared 4% 

paraformaldehyde (PFA) in PBS for 10 min at room temperature. Fixed cells were washed 

thrice in PBS and used directly for immunocytochemical staining or stored at 4°C in PBS until 

further usage. 

Isolated cerebellar neurons were seeded (30,000 cells per 13 mm coverslip) on PLL-coated 

coverslips and cultured for 48 h in absence of presence of NB-DNJ or AMP-DNM (see 2.7.5.1). 
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Cells were fixed in 4% PFA in PBS for 15 min at room temperature, then washed thrice in PBS. 

Residual PFA was quenched in a 10-min incubation with 50 mM NH4Cl followed by three PBS-

washing steps. For X-gal staining, cerebellar neurons were fixed in 0.2% glutaraldehyde in 

PBS for 5 min at room temperature. 

 

2.8.2 Immunocytochemical (ICC) staining 

All steps were performed at room temperature. Cells were blocked in 5% Chemieblocker 

(Millipore)/ 0.5% TritonX-100 in PBS for 30 min and then stained with the primary antibody 

prepared in blocking solution for 60 min. Antibody was removed and cells were washed thrice 

in PBS. Secondary antibody incubation in blocking solution followed in the presence of DAPI 

(1:10,000 of 5 µg/µl stock in H2O) for 45 min in the dark. Finally, cells were washed thrice in 

PBS prior to mounting in Aqua Poly/Mount (Polysciences Inc.). Mounting medium was allowed 

to harden overnight and slides were stored at 4°C until imaging was performed using a confocal 

laser scanning microscope (Olympus FV1000). 

Murine dermal fibroblasts were stained with Alexa FluorTM 488-conjugated Phalloidin (1:500; 

Life Technologies) and DAPI for 1 h after 30-minute blocking as decribed before. 

In collaboration with Prof. Dr. Frank Bradke (DNZE, Bonn), cerebellar neurons were 

permeabilized in 0.1% TritonX-100 (in PBS) for 3 min, then blocked with blocking solution 

containing 2% FCS/ 2% BSA/ 0.2% fish gelatin (in PBS). Cells were incubated with primary 

and secondary antibody in 10% blocking solution for 1 h or 30 min, respectively, with three 

PBS-washing steps in between. F-actin was stained using Rhodamine-conjugated Phalloidin 

(Life Technologies, 1:500). Afterwards, cells were washed thrice in PBS and finally mounted 

using Fluoromount (Sigma). Confocal imaging was performed using the fluorescent 

microscope (Zeiss Observer D1) or confocal laser scanning microscope (Olympus FV1000). 

Neurite length was measured based on the neuronal β-Tubulin III-positive protrusions. 

 

2.9 Isolation of murine tissue 

2.9.1 Dissection of mice 

Mice were anesthetized using isoflurane (Piramal Healthcare) followed by a cervical 

dislocation. Thoracic cavity was opened by an abdominal incision to extract testis, liver, and 

spleen. Brain, was carefully dissected and freed from the skull by cutting the cranial nerves. 

For separate studies of the cerebellum, this brain region was removed along the colliculus 

inferior and separated from the underlying pons and medulla. Isolation of the cerebellum of 

early postnatal mice for the isolation of cerebellar neurons is more precisely described in 2.7.5. 

Starting from the skull base, a dorsal laminectomy was performed to carefully isolate the spinal 

cord. Skeletal muscle was isolated from the hind limbs and fat and connective tissue were 

thoroughly removed. All tissues were snap-frozen in liquid nitrogen and kept at -80°C for long-
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term storage. In contrast, for histological analysis tissue was fixed and cryopreserved as 

described in 2.9.2 and 2.9.3. 

 

2.9.2 Fixation of tissue in glutaraldehyde 

For X-gal staining tissue was fixed in 0.2% glutaraldehyde (without perfusion of the animal) in 

PBS for 7 days at 4°C. Fixed tissue was washed in PBS for 10 min at room temperature while 

shaking. Cryopreservation of the tissue was performed in a sucrose gradient including a 1-h 

incubation in 10% sucrose in PBS at room temperature on a shaker and an overnight-

incubation in 30% sucrose in PBS at 4°C. Afterwards, brain was snap-frozen without 

embedding, whereas spinal cord was embedded in Tissue Tek (Sacura). All tissues were kept 

at -80°C for long-term storage. 

 

2.9.3 Perfusion of mice with paraformaldehyde (PFA) 

Mice were anesthetized by intraperitoneal injection of 100 mg/kg body weight ketamin 

(Medistar) and 10 mg/kg body weight xylazin (Ceva). A thoracotomy of the anesthetized animal 

was performed and the left ventricle was cut carefully to insert a perfusion needle to the 

ascending aorta. Next, the right atrium was incised and the circulatory system was washed 

with saline solution until the liver has destained using a peristaltic pump (MINIPULS® 3, Gilson). 

Fixation was performed with 4% paraformaldehyde (PFA) in PBS for 5 to 10 min at a flow rate 

of 10 ml/min. Finally, brain and spinal cord were dissected as described earlier (2.9.1). 

 

2.9.4 Cryopreservation in sucrose gradient 

After dissection of the tissue, post-fixation in fresh-prepared 4% paraformaldehyde (PFA) in 

PBS was performed overnight at 4°C. The following washing step in PBS for 10 min and 

incubation in 10% sucrose (in PBS) for 1 h were performed at room temperature on a shaker. 

Cryopreservation was finalized by an incubation in 30% sucrose (in PBS) overnight at 4°C. 

Afterwards, brain was snap-frozen on dry-ice without embedding, whereas spinal cord was 

embedded in Tissue Tek (Sacura). All tissues were kept at -80°C for long-term storage. 

 

2.9.5 Cryosectioning of murine brain and spinal cord 

16 µm sagittal and coronal sections of the brain (caudal region including cerebellum and 

brainstem) and 16 µm transverse sections of the spinal cord (cervical region) were prepared 

using the cryostat (Mikrom HM560, Thermo Scientific) and mounted on SuperFrost® Plus 

glass slides (Thermo Scientific). Sections were stored at -20°C for long-term storage. Before 

staining, slides were thawed at room temperature and sections were surrounded using a 

hydrophobic barrier pen (ImmEdge Pen; Vector Laboraties). 
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2.10 Histochemical stainings 

2.10.1 Detection of β-galactosidase expression using X-gal 

All steps were performed at room temperature if not stated otherwise. lacZ basis buffer was 

prepared for long-term storage at room temperature (Table 19), whereas all other buffers were 

prepared fresh before usage. Cyrosections of murine cerebellum and spinal cord or cells fixed 

with glutaraldehyde (see 2.8.1, 2.9.2) were washed thrice for 5 min with lacZ washing buffer 

(Table 19). lacZ substrate solution was prepared and prewarmed at 37°C, 5-bromo-4-chloro-

3-indolyl-β-D-galactopyranoside (X-gal; Roth) was dissolved in dimethylformamide (DMF) and 

added to a final concentration of 0.01% or 0.05% (Table 19). Subsequently, 200 µl to 250 µl 

substrate solution was added to the sections/ cells and incubated in a humidified chamber at 

37°C (in an incubator without controlled CO2 supply) overnight. On control sections/ cells, lacZ 

substrate solution without X-gal was added. Afterwards, sections/cells were washed twice 

shortly with ddH2O and mounted using Aqua Poly/Mount (Polysciences Inc.). Stained tissue 

sections/ cells were imaged using the Nikon Eclipse Ti microscope (stitching mode for tissue 

sections).  

 

Table 19: Buffers used for X-gal staining 

lacZ basis buffer lacZ washing buffer lacZ substrate solution 

77 mM Na2HPO4 lacZ basis buffer lacZ basis buffer 

23 mM NaH2PO4 0.1% (w/v) sodium 

deoxycholate 

5 mM K3[Fe(CN)6] 

1.25 mM MgCl2 0.2% (v/v) Ipegal-CA630 5 mM K4[Fe(CN)6] 

2 mM EGTA pH 8.0  0.01% or 0.05% X-gal 

(in DMF) 

 

2.10.2 Nissl body staining 

All steps were performed at room temperature under the hood. Murine brain and spinal cord 

was demyelinated in a graded alcohol series (70%, 95%, and 100% ethanol; 5 min each) and 

subsequently rehydrated (95%, 70%, and 50% ethanol; 5 min each). The tissue was rinsed 

shortly in ddH2O and stained with sterile-filtered 1% cresyl violet acetate (Sigma) in 1% acetic 

acid for 4 min. Afterwards, sections were washed in ddH2O thrice (30 sec each) to remove 

excess stain and shortly washed in 70% and 95% ethanol. Differentiation of the staining was 

performed in 95% ethanol/ 1% acetic acid followed by a dehydration in 95% and 100% ethanol. 

Excessive destaining was prevented by constantly monitoring the sections and adjusting 

incubation times accordingly. Prior to mounting the sections in Entellan (Merck), sections were 
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shortly cleared in xylol (Isomere, Roth). Stained sections were stored at 4°C until being imaged 

using the Nikon Eclipse Ti microscope (stitching mode).   

 

2.11 Protein biochemistry 

2.11.1 Preparation of proteins 

2.11.1.1 Protein lysates of cultured cells 

Transfected cells were washed thrice with 5 ml PBS. Cells were scratched from a 9 cm plate 

in 1 ml of 0.5 g/l EDTA in PBS or from a 6-well plate in 0.5 ml of 0.5 g/l EDTA in PBS using a 

cell scraper. Harvested cells were pelleted at 500 x g for 5 min at 4°C. All subsequent steps 

were performed at 4°C or on ice in the presence of a mammalian protease inhibitor cocktail 

(mPIC; Sigma Aldrich). Pelleted cells were resuspended in total lysis buffer or hypotonic lysis 

buffer (9 cm plate: 200 µl; 6-well plate: 50 µl; Table 20). Lysis of the cells in total lysis buffer 

was allowed by incubation for 30 min. Finally, cell debris was removed by centrifugation at 

10,000 x g for 10 min and supernatant was used in further steps. Lysis in hypotonic buffer was 

performed by sonication in three pulses à 20 sec (Branson sonicator). Protein concentration 

was determined in a Bradford assay (2.11.2.1) or bicinchoninic acid (BCA) test (2.11.2.2).  

 

Table 20: Total and hypotonic buffer used for cell lysis 

Total lysis buffer Hypotonic lysis buffer 

10 mM Tris/HCl pH 7.6 10 mM HEPES/NaOH pH 7.4 

140 mM NaCl 0.5 mM EDTA 

1 mM EDTA 1:500 mPIC 

1% (v/v) TritonX-100  

1:500 mPIC  

 

2.11.1.2 Protein lysates of murine tissue 

All steps were performed at 4°C or on ice in the presence of mPIC (Sigma Aldrich). Brain, 

skeletal muscle, liver, spleen, was homogenized in total lysis buffer or hypotonic lysis buffer 

(Table 20) in the presence of a mammalian protease inhibitor using a tissue douncer (IKA® 

ULTRA-TURRAX® T18 basic disperser, Sigma-Aldrich). Testis, cerebellum, spinal cord was 

homogenized mechanically using a pistil (Wheaton, USA). 2 to 10 ml buffer per g wet weight 

of the tissue was used for lysis using either of the above mentioned buffers. Homogenate 

prepared with total lysis buffer was incubated for 30 min and centrifuged at 10,000 x g for 10 

min and supernatant was used in further steps. Homogenates prepared with hypotonic buffer 

were sonicated in three pulses (20 sec each; Sonics Vibra-Cell sonicator) and subjected to 

low-speed centrifugation at 1,000 x g for 20 min to remove cell debris. The post-nuclear 
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supernatant (PNS) was used for further experiments. Protein concentration was determined in 

a Bradford assay (2.11.2.1) or bicinchoninic (BCA) test (2.11.2.2). 

 

2.11.2 Protein concentration determination 

2.11.2.1 Bradford assay 

The Bradford assay, which is based on a reaction of the Coomassie dye with proteins 

(Bradford, 1976), was performed to determine the protein concentration in prepared lysates. 

The Coomassie Brilliant Blue G-250 provided in the acidic Bradford reagent (Biorad) is 

protonated and, under these conditions, appears red. When protein is added, the dye reacts 

with charged groups on the protein and destabilizes the protein. Hydrophobic pockets get 

exposed at the protein surface and can also be bound by Coomassie. In this unprotonated, 

protein-bound form, the dye becomes blue and its absorption shifts from 470 nm (red dye) to 

595 nm (blue dye). An increase in absorption at 595 nm is thus directly proportional to the 

amount of protein present in the sample. To determine the protein concentration in lysates 

prepared of cells or tissues, the lysate was diluted 1:5, 1:10, 1:20, or 1:50 in lysis buffer. The 

Bradford reagent (Biorad) was diluted 1:5 in ddH2O and 1 ml diluted reagent was used to 

determine a shift in absorption upon addition of 5 µl diluted protein lysate compared to a blank 

sample. Samples were prepared in disposable plastic cuvettes (Brand) and absorption was 

measured at 595 nm in a spectrophotometer (Hitachi U-1900). Only for samples with an 

absorption in the linear range from 0.005 to 0.15 the protein concentration was calculated as 

follows: 

𝑐 [µg/µl] =
𝐴𝑏𝑠595

5 µ𝑙 𝑥 0.06
 x  𝑥 

whereby c refers to the protein concentration in µg/µl, Abs595 to the absorption measured at 

595 nm, 5 µl to the volume of diluted lysate added to the Bradford reagent, 0.06 to the 

absorption corresponding to a protein concentration of 1 µg/µl, and x describes the dilution 

factor of the added lysate. Measurements below or above the aforementioned linear range 

were repeated with lower or higher diluted protein lysate. 

 

2.11.2.2 Bicinchoninic (BCA) test 

The Pierce® bicinchoninic (BCA) Protein Assay Kit (Thermo Scientific) allows to determined 

protein concentrations based on the protein-dependent reduction of Cu2+ to Cu+ in the provided 

alkaline solution. Bicinchoninic acid complexes in the presence of Cu+ and exhibits an 

absorption maximum of 562 nm. For the BCA test, protein lysate was diluted in lysis buffer 1:5, 

1:10, 1:20, or 1:50. Measurements for each sample were performed in duplicates in a 96-well 

plate and 10 µl of the diluted lysates was provided per well. As a protein standard, a bovine 

albumin standard series ranging from 25 µg/ml to 2000 µg/ml protein (Thermo Scientific) was 
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included. The BSA reagent B was diluted 1:50 in reagent A (Thermo Fisher) and 190 µl diluted 

BCA solution was added per well. The plate was incubated at 37°C for 30 min and the 

absorption at 570 nm was measured in a plate reader (Fusion Microplate Reader; Perkin 

Elmer). Linear regression of the BSA standard allowed to calculate the protein concentrations. 

 

2.11.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

2.11.3.1 Self-casted SDS gels 

Denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed to separate proteins according to Laemmli (Laemmli, 1970). Discontinuous gels 

were prepared with a 5% stacking gel and 7.5% to 12.5% separating gel for larger or smaller 

proteins of interest, respectively (Table 21). Protein samples were prepared in SDS sample 

buffer (diluted to 1 x; Table 22) and boiled for 5 min at 95°C before loading if not stated 

otherwise. Electrophoretic separation was performed in SDS running buffer (diluted to 1 x; 

Table 22) in a minigel chamber (Biometra) and initiated at a current of 15 mA per gel in the 

stacking gel phase, whereas for the separating gel phase current was increased to maximum 

25 mA per gel.  

 

Table 21: Pipetting scheme to cast polyacrylamide gels for SDS-PAGE 

Component Stacking gel (5%) Separating gel  

(7.5% - 10% - 12.5%) 

1.5 M Tris/HCl pH 6.8 or 8.8 0.5 ml (pH 6.8) 1.5 ml (pH 8.8) 

10% (w/v) SDS 20 µl 60 µl 

10% (w/v) APS 40 µl 40 µl 

TEMED 3.5 µl 3 µl 

Acrylamide/Bis-acrylamide 

30% solution (37.5:1) 

340 µl 1.5 ml - 2 ml - 2.5 ml 

ddH2O 1.12 ml 2.92 ml - 2.42 ml - 1.92 ml 

 

Table 22: SDS sample buffer used to prepare samples for SDS-PAGE 

SDS sample buffer (4 x) SDS running buffer (20 x) 

200 mM Tris/HCl pH 6.8 250 mM Tris 

8% (w/v) SDS 1% (w/v) SDS 

5% (v/v) β-mercaptoethanol 1.92 M gylcine 

50% (v/v) glycerol  

0.04% (w/v) bromophenol blue  
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2.11.3.2 Protein marker 

As a protein standard the prestained AppliChem VI (11-245 kDa), Biomol BLUEplus-wide (3.5-

245 kDa), and HiMarkTM (Invitrogen; 31-460 kDa) protein ladder was used (Figure 9). 5-10 µl 

protein ladder was loaded per lane. 

 

 

Figure 9: Protein standards used for SDS-PAGE. Images were taken and modified from A) #A8889 data sheet 
(AppliChem Panreac), B) #10009 data sheet (Biomol), and C) #LC5699 data sheet (Invitrogen). 

 

2.11.3.3 Coomassie staining to detect proteins on polyacrylamide gels 

The polyacrylamide gel was shortly rinsed in H2O to remove excess SDS running buffer and 

subsequently stained in Coomassie staining solution (Table 23) overnight at room temperature 

whilst shaking. Destaining was performed in Coomassie destaining solution for at least 1 h 

(changing the solution periodically) until background staining was sufficiently minimized (Table 

23). Afterwards, the gel was rinsed in H2O and imaged using the image analyzer LAS-3000 

(Fujifilm Life Science). 

 

Table 23: Coomassie staining and destaining solutions 

Coomassie staining solution Coomassie destaining solution 

50% (v/v) ethanol 25% (v/v) ethanol 

7% (v/v) acetic acid 5% (v/v) acetic acid 

0.2% Coomassie Brilliant Blue 

R250 (Sigma-Aldrich) 
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2.11.4 Western blot analysis 

For immunostainings, proteins separated by SDS-PAGE were transferred onto a 

polyvinylidene difluoride (PVDF; Immobilon FL, Millipore) membrane by performing 

discontinuous semi-dry Western blotting. Membrane was activated in methanol, gel and 

membrane were then set up in blotting chamber (Roth) as depicted in Figure 10. A current of 

2.4 mA/cm2 was applied per 8 x 9 cm PVDF membrane and transfer time was set to 35-42 min, 

50 min, or 65 min for small (< 30 kDa), medium-sized (30 to 110 kDa), or large (> 110 kDa) 

proteins of interest, respectively. 

 

 

Figure 10: Gel and membrane setup for discontinuous semi-dry protein transfer. Image modified from: BioRad 

Protein Blotting Methods – Electrophoretic Transfer Setup  

 

Table 24: Buffers used for protein transfer onto PVDF membranes 

Anode buffer I Anode buffer II Cathode buffer 

0.3 M Tris/HCl pH 10.4 25 mM Tris/HCl pH 10.4 25 mM Tris/HCl pH 9.4 

20% methanol 20% methanol 20% methanol 

  40 mM glycine 

 

2.11.4.1 Immunostaining of immobilized proteins 

After blotting, the membrane was shortly washed in PBS (Table 25), then blocking of unspecific 

binding sites was performed by incubation with blocking buffer (Table 25) for 30 min at room 

temperature. Next, the membrane was probed with a primary antibody against the protein of 

interest prepared in blocking buffer overnight at 4°C. The next day, non-bound antibody was 

washed off from the membrane in three 20-min washing steps with PBS-T (Table 25) at room 

temperature. Finally, the secondary antibody raised against the species the primary antibody 
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was produced in was prepared in blocking buffer and added to the membrane for a 1 h-

incubation at room temperature. Non-bound antibody was removed in three washing steps 

with PBS-T for 20 min each and the membrane was finally transferred to PBS. The use of 

fluorescently-labeled secondary antibodies IRDye680 and IRDye800 (0) allowed me to 

visualize expression of the protein of interest using the Odyssey Imaging detection system 

(LI-COR Biosciences) and excite the infrared fluorophores at 680 nm and 778 nm to emit 

fluorescence at 694 nm and 794 nm, respectively (LI-COR Biosciences). Horseradish 

peroxidase (HRP)-coupled secondary antibodies were detected by addition of luminol, which 

in the presence of peroxide is oxidized by the HRP-catalyst and then luminesces (enhanced 

chemiluminescence (ECL) detection reagent; Sigma-Aldrich). The luminescent image analyzer 

LAS-3000 (Fujifilm Life Science) was used to detect the emitted light at 425 nm.  

 

Table 25: Buffers used for immunostaining of immobilized proteins 

PBS washing buffer PBS-T washing buffer Blocking buffer 

130 mM NaCl PBS washing buffer PBS-T washing buffer 

7 mM Na2HPO4 0.05% (v/v) Tween 20 50% (v/v) Bløk (Millipore) 

3 mM NaH2PO4   

adjust to pH 7.4 to 7.5   

autoclave   

 

2.11.5 Protein expression in E.coli 

2.11.5.1 Test expression of recombinant protein 

To find optimal conditions for the expression of MBP-tev-mGBA2-126/882 in E.coli, a 10 ml 

preculture inoculated with transformed E.coli of the pLysE strain (see 2.5.1) was grown at 37°C 

on an orbital shaker to reach an OD600 of 0.4 to 0.6. Protein expression was then induced by 

addition of 1 mM Isopropyl-β-D-thiogalactopyranoside (IPTG) and culture was incubated at 

18°C for 1 h, 3 h, 5 h, or overnight on an orbital shaker. All subsequent steps were performed 

at 4°C or on ice. Bacterial culture was pelleted at 14,000 x rpm for 2 min, frozen at -20°C until 

further use, or directly resuspended in 140 µl PBS with 140 mM NaCl, 1 mM dithiothreitol 

(DTT), and a spatula tip of DNase (AppliChem) in the presence of mPIC (Sigma Aldrich). 

Bacterial lysate was sonicated (Sonics Vibra-Cell sonicator) with three pulses (20 sec each) 

and centrifuged at 14,000 x g for 30 min. For Western blot analysis, 15 µl of the bacterial lysate 

prior to centrifugation, 15 µl of the supernatant, and 15 µl of the pellet resuspended in 75 µl 

resuspension buffer were loaded as total, soluble, and insoluble fraction on a SDS gel, 

respectively.  
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2.11.5.2 Large-scale expression of recombinant mGBA2 protein 

500 ml LB was inoculated 1:50 with bacterial pre-culture, which has been generated from BL21 

CodonPlus (DE3) RIPL E.coli transformed with the pET21 mGBA2-His plasmid or One ShotTM 

TOP10 E.coli transformed with pET28 MBP-tev-mGBA2-126/882 plasmid, respectively (see 

2.5.1). Bacterial culture was grown at 37°C on an orbital shaker to an OD600 of 0.4 to 0.6. 

Protein expression was then induced by addition of 1 mM IPTG and the culture was incubated 

at 18°C overnight or at 37°C for 3 h on an orbital shaker to an OD600 of ~2.0. Bacterial cells 

were pelleted at 6,000 x g for 15 min at 4°C and frozen at -20°C until further use.  

 

2.11.5.3 Activity measurements of recombinant mGBA2 

Protein expression of MBP-tev-mGBA2-126/882 (pET28 MBP-tev-mGBA2-126/882 plasmid) 

and wild-type mGBA2-His (pET21 mGBA2-His plasmid) in E.coli was performed on a large 

scale as described before (2.11.5.2). All subsequent steps were performed at 4°C or on ice. 

30 ml bacterial culture was taken and pelleted by centrifugation at 11,000 x g for 10 min. Pellet 

was resuspended in 4.8 ml hypotonic buffer and sonicated in three pulses 20 sec each (total 

fraction). 2.4 ml of the lysate were taken and separated into soluble fraction (supernatant) and 

insoluble membrane fraction (pellet) by centrifugation at 14,000 x rpm for 30 min. Pellet was 

then resuspended in 2.8 ml hypotonic buffer. Both total and soluble fraction were subjected to 

a β-glucosidase activity assay to measure GBA2 activity (see 2.11.9). 15 µl of the total, soluble, 

and insoluble fraction was prepared in 4 x SDS sample buffer and analyzed by Western blot 

analysis. 

 

2.11.6 Purification of recombinant protein 

Expression of MBP-tev-mGBA2-126/882 in E.coli was performed at 18°C overnight as 

described before (2.11.5.2). All subsequent steps were performed at 4°C or on ice. Two 

500 ml-culture pellets were resuspended in 25 ml resuspension buffer each (Table 26). Cells 

were broken up by sonication with four pulses 40 sec each (Sonics Vibra-Cell sonicator) and 

incubated for 10 min on a tube roller. Centrifugation for 20 min at 11,000 x g followed and 

supernatants were combined. 1 mM EDTA and 1 mM dithiothreitol (DTT) was added and the 

solution was sterile filtered through a 0.22 µm syringe filter. 

 

Table 26: Resuspension buffer used for purification of recombinant protein 

Resuspension buffer 

20 mM Tris/HCl 

200 mM NaCl 

adjusted to pH 7.4 
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25 ml buffer per 500 ml E.coli culture with: 

1 mg DNase (AppliChem) 

5 mg Lysozyme (Sigma) 

added after E.coli lysis: 

1 mM EDTA 

1 mM DTT 

sterile filtered 

 

2.11.6.1 Affinity chromatography to purify recombinant mGBA2 

For the purification of MBP-tev-mGBA2 (aa126-882) I performed an affinity chromatography in 

a liquid chromatography system (ÄKTA; GE Healthcare) using a commercial MBPTrapTM HP 

column (GE Healthcare) which contains cross-linked agarose coated with dextrin (Dextrin 

SepharoseTM; column volume: 1 ml). The complete ÄKTA system was washed with H2O before 

the MBPTrapTM column was inserted, which was also rinsed with 5 x column volumes (CV) 

H2O with a flow rate of 1 ml/min never exceeding a pressure of 0.3 MPa. According to the 

manufacturer’s protocol, I used a Tris-based binding buffer and performed the purification 

under physiological conditions at pH 7.4 (Table 27). The column was equilibrated with 5 x CV 

binding buffer with a flow rate of 1 ml/min (≤ 0.3 MPa). Next, 50 ml supernatant (prepared as 

described in 2.11.6) was loaded on the column with a flow rate of 0.5 ml/min (≤ 0.3 MPa). 1 ml 

of the flow-through (Non-Bound) was collected for Western blot analysis. After removing 

unbound proteins by washing the column with 20 x CV binding buffer (flow rate: 1 ml/min; 

≤ 0.3 MPa), elution of bound protein was performed with buffer containing 10 mM maltose 

(Table 27) at a flow rate of 0.5 ml/min (≤ 0.3 MPa; no gradient). Protein elution was monitored 

at 280 nm and the eluate was collected in fractions of 500 µl. The fractions with the highest 

amount of protein according to the absorbance detection were used for further purification 

experiments (see 2.11.6.5, 0) or Western blot analysis. 

For regeneration, the column was washed in 3 x CV H2O, 3 x CV 0.5 M NaOH, then 3 x CV 

H2O at a flow rate of 0.5 ml/min or 1 ml/min never exceeding a pressure of 0.3 MPa. Column 

was stored in 20% ethanol at 4°C until further use. 

 

Table 27: Binding and elution buffer used for affinity chromatography. 

Binding buffer Elution buffer 

20 mM Tris/HCl 20 mM Tris/HCl 

200 mM NaCl 200 mM NaCl 

1 mM EDTA 1 mM EDTA 

1 mM DTT 1 mM DTT 
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adjust to pH 7.4 10 mM Maltose 

sterile filtered adjusted to pH 7.4, sterile filtered 

 

2.11.6.2 Tobacco Etch Virus (tev) protease cleavage 

The tev protease is found in the Tobacco Etch Virus (tev) and recognizes the amino-acid 

sequence ENLYFQG, which we introduced into the pET28 MBP-tev-mGBA2-126/-882 plasmid 

between the MBP and mGBA2 protein. Cleavage will occur between the Q and G residue 

resulting in MBP protein (41.57 kDa) and mGBA2 (aa126-882) (85.47 kDa). The tev protease 

(His-tagged) for my experiments was kindly provided as a 3.92 µg/µl stock in 50 mM Tris 

pH 8.0/ 300 mM NaCl/ 2 mM β-mercaptoethanol/ 10% (v/v) glycerol by Prof. Dr. Matthias Geyer 

(Institute of Innate Immunity, Bonn; 25.06.2015). Eluate obtained from purification of MBP-tev-

mGBA2-126/882 via MBPTrapTM (2.11.6.1) was incubated with 1 µg tev protease per 100 µg 

protein (= 1:100), per 50 µg protein (= 1:50), or per 10 µg protein (= 1:10) at 4°C in 1 x tev 

buffer (Table 28) diluted in elution buffer. 

 

Table 28: Buffer used for tev protease-mediated cleavage of MBP-tev-mGBA2-126/882 

Tev buffer (10 x) 

500 mM Tris/HCl pH 7.6 

1.5 M NaCl 

5 mM EDTA 

 

2.11.6.3 Buffer exchange using NaPTM-5 columns 

A buffer exchange of the elution fractions for subsequent experiments was performing using 

Illustra NaPTM-5 columns (GE Healhcare) to remove maltose. Column was equilibrated with 

10 ml binding buffer after excess storage buffer was allowed to flow through the column. 500 µl 

elution fraction after MBPTrapTM was loaded and finally eluted with 1 ml binding buffer (see 

3.4.2).  

 

2.11.6.4 Calibration of the SuperdexTM 200 Increase 10/300 column 

For size-exclusion chromatography, a SuperdexTM 200 Increase 10/300 GL column (GE 

Healthcare) containing cross-linked agarose coated with dextran (SuperdexTM; column volume: 

24 ml; bed diameter: 10 mm, bed height 300 mm) was used. The complete ÄKTA system was 

washed with H2O before the SuperdexTM column was inserted, which was also rinsed with 2 x 

column volumes (CV) H2O and 2 x CV binding buffer (see 2.11.6.1) with a flow rate of 

0.5 ml/min never exceeding a pressure of 1.5 MPa. Proteins of known sizes provided in the 

Gel Filtration Calibration LMW and HMW Kit (GE Healthcare) were used as standards. Protein 

solutions were prepared as depicted in Table 29 containing ribonuclease A (3 µg/µl), 
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conalbumin (3 µg/µl), and ferritin (0.3 µg/µl), or ovalbumin (4 µg/µl), aldolase (4 µg/µl), 

thyroglobulin (5 µg/µl), or blue dextran 2000 (1 µg/µl). Protein mix was centrifuged at 

10,000 x g for 10 min prior to injection into the ÄKTA system. 150 µl of each protein mix was 

loaded one after the other onto the SuperdexTM column at a flow rate of 0.5 ml/min never 

exceeding a pressure of 1.5 MPa. Protein elution was monitored at 280 nm. In between, the 

column was washed with binding buffer (see 2.11.6.1) until absorption reached baseline. 

Based on the elution peaks corresponding to the standard proteins a standard curve was 

compiled. 

 

Table 29: Protein mix prepared for calibration of SuperdexTM 200 Increase 10/300 GL column 

Mix Protein Final concentration of 

prepared stock 

Protein in 150 µl 

subjected to column 

A 

Ribonuclease A 3 µg/µl 450 µg 

Conalbumin 3 µg/µl 450 µg 

Ferritin 0.3 µg/µl 45 µg 

B 

Ovalbumin 4 µg/µl 600 µg 

Aldolase 4 µg/µl 600 µg 

Thyroglobulin 5 µg/µl 750 µg 

Dextran Blue dextran 2000 1 µg/µl 150 µg 

 

2.11.6.5 Size-exclusion chromatography 

Size-exclusion chromatography was performed using the calibrated SuperdexTM 200 Increase 

10/300 GL column (GE Healthcare; see 2.11.6.3). The column was equilibrated with 2 x column 

volume (CV) eluent buffer at a flow rate of 0.5 ml/min never exceeding a pressure of 3 MPa. 

180 µl eluate obtained by purification of MBP-tev-mGBA2-126/882 via MBPTrapTM (incubated 

with tev protease or left untreated) was loaded onto the column. Protein elution was monitored 

at 280 nm and the eluate was collected in fractions of 750 µl. The fractions with the highest 

amount of protein according to the absorbance detection were used for Western blot analysis. 

For regeneration, the column was washed in 1 x CV H2O, 1 x CV 0.5 M NaOH, then 2 x CV 

H2O at a flow rate of 0.5 ml/min never exceeding a pressure of 1.5 MPa. Column was stored 

in 20% ethanol at 4°C until further use. 

 

2.11.7 Co-immunoprecipitation using magnetic beads 

Cells seeded on a 9 cm plate expressing mGBA2-Flag, mGBA2-HA, mGBA2-Flag and mutant 

or wild-type mGBA2-HA, or bPAC-HA (pcDNA3.1(+) bPAC-HA) were washed twice with 5 ml 

PBS and harvested in 1 ml of 0.5 g/l EDTA in PBS. The subsequent steps were performed at 
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4°C or on ice if not stated otherwise. Cells were pelleted by centrifugation at 250 x g for 5 min 

and resuspended in 200 µl lysis buffer (Table 30) in the presence of mPIC (Sigma Aldrich). 

Vigorous pipetting during the 30-min incubation time allowed proper lysis of the cells. Cell 

debris was removed by centrifugation at 10,000 x g for 5 min and protein concentration in the 

supernatant (total lysate) was determined in a BCA test (2.11.2.2). 20 µl were taken as an 

input (Input 1) for Western blot analysis. For pre-clearing on underivatized agarose matrix, 

cyanogen-bromide activated agarose (Sigma) was prepared in 50% (w/v) suspension with 

50% (v/v) glycerol in 10 mM sodium phosphate buffer (pH 7.4)/ 150 mM NaCl/ 0.02% (w/v) 

sodium azid. 50 µl underivatized agarose matrix suspension was centrifuged at 14,000 x g to 

remove the buffer. Next, matrix was equilibrated in 5 x column volume (CV; 250 µl) equilibration 

buffer, then 5 x CV (250 µl) lysis buffer. 250 µg protein in a total volume of 500 µl was added 

to the matrix and incubated for 5 to 6 h end-over-end. Agarose matrix was then pelleted at 

14,000 x g, 20 µl were taken as input (Input 2) for Western blot analysis, and the remaining 

supernatant was loaded on anti-Flag magnetic beads (Sigma) which have been prepared as 

follows: 50 µl bead slurry was equilibrated in 5 x CV (250 µl) equilibration buffer (Table 30), 

then 5 x CV (250 µl) lysis buffer (Table 30). Beads were incubated with the lysate overnight 

end-over-end. The next day, suspension was magnetically separated and supernatant was 

taken as Non-Bound for Western blot analysis. Magnetic particles were washed four times with 

300 µl washing buffer (supernatant taken as washing fractions for Western blot analysis; Table 

30). Finally, bound protein was eluted in 2 x CV (100 µl) 0.1 M glycine (pH 3.0) during 

incubation at room temperature end-over-end. Supernatant after magnetic separation was 

immediately transferred to 16.67 µl 1 M Tris/HCl (pH 8.0) for neutralization and subjected to 

Western blot as the eluate. 

Optimization experiments were performed with cells expressing mGBA2-Flag without pre-

clearing on agarose matrix but overnight incubation of 250 µg protein in 500 µl total volume on 

75 µl anti-Flag magnetic bead slurry, and included different lysis and washing buffer conditions 

with 500 mM NaCl (“high NaCl”), with 10 mM NaCl (“low NaCl”), without EDTA (“w/o EDTA”), 

or with CHAPS instead of TritonX-100 in the same concentrations (“CHAPS”). The 

corresponding washing buffers contained a reduced Triton X-100 or CHAPS concentration of 

0.2%. Buffer volumes used for equilibration, elution, and neutralization were adjusted 

accordingly. To analyze unspecific binding of mGBA2-Flag or mGBA2-HA during precipitation, 

lysate of cells expressing either of the proteins was loaded overnight on either 50 µl anti-Flag 

magnetic bead slurry or 50 µl agarose matrix suspension after equilibration (250 µg protein in 

500 µl total volume). Finally, the different fractions were subjected to Western blot analysis. 
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Table 30: Buffers used for co-immunoprecipitation of mGBA2 

Equilibration buffer Lysis buffer Washing buffer 

10 mM Tris/HCl pH 7.4 10 mM Tris/HCl pH 7.5 10 mM Tris/HCl pH 7.5 

150 mM NaCl 150 mM NaCl 150 mM NaCl 

 0.5 mM EDTA 0.5 mM EDTA 

 1% (v/v) TritonX-100 0.2% (v/v) TritonX-100 

 1:500 mPIC 1:500 mPIC 

 

2.11.8 Chemical protein cross-linking using disuccinimidyl suberate (DSS) 

Cells seeded on a 9 cm plate expressing mGBA2-Flag and mutant or wild-type mGBA2-HA 

were washed twice in 5 ml PBS, harvested in 1 ml of 0.5 g/l EDTA in PBS, and then lysed in 

hypotonic buffer in the presence of mammalian protease inhibitor cocktail and sonicated on 

ice thrice 30 sec each. The homo-bifunctional disuccinimicyl suberate (DSS; Thermo Scientific) 

with a linker arm length of 11.4 Å was used as a cross-linking reagent. In a first set of 

experiments, cells were lysed in either 10 mM HEPES/NaOH (pH 7.4) or 25 mM HEPES/NaOH 

(pH 7.4)/ 100 mM NaCl. DSS added to 40 µg protein in a total volume of 40 µl was used at a 

final concentration of 0.77 mM, 1.48 mM, 2.14 mM, or 2.76 mM DSS and incubated either at 

room temperature for 20 min or at 4°C for 20 min, 60 min, 120 min, or 180 min end-over-end. 

For all conditions, reaction was quenched by addition of 12 µl 1 M Tris-(hydroxymethyl)-

aminomethane (Tris) pH 7.5. A control sample with no addition of DSS and Tris was run in 

parallel. Western blot analysis was performed and the total volume of the samples was loaded 

with cross-linked samples either being boiled or not boiled for 5 min at 95°C. Optimal cross-

linking conditions used for all subsequent experiments included lysis in 10 mM HEPES/NaOH 

(pH 7.4), 0.77 mM DSS, incubation at 4°C for 2 h, and finally loading non-boiled samples for 

Western blot analysis. 

 

2.11.9 Fluorescence-based β-glucosidase activity assay 

2.11.9.1 Setup of the β-glucosidase activity assay 

A fluorescence-based activity assay was performed as described previously to determine 

β-glucosidase activity in vitro (Körschen et al., 2013). Protein lysates of cultured cells or tissue 

were prepared in hypotonic buffer as described earlier (2.11.1.1, 2.11.1.2). Measurements 

were performed in McIlvaine buffer at pH 4 and pH 6 to distinguish GBA1 and GBA2 activity, 

respectively. Therefore, 20 µl protein lysate was diluted in 90 µl McIlvaine buffer per well on a 

96-well plate (Table 31). Moreover, the GBA1 inhibitor CBE (conduritol B epoxide, Sigma 

Aldrich) and the GBA2 inhibitor NB-DNJ (N-butyl-deoxynojirimycin, Sigma Aldrich) were 

prepared as a 390 µM and 130 µM stock, respectively, of which 10 µl (each or both blockers) 
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was added per well (Table 31). If necessary, the final volume of 130 µl per well was adjusted 

with hypotonic buffer. This suspension prepared on the 96-well plate was transferred to a 

384-well plate as quadruplicates à 25 µl (Table 31). Each well of the 384-well plate contained 

4-34 µg of total protein. Finally, 5 µl 4-methylumbelliferyl-β-D-glucopyranoside (4-MUG; 

10 mM) was added, resulting in a final concentration of 4-MUG accounting for 1.67 mM, of 

CBE accounting for 25 µM, and of NB-DNJ accounting for 8.3 µM (Table 31). 4-MUG is cleaved 

by the β-glucosidases and emits fluorescence at 460 nm when being excited at 355 nm. 

 

Table 31: Pipetting scheme for β-glucosidase activity assay 

McIlvaine buffer 96-well plate assay approach 
384-well plate 

assay approach 

0.1 M citric acid 

0.2 M Na2HPO4 

1 2 3 4 
25 µl of 96-well 

plate assay 

approach 

5 µl 10 mM 4-MUG 

90 µl McIlvaine buffer (pH 4 or pH 6) 

20 µl protein lysate 

 
- 10 µl 

390 µM 

CBE 

10 µl 

130 µM 

NB-DNJ 

10 µl 

390 µM 

CBE 

and 

130 µM 

NB-DNJ 

25 µM final CBE 

concentration 

and 

8.3 µM final NB-

DNJ concentration 

 

 20 µl 10 µl 10 µl -  

 
hypotonic buffer 

 

 

2.11.9.2 Fluorometric measurement using Fluostar plate reader 

Emitted fluorescence was measured at 29°C or 37°C in individual wells of a black 384-well 

plate (Greiner) from the top view using a 355 nm (excitation)/ 460 nm (emission) filter in a 

fluorescence plate reader (Fluostar OMEGA reader, BMG Labtech). Gain was adjusted to 800 

and prior to addition of 4-MUG, a basal fluorescence of the cell suspension was determined in 

5 cycles. In total, fluorescence was measured over 150 cycles, whereas in later cycles the 

number of flashes per well was increased according to Table 32. 
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Table 32: Kinetic windows set for fluorescence measurements using the Fluostar plate reader 

 Kinetic window 1 Kinetic window 2 

Number of cycles 50 100 

Cycle time (sec) 50 80 

Number of flashes per well 2 10 

 

2.11.9.3 Dose-response analysis of AMP-DNM 

A 50 mM stock of AMP-DNM (molecular weight of 397.6 g/mol), which was kindly provided by 

Prof. Dr. Johannes Aerts (Leiden University), was prepared in pure DMSO and stored at -20°C 

until further use. For dose-response analyses utilizing the β-glucosidase activity assay, AMP-

DNM diluted in hypotonic buffer (10 mM HEPES/NaOH, 0.5 mM EDTA, 1:500 mPIC) in a serial 

manner to yield final concentrations of 0.0083 pM up to 25 µM AMP-DNM.  

 

2.11.10 Rho GTPase pull-down activation assay 

All steps were performed on ice in the presence of mPIC (Sigma Aldrich). Murine dermal 

fibroblasts were harvested from three confluent 9 cm plates and lysed in 750 µl lysis buffer 

(Table 33) by passing through a 24G needle connected to a 1 ml syringe (20 strokes) within 

5 min. An aliquot was taken to determine the protein concentration (see 2.11.2.2) and the 

remaining sample was directly snap frozen to prevent Rho GTPase degradation. For the assay, 

400 µg protein and 300 µg protein was used to measure the amount of Rac1-GTP and Cdc42-

GTP, respectively, and diluted with lysis buffer to 0.5 µg/µl. 10 µg glutathione S-transferase 

(GST)-tagged PAK-PBD protein (PAK: p21-activated kinase, PBD: p21-activated kinase 

binding domain; Cytoskeleton Inc., PAK01-A) was added to each of the samples and incubated 

for 30 min end-over-end. 25 µl Glutathione Sepharose® beads (GE Healthcare, 17-0756-05), 

which have been equilibrated with lysis buffer, were added. The samples were incubated for 

30 min end-over-end. Next, beads were pelleted by centrifugation at 8000 x g for 1 min and 

washed once with 500 µl washing buffer (Table 33). After a 3-minute centrifugation at 8000 x 

g, the pellet was resuspended in 25 µl 2 x SDS sample buffer and analyzed by Western blot. 

10 µg protein of the original lysate was taken as an input for Western blot analysis. As positive 

and negative controls, protein lysates loaded with 200 µM guanosine-5'-triphosphate (GTP) or 

guanosine 5′-diphosphate (GDP) (Cytoskeleton Inc., BK035), respectively, were prepared in 

parallel. To allow nucleotide exchange, samples were treated with 15 mM EDTA prior to 

incubation with PAK-PBD protein. The reaction was quenched by addition of 60 mM MgCl2. 
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Table 33: Buffers used for Rho GTPase pull-down activation assay 

Lysis buffer Washing buffer 

50 mM Tris/HCl pH 7.5 25 mM Tris/HCl pH 7.5 

10 mM MgCl2 30 mM MgCl2 

0.5 M NaCl 40 mM NaCl 

2% Ipegal-CA630 1:500 mPIC 

1:500 mPIC  

 

2.12 Lipid analyses 

Mass spectrometry and thin layer chromatography (TLC) analysis of GlcCer and complex 

glycosphingolipids were performed in collaboration with Prof. Dr. Peter Dörmann (Institute of 

Molecular Physiology and Biotechnology of Plants, Bonn) and Prof. Dr. Roger Sandhoff 

(DKFZ, Heidelberg), respectively. 

 

2.12.1 Isolation of lipids from murine cerebellum 

Cerebellum of 10- to 13-week old mice was dissected and lysed in 800 µl hypotonic buffer 

(10 mM HEPES, 0.5 mM EDTA, 1:500 mPIC). In addition, cerebellum of early postnatal mice 

(P10) was isolated and homogenized in 600 µl hypotonic buffer (see 2.11.1.2). Protein 

concentration was determined in a Bradford test (2.11.2.1). Samples were stored at -80°C until 

further use and sent on dry ice for measurements in the collaborating labs. 

 

2.12.2 Lipid extraction for mass spectrometry 

Lipid extraction for mass spectrometry was performed as described in Schonauer et al., 2017 

by Dr. Katharina Gutbrod (Institute of Molecular Physiology and Biotechnology of Plants, 

Bonn). 500 µl chloroform/ methanol/ formic acid (ratio 1:1:0.1) was added per sample and 

mixed thoroughly. As a control, 50 µl of an internal standard lipid mix was added. Phase 

separation was obtained by centrifugation at 5,000 x rpm for 3 min after 250 µl 1 M KCl/ 0.2 M 

H3PO4 has been added and mixed by vortexing. The lower lipid-containing phase was 

transferred to a fresh glass vial and addition of chloroform/methanol (ratio 2:1) was performed 

to re-extract lipids from the remaining sample. Samples were vortexed and centrifuged at 

5,000 x rpm for 3 min. The lower phase was combined with the lipid extract obtained before. 

Solvents were evaporated under a gentle nitrogen flow and the fraction was finally dissolved 

in 500 µl chloroform.  

Lipids were purified using small silica columns (Strata-1-Silica) which have been equilibrated 

with pure chloroform before. Lipid extracts dissolved in chloroform were loaded and non-polar 

lipids, medium-polar sphingolipids (long chain bases, ceramides, hexosylceramides), and very 
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polar sphingolipids (e.g. sphingomyelin) were eluted in 3 x column volume (CV) of chloroform, 

acetone/ isopropanol (ratio 1:1), and methanol, respectively. Solvents were evaporated under 

a gentle nitrogen flow and the fraction was finally dissolved in 100 µl methanol. Half of the 

sample was dried once more to be dissolved in 100 µl chloroform/ methanol/ 300 mM 

ammonium acetate (ratio 300:665:35) and used for mass spectrometry analysis by nanospray 

direct infusion Q-TOF MS/MS as described previously in Ginkel et al. (Ginkel et al., 2012) and 

Raju et al. (Raju et al., 2015). The remaining 50 µl sample, dissolved in methanol, was used 

for LC-MS/MS measurements to analyze contents of glycosylated long chain bases (LCBs) 

according to Scherer et al. (Scherer et al., 2010). 

 

2.12.3 Lipid extraction for thin layer chromatography (TLC) 

For thin layer chromatography (TLC), 2 to 3 mg protein were transferred into 2 ml Eppendorf 

tubes, lyophilized, and directly suspended in 1 ml methanol in a TissueLyser using metal 

beads. Samples were supplemented with 1 ml chloroform and incubated for 15 min at 37°C in 

an ultrasonic bath. Centrifugation at 12,000 x g for 5 min followed and the pellet was re-

extracted with 2 ml chloroform/ methanol/ water (ratio 10:10:1) and 2 ml 

chloroform/ methanol/ water (ratio 30:60:8). Supernatant in the first, second, and third phase 

was combined (raw extract) and acidic lipids were separated from neutral lipids by performing 

anion-exchange chromatography on DEAE Sephadex® A-25 columns (100 µl column volume). 

Finally, acidic fraction was desalted by reversed-phase chromatography. Mild alkaline 

treatment for 2 h at 37°C using 0.1 M KOH in methanol was performed to enrich gangliosides. 

Afterwards, acetic acid was used for neutralization and samples were desalted by reversed-

phase chromatography. Solvents in the ganglioside fraction were evaporated under a gentle 

nitrogen flow at 37°C and the fraction was dissolved in chloroform/ methanol/ water (ratio 

10:10:1) yielding a concentration of 1 mg protein per 100 µl. Finally, 1 mg of total protein was 

subjected to high-performance thin layer chromatography (HP-TLC) developed with the 

solvent chloroform/ methanol/ 0.2% aqueous CaCl2 (ratio 45:45:10) and stained for glycolipids 

using the orcinol colorimetric detection reagent (Sigma). Porcine brain gangliosides (PBGG) 

and the gangliosides GM3, GM2, GM1a, and GD3 were run in parallel as standards. 

 

2.12.4 Isolation of detergent-resistant (DRM) membranes 

Separation of detergent-resistant membrane fractions was adapted from a study published by 

Lingwood & Simons (Lingwood and Simons, 2007). All steps were performed at 4°C or on ice 

in the presence of mPIC (Sigma Aldrich). 3 x 106 murine dermal fibroblasts were pelleted and 

lysed in 0.7 ml 1x TNE buffer (Table 34) by passing through a 24G needle connected to a 1 ml 

syringe (25 strokes). Cerebellum and spinal cord was lysed in 0.8 ml and 1 ml 1x TNE buffer, 

respectively. Tissue was homogenized using a pistil and passed through a 24G needle 
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connected to a 1 ml syringe (25 strokes). Cell debris of the tissue lysates was pelleted by 

centrifugation at 10,000 x g for 1 min and small portions of the supernatant (10-50 µg) were 

taken as input samples for Western blot analysis after protein concentration has been 

determined in a BCA test (2.11.2.2). 315 µl of the supernatant was transferred to a new 

Eppendorf tube, gently mixed with 35 µl 10% (v/v) TritonX-100 prepared in 1x TNE buffer, and 

incubated for 30 min. 700 µl of 60% iodoxanol (Optiprep, Sigma, D1556) was added and mixed 

well resulting in a final concentration of 40% iodoxanol. The sample (1050 µl) was then 

transferred to an ultracentrifuge tube and overlaid with 2.1 ml of 30% iodoxanol (Optiprep 

diluted in 2x TNE buffer in a ratio of 1:1). Finally, 350 µl TNE buffer was pipetted on top without 

disturbing the gradient. Ultracentrifugation at 260,000 x g for 2 h was performed in a SW-55 Ti 

rotor (Beckman Coulter, 342196). After centrifugation, three equal fractions à 1167 µl were 

taken as top, middle, and bottom fraction and 15 µl samples were prepared in 4x SDS sample 

buffer to be loaded onto a 12.5% SDS gel for subsequent Western blot analysis.  

 

Table 34: TNE buffer for detergent-resistant membrane isolation 

TNE buffer (1 x) 

5 mM Tris/HCl pH 7.4 

150 mM NaCl 

2 mM EDTA 

1:500 mPIC 

 

2.13 Behavioral tests 

2.13.1 Weight Test 

The weight test was performed to determine the forepaw muscle strength of mice (Deacon, 

2013) that had to grasp a steel chain consisting of different weights: 1) 21 g, 2), 34.8 g, 3) 48.6 

g, 4) 62.4 g, 5) 75.5 g, 6) 89 g, and 7) 103.3 g. When the mouse grasped the steel wool 

attached to the chain solely with its forepaws, it was lifted by its tail. If the animal held the 

weight for 3 sec it was tested on the next heavier weight. If the mouse failed to hold the weight 

for 3 sec, it was tested on the same weight again after a resting phase of at least 10 sec. The 

trial was terminated when the animal failed thrice to hold a weight for 3 sec and the time (0 to 

2 sec) it was able to hold this weight was noted. Finally, the relative muscle strength unit (rsu) 

was calculated as follows: 

𝑥 [𝑟𝑠𝑢] = 𝑛 x 3 [sec] + 𝑡 [sec] 

whereby n refers to the weight (0 to 7) the mouse could lift for 3 sec and t is defined by the 

time the animal could hold the next heavier weight (1 to 7). 
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The weight test was performed on 3 individual days after the animals habituated to the 

experiment setup one day before and an average rsu value was calculated for each mouse. 

(Khrameeva et al., 2018) 

 

2.13.2 Catwalk 

In collaboration with Prof. Dr. Frank Bradke (DZNE, Bonn) and PD Dr. Heike Endepols 

(Institute of Radiochemistry and Experimental Molecular Imaging, Cologne) locomotion of 

GBA2-knockout mice was analyzed. The CatWalkTM XT system (Noldus Information 

Technology, The Netherlands) was used to study the gait of freely moving mice passing a 

walkway. The CatWalkTM consists of a glass plate that is illuminated with green light. Upon 

placement of a paw, the light is scattered, which is detected by a camera positioned 

underneath the glass plate. The detection sensitivity is enhanced by complementary red light 

illuminating the walkway from the ceiling. Thus, the experiments have to be performed in 

darkness.  

Prior to the experiment, the distance of the camera to the glass plate was set to 40 cm and the 

software was calibrated using a 20 cm x 10 cm calibration sheet to provide a distance scale 

for subsequent analyses. The width of the corridor the mice have to pass was set to 5.5 cm 

and its dimensions were defined in the live view of the software. By performing test runs with 

mice, the optimal detection settings were determined: The camera gain was set to 20.00 db 

(Catwalk XT 10.6) or 30.00 dB (CatWalk XT 9.0) and the green intensity threshold to 0.1 to 

define the maximum and minimum green intensity for paw detection, respectively. In addition, 

the Catwalk XT 10.6 software allowed to adjust the intensity of the red ceiling and green 

walkway LED lights and was set to 17.7 V and 16.0 V, respectively. Overall, the experiment 

was performed on three consecutive days at the same time in the morning after the animals 

could habituate to the setup one day before. Prior to each run, the walkway was cleaned and 

the background was snapped in the software’s live view. Two runs per animal (with a maximum 

speed variation of 60%) from each of the three experimental days were classified for the 

analysis, including four consecutive steps of each paw. Since both the CatWalk XT 9.0 and 

10.6 software were used, data of GBA2-knockout mice was analyzed relative to the 

corresponding wild-type (WT) mice tested with the same software (% relative to WT). The 

interpaw coordination parameter step sequence and Phase Dispersion, which are based on 

the temporal relationship of consecutive placement of the different paws, were compiled as 

averaged values for WT and GBA2-knockout over all experiments or as individual values for 

each animal, respectively. 
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2.14 Validation of mouse genotypes 

After the behavior tests, genotypes of all tested mice were verified in a β-glucosidase activity 

assay (see 2.11.1.2, 2.11.9) using hypotonic brain lysates or in addition hypotonic skeletal 

muscle lysates to validate the muscle-specific GBA2-knockout. 

 

2.15 Software applications 

In addition to the aforementioned device-specific software applications, Origin Pro (version 

9.0), CorelDRAW (version X7), ImageJ (version 1.51w, Wayne Rasband, National Institutes of 

Health, USA), ChemDraw (version 16), Olympus FV10-ASW viewer (version 03.00.01.15), NIS 

elements viewer (version 4.20), Microsoft Excel 2013, Microsoft Word 2013, and EndNote 

(version X7.2) were utilized to analyze and visualize the experimental data and compile this 

thesis. 

 

2.16 Statistics 

Data represent mean values with standard deviation (+ S.D.) from independent experiments 

(n numbers are indicated) if not stated otherwise. Statistical analysis was performed with Origin 

Pro (version 9.0) using one-sample t-test or one-way analysis of variance (ANOVA). 
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3 Results 

3.1 Do mutations in GBA2 affect enzyme function? 

3.1.1 Cloning of mGBA2 mutants 

The open reading frame of mouse GBA2 (NM_172692) was amplified from cDNA using 

primers containing restriction sites and a Kozak sequence in front of the start codon (Table 4, 

2.4.1). The sequence encoding a hemagglutinin (HA) tag was added by PCR at the 3’-end. 

PCR products were subcloned into pcDNA3.1(+) and their sequence was verified. 

 

3.1.2 Heterologous expression of mGBA2 mutants 

To study the effect of mutations on GBA2 function, I heterologously expressed mGBA2 

mutants in CHO cells (Woeste, Master thesis, 2015). First, the expression of wild-type GBA2 

and GBA2 mutants was analyzed by immunocytochemistry (Figure 11; experiments were 

performed by Dominik Dittmann based on Woeste, Master thesis, 2015). All mutants were 

expressed and the subcellular localization was similar to wild-type GBA2. 

 

 

Figure 11: Immunocytochemical staining of CHO cells expressing mGBA2 mutants. Expression of A) mGBA2 
missense mutations, B) nonsense mutations, and C) wild-type mGBA2 in CHO cells. The HA-tagged mGBA2 

proteins were stained using an HA-specific antibody (green). Nuclei were stained using DAPI (blue). Scale bars are 
indicated. Experiments were performed by Dominik Dittmann. 
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3.1.3 β-Glucosidase activity assay 

The activity of GBA2 was analyzed by using a β-glucosidase activity assay established in our 

lab (Körschen et al., 2013). In this assay, the artificial, water-soluble substrate 

4-methylumbelliferyl-β-D-glucopyranoside (4-MUG) is hydrolyzed by β-glucosidases to 

4-methylumbelliferone (4-MU) (Figure 12 A). Since 4-MU emits fluorescence at 460 nm when 

being excited at 355 nm, an increase in fluorescence, proportional to the amount of cleaved 

substrate, is measured in a Fluostar plate reader. The slope over the linear range (cycle 50 to 

100) is calculated, which resembles the activity of GBA2 in rfu/min (Figure 12 B).  

 

 

Figure 12: Fluorescence-based measurement of GBA2 and GBA1 activity. A) 4-Methylumbelliferyl-β-D-

glucopyranoside (4-MUG) is used as an artificial, water-soluble substrate in the β-glucosidase activity assay. GBA2 
and GBA1 cleave 4-MUG to β-D-glucose and 4-Methylumbelliferone (4-MU). The sample is excited at 355 nm and 
fluorescence emission is measured at 460 nm. B) The increase in fluorescence (rfu) over time (min) upon cleavage 

of 4-MUG to 4-MU is monitored in a Fluostar fluorescence plate reader. For each sample (measured as 
quadruplicates), the slope (per min) is calculated over the linear range (cycle 50 to 100). λex: excitation wavelength; 
λem: emission wavelength; rfu: relative fluorescence units; min: minutes; t: time; F: fluorescence. 

 

Importantly, the assay allows to distinguish between the activities of the lysosomal 

glucosylceramidase GBA1 and the non-lysosomal glucosylceramidase GBA2 using the 

specific inhibitors conduritol B epoxide (CBE, GBA1-specific) and N-butyl-deoxynojirimycin 

(NB-DNJ, GBA2-specific), and their different pH optima (Figure 13) (Körschen et al., 2013). 

The pH optimum for GBA1 is at pH 4, whereas GBA2 activity is highest at pH 6 (Figure 13). 

However, both enzymes display residual activity at pH 6 and pH 4. Addition of CBE and NB-

DNJ allows to determine GBA1 (CBE-blockable; pH 4) and GBA2 activity (NB-DNJ-blockable; 

pH 6) (Figure 13). 
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Figure 13: pH dependence of GBA1 and GBA2 activity. Fluorescence-based activity assay was performed at 

different pH with hypotonic liver lysates by adding 1.67 mM 4-MUG. Without any blocker (black squares), GBA1 
and GBA2 activity cannot be distinguished, whereas addition of 30 µM CBE (blue circles) or 10 µM NB-DNJ (red 
triangles) reveals GBA1 and GBA2 activity at pH 4 and pH 6, respectively. Presence of both blockers (grey triangles) 
completely diminished any β-glucosidase activity in liver lysates. CBE: Conduritol B epoxide; NB-DNJ: N-butyl-
deoxynojirimycin. Modified from: Körschen et al., 2013. 

 

3.1.4 Mutations in GBA2 cause a loss of function of the enzyme 

The GBA2 proteins with a missense or nonsense mutation were heterologously expressed in 

CHO cells (Woeste, Master thesis, 2015). Western blot analysis revealed that the missense 

mutations are all expressed at similar levels and migrated on a SDS-PAGE according to their 

calculated molecular weight (Figure 14 A). The nonsense mutations T483R*9 and R331* also 

revealed comparable expression levels, whereas the expression of R225*, W164*, and Y112* 

was low (Figure 14 A). Of note, the mutants T483R*9, R331*, R225*, W164*, and Y112* ran 

at slightly higher molecular weight than their calculated molecular weight of 55 kDa, 37 kDa, 

26 kDa, 18 kDa, and 12 kDa, respectively. Next, GBA2 activity was determined in hypotonic 

lysates from transfected cells and compared to the activity of cells stably expressing wild-type 

GBA2 (Woeste, Master thesis, 2015). My results show that all mutations besides R725H 

caused a complete loss of function of the enzyme (Figure 14 B; Woeste, Master thesis, 2015). 

The activity of the R725H mutant accounted for 30.28 ± 9.32 % compared to wild-type GBA2. 

Interestingly, although, a similar amino-acid substitution to histidine (H) affected the arginine 

(R) at position 864, phenotypes of the R725H and R864H mutant differed, resulting in a dead 

mutant. 
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Figure 14: Heterologous expression and activity of mGBA2 mutants in CHO cells. A) Western blot analysis 

of hypotonic lysates from non-transfected CHO cells (NT), CHO cells stably expressing wild-type mGBA2-HA (WT), 
or CHO cells expressing the different mGBA2 mutants. mGBA2 was detected using an HA-specific antibody. 
Β-Tubulin served as a loading control. 10-20 µg protein was loaded per lane. B) Analysis of the GBA2 activity in 

hypotonic lysates of CHO cells heterologously expressing wild-type mGBA2 (WT) or mutant mGBA2. Columns 
represent mean values of three independent experiments (besides R225*, W164*, Y112*: n = 1) + SD. Statistical 
analysis was performed using one-sample t-test (p values are indicated). Modified and expanded by the analysis 
of the F410V mGBA2 mutant from Woeste, Master thesis, 2015. 

 

3.2 Structure-function analysis of GBA2 

Enzyme function depends on electrostatic interaction with the substrate (Graf et al., 1988; 

Wade et al., 1998). Several GBA2 mutations exchange an uncharged to a charged amino acid, 

or vice versa, suggesting that loss of activity is caused by impaired electrostatic interactions 

with the substrate. This applies to the mutations R864H, R725H, R621W, G674R, and D585H, 

where a positively charged arginine (R) was exchanged to a polar, uncharged histidine (H) or 

tryptophan (W), an uncharged, hydrophobic glycine (P) to a positively charged arginine (R), or 

the negatively charged aspartate (D) to a polar uncharged histidine (H). The charged residues 

arginine and aspartate might be involved in the formation of salt bridges (Barlow and Thornton, 

1983). Thus, loss or introduction of a charge might destabilize the GBA2 protein, leading to 

impaired enzyme function. 
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To test whether the charge is indeed important for protein function, I exchanged R864 or R621 

to another positively charged amino acid (lysine: K) or to an amino acid that is not charged 

(glutamine: Q) (Woeste, Master thesis, 2015). Mutants were expressed in CHO cells and their 

activity was determined (Figure 15). However, all mutants showed a significant decrease in 

GBA2 activity compared to wild-type GBA2 (Figure 15 B), demonstrating that both arginines 

at position 864 and 621 are required for GBA2 activity (Woeste, Master thesis, 2015). In 

contrast to lysine with its single terminal ammonium moiety, arginine bears three asymmetric 

nitrogens in the guanidinium moiety and, thereby, carries multiple sites to form electrostatic 

interactions within a protein (Borders et al., 1994). Moreover, arginine residues (aqueous pKa: 

13.8) stay protonated even when buried inside proteins or facing lipid membranes (Fitch et al., 

2015; Harms et al., 2011; Li et al., 2013), whereas lysine (aqueous pKa: 10.4) easily 

deprotonates and exhibits large pKa shifts in different environments (Isom et al., 2011; Li et al., 

2013). These properties of arginine might be indispensable to form a stable and functional 

GBA2 protein. 

 

 

Figure 15: Heterologous expression and activity of mGBA2 mutants. A) Western blot analysis and B) analysis 

of the GBA2 activity of hypotonic cell lysates from non-transfected cells (NT), cells heterologously expressing wild-
type mGBA2-HA (WT), or cells expressing the different mGBA2 mutants. mGBA2 was detected using an HA-
specific antibody. β-Tubulin served as a loading control. 10-20 µg protein was loaded per lane. Columns represent 
mean values of three independent experiments + SD. Statistical analysis was performed using one-sample t-test 
(p values are indicated). Modified from Woeste, Master thesis, 2015. 

 

Next, I wondered whether there is a “minimal” GBA2 protein that conveys β-glucosidase 

activity (Woeste, Master thesis, 2015). I tested different constructs that include 1.) the catalytic 

6-hairpin glucosidase domain (aa 442-918), 2.) the glucosylceramidase domain (aa 512-918), 

or lack 3.) the N-terminal aa1-125 (Δ126), 4.) the N-terminal aa1-135 (Δ136), or 5.) the C-

terminal aa883-918 (Q882*) (Figure 16). The last three constructs have been generated 

according to RaptorX modelling of mGBA2, which postulated protein domain boundaries 
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starting from amino acid 126 or 136 and ending at amino acid 882 (Figure 16; Prof. Dr. 

Matthias Geyer, unpublished data).  

 

 

Figure 16: Mutations introduced into the mGBA2 gene for structure-function studies. Wild-type mGBA2 (top) 

and the mGBA2 variants with a C- or N-terminal deletion are depicted. Functional domains were assigned according 
to InterPro (Finn et al., 2017) and protein sizes are indicated. 6-hp gluc domain: 6-hairpin glucosidase domain; 
GlcCeramidase: glucosylceramidase domain. 

 

Western blot analysis revealed that the truncated GBA2 variants were expressed at equal 

levels (Figure 17 A). However, GBA2 activity of these mutants was significantly decreased 

compared to wild-type GBA2 (Figure 17 B). Thus, neither the 6-hairpin glucosidase nor the 

glucosylceramidase domain are sufficient for GBA2 function (Figure 17 B). Additional N-

terminal amino-acids (Δ125, Δ135) did not recover enzyme activity (Figure 17 B). Even the 

sequence containing the complete N-terminal part and the C-terminal part up to aa 882 did not 

display significant GBA2 activity (Figure 17 B). In summary, my results reveal that the catalytic 

activity of GBA2 seems to be encoded by its tertiary structure rather than a defined amino-acid 

sequence (Woeste, Master thesis, 2015). 
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Figure 17: Expression and activity of mGBA2 mutants generated for structure-function studies. A) Western 
blot analysis and B) analysis of the GBA2 activity of hypotonic cell lysates from non-transfected cells (NT), cells 

heterologously expressing wild-type mGBA2-HA (WT), or cells expressing the different mGBA2 mutants. mGBA2 
was detected using an HA-specific antibody. β-Tubulin served as a loading control. 10-20 µg protein was loaded 
per lane. Columns represent mean values of three independent experiments + SD. Statistical analysis was 
performed using one-sample t-test (p values are indicated). A: 6-hairpin glucosidase domain, B: 
glucosylceramidase domain. Modified from Woeste, Master thesis, 2015. 

 

3.3 Structural modelling of GBA2 

Recently, the crystal structure of the β-glucosidase TxGH116 from Thermoanaerobacterium 

xylolyticum was solved (Charoenwattanasatien et al., 2016). TxGH116 belongs to the same 

glycoside hydrolase family GH116 as GBA2 and bears 40% sequence identity over the 

catalytic domain (Charoenwattanasatien et al., 2016). Structural modelling of hGBA2 based 

on the crystal structure of TxGH116 revealed that the missense mutations R873H, R734H, 

G683R, R630W, and D594H assemble in the catalytic domain at the C terminus, while F419V 

and M510V locate to the linker region preceding the C-terminal domain (Figure 18 B; Prof. Dr. 

Matthias Geyer, unpublished data). According to the studies of Charoenwattanasatien and 

colleagues, the amino-acid residues D508 and R786 in TxGH116, corresponding to D594 and 

R873 in hGBA2, respectively, face the catalytic cleft and might be involved in hydrogen bond 

formation to the hydroxyl groups of glucose (Charoenwattanasatien et al., 2016). The amino 

acid G683 in hGBA2 is located in a loop involved in the acid/base reaction and sugar binding, 

whereas R630 might electrostatically interact with the anionic carboxylates E555 and D631 in 

close proximity (Charoenwattanasatien et al., 2016). Mutating the amino acids D594 and R873, 

G683, or R630 could therefore impair hydrogen-bond formation with the substrate, perturb 

proper formation of the loop including the acid/base and sugar-binding residue, or disturb 

amino-acid interactions important to stabilize GBA2 (Charoenwattanasatien et al., 2016). 

However, the amino acid R734 is not conserved in TxGH116 and, according to our structural 

model, faces the surface of the protein rather than the catalytic site (Figure 18). Mutations at 

this position might therefore not directly affect the catalytic function of GBA2. Solving the crystal 
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structure of a mammalian GBA2 is needed to validate whether the homology modelling reliably 

predicted the protein structure. Thus, I aimed to purify mGBA2 for crystallization. 

 

 

Figure 18: Structural modelling of hGBA2. A) Structural modelling of hGBA2 based on the crystal structure of 
the bacterial β-glucosidase from Thermoanaerobacterium xylolyticum TxGH116 (Charoenwattanasatien et al., 
2016). B) Detailed view of the missense disease-associated mutations found in GBA2 in the structural model of the 

human isoform. The missense mutations R873H, R734H, G683R, R630W, and D594H assemble in the catalytic 
domain (dark blue), whereas F419V and M510V align to the linker region preceding the C-terminal domain. The 
mutations are shown in stick representations. N-terminal domain: light blue; linker domain: green; β-D-glucose is 
depicted in light green (A) or pink (B). Modelling was performed by Prof. Dr. Matthias Geyer (unpublished data). 

 

3.4 Purification of mGBA2 

Before the structure of the TxGH116 protein has been solved, we performed RaptorX 

modelling of mGBA2, which proposed protein domains spanning amino-acid sequence 

126-882. This sequence was required for proper folding of mGBA2 in silico, whereas additional 

N- or C-terminal amino acids disturbed homology modelling (Prof. Dr. Matthias Geyer, 

unpublished data). According to this model, we generated a construct to express mGBA2-

126/882 in bacteria and purify the protein for structural analysis. 

Previous studies in our lab revealed that wild-type mGBA2 cannot be purified in a soluble state 

(Dr. Heinz Gerd Körschen, unpublished data). To allow purification by affinity chromatography, 

mGBA2-126/882 was fused to MBP (maltose binding protein), which is supposed to provide 

more stability and solubility (Fox and Waugh, 2003; Kapust and Waugh, 1999). The open 

reading frame of mouse GBA2 (NM_172692) from amino acid 126 to 882 was amplified from 

cDNA using primers containing restriction sites (Table 4). PCR product was subcloned into 

pET28 MBP-tev (kindly provided by Prof. Dr. Matthias Geyer), which bears a tev (Tobacco 

Etch Virus) protease cleavage site following the coding sequence for the MBP protein, and the 

sequence was verified.  
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3.4.1 Expression of mGBA2 in E.coli 

To express mGBA2 in E.coli, bacteria of the strain pLysE were transformed with pET28 MBP-

tev-mGBA2-126/882 and the expression was induced by addition of 1 mM Isopropyl-β-D-

thiogalactopyranoside (IPTG). Protein expression was analyzed at different time points after 

induction (1 h, 3 h, 5 h, and overnight at 18°C) by Western blot (Figure 19). To reveal whether 

MBP-tev-mGBA2-126/882 is soluble, total lysates (T) were separated into supernatant and 

pellet after centrifugation at 15,300 rpm, resulting in the soluble (S) and insoluble membrane 

(M) fraction. At all tested conditions, MBP-tev-mGBA2-126/882 (127.02 kDa) was 

predominantly localized in the membrane fraction, but also to a lesser extend in the soluble 

fraction. 

 

 

Figure 19: Expression of MBP-tev-mGBA2-126/882 in E.coli. Bacteria of the E.coli strain pLysE were 

transformed with a pET28 vector containing the coding sequence for MBP-tev-mGBA2-126/882. Expression was 
induced by addition of 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) and bacteria were grown for 1 h, 3 h, 
5 h, or overnight (ON) at 18°C. 15 µl of the total fraction (T), soluble fraction (S), and membrane fraction (M) was 
loaded after resuspending the bacterial pellet in resuspension buffer and separating the fractions by centrifugation. 
MBP-tev-mGBA2-126/882 was detected using a GBA2- and MBP-specific antibody. 

 

MBP-tev-mGBA2-126/882 expression levels was highest after overnight expression and the 

ratio of protein localization in the soluble compared to the membrane fraction was best under 

this condition (Figure 19). Thus, this condition was chosen for further experiments.  

 

3.4.2 Affinity chromatography of MBP-tagged mGBA2 via MBPTrapTM 

To purify MBP-tev-mGBA2-126/882, I performed an affinity chromatography in a liquid 

chromatography system (ÄKTA; GE Healthcare) using a commercial MBPTrapTM column (GE 

Healthcare) containing cross-linked agarose (Sepharose) coated with dextrin. The eluted 

protein was collected and the input (In), non-bound (NB), washing fraction (Wash), and eluate 

(E) were analyzed by Western blot (Figure 20 A, B). Indeed, the MBP-tev-mGBA2-126/882 

protein, with a calculated size of 127 kDa, could be purified and eluted from the column by 

addition of maltose (Figure 20 A, B). 
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Figure 20: Affinity chromatography of MBP-tev-mGBA2-126/882. A) MBP-tev-mGBA2-126/882 was loaded 
onto an MBPTrapTM column (GE Healthcare) and eluted with 10 mM maltose. mAU: milli arbitrary units. B) Western 

blot analysis of the input (In, 1:10), non-bound (NB, 1:10), washing fraction (Wash, 1:10), and eluate (E, 1:10) 
obtained from the affinity chromatography depicted in (A). 10 µl diluted sample was loaded per lane. MBP-tev-

mGBA2-126/882 was detected using a GBA2- and MBP-specific antibody.  

 

3.4.3 Separation of mGBA2-126/882 from MBP-tev-mGBA2-126/882 via 

MBPTrapTM 

The MBP-tag was used to increase the solubility of mGBA2 and enhance its stability during 

purification (Fox and Waugh, 2003; Kapust and Waugh, 1999), but the protein tag should be 

removed for crystallization. To this end, purified MBP-tev-mGBA2-126/882 (MBP-Trap; Figure 

21 A) was incubated with tev protease. 500 µl of eluate obtained after purification was 

incubated with 1 µg tev protease per 100 µg MBP-tev-mGBA2-126/882 protein (= 1:100) 

overnight at 4°C. The tev protease recognizes the amino-acid sequence ENLYFQG, which we 

introduced into pET28-MBP-tev-mGBA2-126/882 between the MBP and mGBA2 protein. 

Cleavage will occur between the Q and G residue, separating MBP (41.57 kDa) and mGBA2-

126/882 (85.47 kDa). Indeed, Western blot analysis revealed that MBP-tev-mGBA2-126/882 

was cleaved by the tev protease, yielding mGBA2-126/882 with a size of 85.47 kDa (Etev, Etev*: 

after buffer exchange; Figure 21 D).  

To separate MBP and mGBA2-126/882, I performed an affinity chromatography (MBPTrapTM) 

of the protein sample, which was incubated with the tev protease (Figure 21 B). Prior to loading 

on the MBPTrapTM column, the buffer of the protein sample was exchanged to remove excess 

maltose and allow binding (Etev*; Figure 21 B). The flow-through after binding will contain 

mGBA2-126/882 and the tev protease. However, Western blot analysis revealed that only a 

small portion of mGBA2-126/882 is found in the Non-Bound (NB2; Figure 21 D). Most of the 

mGBA2-126/882 protein was present in the elution fraction (E2) together with non-cleaved 

MBP-tev-mGBA2-126/882. Thus, affinity chromatography could not sufficiently separate 

cleaved and non-cleaved mGBA2-126/882 protein. 
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Figure 21: Size-exclusion chromatography of purified MBP-tev-mGBA2-126/-882 after tev protease 
incubation. A) Affinity chromatography of MBP-tev-mGBA2-126/882 loaded onto an MBPTrapTM column (GE 
Healthcare) and eluted with 10 mM maltose. B) The purified sample (Etev) was incubated with tev protease overnight 

at 4°C and subjected to affinity chromatography to separate mGBA2-126/882 and MBP-tev-mGBA2-126/882. 500 µl 
eluate (Etev) containing 2975 µg protein was incubated with 29.75 µg (= 1:100) tev protease in a total volume of 
600 µl. 500 µl sample after incubation was subjected to the MBPTrapTM column after a buffer exchange in 1 ml 
binding buffer. mAU: milli arbitrary units. C) Western blot analysis of the input (In, 1:500), non-bound (NB1, 1:500), 
and eluate (E1, 1:300) obtained from the affinity chromatography depicted in (A), the purified sample incubated with 

tev protease (Etev, 1:500; Etev*: Etev after buffer exchange, 1:170) and subjected to the MBPTrapTM column depicted 
in (B), and the corresponding non-bound (NB2, 1:22) and eluate (E2, 1:170) of (B). 10 µl diluted sample was loaded 

per lane. MBP-tev-mGBA2-126/882 and mGBA2-126/882 was detected using a GBA2-specific antibody. 

 

3.4.4 Calibration of the size-exclusion chromatography column 

Since affinity chromatography was inefficient to separate mGBA2-126/882 from MBP-tev-

mGBA2-126/882 after tev protease incubation, I performed size-exclusion chromatography. 

The SuperdexTM 200 Increase 10/300 GL column (bed diameter: 10 mm, bed height 300 mm) 

allows to separate globular proteins with a molecular weight of 10 to 600 kDa (Manual GE 

Healthcare). Calibration of the SuperdexTM column was performed using standard proteins of 

known size. A protein mix containing thyroglobulin (669 kDa), aldolase (158 kDa), and 

ovalbumin (43 kDa) (Mix A; Figure 22 A) or ferritin (440 kDa), conalbumin (75 kDa), and 

ribonuclease (13.7 kDa) (Mix B; Figure 22 B) was injected and the elution was monitored at 

280 nm. Due to their different sizes, the proteins enter the porous beads of the SuperdexTM 

column accordingly and will eluted at different volumes. Proteins which are smaller than the 

average bead size of the column (8.6 µm) enter the pores of the beads and migrate slowly to 

the column, whereas large proteins are excluded from the beads and elute fast. To determine 

the void volume of the column, blue dextran (2000 kDa) was used because it is completely 

excluded from the column pores (Figure 22 C).  
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Protein size and elution volume are proportional and can be plotted as a standard curve. 

Elution peaks were integrated to calculate the elution volume.  

 

 

Figure 22: Size-exclusion chromatography of standard proteins using a SuperdexTM 200 Increase 10/300 GL 
column. 150 µl of A) protein mix A containing 750 µg thyroglobulin (669 kDa), 600 µg aldolase (158 kDa), and 
600 µg ovalbumin (43 kDa), B) of protein mix B containing 45 µg ferritin (440 kDa), 450 µg conalbumin (75 kDa), 
and 450 µg ribonuclease (13.7 kDa), and C) 150 µg blue dextran (2000 kDa) was subjected to size-exclusion 

chromatography. Peak integration was performed using the UNICORN software (GE Healthcare) to calculate the 
elution volume for the different standard proteins as indicated. mAU: milli arbitrary units. D) Standard curve of the 

available value of the distribution coefficient (Kav) plotted against the logarithm of the molecular weight (log MW) for 
the different standard proteins. The Kav was calculated as described in the text. R2: correlation coefficient. 

 

The total volume of the SuperdexTM column is defined as 

 

𝑉𝑡 = Vb + Vo (I) 
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with Vt as the total volume of column, Vb as volume of the beads, and Vo as the void volume 

of the column. Vt of the SuperdexTM column is 24 ml (Vt) as stated in the manufacturer’s data 

sheet, Vo is defined as the elution volume of blue dextran (8.15 ml), which is completely 

excluded from the column beads. According to equation (I), Vb equals 15.85 ml. 

Depending on the protein size, a small or large proportion of the bead pores is accessible to 

the protein. This proportion is defined by the available value of the distribution coefficient Kav 

and equals 0 for proteins, which are completely excluded from the beads, and 1 for proteins, 

which are completely included. 

𝐾𝑎𝑣 =
𝑉𝑒−𝑉𝑜

Vb
  (II) 

 

Vo and Vb I already determined, can be substituted as follows 

 

𝐾𝑎𝑣 =
𝑉𝑒−8.15 𝑚𝑙

15.85 ml
   (III) 

 

Based on the chromatograms of the eluted standard proteins (Figure 22 A-C), Ve was 

determined by peak integration, and the Kav was calculated (using equation III) for the standard 

proteins ribonuclease, ovalbumin, conalbumin, aldolase, ferritin, thyroglobulin, and blue 

dextran (Table 35). 

 

Table 35: Standard proteins used for calibration of the SuperdexTM 200 Increase 10/300 GL column  

Standard protein MW (Da) log (MW) Ve (ml) Kav 

Ribonuclease 13,700 4.14 18.19 0.63 

Ovalbumin 43,000 4.63 15.29 0.45 

Conalbumin 75,000 4.88 14.36 0.39 

Aldolase 158,000 5.20 12.52 0.28 

Ferritin 440,000 5.64 10.63 0.16 

Thyroglobulin 669,000 5.82 9.25 0.07 

Blue dextran 2,000,000 6.30 8.15 0 

Da: Dalton, log: logarithm, Kav: available value of the distribution coefficient, MW: molecular  
weight, Ve: elution volume 

 

Based on these data, a standard curve with Kav versus the molecular weight of the standard 

proteins (on a logarithmic scale) was plotted, indicating a linear correlation with a correlation 

coefficient (R2) of 0.98575 (Figure 22 D). Thus, the following equation can be used to 

determine the Kav of any protein loaded on the size-exclusion chromatography column: 
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𝐾𝑎𝑣 = −0.29965𝑥 + 1.84979     (IV) 

 

whereby x is the logarithm of the molecular weight. Ve can be calculated using the transposed 

equation (according to III) 

 

𝑉𝑒 = 8.15 𝑚𝑙 + 𝐾𝑎𝑣 𝑥 15.85 𝑚𝑙   (V) 

 

According to this equation, MBP-tev-mGBA2-126/882, mGBA2-126/882, MBP, and the tev 

protease should elute at the following Ve: 

 

Table 36: Calculated elution volumes of MBP and mGBA2-126/882 during size-exclusion chromatography 

Protein MW (Da) log (MW) Kav Ve (ml) 

MBP-tev-mGBA2-126/882 127,022 5.10 0.32 13.23 

mGBA2-126/882 85,472 4.93 0.37 14.05 

MBP 41,568 4.62 0.47 15.53 

tev protease 28,617 4.46 0.51 16.30 

Da: Dalton, log: logarithm, Kav: available value of the distribution coefficient, MW: molecular weight, 
Ve: elution volume 

 

3.4.5 Size-exclusion chromatography of mGBA2-126/882 

After calibration of the SuperdexTM column, I subjected purified MBP-tev-mGBA2-126/882 to 

size-exclusion chromatography. Here, 100 µl eluate after affinity-chromatography (Figure 

23Table 23 A) was incubated with 1 µg tev protease per 100 µg MBP-tev-mGBA2-126/882 

protein (= 1:100) overnight at 4°C or, in a control experiment, left untreated (- tev protease), 

and subsequently loaded onto the SuperdexTM column. Immediately after injection of the 

untreated sample (set to 0 ml), a large protein fraction eluted at 8.25 ml corresponding to the 

void volume of the column (see Figure 22 C). Western blot analysis revealed that this fraction 

(GF1) contains high amounts of MBP-tev-mGBA2-126/882 (Figure 23 C), thus, it is this protein 

that formed aggregates. Moreover, the chromatogram reveals a prominent protein peak at 

15.82 ml (36.16 kDa) after injection of the sample (Figure 23Table 23 B). The size of the 

eluted protein was calculated using equation III and IV. This elution peak most probably refers 

to MBP (41.57 kDa; Table 36), which, due to the labile tev cleavage site, detached from 

mGBA2-126/882 already in the absence of tev protease (GF1, - tev protease; Figure 23 D). 

Coomassie staining of the SDS-gel after blotting revealed a prominent protein band in the GF1 

sample at the expected size of MBP, but could not be detected by the MBP-specific antibody 

due to an insufficient protein transfer onto the PVDF membrane (Figure 23 D). Also, unspecific 
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binding of the MBP-specific antibody to blotted proteins (e.g. mGBA2-126/882) requires an 

optimization of Western blotting and antibody staining conditions. 

Size-exclusion chromatography of the tev protease incubated sample revealed no difference 

in elution peaks compared to the non-treated sample with most protein being eluted in the void 

volume at 8.25 ml after sample injection (Figure 23 C), indicating that also mGBA2-126/882 

formed aggregates. Western blot analysis confirmed the presence of mGBA2-126/882 in the 

elution fraction at 8.25 ml after incubation with tev protease; however, a high proportion of non-

cleaved MBP-tev-mGBA2-126/882 is present (GF1, 1:100 tev protease; Figure 23 D). The 

elution peak at 15.89 ml (34.95 kDa) likely refers to MBP, as seen in the Coomassie-stained 

SDS-gel, representing a prominent band at ~42 kDa (GF2, 1:100 tev protease; Figure 23 D). 

However, the fact that the elution peaks and the protein bands on the SDS-gel and Western 

blot did not clearly differ between the tev protease incubated and non-incubated sample, 

implies that the cleavage needs to be optimized. Using 1:100 tev protease was not efficient to 

cleave MBP-tev-mGBA2-126/882. Thus, I tested different tev protease concentrations and 

incubation times. Western blot analysis revealed that incubation with 1 µg tev protease per 

10 µg MBP-tev-mGBA2-126/882 protein (= 1:10; Etev) yielded highest mGBA2-126/882 levels 

for both 24-h (ON) and 48-h (2xON) incubation at 4°C (Figure 23 D). Further experiments 

should be performed using this higher tev protease concentration. 
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Figure 23: Optimization of tev cleavage of MBP-tev-mGBA2-126/882. A) Purification of MBP-tev-mGBA2-
126/882 by an MBPTrapTM and B) size-exclusion chromatography performed before (- tev protease) and C) after 

incubation of purified MBP-tev-mGBA2 (fraction: Etev) with tev protease overnight. 100 µl eluate (Etev) containing 
710 µg MBP-tev-mGBA2-126/882 protein was incubated without (- tev protease) or with 7.1 µg (= 1:100) tev 
protease (+ tev protease) in a total volume of 250 µl. 180 µl sample after incubation was subjected to the column; 
750 µl elution fractions were collected as GF1 and GF2. mAU: milli arbitrary units. D) Western blot analysis of purified 

MBP-tev-mGBA2-126/882 before (E1; -) and after incubation with different amounts of tev protease overnight (Etev 
ON) or for 48 h (Etev 2x ON) at 4°C: 37.5 µl eluate (Etev) containing 266 µg MBP-tev-mGBA2-126/882 protein was 
incubated without (-) or with 2.66 µg (= 1:100), 5.32 µg (= 1:50), or 26.6 µg (= 1:10) tev protease in a total volume 
of 60 µl. Samples collected during MBPTrapTM from A) were loaded as input (In, 1:700), non-bound (NB, 1:700), 
and eluate (E1: 1:170), and during size-exclusion chromatography from B) and C) were loaded as GF1 (1:450) and 

GF2 (1:450). 10 µl diluted sample was loaded per lane. MBP-tev-mGBA2-126/882 and mGBA2-126/882 was 
detected using a MBP- and/or GBA2-specific antibody; after blotting Coomassie staining of the SDS-gel was 
performed. 

 

3.4.6 MBP-tev-mGBA2-126/882 is not active 

Crystallization of recombinant proteins in principle can also be performed using the MBP-fusion 

protein. However, a protein tag might disturb proper protein folding and impair protein function. 

Also, according to my previous results, demonstrating that mGBA2 mutants lacking N- or C-

terminal amino acids were inactive (see 3.2), I hypothesize that the MBP-tev-mGBA2-126/882 

protein is not active. I expressed wild-type mGBA2-His (mGBA2) and MBP-tev-mGBA2-

126/882 in E.coli (see 2.11.5.2) and analyzed the protein expression by Western blot analysis 

(Figure 24 A). At 37°C, most of the protein was present in the membrane fraction (Figure 

24 A). However, when performing an activity assay using hypotonic lysates from bacteria, 
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expressing mGBA2 or MBP-tev-mGBA2-126/882 for 3 h at 37°C, mGBA2 was active, but not 

MBP-tev-mGBA2-126/882 (Figure 24 B). Expression of MBP-tev-mGBA2-126/882 was also 

performed at 18°C overnight, which leads to an increased expression with maximized solubility 

of the protein, but did not result in protein activity (Figure 24 B).  

Nonetheless, crystallization of inactive mGBA2 would allow to predict the ligand-free open 

conformation of the enzyme. Moreover, by studying mGBA2-126/882, one could test whether 

the amino acids 1-125 and 883-918 are required for substrate binding. In addition, attempts 

could be made to solubilize and re-fold the inactive mGBA2 protein in vitro using guanidine-

HCl or urea and by adjusting the ionic strength, pH, or temperature of the buffer, respectively 

(Clark, 1998; Lilie et al., 1998). All experiments would shed light on the structural properties of 

GBA2 in different conformational states, supplementary to the structure modelled in silico 

(see 3.3) (Charoenwattanasatien et al., 2016). 

 

 

Figure 24: Expression and activity of recombinant MBP-tev-mGBA2-126/882. A) Western blot analysis of 

hypotonic lysates prepared from E.coli expressing wild-type mGBA2-His (mGBA2) or MBP-tev-mGBA2-126/882 
after induction with IPTG (+) and incubation at 37°C for 3 h or at 18°C overnight (ON). A non-induced sample from 
E.coli transformed with wild-type mGBA2-His was loaded as a negative control. 7.5 µl sample was loaded per lane. 
GBA2 was detected using a GBA2-specific antibody. B) Analysis of the GBA2 activity of recombinant GBA2 before 
(-) and after (+) addition of IPTG and incubated at 37°C for 3 h or at 18°C overnight (ON). A) and B) The total (T), 

soluble (S) or insoluble membrane fraction (M) was loaded to localize GBA2 expression and activity to the different 
lysates fractions. IPTG: Isopropyl β-D-1-thiogalactopyranoside; rfu/min: relative fluorescence units per minute. 
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3.5 GBA2 interaction studies 

Several glucosidases from different glycoside hydrolase families form oligomers to be active. 

Both bacterial and fungal glucosidases were identified to crystallize in a two- or three-domain 

structure and form dimers or tetramers to be active (Aleshin et al., 2003; Gudmundsson et al., 

2016). Moreover, archaeal β-glucosidases of the GH1 family were shown to function as a 

tetramer (Aguilar et al., 1997; Kado et al., 2011). Since GBA2 tended to aggregate during 

purification, I wondered whether it also forms oligomers and performed co-immunoprecipitation 

and cross-linking experiments.  

Protein interaction was studied in lysates of CHO cells expressing mGBA2-Flag and mGBA2-

HA protein. The construct encoding wild-type mGBA2-Flag was generated as follows: The 

open reading frame of mouse GBA2 (NM_172692) was amplified from cDNA using primers 

containing restriction sites and a Kozak sequence in front of the start codon (Table 4, 2.4.1). 

The sequence encoding a Flag tag was added by PCR at the 3’-end. The PCR product was 

subcloned into pcDNA6/V5-HisA and its sequence was verified. Wild-type and mutant mGBA2-

HA constructs were generated as described before (3.1.1). 

 

3.5.1 Co-immunoprecipitation 

For co-immunoprecipitation, magnetic beads coated with the anti-Flag antibody were 

incubated with protein lysates of CHO cells expressing Flag- and HA-tagged mGBA2. Using 

this assay, I addressed the following questions: 1.) Does wild-type mGBA2-Flag bind to the 

anti-Flag magnetic beads?, 2.) Do mGBA2-HA and mGBA2-Flag interact, meaning the 

proteins co-immunoprecipitate?, 3.) Is the binding specific, or does any other HA-tagged 

protein co-immunoprecipitate?, and 4.) Is the interaction disrupted by mutations in GBA2? 

 

 

Figure 25: Co-immunoprecipitation of GBA2 using anti-Flag magnetic beads. A) Co-expression of wild-type 

(WT) mGBA2-Flag with mGBA2-HA in CHO cells. Total lysates were prepared and loaded on the equilibrated beads 
and B) incubated overnight end-over-end. Beads were then washed and bound proteins eluted in 1 M glycine at 

pH 3.0.  
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3.5.1.1 Does mGBA2-Flag bind to anti-Flag magnetic beads? 

A prerequisite for the use of anti-Flag magnetic beads to study GBA2 interaction is, that 

mGBA2-Flag quantitatively binds the antibody attached to the beads. Thus, different buffer 

conditions were tested for antibody-protein binding. According to the manufacturer’s protocol 

(Sigma), the pH of the protein lysate should be in the range of pH 7 to pH 8, the salt 

concentration (NaCl or KCl) should be 150 mM or higher, and either TritonX-100 or CHAPS 

can be used as a to detergent to minimize unspecific binding of proteins to the resin. Thus, I 

used a “normal” lysis buffer containing 10 mM Tris, 150 mM NaCl, 0.5 mM EDTA, and 1% 

Triton X-100, but increased the NaCl concentration to 500 mM in a buffer referred to as “high 

NaCl” or reduced the NaCl concentration to 10 mM in a “low NaCl” buffer. Moreover, I tested 

a buffer without EDTA (“w/o EDTA”) and one that contained CHAPS instead of TritonX-100 at 

the same concentration (“CHAPS”). The corresponding washing buffers contained a reduced 

Triton X-100 or CHAPS concentration of 0.2%. In all tested conditions, mGBA2-Flag 

quantitatively bound to the antibody column and no protein was present in the non-bound and 

final wash sample (Figure 26). Thus, the normal lysis buffer was used in subsequent 

immunoprecipitation experiments. 

 

 

Figure 26: Immunoprecipitation of mGBA2-Flag using different buffer conditions. Different buffers were used 

to lyse CHO cells expressing mGBA2-Flag. The normal buffer contained 10 mM Tris, 150 mM NaCl, 0.5 mM EDTA, 
1% Triton X-100, whereas NaCl was increased to 500 mM (high NaCl), reduced to 10 mM (low NaCl), EDTA was 
excluded (w/o EDTA), or TritonX-100 was exchanged by CHAPS in the same concentrations. The corresponding 
washing buffers contained reduced Triton X-100 concentration (0.2%). Western blot analysis of the different 
fractions was performed and 16.67 µl protein lysate was loaded as Input, 37.5 µl supernatant after incubation of the 
lysate on the beads was loaded as Non-Bound, 37.5 µl supernatant after washing the beads with 300 µl washing 
buffer was loaded as Final Wash, 37.5 µl supernatant was loaded after elution in 100 µl 1 M glycine pH 3.0 and 
neutralization in 16.67 µl 1 M Tris/HCl pH 8.0. mGBA2-Flag was detected using a Flag-specific antibody. β-Tubulin 
served as a loading control.   
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3.5.1.2 Test for specificity 

A prerequisite to study GBA2 interaction by co-immunoprecipitation is that only mGBA2-Flag 

and not mGBA2-HA binds to the anti-Flag magnetic beads. Unspecific binding of protein to the 

agarose matrix therefore needs to be prevented. Including a pre-clearing step on underivatized 

agarose beads ensures that any protein interacting with the agarose is removed from the 

lysate. 

I first tested whether mGBA2-Flag or mGBA2-HA bind to underivatized agarose beads. 

Western blot analysis revealed that mGBA2-Flag does not bind to the agarose beads, it was 

only present in the input and non-bound and at low levels in the initial washing fraction (Figure 

27 A). Also, mGBA2-HA was also only present in the input, but not in the eluate when 

performing precipitation experiments on underivatized agarose matrix, anti-Flag magnetic 

beads (FlagTrap), or anti-Flag magnetic beads after pre-clearing on underivatized agarose 

(Figure 27 B). Thus, the latter approach including a pre-clearing step was utilized to perform 

co-immunoprecipitation experiments of mGBA2-Flag and mGBA2-HA. 

 

 

Figure 27: Control precipitation experiments performed with mGBA2-HA and mGBA2-Flag. Western blot 
analysis of different fractions collected during A) precipitation of mGBA2-Flag incubated on empty agarose beads, 
and B) precipitation and immunoprecipitation of mGBA2-HA incubated on empty agarose beads (agarose), anti-

Flag magnetic beads (FlagTrap), or anti-Flag magnetic beads after pre-clearing on empty agarose matrix (agarose 
+ FlagTrap). A) and B) For co-immunoprecipitation total lysates of transfected cells were prepared; 250 µg total 

protein was loaded in a total volume of 500 µl on equilibrated agarose or anti-Flag magnetic beads (50 µl bead 
slurry of a 50% suspension in storage buffer was used). For Western blot analysis, 16.67 µl protein lysate was 
loaded as Input, 25 µl agarose matrix resuspended in 30 µl 1x SDS sample buffer was loaded (Beads), 37.5 µl 
supernatant after incubation of the lysate on the beads was loaded as Non-Bound, 37.5 µl supernatant after washing 
the beads with 300 µl washing buffer was loaded as Initial and Final Wash, 37.5 µl supernatant was loaded after 
elution in 100 µl 1 M glycine pH 3.0 and neutralization in 16.67 µl 1 M Tris/HCl pH 8.0. Beads: agarose matrix after 
incubation with the protein lysate; Input 1: protein lysate loaded on underivatized agarose matrix as a pre-clearing 
step; Input 2: protein lysate loaded on anti-Flag magnetic beads after pre-clearing on agarose; Input: protein lysate 
loaded on empty agarose matrix or anti-Flag magnetic beads. mGBA2-Flag and mGBA2-HA were detected using 
Flag- and HA-specific antibodies, respectively. β-Tubulin (β-Tub) served as a loading control.   
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3.5.1.3 Co-immunoprecipitation of mGBA2-Flag and mGBA2-HA 

Using the optimized protocol, I performed co-immunoprecipitation of mGBA2-Flag and 

mGBA2-HA. Indeed, mGBA2 interacted with mGBA2-Flag and was detected in the elution 

fraction using an HA-specific antibody indicating a protein-protein interaction (Figure 28). 

 

Figure 28: Pre-incubation on underivatized agarose matrix needed for specific co-immunoprecipitation. 

Western blot analysis of the different fractions collected during co-immunoprecipitation of mGBA2-HA with mGBA2-
Flag performed using anti-Flag magnetic beads after-pre-clearing on underivatized agarose beads. For co-
immunoprecipitation total lysates of transfected cells were prepared; 250 µg total protein was loaded in a total 
volume of 500 µl on equilibrated agarose or anti-Flag magnetic beads (50 µl bead slurry of a 50% suspension in 
storage buffer was used). 16.67 µl protein lysate was loaded as Input, 37.5 µl supernatant after incubation of the 
lysate on the beads was loaded as Non-Bound, 37.5 µl supernatant after washing the beads with 300 µl washing 
buffer was loaded as Initial and Final Wash, 37.5 µl supernatant was loaded after elution in 100 µl 1 M glycine pH 
3.0 and neutralization in 16.67 µl 1 M Tris/HCl pH 8.0. Beads: agarose matrix after incubation with the protein lysate; 
Input 1: protein lysate loaded on underivatized agarose matrix as a pre-clearing step; Input 2: protein lysate loaded 
on anti-Flag magnetic beads after pre-clearing on agarose. mGBA2-Flag and mGBA2-HA was detected using Flag- 
and HA-specific antibodies, respectively. β-Tubulin served as a loading control.  

 

3.5.1.4 Independent HA-tagged control protein 

To verify that the interaction of mGBA2 proteins was not dependent on the HA tag, I performed 

a co-immunoprecipitation using an independent HA-tagged protein, the bacterial 

photoactivated adenylyl cyclase of the soil bacterium Beggiatoa sp. (bPAC-HA). Similar to the 

previous experiment, a pre-clearing step was included to ensure that the lysate loaded on the 

magnetic beads (Input 2) is free of any protein interacting with the agarose resin itself. Western 

blot analysis indicated that bPAC-HA is found at high levels in the non-bound, but not in the 

elution fraction (Figure 29). Thus, the interaction of mGBA2-Flag and mGBA2-HA is GBA2-

specific. 

 

Figure 29: bPAC-HA does not interact with mGBA2-Flag. Western blot analysis of the different fractions 

collected during co-immunoprecipitation of bPAC-HA with mGBA2-Flag performed using anti-Flag magnetic beads 
after-pre-clearing on underivatized agarose beads. For co-immunoprecipitation total lysates of transfected cells 
were prepared; 16.67 µl protein lysate was loaded as Input, 37.5 µl supernatant after incubation of the lysate on the 
beads was loaded as Non-Bound, 37.5 µl supernatant after washing the beads with 300 µl washing buffer was 
loaded as Initial and Final Wash, 37.5 µl supernatant was loaded after elution in 100 µl 1 M glycine pH 3.0 and 
neutralization in 16.67 µl 1 M Tris/HCl pH 8.0. Beads: agarose matrix after incubation with the protein lysate; Input 1: 
protein lysate loaded on underivatized agarose matrix as a pre-clearing step; Input 2: protein lysate loaded on anti-
Flag magnetic beads after pre-clearing on agarose. mGBA2-Flag and bPAC-HA were detected using Flag- and HA-
specific antibodies, respectively. β-Tubulin served as a loading control. 
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3.5.1.5 Co-immunoprecipitation of mutant and wild-type mGBA2 

Next, I tested whether missense or nonsense mutations in GBA2 impair GBA2-GBA2 

interaction. Co-immunoprecipitation was performed according to the optimized protocol 

(3.5.1.1, 3.5.1.3) with lysates of cells expressing wild-type mGBA2-Flag and mutant mGBA2-

HA and compared to control cells co-expressing wild-type mGBA2-Flag and -HA. Western blot 

analysis revealed that in all experiments, wild-type mGBA2-Flag quantitatively bound to the 

anti-Flag magnetic beads and mutant mGBA2-HA co-precipitated in the eluate (Figure 30 A, 

B). Thus, neither amino-substitution nor C-terminal truncation of GBA2 affect protein-protein 

interaction. 
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Figure 30: GBA2 mutations do not impair GBA2-GBA2 interaction. A) Western blot analysis of the different 

fractions collected during co-immunoprecipitation of the missense mutations mGBA2-R864H-HA, -R725H-HA, -
G674R-HA, -R621W-HA, or -D585H-HA with mGBA2-Flag performed using anti-Flag magnetic beads after-pre-
clearing on underivatized agarose beads. B) Western blot analysis of the different fractions collected during co-

immunoprecipitation of the nonsense mutations mGBA2-T483R*9-HA and -R331*-HA with mGBA2-Flag performed 
using anti-Flag magnetic beads after-pre-clearing on underivatized agarose beads. A) and B) For co-

immunoprecipitation total lysates of transfected cells were prepared; A control experiment with mGBA2-Flag and 
mGBA2-HA was performed in parallel (WT); 16.67 µl protein lysate was loaded as Input, 37.5 µl supernatant after 
incubation of the lysate on the beads was loaded as Non-Bound, 37.5 µl supernatant after washing the beads with 
300 µl washing buffer was loaded as Final Wash, 37.5 µl supernatant was loaded after elution in 100 µl 1 M glycine 
pH 3.0 and neutralization in 16.67 µl 1 M Tris/HCl pH 8.0. Beads: agarose matrix after incubation with the protein 
lysate; Input 1: protein lysate loaded on underivatized agarose matrix as a pre-clearing step; Input 2: protein lysate 
loaded on anti-Flag magnetic beads after pre-clearing on agarose. mGBA2-Flag and mGBA2-HA were detected 
using Flag- and HA-specific antibodies, respectively. β-Tubulin served as a loading control. 

 

3.5.2 Chemical cross-linking 

The co-immunoprecipitation approach demonstrated that GBA2 proteins interact. To identify 

the oligomeric structure of GBA2 protein complexes, I performed chemical cross-linking using 

the homo-bifunctional disuccinimicyl suberate (DSS) with a linker arm length of 11.4 Å. With 

N-hydroxysuccinimid (NHS) groups at both ends, DSS reacts with primary amines in proteins, 

forming an amide bond (Figure 31). This reaction occurs at pH 7-9 in aqueous solution and 

can be quenched by addition of Tris-(hydroxymethyl)-aminomethane (Tris). 

 

 

Figure 31: Chemical cross-linking of proteins using disuccinimidyl suberate (DSS). The N-hydroxysuccinimid 

(NHS) groups linked to the suberate backbone by ester bonds react with primary amines at the N terminus of 
proteins (P) to form a stable amide bond. This reaction occurs at pH 7-9 in aqueous solution and can be quenched 
by addition of Tris-(hydroxymethyl)-aminomethane.  
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3.5.2.1 Optimizing cross-linking conditions 

I first tested cross-linking of mGBA2 proteins under conditions used for activity measurements 

in our β-glucosidase assay (10 mM HEPES at pH 7.4) for 20 min at 4°C at different DSS 

concentrations (0.77 mM, 1.48 mM, 2.14 mM, and 2.76 mM; Figure 32 A). To be able to detect 

protein aggregates, I also blotted the stacking gel for Western blot analysis. My results show 

that 0.77 mM DSS was sufficient to cross-link mGBA2-Flag and mGBA2-HA (O*) without 

causing protein aggregation (A*), whereas higher DSS concentrations did not improve cross-

linking, but tend to promote aggregate formation (Figure 32 A). Incubation with DSS for 2 h 

resulted in optimal oligomer formation (O*) with no prominent aggregation of mGBA2 (A*) 

(Figure 32 B). Thus, for further cross-linking experiments, 0.77 mM DSS was used and the 

reaction was performed for 2 h at 4°C.  

 

 

Figure 32: Cross-linking efficiency of mGBA2 using different DSS concentrations and incubation times. 
Protein lysates of CHO cells co-expressing mGBA2-Flag and mGBA2-HA were prepared and different A) DSS 
concentrations (for 20 min at 4°C) and B) incubation times (at 4°C) were tested. Reaction was stopped by addition 

of Tris-(hydroxymethyl)-aminomethane (Tris) pH 7.5 (final concentration: 0.22 M) and 40 µg protein was loaded for 
Western blot analysis. mGBA2-Flag and mGBA2-HA was detected using a Flag- or HA-specific antibody, 
respectively. Calnexin served as a loading control. M: GBA2 monomer, O*: cross-linked oligomer, A*: aggregated 
protein. Dotted line indicates border of stacking (top) and separating (bottom) gel. 

 

To analyze whether modifying the buffer composition improves the yield of cross-linked GBA2, 

I compared buffer containing 25 mM HEPES and 100 mM NaCl (pH 7.4; buffer 2) to the normal 

buffer (10 mM HEPES at pH 7.4; buffer 1) and incubated the samples at room temperature for 

20 min or at 4°C for 2 h with or without boiling the final SDS sample before loading on the gel. 

Cross-linking at room temperature for 20 min and at 4°C for 2 h generated oligomerized 

mGBA2-Flag > 245 kDa (O*; Figure 33 A and B). Moreover, boiled and non-boiled samples 

were similar (Figure 33 A and B). However, cross-linking at room-temperature resulted in 
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protein aggregation (A*) at both buffer conditions (Figure 33 A). At 4°C, aggregates were only 

present in samples lysed in NaCl-containing buffer 2, whereas in 10 mM HEPES alone 

(buffer 1), no mGBA2 aggregates were formed (Figure 33 B).   

 

 

Figure 33: Cross-linking efficiency of mGBA2 at different temperatures and buffer conditions. Western blot 

analyses of CHO cells expressing mGBA2-Flag lysed in buffer 1 (10 mM HEPES, pH 7.4) or buffer 2 (25 mM 
HEPES, 100 mM NaCl, pH 7.4) before (-) and after cross-linking with 0.77 mM DSS (+). Incubation with DSS was 
performed at room temperature for 20 min (A) or 4°C for 2 h (B). Reaction was stopped by addition of Tris-

(hydroxymethyl)-aminomethane (Tris) pH 7.5 (final concentration: 0.22 M) and 40 µg protein was loaded for Western 
blot analysis. Samples indicated with ° were boiled at 95°C for 5 min before loading on the gel. mGBA2-Flag was 
detected using a Flag-specific antibody. β-Tubulin served as a loading control. Dotted line indicates border of 
stacking (top) and separating (bottom) gel. M: GBA2 monomer, O*: cross-linked oligomer, A*: aggregated protein. 

 

3.5.2.2 Cross-linking of mutant mGBA2 

To test whether disease-associated GBA2 mutations affect protein oligomerization, I 

performed cross-linking experiments using the different HA-tagged mGBA2 mutants. Western 

blot analysis demonstrated that the GBA2 mutants R864H, R725H, G674R, R621W, and 

D585H formed protein oligomers that resemble the wild-type mGBA2 oligomers (between 

238-460 kDa; Figure 34 A). Moreover, detailed analysis of the oligomer/monomer ratio upon 

addition of DSS (+) revealed no difference in mutant and wild-type (WT) oligomer formation 

(Figure 34 B; parts of the experiments have been performed by Dominik Dittmann). 
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Figure 34: Chemical cross-linking of wild-type and mGBA2 missense mutations. A) Western blot analysis of 

hypotonic lysates from CHO cells expressing wild-type Flag-tagged or mutant HA-tagged mGBA2 before (-) and 
after cross-linking with 0.77 mM DSS. Reaction was stopped by addition of Tris-(hydroxymethyl)-aminomethane 
(Tris) pH 7.5 (final concentration: 0.22 M) and 40 µg protein was loaded for Western blot analysis. GBA2 was 
detected using a HA-specific antibody. Calnexin served as a loading control. B) Quantitative analysis of 

oligomer/monomer formation (%) upon DSS cross-linking of mutant mGBA2 compared to wild-type mGBA2. 
Columns represent values + SD. Statistical analysis was performed using one-sample t-test (n numbers are 
indicated). M: GBA2 monomer, O*: cross-linked oligomer. Parts of the experiments have been performed by 
Dominik Dittmann. 

 

Similarly, we analyzed if the truncated mGBA2 mutants T483R*9 and R331* form oligomers 

by chemical cross-linking (experiments performed by Dominik Dittmann). Since the size of the 

T483R*9 (55 kDa) and R331* (37 kDa) mutant differs from that of the wild-type protein 

(103 kDa), homo- or hetero-oligomers can be distinguished by Western blot analysis. The 

experiments revealed that T483R*9 and R331* exhibit impaired oligomerization compared to 

wild-type mGBA2 (WT) (Figure 35 A; O*/M ratio). Hetero-oligomers of mutant and wild-type 

protein were not observed (Figure 35 B) and oligomerization of wild-type mGBA2-Flag was 

not affected by the mutants (Figure 35 D; O*/M ratio WT-Flag). This result is different from the 

outcome of the co-immunoprecipitation experiments, where wild-type mGBA2 also interacted 

with the mGBA2 mutants T483R*9 and R331* (Figure 30). One explanation for this 

experimental discrepancy might be the different buffers, total lysis buffer for co-

immunoprecipitation and hypotonic lysis buffer that were used for chemical cross-linking and 

co-immunoprecipitation, which might favor or abolish protein-protein interaction. For example, 

NaCl, which is present in the lysis buffer used for co-immunoprecipitation, impaired cross-

linking and caused excessive protein aggregation.  
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Figure 35: Chemical cross-linking of wild-type and mGBA2 nonsense mutations. A) Western blot analysis of 

hypotonic lysates from CHO cells expressing wild-type mGBA2-Flag or mutant mGBA2-HA before (-) and after 
cross-linking with 0.77 mM DSS. Reaction was stopped by addition of Tris-(hydroxymethyl)-aminomethane (Tris) 
pH 7.5 (final concentration: 0.22 mM) and 40 µg protein was loaded for Western blot analysis. mGBA2-Flag and 
mGBA2-HA was detected using a Flag- and HA-specific antibody, respectively. Calnexin served as a loading 
control. B) Quantification of oligomer/monomer formation (O*/M ratio in %) upon DSS cross-linking of mGBA2-
T483R*9-HA (T483R*9) or mGBA2-R331*-HA (R331*) compared to wild-type mGBA2-HA (WT; set to 100%). C) 

Western blot analysis of hypotonic lysates from CHO cells expressing wild-type mGBA2-Flag and wild-type mGBA2-
HA or wild-type mGBA2-Flag and mutant mGBA2-HA before (-) and after cross-linking with 0.66 mM DSS. Reaction 
was stopped by addition of Tris-(hydroxymethyl)-aminomethane (Tris) pH 7.5 (final concentration: 0.22 mM) and 40 
µg protein was loaded for Western blot analysis. GBA2 was detected using a HA-specific antibody. Calnexin served 
as a loading control. D) Quantification of oligomer/monomer formation of wild-type mGBA2-Flag (O*/M ratio in %) 

upon DSS cross-linking of wild-type mGBA2-Flag in the presence of wild-type mGBA2-HA (WT; set to 100%), 
mGBA2-T483R*-HA (T483R*9), or mGBA2-R331*-HA (R331*). B) and D) Columns represent mean values + SD. 

Statistical analysis was performed using one-sample t-test (n numbers and p values are indicated). M: GBA2 
monomer, O*: cross-linked oligomer. Experiments were performed by Dominik Dittmann. 
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3.5.3 GBA2 activity interaction studies 

To analyze whether mutant GBA2 protein affects the activity of wild-type GBA2, I performed 

the β-glucosidase activity assay using lysates of cells that express both proteins. However, a 

prerequisite for this assay is that wild-type and mutant GBA2 are expressed in stoichiometric 

amounts. To this end, we generated plasmids, encoding the wild-type Flag-tagged GBA2 and 

mutant HA-tagged GBA2, either connected by a linker or a 2A peptide (cloning performed by 

Dr. Wolfgang Bönigk; see 2.4.1.2). 

 

3.5.3.1 Cloning of the GBA2-2A and -linker constructs 

The open reading frame of mouse GBA2 (NM_172692) was amplified from cDNA using 

primers containing restriction sites and a Kozak sequence in front of the start codon (Table 4). 

The sequence encoding a HA- or Flag-tag was added by PCR at the 3’-end. PCR products 

were subcloned into pcDNA3.1(+) and their sequence was verified. These mGBA2 constructs 

were used as a template to generate constructs, coding for a Flag-tagged mGBA2 and the 

coding sequence for the 2A peptide derived from the Foot-and-Mouth picornavirus 

(VKQTLNFDLLKLAGDVESNPGP) followed by mGBA2-HA. Addition of the 2A peptide flanked 

by a PPGSG- and GSG-linker to the Flag-tagged mGBA2 was performed in a sequential 

manner (Table 4). The final chimeric product was amplified in a recombinant PCR, subcloned 

into pcDNA3.1(+), and verified by sequencing. 

Using the 2A peptide constructs, mGBA2-Flag and mGBA2-HA can be expressed at equimolar 

ratios through a mechanism called ribosomal skipping (de Felipe et al., 2003; Donnelly et al., 

2001). 2A peptide encoding sequences are found in viruses of the Picornaviridae, Iflaviridae, 

Tetraviridae, Dicistroviridae, and Reoviridae family (Luke et al., 2008). Their genome is 

composed of a single open reading frame (ORF). However, the 2A peptide allows translation 

of multiple proteins for instance needed for capsid formation and replication (Collis et al., 1992; 

Li et al., 2001; Molla et al., 1993). The majority of the 2A peptides from the different virus 

species share the conserved amino-acid sequence GDVEXNPGP at the C terminus (Luke et 

al., 2008), and introducing a GSG linker upstream of the 2A peptide was shown to improve 

“cleavage” efficiency in different expression systems (Chng et al., 2015; Wang et al., 2015; 

Yang et al., 2008). Thus, for the mGBA2 2A constructs, we also flanked the 2A peptide with a 

PPGSG- and GSG-linker. 

We compared the 2A-approach to a linker-approach with mGBA2-Flag and mGBA2-HA, 

expressed as a single polypeptide, but separated by a linker (N terminus of rat CNCA2, 

aa 3-67). EcoRI and an XbaI restriction sites following the linker sequence allow to introduce 

wild-type or mutant mGBA2-HA at the C terminus. 
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3.5.3.2 Activity of mutant and wild-type mGBA2-2A and -linker chimera 

Expression of the different 2A peptide and linker constructs of mGBA2 in CHO cells was 

analyzed by Western blot and their GBA2 activity was determined in the β-glucosidase activity 

assay. Besides the 2A peptide and linker constructs expressing both mGBA2-Flag and 

mGBA2-HA, I also tested the single constructs for mGBA2-2A and mGBA2-linker expression 

(Figure 36 A). My results demonstrate that addition of the 2A peptide or linker to the mGBA2-

Flag protein significantly reduced GBA2 activity compared to cells expressing mGBA2-Flag (F) 

(Figure 36 B). mGBA2-Flag-2A (F2A) and mGBA2-Flag-linker (Flink) only revealed an activity 

of 30.0 ± 5.7 % and 10.5 ± 4.2 % relative to control mGBA2-Flag, respectively (F2A: p = 0.0022; 

Flink: p = 0.00074). Furthermore, the double constructs mGBA2-Flag-2A-mGBA2-HA (F2AH) 

and mGBA2-Flag-linker-mGBA2-HA (FlinkH) revealed an activity of 62.2 ± 10.2 % and 51.2 ± 

14.1 %, respectively, compared to CHO cells co-expressing mGBA2-Flag and mGBA2-HA 

(F+H) (Figure 36 B; F2AH: p = 0.023; FlinkH: p = 0.027). Thus, also the GBA2 activity of the 

double construct is diminished by introducing a linker and – to a lesser extent – a 2A peptide. 

Overall, the linker and protein fusion might interfere with protein folding, whereas the 2A 

peptide-mediated “cleavage” results in two separate GBA2 proteins that can correctly fold into 

their tertiary structure to be active. Thus, the 2A-approach was chosen for further studies. 
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Figure 36: GBA2 expression and activity of mGBA2 2A peptide and linker constructs. A) Western blot 

analysis of hypotonic lysates from CHO cells expressing 2A peptide and linker constructs generated for the 
stoichiometric expression of mGBA2-Flag and mGBA2-HA. 35 µg protein was loaded per lane. mGBA2-Flag and 
mGBA2-HA was detected using a Flag- and HA-specific antibody, respectively. Calnexin served as a loading 
control. Representative blot for n = 3 experiments. B) GBA2 activity in hypotonic lysates from CHO cells expressing 

the different mGBA2-2A and -linker constructs (normalized to their expression in the corresponding Western blot). 
Columns represent mean values + SD. Statistical analysis was performed using one-sample t-test (n numbers and 
p values are indicated). F: mGBA2-Flag, F2A: mGBA2-Flag-2A, Flink: mGBA2-Flag-linker, F+H: mGBA2-Flag + 
mGBA2-HA, F2AH: mGBA2-Flag-2A-mGBA2-HA, FlinkH: mGBA2-Flag-linker-mGBA2-HA. 

 

To test whether the presence of mutant GBA2 affects the activity of wild-type GBA2, I 

expressed the 2A peptide-based constructs encoding both wild-type mGBA2-Flag and mutant 

mGBA2-HA in CHO cells (WT-2A-mt). As controls, constructs encoding only WT mGBA2 (WT-

2A-WT) or mutant mGBA2 (mt-2A-mt) were chosen. Western blot analysis revealed that the 

constructs for the amino-acid substitutions R864H, R725H, G674R, R621W, D585H and the 

truncated variants T483R*9 and R331* were expressed in CHO cells (Figure 37 A, B). 
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Figure 37: GBA2 expression of the wild-type and mutant mGBA2 2A peptide constructs. Western blot 

analysis of hypotonic lysates from CHO cells expressing wild-type mGBA2-Flag and wild-type mGBA2-HA (WT-2A-
WT), wild-type mGBA2-Flag and mutant mGBA2-HA (WT-2A-mt), or mutant mGBA2-Flag and mutant mGBA2- HA 
(mt-2A-mt). A) Analysis of the missense mGBA2 mutants R864H, R725H, G674R, R621W, D585H, and F410V in 
WT-2A-mt and mt-2A-mt-transfected CHO cells compared to the WT-2A-WT control. B) Analysis of the nonsense 

mGBA2 mutants T483R*9 and R331* in WT-2A-mt and mt-2A-mt-transfected CHO cells compared to the WT-2A-
WT control. mGBA2-Flag and mGBA2-HA was detected using a Flag- and HA-specific antibody, respectively. 20 µg 
protein was loaded per lane. Calnexin or β-Tubulin served as a loading control. 

 

Next, GBA2 activity in hypotonic lysates of the transfected cells was measured and normalized 

to the protein expression determined by Western blot. Compared to the WT-2A-WT control 

(set to 100%), the wild-type GBA2 activity in cells expressing WT-2A-mt would account for 

50% because only half the amount of wild-type GBA2 is expressed. If there is a dominant-

negative effect, GBA2 activity in WT-2A-mt-expressing cells would account for significantly 

less than 50% activity compared to WT-2A-WT. However, for none of the missense mutations 

R864H, G674R, R621W, D585H, F410V or nonsense mutations T483R*9 and R331*, a 

dominant-negative effect was seen as the activity in the WT-2A-mt condition resembled an 

activity of about 50% (Figure 38). 

Since the R725H mutant showed residual GBA2 activity of 30.28 ± 9.32% compared to wild-

type mGBA2 (Figure 14), this activity would add up on the wild-type GBA2 activity in cells 

transfected with the WT-2A-R725H construct, accounting for about 80% activity (50% WT + 

30% R725H) compared to WT-2A-WT. If the R725H variant exhibits a dominant-negative 
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effect, the activity of wild-type GBA2 would be diminished, resulting in significantly less than 

80% activity in WT-2A-R725H-expressing cells, but at least resembling 30% residual activity 

of the R725H mutant. Similar to my results obtained before (see 3.1.4), the R725H mutant 

revealed a residual activity of 51.71 ± 13.08% when expressing the WT-2A-R725H construct 

in CHO cells (Figure 38). However, no dominant-negative effect for the R725H was observed, 

as the WT-2A-R725H revealed an activity of 78.02 ± 14.05 % compared to WT-2A-WT (Figure 

38). 

 

 

Figure 38: Mutant mGBA2 has no dominant negative effect on wild-type mGBA2 activity. Analysis of the 

GBA2 activity in hypotonic lysates from CHO cells expressing wild-type mGBA2-Flag (WT) and wild-type mGBA2-
HA (WT) or mutant mGBA2-HA (mt) using the 2A peptide approach. In addition, cells solely expressing the mutant 
mGBA2 protein were studied. More precisely, the GBA2 activity (%) in cells expressing the wild-type mGBA2-Flag 
2A mutant mGBA2-HA and mutant mGBA2-Flag 2A mutant mGBA2-HA compared to the control (wild-type mGBA2-
Flag 2A wild-type mGBA2-HA) are plotted. The activity was normalized to the expression of the constructs 
determined by Western blot analysis. Columns represent mean values + SD (n numbers are indicated). WT: wild-
type; mt: mutant. Parts of the experiments have been performed by Dominik Dittmann. 

 

3.6 Genetic ablation of GBA2 expression in mice 

ARCA, HSP, and MSLS patients carrying mutations in GBA2 suffer from neurological 

symptoms with morphological and functional defects in the central nervous system (Citterio et 

al., 2014; Hammer et al., 2013; Haugarvoll et al., 2017; Martin et al., 2013; Sultana et al., 2015; 

Votsi et al., 2014). I could show that all disease-associated mutations – besides R725H – 

cause a complete loss of function of GBA2 (see Figure 14 B). Hence, human patients carrying 

the GBA2 mutations in a homozygous state are most likely devoid of GBA2 activity. So far, 

only one study analyzed GBA2 activity in lymphoblasts or leukocytes isolated from three 

patients carrying the R630W mutation, demonstrating that, in fact, these patients do not display 

GBA2 activity, at least in the experimental set-up used (Martin et al., 2013). However, how loss 

of GBA2 might cause motor dysfunctions remains elusive.  

In my PhD thesis, I used mice as a model system to unravel the role of GBA2 in locomotion in 

vivo. Two global GBA2-knockout mouse lines GBA2-KO (Yildiz et al., 2006) and GBA2-

EUCOMM (Gba2tm1a(EUCOMM)Wtsi) were included in this project, which are referred to as KO and 
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KOEU, respectively (Figure 39 A, B). The GBA2-KO mouse line has been generated and 

intensively studied by Yildiz and colleagues (Yildiz et al., 2006). The main phenotype of these 

mice is globozoospermia (Yildiz et al., 2006). We could show that male mice lacking GBA2 are 

subfertile due to accumulation of GlcCer, which alters the actin cytoskeleton dynamics and 

cause a malformation of the sperm head (Raju et al., 2015). This phenotype was observed in 

both KO (Raju et al., 2015) and KOEU mice (Dr. Diana N. Raju, unpublished data). The KOEU 

line bears conditional potential: exon 2 and 3 of the Gba2 gene are flanked by recognition sites 

for the Cre recombinase (loxP sites) (Figure 39 B). Mating these mice with transgenic mice 

expressing the Cre recombinase in a tissue-specific manner generates tissue-specific GBA2-

knockout mice. Neurological symptoms as seen in human patients carrying GBA2 mutations 

can arouse from defects in the nervous system and/or muscle. Thus, studying neuron- and 

muscle-specific GBA2-knockout mice will allow to deduce if loss of the enzyme in either 

neurons or muscle underlies the development of motor dysfunction. First, KOEU were crossed 

with Flp deleter mice (Flp deleter +/flp) to eliminate the FRT-flanked lacZ cassette, resulting in 

the floxed GBA2 allele (Figure 39 B). GBA2 flox/flox; Flp deleter +/+ mice were mated with 

Synapsin (Syn)-Cre or Myogenic factor 5 (Myf5)-Cre mice to generate GBA2 flox/flox; Flp 

deleter +/+; Synapsin-Cre Cre/+ and Myf5-Cre Cre/+; Flp deleter +/+; GBA2 flox/flox offspring, 

respectively (Figure 39 B, C). The Cre recombinase in these offspring is expressed under the 

Syn or Myf5 promotor, resulting in a loss of GBA2 expression in neurons and skeletal muscle, 

respectively. 
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Figure 39: Targeting strategy to generate global and tissue-specific GBA2-knockout mouse lines. A) GBA2-
knockout mice (KO; Yildiz et al., 2006) lack exon 5 to 10. Exon deletion results in non-sense Gba2 mRNA decay 
and, thereby, in a loss of GBA2. B) GBA2-knockout mice (EUCOMM; KOEU) contain an FRT-flanked lacZ cassette 
introduced into the region spanning exon 1 to 4. Thereby, the lacZ gene encoding the β-glucosidase is expressed 
under the control of the Gba2 promotor, whereas the Gba2 gene is not expressed. KOEU mice are mated with Flp 
deleter mice (Flp deleter +/flp) to eliminate the FRT-flanked lacZ cassette, resulting in the floxed GBA2 allele. C) 

GBA2 flox/flox; Flp deleter +/+ mice were mated with Synapsin (Syn)-Cre recombinase or Myogenic factor 5 (Myf5)-
Cre recombinase mice to delete exon 2 and 3 of the Gba2 gene. Neo: cassette coding for the neomycin 
phosphotransferase inducing neomycin resistance for positive selection; loxP: 34 bp DNA sequence, recognition 
site for Cre recombinase; FRT: recognition site for Flp-mediated excision; pA: polyadenylation site; SA: splice 
acceptor site. Image modified from International Mouse Phenotype Consortium: Allele Map of Gba2tm1a(EUCOMM)Wtsi. 

 

In GBA2-KO mice, GlcCer mainly accumulates in the testis, brain, and liver where GBA2 

expression is highest (Yildiz et al., 2006). However, GBA2-KO mice do not show organ 

enlargement and a reduction in life span (Yildiz et al., 2006). Apart from the fertility defect in 

male mice, no gross phenotype has been observed. In particular, no neurological symptoms 

have been documented so far, which are commonly observed in lipid storage disorders 

(Bellettato and Scarpa, 2010). Thus, I performed a phenotypical characterization of the KO 

mice with particular focus on neurological defects. First, I determined their body and brain 

weight (female, 33 ± 2 weeks). A reduced body weight is suggestive for growth retardation 

(Lang and Legates, 1969; Sun et al., 2004) and a reduced brain weight could indicate atrophy 

(Shimada et al., 1992). However, neither body weight nor brain weight was altered in the KO 

mice (body weight: WT: 25.78 ± 3.08 g versus KO: 27.40 ± 4.95 g; brain weight: WT: 446.95 ± 

14.32 mg versus KO: 444.00 ±15.29 mg; Figure 40 A, B). The morphology of GBA2-KO brains 
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was also not different to wild-type mice with a similar size of the hemispheres and no 

differences in the cerebellar lobes were observed (Figure 40 C). The results for KOEU mice 

(female, 33 ± 3 weeks) were similar: body and brain weight was not different in WT and KOEU 

(body weight: WT: 26.66 ± 3.55 g versus KOEU: 26.55 ± 3.25 g; brain weight: WT: 436.73 ± 

17.24 mg versus KOEU: 432.00 ± 17.94 mg; Figure 40 D, E). Similarly, brain morphology was 

not different between WT and KOEU mice (Figure 40 F). 

 

 

Figure 40: Body and brain weight of wild-type and GBA2-knockout mice. A) Body (g) and B) brain weight (mg) 

of adult (female, 33 ± 2 weeks) wild-type (WT) and GBA2-knockout (KO) mice from the mouse line generated by 
Yildiz et al. (2006). D) Body (g) and E) brain weight (mg) of adult (female, 33 ± 3 weeks) wild-type (WT) and GBA2-

knockout (KOEU) mice. Columns represent mean values + SD. Statistical analysis was performed using one-way 
ANOVA (n numbers are indicated). Representative images of C) adult wild-type (WT; female, 31 weeks) and GBA2-
knockout (KO; female, 31 weeks) brain and F) adult wild-type (WT; female, 30 weeks) and GBA2-knockout (KOEU; 

female, 28 weeks) brain are depicted. Scale bars are indicated. 

 

Neuron-specific loss of GBA2 also did not result in major morphological differences: Body 

weight and brain weight, and the macroscopic brain morphology was not different between 

genotypes (body weight: WT: 28.78 ± 5.31 g versus KOSyn: 25.75 ± 3.93 g; brain weight: WT: 

466.13 ± 11.55 mg versus KOSyn: 461.86 ± 19.22 mg; female, 33 ± 2 weeks; Figure 41 A-C). 

Loss of GBA2 activity in skeletal muscle did not affect body (WT: 26.67 ± 2.96 g versus KOMyf: 

27.21 ± 2.67 g) or brain weights (WT: 443.36 ± 31.85 mg versus KOMyf: 469.77 ± 16.35 mg), 

and overall brain morphology appeared similar in KOMyf and WT control mice (female, 34 ± 3 

weeks; Figure 41 D-F). 
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Figure 41: Body and brain weight of wild-type and tissue-specific GBA2-knockout mice. A) Body (g) and B) 

brain weight (mg) of adult (female, 33 ± 2 weeks) wild-type (WT) and neuron-specific GBA2-knockout (KOSyn) mice. 
D) Body (g) and E) brain weight (mg) of adult (female, 34 ± 3 weeks) wild-type (WT) and muscle-specific GBA2-

knockout (KOMyf) mice. Columns represent mean values + SD. Statistical analysis was performed using one-way 
ANOVA (n numbers are indicated). Representative images of C) adult wild-type (WT; female, 33 weeks) and 
neuron-specific GBA2-knockout (KOSyn; female, 32 weeks) brain and F) adult wild-type (WT; female, 31 weeks) and 

muscle-specific GBA2-knockout (KOMyf; female, 31 weeks) brain are depicted. Scale bars are indicated. 

 

3.7 Expression and activity of GBA2 in the central nervous system 

Glycosphingolipids are important structural and functional constituents of the central nervous 

system (CNS) in mammals (Cuzner and Davison, 1968; Ngamukote et al., 2007; Thudichum 

et al., 1884). GlcCer is the main precursor for all these lipids; thus, GlcCer metabolism needs 

to be tightly regulated. Dysregulation of GlcCer homeostasis due to loss of GBA2 might lead 

to severe defects in the central nervous system. Thus, I analyzed the expression and activity 

of GBA2 in the brain, in particular in neurons, in comparison to other tissues. 

 

3.7.1.1 Brain 

Western blot analysis indicated that GBA2 is expressed in the brain of WT, but not KO animals 

(Figure 42 A). Similarly, GBA2 activity was only detected in brain lysates from WT, but not 

from KO/KOEU mice (Figure 42 B). Interestingly, GBA1 activity was not altered in KO/KOEU 

mice (Figure 42 C). 
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Figure 42: GBA2 expression and activity in brain of wild-type and global GBA2-knockout mice. A) Western 

blot analysis of GBA2 in brain from an adult (31 weeks) wild-type (WT) and global GBA2-knockout (KO) mouse. 
GBA2 was detected using a GBA2-specific antibody. α-Tubulin served as a loading control. 90 µg protein was 
loaded per lane. Analysis of B) GBA2 activity and C) GBA1 activity in hypotonic lysates of brain from adult (35 ± 9 

weeks) wild-type (WT) and global GBA2-knockout (KO, KOEU) mice. Columns represent mean values + SD. 
Statistical analysis was performed using one-sample t-test (n numbers and p values are indicated). 

 

Ablating GBA2 only in neurons will reveal if neurons or other cell types account for the GBA2 

expression and activity in the central nervous system. Thus, I analyzed the expression and 

activity of GBA2 in the brain and spinal cord of WT and KOSyn mice and compared it to skeletal 

muscle, liver, spleen, and testis. Indeed, the expression of GBA2 is significantly decreased in 

the brain and spinal cord of KOSyn mice, indicating that neurons exhibit high GBA2 expression 

levels (Figure 43).  

 

 

Figure 43: GBA2 expression in different tissues of wild-type and neuron-specific GBA2-knockout mice. 

Western blot analysis of GBA2 in hypotonic lysates of brain, spinal cord (Sp.C.), testis, liver, and spleen from an 
adult wild-type (WT; 28 weeks) and neuron-specific GBA2-knockout (KOSyn; 23 weeks) mouse. GBA2 was detected 
using a GBA2-specific antibody. GADPH served as a loading control. 60 µg protein was loaded per lane. 

 

To verify whether also GBA2 activity is reduced in brain and spinal cord, I analyzed the activity 

in hypotonic lysates of brain, spinal cord, testis, skeletal muscle, liver, and spleen. Indeed, 

GBA2 activity was only diminished in brain (WT: 8.76 ± 2.97 rfu/min versus KOSyn: 3.14 ± 

0.76 rfu/min; p = 0.033) and spinal cord (WT: 6.66 ± 2.55 rfu/min versus KOSyn: 1.26 ± 

0.44 rfu/min; p = 0.023), but remained unchanged in testis, skeletal muscle, liver, and spleen 

of the KOSyn mouse compared to the WT control (Figure 44 A). In general, GBA2 activity in 

brain (WT: 8.76 ± 2.97 rfu/min) and spinal cord (6.66 ± 2.55 rfu/min) was the highest, followed 

by testis with 5.99 ± 2.31 rfu/min (WT). GBA2 activity levels in liver and spleen were rather low 

compared to the central nervous tissue with 1.66 ± 0.43 rfu/min and 1.57 ± 0.85 rfu/min in WT, 

respectively (Figure 44 A). In skeletal muscle, GBA2 activity was even lower accounting for 

0.14 ± 0.09 rfu/min in WT (Figure 44 B). 
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This data also indicates that the activity of GBA2 in other cell types than neurons in the brain 

and spinal cord does not majorly contribute to the total GBA2 activity in these tissues. The 

residual activity levels in KOSyn brain and spinal cord only accounted for 3.14 ± 0.76 rfu/min 

compared to 8.76 ± 2.97 rfu/min in WT brain and 1.26 ± 0.44 rfu/min compared to 6.66 ± 

2.55 rfu/min in WT spinal cord, respectively (Figure 44 A). Of note, GBA1 activity remained 

unchanged in brain and spinal cord of KOSyn mice (Figure 44 C). Overall, the variation in GBA1 

activity was not as high as for GBA2 between the different tissues: Spinal cord, testis, and liver 

from WT mice displayed similar activities with 1.10 ± 0.16 rfu/min, 1.30 ± 0.32 rfu/min, 1.28 ± 

0.47 rfu/min, respectively, whereas brain and spleen revealed slightly lower GBA1 activities of 

0.82 ± 0.18 rfu/min and 0.86 ± 0.11 rfu/min, respectively. Similar to the GBA2 activity, skeletal 

muscle appeared to have the lowest GBA1 activity (0.30 ± 0.05 rfu/min; Figure 44 C, D). 

 

 

Figure 44: GBA2 and GBA1 activity in different tissues of wild-type and neuron-specific GBA2-knockout 
mice. Analysis of A) GBA2 and C) GBA1 activity in hypotonic lysates of brain, spinal cord, skeletal muscle (Skel. 

Muscle), testis, liver, and spleen from adult (26 ± 7 weeks) wild-type (WT) and neuron-specific GBA2-knockout 
(KOSyn) mice. 10.79 ± 1.41 µg protein was used in the β-glucosidase activity assay. B) and D) show activities in the 

skeletal muscle separately. Columns represent mean values + SD. Statistical analysis was performed using one-
way ANOVA (p values are indicated). n = 3 for all tissues besides testis and spleen (n = 2). rfu/min: relative 
fluorescence units per minute. 

 



  Results 

93 
 

To determine the expression pattern of GBA2 in the brain, I performed immunohistochemical 

stainings. However, the application of GBA2-specific antibodies for immunohistochemical 

analysis of brain sections was not successful (data not shown). Thus, I made use of the KOEU 

mouse line, which contains a lacZ cassette that expresses the β-galactosidase under the 

control of the GBA2 promotor (see Figure 39). 

X-gal staining of coronal brain sections from WT and KOEU mice revealed β-galactosidase 

expression in the brain stem and the cerebellum (Figure 45). I tested two different X-gal 

concentrations, namely 0.01% and 0.05%, and both concentrations were sufficient to detect 

activity of β-galactosidase specifically in the KOEU brain, whereas no β-galactosidase activity 

was observed in brain sections from WT mice (Figure 45).  

Fixation of the tissue with glutaraldehyde results in high background staining. Thus, 

glutaraldehyde fixation is not suitable for immunofluorescent stainings since it produces high 

auto-fluorescence (Collins and Goldsmith, 1981). However, this characteristic can also be 

used to detect myelinated regions in the nervous tissue (Christensen et al., 2014): The white 

matter in the brain reveals high background staining (brown) because it is enriched in myelin 

sheaths, whereas the grey matter containing unmyelinated neurons remains unstained (beige) 

(Figure 45). In the cerebellum, the granular layer (light brown) and the molecular layer (beige) 

in the lobules can be nicely distinguished. 

In the brain stem, β-galactosidase activity was high in the region adjacent to the fourth ventricle 

and in the lobules of the cerebellum (Figure 45). Microscopic analysis revealed that the 

Purkinje cell layer surrounding the granular layer (light brown) showed the highest 

β-galactosidase activity. Only a few cells were labeled in the molecular (beige) and granular 

layer (light brown) and no staining was observed in the white matter (dark brown) in the center 

of the granular layer (light brown). Thus, GBA2 seems to be highly expressed in Purkinje cells, 

but also in a few cells in the molecular and granular layer. 
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Figure 45: β-Galactosidase expression in wild-type and global GBA2-knockout (KOEU) brain. X-gal staining 

on coronal brain sections of an adult wild-type (WT; 19 weeks) and global GBA2-knockout (KOEU; 23 weeks) mouse 
expressing the lacZ reporter cassette under the GBA2 promotor. 0.01% and 0.05% X-gal was used as a substrate 
for β-galactosidase. Regions of the cerebellum were zoomed-in to indicate the predominant β-galactosidase 
expression in the Purkinje cell layer in KOEU mice. Scale bars are indicated. cb: cerebellum, v4: fourth ventricle, bs: 
brain stem; m: molecular layer, P: Purkinje cell layer, g: granular layer, w: white matter. 

 

3.7.1.2 Spinal Cord 

Patients with GBA2 mutations suffering from ARCA, HSP, or MSLS majorly display atrophy in 

different brain regions such as the cerebrum, cerebellum, or corpus callosum (Citterio et al., 

2014; Hammer et al., 2013; Haugarvoll et al., 2017; Martin et al., 2013; Votsi et al., 2014). The 

diagnosis has been predominantly made according to the performance in different physical 

tasks or in reflex tests. However, these studies convey little information about the spinal cord 

that might also be affected. Thus, I also analyzed the expression and activity of GBA2 in murine 

spinal cord. 

GBA2 is expressed in the spinal cord of WT, but not KO mice (Figure 46 A). In line with this 

finding, GBA2 activity was detected in WT, but not in KO/KOEU spinal cord protein lysates 

(Figure 46 B), and GBA1 activity remained unchanged in the absence of GBA2 (Figure 46 C).  
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Figure 46: GBA2 expression and activity in spinal cord of wild-type and global GBA2-knockout mice. A) 

Western blot analysis of GBA2 in hypotonic lysates of spinal cord from an adult wild-type (WT; 19 weeks) and global 
GBA2-knockout (KO; 21 weeks) mouse. GBA2 was detected using a GBA2-specific antibody. α-Tubulin served as 
a loading control. 120 µg, 90 µg, or 65 µg protein was loaded per lane. Modified from Woeste, Master thesis, 2015. 
Analysis of B) GBA2 activity and C) GBA1 activity in hypotonic lysates of spinal cord from adult (45 ± 12 weeks) 

wild-type (WT) and global GBA2-knockout (KO, KOEU) mice. Columns represent mean values + SD. Statistical 
analysis was performed using one-sample t-test (n numbers and p values are indicated).  

 

X-gal staining of spinal cord sections from WT and KOEU mice revealed that β-galactosidase, 

and, thereby GBA2, is predominantly expressed in the grey matter (Figure 47). 

 

 

Figure 47: β-Galactosidase expression in wild-type and global GBA2-knockout (KOEU) spinal cord. X-gal 

staining on transverse sections (16 µm) of the cervical spinal cord of an adult wild-type (WT; 28 weeks) and global 
GBA2-knockout (KOEU; 31 weeks) mouse expressing the lacZ reporter cassette under the GBA2 promotor. 0.01% 
and 0.05% X-gal was used as a substrate for the β-galactosidase. Regions of the spinal cord were zoomed-in to 
indicate the predominant β-galactosidase expression in the grey matter in KOEU mice. Scale bars are indicated. cc: 
central canal, D: dorsal horn of the grey matter, v: ventral horn of the grey matter. 
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3.7.1.3 Cerebellum 

Human patients carrying mutations in the GBA2 gene suffer from ataxia and show defects in 

the cerebellum, which controls in motor coordination. Thus, I studied this brain region in more 

detail. The cerebellum of early postnatal mice (P8) was dissected (in collaboration with Prof. 

Dr. Frank Bradke; Dr. Sina Stern, DZNE, Bonn) and I analyzed GBA2 expression and activity. 

My results show that, indeed, GBA2 is expressed in WT, but not in KOEU cerebellum (Figure 

48 A). This is in line with my data obtained by X-gal staining of coronal brain sections, including 

the cerebellum (see Figure 45). Moreover, GBA2 activity is only detectable in the WT, but not 

in KO/KOEU cerebellum (Figure 48 B). 

 

 

Figure 48: GBA2 expression and activity in cerebellum of P8 wild-type and global GBA2-knockout mice. A) 

Western blot analysis of GBA2 in hypotonic lysates of cerebellum from a P8 wild-type (WT) and global GBA2-
knockout (KOEU) mouse. GBA2 was detected using a GBA2-specific antibody. β-Actin served as a loading control. 
35 µg protein was loaded per lane. Analysis of B) GBA2 activity and C) GBA1 activity in hypotonic lysates of 

cerebellum from P8 wild-type (WT) and global GBA2-knockout (KO; KOEU) mice. Columns represent mean values 
+ SD. Statistical analysis was performed using one-way ANOVA (n numbers and p values are indicated). 

 

Cerebellar neurons were isolated from P8-P9 mice and GBA2 expression and activity was 

analyzed. GBA2 is expressed and active in cerebellar neurons (Figure 49 A, B). However, the 

GBA2 activity was not completely abolished by addition of 8.3 µM NB-DNJ and accounted for 

the residual 0.26 ± 0.30 rfu/min in KO cerebellar lysates (Figure 49 B). This activity represents 

GBA1, which shows residual activity at pH 6 (Figure 13). 

 

 

Figure 49: GBA2 expression and activity in cerebellar neurons of P8 wild-type and global GBA2-knockout 
mice. A) Western blot analysis of GBA2 in hypotonic lysates of cerebellar neurons from a P8 wild-type (WT) and 

global GBA2-knockout (KOEU) mouse. GBA2 was detected using a GBA2-specific antibody. β-Actin served as a 
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loading control. 60 µg protein was loaded per lane. B) Analysis of GBA2 activity and in cerebellar neurons of P8-9 

wild-type (WT) and global GBA2-knockout (KOEU) mice measured in the absence (-) or presence (+) of the GBA2 
inhibitor NB-DNJ. C) GBA2 activity represented in B) defined as the NB-DNJ-blockable activity compared to WT (in 

%). Cerebellar neurons were isolated by Dr. Sina Stern, DZNE (Bonn). Columns represent mean values + SD. 
Statistical analysis was performed using one-way ANOVA in (A) or one-sample t-test in (B) (n numbers and p values 

are indicated). rfu/min: relative fluorescence units per minute. NB-DNJ: N-butyl-deoxynojirimycin.  

 

In addition, I analyzed the expression of GBA2 on a cellular level by determining the 

β-galactosidase activity in cerebellar neurons from P9 WT and KOEU mice. Using 0.01% and 

0.05% X-gal as a substrate, I could detect β-galactosidase activity in isolated KOEU neurons 

(Figure 50). No cleavage of X-gal, thus, no β-galactosidase activity, was observed in the WT 

neurons.  

 

 

Figure 50: β-Galactosidase expression in wild-type and global GBA2-knockout (KOEU) cerebellar neurons. 

X-gal staining performed on cerebellar neurons of P9 wild-type (WT) or GBA2 lacZ/lacZ mice (KOEU) expressing 
the lacZ reporter cassette under the GBA2 promotor. 0.01% or 0.05% X-gal was used as a substrate for β-
galactosidase. Cerebellar neurons were isolated by Dr. Sina Stern, DZNE (Bonn). Scale bar is indicated. 

 

3.7.1.3.1 Cerebellar morphology in GBA2-KO mice 

Patients with GBA2 mutations suffering from ARCA, HSP, or MSLS often showed atrophy in 

the cerebellum (Citterio et al., 2014; Hammer et al., 2013; Haugarvoll et al., 2017; Martin et 

al., 2013; Votsi et al., 2014). Thus, I studied the morphology of the cerebellum by performing 

histochemical staining of cerebella from P18 and adult WT and KO mice. 

I prepared sections of the lateral hemispheres (left/right), also termed the cerebrocerebellum, 

and the median vermis, which aligned by the intermediate hemispheres comprises the 

spinocerebellum (Figure 51 A) (Chambers and Sprague, 1955). As their names indicate, 

cerebrocerebellum and spinocerebellum receive input from the cerebral cortex and spinal cord, 

respectively. At the base of the cerebellum, adjacent to the brain stem, the 

vestibulocerebellum, comprising flocculus and nodulus, is located (Figure 51 A) (Voogd et al., 

1996). The two structures are separated from the large cerebro- and spinocerebellum by the 

posterior fissure and constitute the flocculonodular lobe (Voogd et al., 1996). Moreover, 
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cerebro-, spino-, and vestibulocerebellum are further segmented into lobules, which, in the 

vermis, account for ten tightly folded areas (lobules I-X; Figure 51 B) (Larsell, 1952; 1958). 

Input and output signals of the cerebellum are integrated in the deep nuclei in the center of the 

cerebellum (Gould, 1979). These deep nuclei are subdivided into dentate nuclei, emboliform 

and globose nuclei, and fastigial nuclei, which are connected with the GABAergic Purkinje cells 

of the lateral hemispheres, the intermediate hemispheres, and the vermis, respectively (Gould, 

1979). The somata of the Purkinje cells are organized in a defined layer within the cerebellar 

cortex. Their large dendrites together with basket and stellate cells in the molecular layer and 

the Golgi and granule cells in the granular layer form a complex signaling network (Palay and 

Chan-Palay, 1974; Ramón y Cajal et al., 1909). 

 

 

Figure 51: Morphology of the cerebellum. A) Illustration of the murine cerebellum with the median vermis (grey), 

the intermediate hemispheres (green), and the lateral hemispheres (blue). Vermis and intermediate hemispheres 
comprise the spinocerebellum, whereas the lateral hemispheres are termed cerebrocerebellum. The posterior 
vestibulocerebellum is subdivided into nodulus and flocculus. Cerebellar lobules V-X are indicated. B) Sagittal 

section of the vermis with the cerebellar lobules I-X.  

 

Defects in any of the cells in the cerebellum could lead to impaired motor coordination, 

however, in ataxic mouse models, mainly the Purkinje cells are affected (Heckroth et al., 1989; 

Landis, 1973; Mullen et al., 1976; Norman et al., 1995). Nissl staining of WT and KOEU 

cerebellum revealed that there is no morphological defect in the vermis and right hemisphere 

in P18 mice: their overall morphology of the distinct lobules was similar with no prominent 

atrophy of the cerebellum (Figure 52 A). The Purkinje cell layer, containing the cell bodies of 

the Purkinje cells, also did not show any overt differences in morphology. In adult KOEU mice 

(11 weeks), gross cerebellar morphology also remained unaffected (Figure 52 B). Microscopic 

study of the Purkinje cells indicated similar shaped and aligned somata in WT and KOEU 

(Figure 52 B: zoom-in regions). 
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Figure 52: Histological analysis of the cerebellum of GBA2-knockout mice. The cerebellum of A) P18 and B) 

adult (11 weeks) wild-type (WT) and GBA2-knockout (KOEU) cerebellum was stained with cresyl violet. Sagittal 
sections (16 µm) of the left hemisphere, vermis, and right hemisphere are depicted. Scale bars are indicated. 
Regions of interest were zoomed-in showing no changes in the Purkinje cell layer in KOEU compared to WT mice. 

 

3.8 Expression and activity of GBA2 in skeletal muscle 

Not only the central nervous system, also the musculoskeletal system plays an important role 

in locomotion. Loss of GBA2 could also impair motor function on a muscular level. A 

prerequisite is that GBA2 is expressed in this tissue. I first performed a Western blot analysis 

of skeletal muscle from WT and KO mice. Detergent-based (total) lysis with 1% TritonX-100 

yielded slightly higher GBA2 levels compared to a physical disruption (sonication) in hypotonic 

(hypo) buffer without detergent (compare 65 µg protein load for hypotonic and total lysis; 

Figure 53 A). To ensure that low GBA2 expression levels are not due to insufficient cell lysis 

or protein extraction, I confirmed the presence of the muscle-specific protein desmin. Overall, 

GBA2 is expressed in the skeletal muscle only at low levels in WT and completely absent in 

the KO (Figure 53 A). A β-glucosidase activity assay indicated that GBA2 activity is solely 

present in WT skeletal muscle and completely absent in the KO/KOEU (Figure 53 B). GBA1 

activity was unaffected by the loss of GBA2 similar to my findings in brain and spinal cord 

(Figure 53 B; see also Figure 42 B and Figure 46 B). 
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Figure 53: GBA2 expression and activity in skeletal muscle of wild-type and global GBA2-knockout mice. 
A) Western blot analysis of GBA2 in lysates of skeletal muscle from an adult wild-type (WT; 35 weeks) and global 

GBA2-knockout (KO; 36 weeks) mouse. The tissue was homogenized either in hypotonic buffer (hypo; 10 mM 
HEPES, 0.5 mM EDTA) or total lysis buffer (total; 10 mM Tris/HCl pH 7.6, 140 mM NaCl, 1 mM EDTA, 1% (v/v) 
TritonX-100) and different protein amounts were loaded (140 µg or 65 µg). GBA2 was stained using a GBA2-specific 
antibody. α-Tubulin served as a loading control. Desmin was used as a control to validate that the muscle extraction 
and lysis worked properly. Modified from Woeste, Master thesis, 2015. B) GBA2 and C) GBA1 activity in hypotonic 

lysates of skeletal muscle from adult (51 ± 13 weeks) wild-type (WT) and global GBA2-knockout (KO, KOEU) mice. 
Columns represent mean values + SD. Statistical analysis was performed using one-sample t-test (n numbers and 
p values are indicated).  

 

Ablating GBA2 specifically in skeletal muscle, will reveal whether the loss of GBA2 in skeletal 

muscle impairs motor function. Thus, I analyzed the expression and activity of GBA2 in skeletal 

muscle of WT and KOMyf mice. Expression of Cre recombinase under the control of Myf5, a 

transcriptional activator involved in myogenesis and muscle differentiation (Braun et al., 1989; 

Braun et al., 1990), allows skeletal-muscle specific gene deletion (see also 3.6). GBA2 

expression levels in skeletal muscle were not detectable using GBA2-specific antibodies 

(Figure 54).  

 

 

Figure 54: GBA2 expression in different tissues of wild-type and muscle-specific GBA2-knockout mice. 

Western blot analysis of GBA2 in hypotonic lysates of brain, spinal cord (Sp.C.), testis, skeletal muscle (Sk.M.), 
liver, and spleen from an adult (18 weeks) wild-type (WT) and muscle-specific GBA2-knockout (KOMyf) mouse. 
GBA2 was detected using a GBA2-specific antibody. GADPH, β-Tubulin, and β-Actin served as a loading control. 
60 µg protein was loaded per lane.  

 

Thus, I tested whether I can distinguish WT and KO mice using the β-glucosidase activity 

assay. Compared to other tissues, GBA2 activity was low in the skeletal muscle with 0.17 ± 

0.09 rfu/min (Figure 55 A, B). However, GBA2 activity was decreased in skeletal muscle of 

KOMyf mice (0.05 ± 0.05 rfu/min), whereas the activity was unaltered in WT and KOMyf brain 

(8.03 ± 1.95 rfu/min versus 8.77 ± 4.01 rfu/min), spinal cord (4.66 ± 1.26 rfu/min versus 3.65 ± 

0.89 rfu/min), testis (5.89 ± 2.32 rfu/min versus 5.68 ± 2.36 rfu/min), liver (1.48 ± 0.65 rfu/min 



  Results 

101 
 

versus 1.43 ± 0.70 rfu/min), and spleen (1.51 ± 0.76 rfu/min versus 1.74 ± 0.96 rfu/min) (Figure 

55 A, B). Also, GBA1 activity remained unchanged in skeletal muscle from KOMyf mice (Figure 

55 C, D; WT: 0.27 ± 0.03 rfu/min versus KOMyf: 0.30 ± 0.03 rfu/min). Altogether, regarding the 

low activity levels determined in skeletal muscle, both GBA1 and GBA2 might not play a major 

role in this tissue. 

 

 

Figure 55: GBA2 and GBA1 activity in different tissues of wild-type and muscle-specific GBA2-knockout 
mice. Analysis of A) GBA2 and C) GBA1 activity in hypotonic lysates of brain, spinal cord, skeletal muscle (Skel. 

Muscle), testis, liver, and spleen from adult (23 ± 6 weeks) wild-type (WT) and muscle-specific GBA2-knockout 
(KOMyf). 12.55 ± 2.19 µg protein was used in the β-glucosidase activity assay. B) and D) show activities in the 

skeletal muscle separately. Columns represent mean values + SD.  Statistical analysis was performed using one-
way-ANOVA. n = 3 for all tissues besides testis and spleen (n = 2). rfu/min: relative fluorescence units per minute. 

 

3.9 GlcCer accumulates in the cerebellum in GBA2-KO mice 

Loss of GBA2 leads to an accumulation of GlcCer (Raju et al., 2015; Yildiz et al., 2006). Testis 

and sperm from KO mice displayed increased levels of C18, C20, C22, and C24 GlcCer (Raju 

et al., 2015). In collaboration with the lab of Prof. Dr. Peter Dörmann (IMBIO, Bonn), we 

performed mass spectrometry and measured the content of neutral total and main lipid species 

in the cerebellum of WT and KO mice lysed in hypotonic buffer. Furthermore, we determined 

ganglioside levels using thin layer chromatography (TLC; experiments performed in the lab of 
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Prof. Dr. Roger Sandhoff, DKFZ, Heidelberg). Since GlcCer accumulation potentially increases 

with age, lipidomic analysis in the cerebellum of early postnatal (P10) and adult mice 

(10-13 weeks) was performed. 

In the cerebellum of P10 mice, the total lipid content of ceramide (Cer), hexosylceramides 

(HexCer), sphingomyelin (SM), and long-chain bases (LCBs) was not different in WT and KO 

mice (Figure 56 A). However, detailed analysis of the most abundant HexCer species 

demonstrated that C18 GlcCer were highly increased in the KO cerebellum (WT: 0.23 ± 

0.08 ng/mg protein versus KO: 0.40 ± 0.05 ng/mg protein; Figure 56 B). 

 

 

Figure 56: Mass spectrometry of lipid species in cerebellum of P10 wild-type and global GBA2-knockout 
mice. A) Quantitative analysis of neutral sphingolipids in the cerebellum of P10 wild-type (WT) and global GBA2-

knockout (KO) mice. Hypotonic lysates of the cerebellum were prepared and ceramides (Cer), hexosylceramides 
(HexCer), sphingomyelin (SphMyel), and long-chain bases (LCBs) were studied (ng/mg protein). B) Quantitative 

analysis of the most abundant HexCer, classified according to their acyl chain-length, in the cerebellum of P10 wild-
type (WT) and GBA2-knockout (KO) mice. Columns represent mean values + SD (n = 3). Statistical analysis was 
performed using one-way ANOVA (p values are indicated). 

 

Thin layer chromatography revealed only a slight increase in GM3, GD3, GD1b, and GT1b in 

KO cerebellum (Figure 57 C). GM2 and fucosylated GM1a (fucGM1a) was barely detectable 

in any of the samples. Thus, mainly GlcCer accumulates in the cerebellum in GBA2-KO mice, 

whereas complex glycosphingolipids are barely affected. 
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Figure 57: Thin layer chromatography (TLC) of lipid species in cerebellum of adult wild-type and global 
GBA2-knockout mice. TLC of gangliosides derived from GlcCer in cerebellum from adult (10-13 weeks) wild-type 
(WT) and global GBA2-knockout (KO) mice. 1 mg protein was loaded per lane. Acidic lipids isolated from hypotonic 

lysates of the cerebellum were separated by HP-TLC with the solvent chloroform:methanol:0.2% aqueous CaCl2 
(45:45:10) and stained for glycolipids with orcinol reagent. Control samples included porcine brain gangliosides 
(PBGG), and the gangliosides GM3, GM2, GM1a, and GD3. fucGM1a: Fucosyl-GM1a. 

 

3.10 Analysis of small Rho GTPases 

In previous studies, we could show that GlcCer accumulation alters the stacking of the plasma 

membrane (Raju et al., 2015) and dynamics of the actin cytoskeleton. We hypothesized that 

this is due to changes in the activity of small Rho GTPases. Filopodia formation is controlled 

by the Rho GTPases Cdc42, whereas lamellipodia formation is controlled by Rac1 (Hall, 1998; 

Nobes and Hall, 1995; Ridley et al., 1992). Cdc42 and Rac1 are active in a GTP-bound state 

at the plasma membrane (Boivin and Beliveau, 1995; Fleming et al., 1996). Changing the lipid 

homeostasis, resulting in an altered lipid composition of the membrane might affect their 

recruitment to the plasma membrane and, thereby, their activity. Thus, we performed a Rho 

GTPase activity assay to determine the activity of Cdc42 and Rac1 in lysates of wild-type WT 

WT and KO murine dermal fibroblasts. In fact, levels of active Rac1 were significantly 

increased in KO compared to WT cells (Figure 58 A).  

Small Rho GTPases have been proposed to be associated with detergent-resistant 

membranes (Moissoglu and Schwartz, 2014), rich in glycopshingolipids and cholesterol 

(Hooper, 1999). Accumulation of GlcCer might affect localization of Rac1 and Cdc42 in these 

membrane domains. We isolated detergent-resistant membrane (DRM) fractions from murine 

dermal fibroblasts of WT and KO mice by ultracentrifugation in a density gradient (Dr. Diana 

N. Raju, unpublished data). Detergent-resistant membrane (top) fractions are rich in 

caveolin-1, a membrane protein, which can bind cholesterol, whereas the ER protein calnexin 

is enriched in detergent-sensitive (bottom) membranes. Indeed, Rac1 localization was shifted 

to the DRM fraction in KO compared to WT fibroblasts (Figure 58 B). 
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Figure 58: Analysis of small Rho GTPases in dermal fibroblasts of wild-type and global GBA2-knockout 
mice. A) Activity of the Rho GTPases Rac1 and Cdc42 in wild-type (WT) and global GBA2-knockout (KO) murine 

dermal fibroblasts. Left: Active, GTP-bound Rac1 and Cdc42 was affinity purified using GST-tagged PAK-PBD 
protein and subjected to Western blot analysis; 10 µg cell lysate was loaded as input. Right: Quantification of 
activated Rac1 and Cdc42 in KO fibroblasts. Rac1-GTP and Cdc42-GTP expression was normalized to the input 
and expressed as fold change relative to WT. B) Western blot analysis of Rac1 and Cdc42 at detergent-resistant 

membranes (DRM; represented in grey triangle). Left: DRM were isolated from wild-type (WT) and global GBA2-
knockout (KO) fibroblasts by ultracentrifugation in a density gradient. Rac1 and Cdc-42 in top, middle, and bottom 
fractions were detected using a Rac1- and Cdc42-specific antibody, respectively. Calnexin and caveolin-1 served 
as a non-DRM and DRM marker, respectively. Right: Rac1 and Cdc42 expression in the middle fraction was 
normalized to the input and represented as fold change relative to WT. Columns represent mean values + SD. 
Statistical analysis was performed using one-way ANOVA (n numbers and p values are indicated). Experiments 
were performed by Dr. Diana N. Raju (unpublished data). 

 

To test whether loss of GBA2 in neurons also changes the activity of Rac1, I performed initial 

experiments to establish a protocol for DRM isolation from cerebellum and spinal cord lysates. 

Separation of detergent-resistant and detergent-sensitive membranes, following the protocol 

previously used for fibroblasts, could also be applied to cerebellum and spinal cord. Western 

blot analysis with different protein amounts loaded as input and the different DRM fractions 

was performed: The ER-marker calnexin was present at high levels in the detergent-sensitive 

membrane fraction, but completely absent in the detergent-resistant membrane fraction 

(Figure 59). In contrast, caveolin-1 was detected at high levels in the detergent-resistant 

membrane fraction in spinal cord lysates (Figure 59). However, no caveolin-1 was present in 

the membrane fractions isolated from the cerebellum. Thus, DRM isolation from the cerebellum 

needs to be further optimized. However, Cdc42 and Rac1 were found in the detergent-sensitive 

membrane fraction of both tissues (Figure 59). Based on these experiments, future studies 
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can be performed to determine the levels of Rac1 and Cdc42 in the cerebellum and spinal cord 

of WT and KO mice.  

 

 

Figure 59: Analysis of small Rho GTPases in murine cerebellum and spinal cord. Western blot analysis of 

Rac1 and Cdc42 at detergent-resistant membranes (DRM; represented in grey triangle). DRM were isolated from 
cerebellum and spinal cord of P7 and adult (32 weeks) wild-type mice, respectively, by ultracentrifugation in a 
density gradient. Rac1 and Cdc-42 in top, middle, and bottom fractions were detected using a Rac1- and Cdc42-
specific antibody. Calnexin and caveolin-1 served as a non-DRM and DRM marker, respectively. 10-50 µg protein 
was loaded per lane. 15 µl of the top, middle, and bottom fractions was loaded per lane. 

 

3.11 Pharmacological inhibition of GBA2 by iminosugars 

Most commercially available blockers for α- and β-glucosidases are derivatives of nojirimycin 

(NJ), an iminosugar with structural similarity to D-glucose, which competes with the enzyme’s 

natural substrate for binding (Asano, 2003). These iminosugars lack an O-glycosidic bond that 

is attacked by the glucosidases, but rather contain an endocyclic nitrogen (Paulsen and Todt, 

1968). N-butyl-deoxynojirimycin (NB-DNJ) is used as an inhibitor for GBA2 (Figure 60, 2) and 

has also been established in our β-glucosidase activity assay (Körschen et al., 2013). The IC50 

values in this assay for NB-DNJ are 20.9 ± 1.3 nM, 18.2 ± 0.3 nM, and 19.2 ± 0.4 nM in 

hypotonic lysates of murine liver, brain, and testis, respectively (Körschen et al., 2013). 

However, NB-DNJ also inhibits the glucosylceramide synthase (IC50: ~50 µM; in vitro) and is 

used for the treatment of Gaucher type 1 patients (Miglustat®, Zavesca) to ameliorate GlcCer 

accumulation (Aerts et al., 2006; Platt et al., 1994). 

A more specific blocker for GBA2 is AMP-DNM (Figure 60, 3), which inhibits GBA2 in the 

nanomolar range (IC50: 0.3-1.7 nM; in vitro) and has a lower affinity for GBA1 and GlcCer 

synthase, indicated by an IC50 of 200 µM (in vitro) and 25 nM (in vitro)/150 µM (in vivo), 

respectively (Overkleeft et al., 1998; Wennekes et al., 2010). Moreover, AMP-DNM has been 

successfully used in vivo in mice and rats and decreased GlcCer levels in various tissues 

(Aerts et al., 2007; Wennekes et al., 2010). 
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Figure 60: Iminosugar-based inhibitors of β-glucosidases. Structures of 1) the GBA1 inihibitor conduritol B 
epoxide (CBE) and the GBA2 inhibitors 2) N-butyldeoxynojirimycin (NB-DNJ) and 3) N-(5-adamantane-1-yl-

methoxy-pentyl)-deoxynojirimycin (AMP-DNM). 

 

3.11.1 Dose-response relationship of AMP-DNM and GBA2 

To apply AMP-DNM in my experiments, I first determined at which AMP-DNM concentration 

GBA2, but not GBA1, is inhibited. I performed the β-glucosidase activity assay at different 

AMP-DNM concentrations and monitored GBA1 and GBA2 activity at pH 4 and pH 6, 

respectively. The following tissues and cell types were used: 1.) GBA2 expressed in bacteria, 

2.) murine dermal fibroblasts, 3.) murine brain lysates, and 4.) murine cerebellar neurons. 

 

E.coli of the BL21 Codon Plus (DE3) RIPL strain were transformed with the plasmid pET21 

mGBA2-His and the protein expression was induced by addition of 1 mM IPTG at an OD600 of 

0.5 (see 2.11.5.2). Expression was performed for 3 h at 37°C. Cells were pelleted and lysed in 

hypotonic buffer upon sonication, and subjected to a β-glucosidase activity assay, testing 

different concentrations from 0.0083 pM up to 25 µM of AMP-DNM. After induction of protein 

expression, GBA2 but not GBA1 activity was detected (Figure 61 A). For the dose-response 

analysis, GBA2 activity was defined as the NB-DNJ-blockable activity at pH 6 (Figure 13). I 

measured GBA2 activity at different AMP-DNM concentrations and determined an IC50 of 

1.73 ± 0.46 pM, which is even lower than the IC50 of 0.3-1.7 nM determined in previous studies 

(Overkleeft et al., 1998). 
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Figure 61: Dose-response relationship of recombinant GBA2 to AMP-DNM. A) Activity of GBA2 and GBA1 in 
hypotonic lysates of E.coli showing no endogenous GBA1 activity, but overexpression of GBA2 after transformation 

with the pET21 mGBA2-His plasmid and induction of the expression using Isopropyl-β-D-thiogalactopyranoside 
(IPTG). Column represent mean values + SD. Statistical analysis was performed using one-way ANOVA (n 
numbers are indicated). rfu/min: relative fluorescent units per minute. B) Dose-response relationship of recombinant 

GBA2 in hypotonic bacterial lysates to AMP-DNM. Data was normalized to a non-treated control and plotted as an 
average of three independent experiments ± SD. The IC50 (1.72 ± 0.46 pM) was determined using sigmoidal curve 
fitting in Origin Pro. 

 

Similarly, I performed experiments using hypotonic protein lysates from murine dermal 

fibroblasts to determine the effect of AMP-DNM on the endogenous GBA2 and GBA1 activity. 

The total GBA1 activity in WT cells was higher than the GBA2 activity (Figure 62 A, B). KO 

cells displayed residual activity at pH 6, which was not inhibited by NB-DNJ (Figure 62 A), 

which is supposed to be residual GBA1 activity at pH 6. At pH 4, only GBA1 activity was 

detected (Figure 62 B). 
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Figure 62: β-Glucosidase activities at pH 6 and pH 4 in murine dermal fibroblasts. Analysis of the β-

glucosidase activity in hypotonic lysates of adult (26 ± 7 weeks) wild-type (WT) and GBA2-knockout (KO) murine 
dermal fibroblasts at A) pH 6 and B) pH 4 in the absence (-) or presence of CBE and/or NB-DNJ. 8.59 ± 0.36 µg 

total protein was used in the assays. Columns represent mean values + SD. Statistical analysis was performed 
using one-way ANOVA (n = 3). rfu/min: relative fluorescent units per minute. 

 

The dose-response curve for AMP-DNM at pH 6 exhibited a biphasic shape (Figure 63 A). 

Most likely, the first phase of inhibition at low picomolar concentrations of AMP-DNM refers to 

inhibition of GBA2 activity (see also Figure 61), whereas the second phase at higher AMP-

DNJ concentrations is most likely inhibition of GBA1 activity at pH 6 (Figure 63 A). Plotting the 

data for the AMP-DNM concentrations from 0.0083 pM to 4.58 pM shows that GBA2 is inhibited 

by lower inhibitor concentrations that do not affect GBA1 activity (Figure 63 B). However, IC50 

values could not be determined from this data.  
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Figure 63: Dose-response relationship of GBA2 and GBA1 in murine dermal fibroblasts to AMP-DNM. A) 

Dose-response relationship of GBA2 and GBA1 in hypotonic lysates of adult (27 ± 2 weeks) wild-type murine dermal 
fibroblasts to AMP-DNM. Data was normalized to a non-treated control and plotted as an average of three 
independent experiments ± SD. B) First 7 data points including 0.0083 pM to 4.58 pM AMP-DNM from A) plotted, 

showing that AMP-DNM inhibits GBA2 in the low picomolar range, whereas GBA1 activity is unaffected at these 
concentrations.  

 

In hypotonic lysates of murine brain, residual activities of GBA2 at pH 4 and GBA1 at pH 6 are 

rather low, and the enzymatic activities are clearly distinguishable. Also in brain lysates, GBA2 

activity was inhibited at low picomolar AMP-DNM concentrations (IC50: 4.78 ± 0.40 pM; Figure 

64), whereas GBA1 was inhibited at higher AMP-DNM concentrations of about 100 pM (Figure 

64). 

 

 

Figure 64: Dose-response relationship of GBA2 and GBA1 in murine brain to AMP-DNM. Dose-response 

relationship of GBA2 and GBA1 in hypotonic brain lysates from adult (37 ± 6 weeks) wild-type mice to AMP-DNM. 
Data was normalized to a non-treated control and plotted as an average of three independent experiments ± SD. 
The IC50 of 4.78 ± 0.40 pM (GBA2) was determined using sigmoidal curve fitting in Origin Pro. The IC50 for GBA1 
could not be determined due to lacking data points at higher AMP-DNM concentrations. 

 

I validated whether 25 pM AMP-DNM inhibits GBA2 activity in protein lysates from cerebellar 

neurons (in collaboration with Prof. Dr. Frank Bradke; Dr. Sina Stern, DZNE, Bonn). Indeed, 

25 pM AMP-DNM abolished GBA2 activity without affecting GBA1 activity (Figure 65 A, B). 

Next, isolated cerebellar neurons were treated with 30 pM AMP-DNM for 48 h and the effect 
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on GBA2 and GBA1 activity was determined. Also under these conditions, GBA2 activity was 

significantly diminished (p = 0.005; Figure 65 C), whereas GBA1 activity remained unchanged 

(Figure 65 D). Thus, a AMP-DNM concentration of 25 pM to 30 pM was used in subsequent 

experiments. 

 

 

Figure 65: Inhibition of GBA2 activity by AMP-DNM in cerebellar neurons.  Analysis of the A) GBA2 activity 
and B) GBA1 activity in hypotonic lysates of cerebellar neurons in the absence (-) and presence of 25 pM AMP-
DNM. Analysis of the C) GBA2 activity and D) GBA1 activity in cultured cerebellar neurons left untreated (-) or 

treated with 30 pM AMP-DNM for 48 h. Cerebellar neurons were isolated at P7-8 from wild-type mice by Dr. Sina 
Stern, DZNE (Bonn). Columns represent mean values + SD. Statistical analysis was performed using one-sample 
t-test (n numbers and p values are indicated). 

 

3.12 Loss of GBA2 affects cytoskeletal dynamics 

Previous studies in our lab showed that the loss of GBA2 causes accumulation of GlcCer, 

which in turn alters the cytoskeletal dynamics (Raju et al., 2015). This was true for both sperm 

cells and mouse dermal fibroblasts. When fibroblasts were seeded on CYTOO chips that force 

cells to grow on a certain shape, KO fibroblasts failed to follow this shape and exhibited 

extended actin protrusions, namely filopodia and lamellipodia (Figure 66 A). Both the number 

of cells, which developed filopodia and lamellipodia, as well as the average number of 

lamellipodia per cell was significantly increased in KO fibroblasts (Figure 66 B, C).  
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Figure 66: Analysis of the actin cytoskeleton in murine dermal fibroblasts of global GBA2-knockout. A) 

Representative images of adult wild-type (WT) and global GBA2-knockout (KO) murine dermal fibroblasts that were 
seeded on CYTOO chips with fluorescently-labeled fibronectin patterns (purple). F-actin and nuclei were stained 
using Alexa Fluor Phalloidin 488 (green) and DAPI (blue), respectively. Scale bar is indicated. B) Quantitative 
analysis of the F-actin structures stained in (A). The number of cells containing filopodia and lamellipodia (left) and 

the average number of filopodia and lamellipodia per cell (right) were determined. Column represent mean values 
+ SD. Statistical analysis was performed using one-way ANOVA (n numbers and p values are indicated). Modified 
from Raju et al., 2015. 

3.13 Neurite outgrowth of cerebellar neurons 

Neurite outgrowth highly depends on cytoskeletal dynamics (Buck and Zheng, 2002; Dent and 

Gertler, 2003; Letourneau et al., 1987). Thus, we wondered whether loss of GBA2 also affects 

the cytoskeleton in these cells. Martin and colleagues could show that genetic ablation of the 

GBA2 orthologue in zebrafish leads to impaired motor neuron outgrowth (Martin et al., 2013). 

Loss of GBA2 might therefore affect neurite outgrowth, leading to defects in motor 

coordination. Thus, we set out to study neurite outgrowth in cerebellar neurons that lack GBA2 

activity. 

 

3.13.1 Pharmacological blocking of GBA2 

In a first set of experiments, we treated WT cerebellar neurons with either 5 µM NB-DNJ or 

30 pM AMP-DNM, which completely blocks GBA2 activity, but has not effect on GBA1 (see 

Figure 65). In collaboration with the lab of Prof. Dr. Frank Bradke, we studied the actin 

cytoskeleton in these cells using Rhodamine-conjugated Phalloidin (experiments performed 

by Dr. Sina Stern; Figure 67 A, B). Neurite length was significantly reduced when GBA2 was 

blocked by either NB-DNJ or AMP-DNM (Figure 67 C, D). Compared to control cells, NB-DNJ-

treated cells were 22.48 ± 14.41 % shorter than control neurons, and AMP-DNM-treated 

neurons were even shorter with 45.80 ± 8.02 % than control cells. 
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Figure 67: Neurite outgrowth is diminished upon GBA2 inhibition. Representative images of A) P7-9 wild-type 
(WT, WTEU) cerebellar neurons left untreated (ctrl) or treated with 5 µM NB-DNJ for 48 h, B) P6 wild-type (WTEU) 

cerebellar neurons left untreated (control) or treated with 30 pM AMP-DNM for 48 h and stained for microtubules 
and F-actin using an anti-neuronal β-Tubulin antibody and Rhodamine-conjugated Phalloidin, respectively. 
Quantitative analysis of the neurite length of C) NB-DNJ-treated wild-type (WT, WTEU) cerebellar neurons as 
depicted in (A) and D) AMP-DNM-treated wild-type (WTEU) cerebellar neurons as depicted in (B) compared to the 

untreated neurons (control). Columns represent mean values + SD. Statistical analysis was performed using one-
sample t-test (n numbers and p values are indicated). Experiments were performed by Dr. Sina Stern. 

 

3.13.2 Genetic ablation of GBA2 

Similar experiments were performed using neurons isolated from the cerebellum of WT and 

KO mice from the two different global GBA2-KO lines. However, in both KO and KOEU 

cerebellar neurons, no difference in neurite length was observed compared to WT controls 

(Figure 68 A, B). 
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Figure 68: Neurite outgrowth of wild-type and GBA2-KO cerebellar neurons. Representative images of A) P8 
wild-type (WT) and GBA2-knockout (KO) cerebellar neurons, B) P7-9 wild-type (WTEU) and GBA2-knockout (KOEU) 

cerebellar neurons stained for microtubules and F-actin using an anti-neuronal β-Tubulin antibody and Rhodamine-
conjugated Phalloidin, respectively. Quantitative analysis of the neurite length of C) GBA2-knockout (KO) cerebellar 
neurons as depicted in (A) and D) GBA2-knockout (KOEU) cerebellar neurons as depicted in (B) compared to the 

respective wild-type controls (WT/WTEU). Columns represent mean values + SD. Statistical analysis was performed 
using one-sample t-test (n numbers are indicated). Experiments were performed by Dr. Sina Stern. 

 

3.14 Behavior studies 

3.14.1 Behavior abnormalities in GBA2-KO mice 

To analyze whether GBA2-KO mice display locomotor dysfunction, I performed different 

behavioral experiments (based on initial experiments implemented in Woeste, Master thesis, 

2015). Even when observing GBA2-KO mice in a cage in their normal environment, some KO 

mice exhibited behavior abnormalities (Table 37). Three KOEU and one KO mouse suffered 

from seizures with uncontrolled muscle contraction when they were handled during cage 

transfer. Moreover, these mice also displayed cramped front paws, squeaking, excessive 

jumping, and falling over during fur cleaning. The seizures were always followed by an 

apathetic behavior, leaving the animals in a limp and dazed condition. Two KO mice were 

barely moving in their cage and showed abnormal gait with wide-spread hind limbs (Woeste, 

Master thesis, 2015). Due to the severe seizures and motor defects, potentially causing pain, 

the mice were sacrificed.  
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Table 37: Behavior abnormalities in GBA2-knockout mice 

Genotype Line Sex Age 

(weeks) 

Symptoms 

KOEU GBA2 
lacZ/lacZ 

GBA2-EUCOMM ♀ 29 

Seizures: when taking cage 

out of rack, muscle 

contraction, postictal: 

apathetic, limp, dazed 

KOEU GBA2 
lacZ/lacZ 

GBA2-EUCOMM ♀ 29 

Seizures: muscle 

contraction, foam in front of 

mouth, postictal: apathetic, 

limp, dazed 

KO 

GBA2 -/- ; 
GBA1 flox/flox; 

Amh-Cre 
Cre/+; Cre 
deleter ?/? 

Amh-Cre/Cre 

deleter 

(CD)/GBA1/GBA2-

KO 

♀ 30 

Seizures: squeaking, front 

paws cramped; mouth wide 

open, excessive jumping 

around in cage, falls over 

during fur cleaning, postictal: 

apathetic, limp, dazed 

KOEU 

GBA2 
lacZ/lacZ 

 

GBA2-EUCOMM 

 
♂ 42 

Seizures during transfer in 

new cage 

KO GBA2 -/- GBA2-KO ♀ 54 

Wide-spread hind limbs 

during walking, barely 

moving 

KO GBA2 -/- GBA2-KO ♀ 48 

Wide-spread hind limbs 

during walking, barely 

moving 

hetEU GBA2 lacZ/+ GBA2-EUCOMM ♀ 27 died 

 

3.14.2 Muscle strength 

Besides a disturbed gait and motor coordination defects, head tremor (Hammer et al., 2013), 

lower and/or upper limb spasticity (Citterio et al., 2014; Hammer et al., 2013; Haugarvoll et al., 

2017; Martin et al., 2013; Votsi et al., 2014), and muscle weakness in the limbs (Citterio et al., 

2014; Martin et al., 2013) was observed in patients with GBA2 mutations. Thus, I performed a 

weight test (see 2.13.1) using global and neuron- and muscle-specific GBA2-knockout mice 
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(females, 29 ± 2 weeks) and compared their forepaw muscle strength to the corresponding 

WT animals (Deacon, 2013).  

The relative muscle strength was significantly reduced in KO mice (Figure 69 B, WT: 

9.4 ± 2.5 rsu versus KO: 6.9 ± 2.9 rsu). However, no significant difference was observed for 

the KOEU, which obtained a muscle strength of 9.1 ± 2.7 rsu comparable to WT mice with 

7.7 ± 1.8 rsu. Also, muscle strength of the neuron- and muscle-specific KO mice, KOSyn and 

KOMyf, respectively, was unaltered (Figure 69 C-E; WT: 8.3 ± 1.9 rsu versus KOSyn: 7.6 ± 

1.7 rsu; WT: 7.8 ± 1.7 rsu versus KOMyf: 8.0 ± 1.5 rsu). 

 

 

Figure 69: Muscle strength of global and tissue-specific GBA2-knockout mice. A) A weight test was performed 

by letting the mice grasp steel chain with a weight of 1) 21 g, 2) 34.8 g, 3) 48.6 g, 4) 62.4 g, 5) 75.7 g, 6) 89 g, 7) 
103.3 g. Modified from Woeste, Master thesis, 2015. B) Illustration of box plots used for data presentation with the 

box portion including the average (circle), median (horizontal line), 25th and 75th percentile (lower and upper 
horizontal line), and the whisker (vertical lines). Data is plotted as dots next to the box, including the outliers. The 
forepaw muscle strength (in rsu) was determined from the time the mice could lift the different weights and is 
depicted in C) for GBA2-KO, D) for GBA2-EUCOMM, E) for neuron-specific GBA2-KO, and F) for muscle-specific 

GBA2-KO mice. Statistical analysis was performed using one-way ANOVA (n numbers and p values are indicated). 
rsu: relative muscle strength unit. 

 

3.14.3 Gait and locomotion 

To analyze the gait, I used the CatWalkTM XT system (Noldus Information Technologies, 

Netherlands) and determined several gait parameters of wild-type and GBA2-knockout mice 

(females, 32 ± 2 weeks). The CatWalkTM XT system is a video-based technique, which 

visualizes placement of the mouse paws, while freely walking on a glass-plate (see 2.13.2). 

High sensitivity of the CatWalkTM system is ensured since placement of the paws is detected 

by fluorescent light scattering, which is recorded with a high-speed color camera. Both static 
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and dynamics parameters can then be determined using the corresponding computer software 

(CatWalkTM XT 9.0 and 10.6). 

 

 

Figure 70: CatWalkTM setup used for gait analysis. A) Illustration of the CatWalkTM with its walkway, comprising 

the illuminated glass plate and the camera positioned below. Image modified from: Noldus Information Technology 
– Discover CatWalk XT; https://www.noldus.com/files/u64/catwalk-overview.jpg. B) Classification of the paws using 

the CatWalkTM software for gait analysis. RF: right front; RH: right hind; LF: left front; LH: left hind. 

 

The most basic static parameters are stand and swing phase, which comprise one step cycle 

of a paw (Figure 71). Simultaneous placement of different paws can be easily recognized by 

overlapping stand phases of the paws. 

 

 

Figure 71: Step cycle of a paw during walking. One step cycle of a paw includes a stand phase, in which the 

paw is placed on the walkway, and the corresponding swing phase, in which the paw is lifted.  

 

Locomotor dysfunction in mice is often accompanied by an altered duration of the swing phase, 

as observed in Parkinson’s disease (Amende et al., 2005), ataxia (Hoogland et al., 2015), and 

HSP mouse models (Connell et al., 2016). When testing KO, KOEU, KOSyn, and KOMyf mice 

compared to the corresponding WT controls, the swing duration of the right front in KOEU and 

KOSyn mice was altered (Figure 72 B, C). However, no difference was observed in KO and 

KOMyf mice (Figure 72 A, D). 
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Figure 72: Analysis of the paw swing phase in wild-type and GBA2-knockout mice. Gait analysis using the 
CatWalkTM was used to determine the swing phase of the different paws in A) global GBA2-knockout (KO) (Yildiz), 
B) global GBA2-knockout (KOEU; GBA2-EUCOMM), C) neuron-specific GBA2-knockout (KOSyn; Neuron-spec.), and 
D) muscle-specific GBA2-knockout (KOMyf; Muscle-spec.) compared to the respective wild-type (WT) mice (plotted 

as % compared to WT). Statistical analysis was performed using one-sample t-test (n numbers and p values are 
indicated). RF: right front; RH: right hind; LF: left front; LH: left hind. 
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In contrast to humans, mice – as quadrupedal animals – can use several paw combinations 

during walking (Figure 73). Combinations of right front (RF) and left hind (LH) or left front (LF) 

and right hind (RH) paw are referred to as a diagonal paw pair. In contrast, ipsilateral paw pairs 

describe either RF-RH or LF-LH combinations, whereas girdle paw pairs include the lateral 

paws RF-LF or RH-LH. 

 

 

Figure 73: Different paw pairs for quadrupedal animals. Mice - as quadrupedal animals - utilize different 
combinations of paws during walking: A) diagonal (RF-LH; LF-RH), B) ipsilateral (RF-RH, LF-LH), and C) girdle 

(RF-LF, RH-LH) paw pairs. RF: right front; RH: right hind; LF: left front; LH: left hind. 

 

For the girdle pairs, the Base of Support (BOS) is determined by the CatWalkTM software, which 

describes the distance between the front or the hind paws (in cm). A common phenotype seen 

in mice suffering from locomotor dysfunction to compensate coordination defects is a wide-

based gait, which is reflected by an increased BOS, in particular of the hind paws (Barez-Lopez 

et al., 2014; Hamers et al., 2006). However, the BOS of the front and hind paws was unaffected 

in the global, as well as neuron- and muscle-specific GBA2-knockout mice (Figure 74). 
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Figure 74: Base of Support of the front and hind paws in wild-type and GBA2-knockout mice. Analysis of the 
Base of Support (BOS) of the front and hindpaws of A) global GBA2-knockout (KO) (Yildiz), B) global GBA2-
knockout (KOEU; GBA2-EUCOMM), C) neuron-specific GBA2-knockout (KOSyn; Neuron-spec.), and D) muscle-

specific GBA2-knockout (KOMyf; Muscle-spec.) compared to the respective wild-type (WT) mice (plotted as % 
compared to WT). Statistical analysis was performed using one-sample t-test (n numbers are indicated). 

 

In addition, I analyzed the step sequence in WT and GBA2-KO mice used during walking. 

These step sequences are assigned according to the consecutive placement of the paws, 

following either an alternating (ipsilateral-girdle), a cruciate (girdle-diagonal), or rotating 

(ipsilateral-girdle) pattern that are subdivided into AA (RF-RH-LF-LH) and AB (LF-RH-RF-LH), 

CA (RF-LF-RH-LH) and CB (LF-RF-LH-RH), and RA (RF-LF-LH-RH) and RB (LF-RF-RH-LH), 

respectively (Figure 75). The AB step sequence pattern is normally preferred by rodents, 

whereas the rotating step sequence is barely seen (Cheng et al., 1997; Neumann et al., 2009). 
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Figure 75: Step sequences during gait utilized by quadrupedal animals. Alternating paw placement following 

an ipsilateral-girdle pattern in the AA (RF-RH-LF-LH) and AB (LF-RH-RF-LH) step sequence, cruciate paw 
placement following an girdle-diagonal pattern in the CA (RF-LF-RH-LH) and CB (LF-RF-LH-RH) step sequence, 
and rotating paw placement following an ipsilateral-girdle pattern in the RA (RF-LF-LH-RH) and RB (LF-RF-RH-LH) 
step sequence. RF: right front; RH: right hind; LF: left front; LH: left hind. 

 

My results show that KO mice exhibited increased usage of the AA step sequence (WT: 1.19% 

versus KO: 8.97%, p = 0.015), whereas the AB step sequence was not used as frequently 

(WT: 82.22% versus KO: 51.98%, p = 0.0034; Figure 76 A). In line with these findings, the 

cruciate step sequence is more often observed in KO mice. KOEU, KOSyn, and KOMyf as well as 

the corresponding WT control mice revealed predominant usage of the AA step sequence 

(Figure 76 B-D). However, no difference in the step sequence were found in these GBA2-

knockout lines. 
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Figure 76: Analysis of the step sequence in wild-type and GBA2-knockout mice. Step sequence during 
walking of A) global GBA2-knockout (KO) (Yildiz), B) global GBA2-knockout (KOEU; GBA2-EUCOMM), C) neuron-
specific GBA2-knockout (KOSyn; Neuron-spec.), and D) muscle-specific GBA2-knockout (KOMyf; Muscle-spec.) 

compared to the respective wild-type (WT) mice. Statistical analysis was performed using one-way ANOVA (n 
numbers and p values are indicated). RF: right front; RH: right hind; LF: left front; LH: left hind. 
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Figure 77: Phase Dispersion determined by the CatWalkTM gait analysis. Inter-paw coordination is represented 

by the Phase Dispersion (in %) displaying the temporal relation between the placement of different paws. The Phase 
Dispersion can be calculated for the different paw pairs: diagonal (RF-LH, LF-RH), ipsilateral (RF-RH, LF-LH), and 
girdle (LF-RF, LH-RH). RF: right front; RH: right hind; LF: left front; LH: left hind. 

 

As a measure for inter-paw coordination, the Phase Dispersion can be determined according 

to Kloos and colleagues (Kloos et al., 2005). The Phase Dispersion is calculated for the 

different paw pairs and describes the placement (initial contact) of a target paw – following 

placement of an anchor paw – relative to the step cycle duration of the anchor paw (Figure 

77). Opposing paw combinations (e.g. RFanchor-RHtarget and RHanchor-RFtarget) are correlated. 

Thus, the CatWalkTM software depicts the Phase Dispersion for diagonal and ipsilateral paw 

pairs with the front paws as the anchor, and for girdle paw pairs with the left paws as the 

anchor. A value of 50% means that the target paw was placed in the middle of the step cycle 

of the anchor paw. If the stand phase of the target paw exceeds the step cycle duration of the 

anchor, the Phase Dispersion is calculated in relation to the next placement of the anchor paw, 

resulting in a negative value. In general, Phase Dispersion can range from -50 to 75%. 

However, performing circular statistics (Cstat in the CatWalkTM software), the Phase Dispersion 

is more precisely assigned according to the phase lag of the paws and then ranges from 0 to 

100%. A value of 0%, typical for diagonal paw pairs, reflects simultaneous placement of the 

anchor and target paw, whereas a value of 50% indicates perfect alternation of the paws, as 

normally seen for girdle paw pairs. Translating the Cstat values of the Phase Dispersion to 

angles, data can be plotted in a circular scatter plot, where a value of 25% equals 90°, 50% 

equals 180°, 75% equals 270°, and 100% equals 360° (Figure 78). The phase dispersions for 

diagonal, ipsilateral, and girdle paw pairs in all tested KO mice revealed a higher variation 

compared to the respective WT controls (Figure 78). Thus, mice lacking GBA2 seem to exhibit 

slightly altered inter-paw coordination. 
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Figure 78: Analysis of the Phase Dispersion of the different paw pairs in wild-type and GBA2-knockout 
mice. Circular dot blots representing the Phase Dispersion (Cstat values) ranging from 0 to 100% of the different 
paw pairs (diagonal: RF-LH, LF-RH; ipsilateral: RF-RH, LF-LH; girdle: LF-RF, LH-RH) of A) global GBA2-knockout 
(KO) (Yildiz), B) global GBA2-knockout (KOEU; GBA2-EUCOMM), C) neuron-specific GBA2-knockout (KOSyn; 
Neuron-spec.), and D) muscle-specific GBA2-knockout (KOMyf; Muscle-spec.) compared to the respective wild-type 

(WT) mice. Statistical analysis was performed using one-way ANOVA (n numbers are indicated). RF: right front; 
RH: right hind; LF: left front; LH: left hind. 
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4 Discussion 

In my thesis, I have demonstrated that the catalytic activity of GBA2 is encoded in the protein’s 

tertiary structure, including the N-terminal domain, linker region, and C-terminal domain. Single 

mutations in GBA2, which have been identified in human patients suffering from ARCA, HSP, 

and MSLS, cause a loss of function of the enzyme, one exception being the R725H (mGBA2) 

mutation. GBA2 proteins interact and form oligomers, a characteristic that is potentially 

important for its function. A phenotypic discrepancy between humans carrying GBA2 mutations 

and mice lacking GBA2 points towards species-dependent differences in GBA2-regulated 

metabolism of GlcCer and its metabolites in the CNS. My study demonstrates a pivotal role of 

mammalian GBA2 in neurite outgrowth of dissociated cerebellar neurons and, thus, provides 

a first idea of the mechanism underlying ataxia and spasticity in ARCA, HSP, and MSLS 

patients carrying mutations in GBA2. 

 

4.1 Structural and functional analysis of GBA2  

All mGBA2 mutants, besides R725H, are devoid of GBA2 activity (see 3.1.4), which is in line 

with other studies, which have already analyzed the activity of some of these mutants (Sultana 

et al., 2015). To date, only for the hGBA2 R630W mutant (R621W in mGBA2), GBA2 activity 

has been analyzed in samples from human patients: lymphoblasts and leukocytes, isolated 

from three patients that are homozygous for the R630W mutation, were devoid of GBA2 activity 

(Martin et al., 2013). It needs to be investigated in future studies whether also the patients 

carrying the other missense or nonsense GBA2 mutations are devoid of GBA2 activity and 

whether patients homozygous for the R734H mutant display residual GBA2 activity. If loss of 

GBA2 activity results in locomotor dysfunction, patients homozygous for R734H might exhibit 

milder clinical symptoms. However, this mutation has been identified in ARCA patients, which 

are homozygous for R734H mutant, but also for the D594H mutation (Votsi et al., 2014). Thus, 

the contribution of the R734H mutation to disease pathology is impossible to decipher. 

According to the homology modelling of hGBA2 based on the structure of the bacterial 

β-glucosidase TxGH116, R734, in contrast to the other mutated amino acids does not face the 

catalytic site (see 3.3), but is rather located at the protein surface. Here, it might control 

association of GBA2 with the membrane, which has also been shown for arginines in other 

membrane-associated proteins (Bentham et al., 2006; Patel et al., 2017). The positively 

charged arginine interacts with negatively charged phosphate groups of lipids and can form 

extensive hydrogen bonds (Kooijman et al., 2007; Li et al., 2013). In addition, lysine residues 

are known to be involved in anchoring proteins to the membrane. For instance, membrane 

association of saposin C, a regulator of liposomal membrane fusion, is mediated by lysine 

residues at the N terminus that interact with phospholipids (Liu et al., 2005). Mutating these 

residues to uncharged alanine or negatively charged glutamic acid resulted in loss of fusion 
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activity, whereas mutating these residues to arginine only led to partial loss of activity (Liu et 

al., 2005). Thus, charged arginine or lysine residues in GBA2 might have a similar function in 

mediating membrane association. 

In our homology model, G683 also points towards the protein surface (see 3.3), but others 

have proposed that G683 is crucial for proper assembly of the acid/base and sugar-binding 

region in the catalytic cleft (Charoenwattanasatien et al., 2016). This study proposes D677 and 

E527 in hGBA2 being the acid/base and nucleophile, respectively, needed for the double-

displacement reaction to cleave GlcCer to glucose and ceramide (Charoenwattanasatien et 

al., 2016). In contrast, D594 and R873 face the catalytic cleft and might be involved in 

hydrogen-bond formation with the substrate (Charoenwattanasatien et al., 2016). The amino 

acid R630 is thought to be important for overall protein stability (Charoenwattanasatien et al., 

2016), and, according to our model, F419V and M510V align to the linker region preceding the 

C-terminal domain. Such a C-terminal linker region, extending the catalytic site, is also present 

in the fungal β-glucosidase ReCel3A, which assembles in a tetrameric complex 

(Gudmundsson et al., 2016). The three-domain monomers also harbour a second linker region, 

connecting the N-terminal domain and the middle sandwich domain. The two-domain 

glucoamylase tGA of the Thermoanaerobacterium thermosaccharolyticum from the GH15 

family resembles a similar domain architecture as GBA2 with an N-terminal domain, 

predominantly containing β-sheets, a linker region, and a C-terminal (α/α)6 barrel domain 

(Aleshin et al., 2003). Thus, mutating any of the aforementioned amino acids might impair 

proper assembly of the catalytic site with the acid/base and nucleophile, and sugar binding or 

stability of GBA2, comprised of the N-terminal, linker, and C-terminal domain. 

In contrast to the C-terminal catalytic domain, which is predominantly assembled by α-helices, 

the N-terminal domain predominantly contains β-sheets (see 3.3) (Charoenwattanasatien et 

al., 2016). Since deletion of parts of the N-terminal domain resulted in complete loss of function 

of GBA2, this region – besides the catalytic domain – is also crucial for enzyme function. 

Moreover, GBA2 activity is known to be highly dependent on the presence of phospholipids 

(Matern et al., 1997) and loses its activity upon membrane solubilisation (Boot et al., 2007) or 

in the absence of membranes (Körschen et al., 2013). 

 

I could show that GBA2 similar to other bacterial, archaeal, or fungal β-glucosidases, forms 

oligomers (Aguilar et al., 1997; Aleshin et al., 2003; Gudmundsson et al., 2016; Kado et al., 

2011; McAndrew et al., 2013). Co-immunoprecipitation and chemical cross-linking 

demonstrated that GBA2 proteins interact and form oligomers. Loss of the C-terminal domain, 

as seen for the nonsense mutations T483R*9 and R331*, did not destroy interaction with the 

wild-type mGBA2 protein, when analyzed by co-immunoprecipitation (see 3.5.1.5). However, 

oligomer formation of GBA2 analyzed by chemical cross-linking was dependent on the 
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presence of the C-terminal domain: Loss of the C-terminal domain in the T483R*9 and R331* 

mutant impaired oligomer formation of mutant proteins and also hetero-oligomers with wild-

type mGBA2 protein were not formed (see 3.5.2.2). Moreover, the presence of T483R*9 and 

R331* did not affect oligomerization of wild-type GBA2. In line with these results, β-glucosidase 

activity in cells expressing both wild-type and mutant GBA2 did not reveal a dominant-negative 

effect of any of the GBA2 mutant on wild-type GBA2 activity (see 3.5.3.2). One explanation for 

the discrepancy in the co-immunoprecipitation and cross-linking approach for mGBA2 

T483R*9 and R331* might be that the experiments were performed in different buffers. 

Interaction studies of GBA2 proteins analyzed by co-immunoprecipitation were performed in 

detergent-containing buffer in the presence of 150 mM NaCl. Under these buffer conditions, 

GBA2 protein interaction was preserved. In contrast, upon cross-linking in detergent-free buffer 

in the absence of NaCl, oligomer formation of mGBA2 T483R*9 and R331* was not stable. 

Thus, the two approaches were influenced by the different buffer conditions and/or potentially 

targeted different interaction sites between the proteins. 

 

Dimerization of the glucoamylase tGA of the Thermoanaerobacterium thermosaccharolyticum 

is thought to be promoted or stabilized by membrane lipids (Aleshin et al., 2003). Thus, GBA2 

oligomerization could also be dependent on the presence of lipids. One approach to answer 

whether GBA2 oligomerization depends on lipids would be to cross-link GBA2 in the presence 

and absence of liposomes. Moreover, it remains unclear whether the cross-linked product is a 

GBA2-GBA2 oligomer or whether GBA2 complexed with (a) different protein(s). Our previous 

studies demonstrated that wild-type mGBA2, expressed in E.coli in the absence of other 

mammalian proteins, which might function as an interaction partner, is active (Schonauer et 

al., 2017). However, the oligomerization state of GBA2 under these conditions is not known. 

Further studies are needed to analyze if oligomerization is required for GBA2 activity by 

performing activity measurements of purified non-cross-linked and cross-linked GBA2. 

According to structural analysis of other β-glucosidases that form oligomers, also GBA2 activity 

seems to rely on complex formation: The β-glucosidase JMB19063, expressed by thermophilic 

microorganisms present in compost and belonging to the GH3 family, is only active upon 

dimerization: two monomers in an opposing orientation provide two distinct residues in their C-

terminal domains, which are needed for substrate binding (McAndrew et al., 2013).  

 

4.2 Role of GBA2 in the CNS 

The present study shows that GBA2 is highly expressed and active in the murine CNS, but 

barely in skeletal muscle (see 3.7, 3.8). A previous study could also show that GBA2 

expression in the brain is higher compared to lung, kidney, heart, and spleen in mice (Yildiz et 
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al., 2006). Thus, GlcCer metabolism, controlled by GBA2, seems to play a pivotal role in the 

CNS.  

 

4.2.1 Neurons: major site of GBA2 expression and activity in the CNS 

In a previous study, we have shown that hippocampal neurons, but not astrocytes express 

GBA2 (Körschen et al., 2013). My study revealed that GBA2 activity in brain and spinal cord is 

primarily attributable to its activity in neurons, rather to other cell types residing in the tissue 

(see 3.7.1.1). In particular, GBA2 is expressed and active in murine cerebellar neurons (see 

3.7.1.3). 

Sphingolipid synthesis is crucial for axonal growth in neurons: In cells treated with an inhibitor 

for ceramide synthase (fumonisin B1), axon growth was impaired at stage 3 during neuronal 

development after 2-3 days in culture (Harel and Futerman, 1993). This was also shown for 

dendritic growth in Purkinje cells upon ceramide synthase inhibition (Furuya et al., 1995). 

Impaired de novo synthesis of ceramide resulted in decreased gangliosides levels (Furuya et 

al., 1995; Harel and Futerman, 1993). Not the lack of ceramide itself, but rather of its 

glycosylated metabolite GlcCer, as the glycosphingolipid precursor, underlies this axon 

outgrowth defect: In the presence of fumonisin B1, a ceramide derivative, which is glycosylated 

to GlcCer, ameliorated the axon outgrowth defect, whereas a ceramide derivative, which 

cannot be glycosylated to GlcCer, failed to do so (Furuya et al., 1995; Harel and Futerman, 

1993; Schwarz and Futerman, 1997). Also, inhibition of GBA2-mediated degradation of GlcCer 

affected neurite outgrowth: Pharmacological inhibition of GBA2 activity by NB-DNJ in 

cerebellar neurons resulted in significantly shorter neurites (see 3.13). GBA2 expression 

increases during neuronal differentiation (Aureli et al., 2012), implicating that the enzyme plays 

an important role in the CNS already during development.  

We have previously shown in sperm and fibroblasts isolated from GBA2-KO mice that actin 

polymerization is augmented in GBA2-knockout murine dermal fibroblasts, indicated by an 

increased number of actin protrusions, filopodia and lamellipodia, in cells seeded on CYTOO 

chips (Raju et al., 2015). These actin structures also play a pivotal role in neurite outgrowth. 

Filopodia formation is regulated by Cdc42, whereas lamellipodia formation is regulated by 

Rac1 (Hall, 1998). Both Cdc42 and Rac1 belong to a class of mammalian small Rho GTPases, 

which bind guanine nucleotides and regulate actin dynamics (Ridley, 2006). In a guanosine 5′-

diphosphate (GDP)-bound state, the Rho GTPases reside in the cytosol, where there are 

complexed with a guanine dissociation inhibitor (GDIs) and are inactive (Garcia-Mata et al., 

2011). Guanine-nucleotide exchange factors (GEFs) promote the exchange from GDP to 

guanosine-5'-triphosphate (GTP), needed for activation of the protein (Bos et al., 2007). When 

GTPase activating proteins (GAPs) bind to the Rho GTPases, hydrolysis of GTP to GDP is 

induced (Bos et al., 2007). The majority of the Rho GTPases is post-translationally prenylated 
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(Roberts et al., 2008), which allows incorporation into the plasma membrane. Here, the Rho 

GTPases fulfill their function by activating several proteins for actin polymerization. Activated 

Cdc42 can bind to the (neural) Wiskott-Aldrich syndrome protein (N)-WASP (Carlier et al., 

1999) and activated Rac1 can bind to N-WASP and the WASP family Verprolin-homologous 

protein (WAVE) (Suetsugu et al., 2006; Tomasevic et al., 2007), thereby activating the actin-

related protein (Arp)2/3 complex. The Arp2/3 complex promotes actin polymerization as a 

nucleation factor (Mullins et al., 1998). Rac1 binds to phosphatidic acid (PA) and 

phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) in the membrane and has recently been 

shown to cluster in PA- and PIP3-enriched membrane areas (Maxwell et al., 2018). The 

presence of phosphatidylinositol-(4,5)-bisphosphate (PIP2) enhances actin polymerization by 

the Arp2/3 complex upon induction by Cdc42 or Rac1 via N-WASP (Tomasevic et al., 2007). 

By binding to the p21-activated kinase (PAK), Rac1 and Cdc42 induce phosphorylation and 

activation of the Lin-11/Isl-1/Mec-3 (LIM) kinases (Edwards et al., 1999; Manser et al., 1994), 

which inactivate cofilin and thereby promote actin polymerization (Arber et al., 1998). Our 

previous studies demonstrated that the lipid organization of the plasma membranes shifts to a 

more ordered state upon loss of GBA2 in fibroblasts, and hypothesized that this affects Rac1 

and Cdc42 activity, which are active in a GTP-bound state at the plasma membrane (Raju et 

al., 2015). Accumulation of GlcCer and complex glycosphingolipids might affect Rac1 and 

Cdc42 recruitment to the plasma membrane and, thereby, their activity. 

Besides the actin cytoskeleton, also microtubules promote elongation of neurites and their 

formation might be disturbed by a lipid accumulation (Ferreira et al., 1989). The ganglioside 

GM1 was shown to alter association of microtubule-associated protein (MAP)-2 to 

microtubules in fibroblasts, inducing its association with the actin cytoskeleton (Colella et al., 

2000). Furthermore, the myelin-associated protein (MAG), an inhibitor of neurite outgrowth that 

can bind the gangliosides GD1a and GT1b (Vyas et al., 2002), affects microtubule formation: 

In vitro in the presence of MAG, rat cerebellar neurons exhibited impaired microtubule 

assembly (Mimura et al., 2006). MAG activates the small Rho GTPase RhoA, which promotes 

collapse of the growth cone in neurons, thereby inhibiting neuronal outgrowth (Yamashita et 

al., 2002). Thus, not only actin dynamics, but also microtubule dynamics are potentially 

impaired by a glycosphingolipid accumulation. As we have previously shown in fibroblasts, 

loss of GBA2 enhanced microtubules persistence (Raju et al., 2015). However, whether the 

impaired neurite outgrowth in cerebellar neurons, lacking GBA2 activity due to 

pharmacological inhibition, was caused by defects in the actin cytoskeleton or microtubules 

needs to be elucidated. Strikingly, genetic ablation of GBA2 did not affect neurite outgrowth 

and might also explain the mild phenotype of GBA2-knockout mice compared to human 

patients with GBA2 mutations. 
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4.2.2 Species-specific functions of GBA2 in the brain 

In contrast to the ARCA, HSP, and MSLS patients, carrying mutations in GBA2, genetic 

ablation of GBA2 in mice did not affect cerebellar morphology or induce severe motor 

dysfunction (see 3.7.1.3.13.14), albeit GlcCer (C18) accumulated in the cerebellum (see 3.9). 

However, there was no strong accumulation of complex glycosphingolipids in the cerebellum 

(see 3.9). Whether GlcCer or more complex glycosphingolipids accumulate in the CNS of 

ARCA, HSP, and MSLS patients carrying GBA2 mutations is not known. A more pronounced 

accumulation of GlcCer and its complex metabolites might have caused the severe clinical 

phenotype in humans compared to mice. Human patients suffer from severe spastic and ataxic 

symptoms with an onset in childhood or early adulthood (7 ± 5 years), often accompanied by 

peripheral neuropathy, axonal damage, demyelination, and atrophy in the corpus callosum, 

cerebrum and/or cerebellum (Citterio et al., 2014; Hammer et al., 2013; Haugarvoll et al., 2017; 

Martin et al., 2013; Votsi et al., 2014). In contrast, global and neuron- and muscle-specific 

GBA2-knockout mice only revealed mild alterations in muscle strength and gait. The brain 

weight was not altered upon genetic ablation of GBA2 in mice, in line with the study of Yildiz 

and colleagues (Yildiz et al., 2006), and no morphological defects in the cerebellum, including 

the Purkinje cells, were observed (see 3.7.1.3.1). However, a few GBA2-knockout mice 

exhibited an extremely wide-based gait or suffered from severe seizures, indicating that there 

is a high phenotypic variation (see 3.14.1). Martin and colleagues, who studied the role of 

GBA2 in zebrafish, reported that only 12.5% of the larvae, lacking the GBA2 orthologue after 

knock down by antisense morpholino oligonucleotides, displayed an abnormal tail morphology 

(curly tail) (Martin et al., 2013). However, the majority of the larvae did not show this phenotype. 

In a locomotion test, solely 24% of the knock-down animals, lacking the curly tail phenotype, 

exhibited motor defects (Martin et al., 2013). Analysis of axon morphology demonstrated that 

only 20% of the axons displayed an abnormal morphology, whereas such a defect was only 

seen in 2% of the axons in control zebrafish (p < 0.00001) (Martin et al., 2013). Thus, also in 

GBA2-knockout zebrafish, the phenotypic variation is high. 

How can this variation be explained on a molecular level? An explanation could be that 

individual mice accumulate different amounts of GlcCer, which result in a moderate or mild 

phenotype. Such a correlation between the level of accumulated glycosphingolipid and the 

severity of the phenotype is seen in human patients suffering from Fabry disease. Mutations 

in the GLA gene coding for α-galactosidase A, leading to complete or partial loss of the 

enzyme’s activity, result in a moderate or severe accumulation of Gb3 and cause a moderate 

or severe disease form, respectively: Serum levels of deacylated Gb3 in blood plasma was the 

highest in patients suffering from the classic, severe form of the disease, whereas lowest 

plasma deacylated Gb3 levels were present in patients suffering from the late-onset, milder 

form of the disease (Nowak et al., 2018). 
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An explanation for the overall mild phenotype in GBA2-knockout mice would be that 

compensatory mechanisms might prevent severe neurological manifestation by loss of GBA2. 

A cross-talk of GBA2 and GBA1 is observed in the Gaucher disease background: Fibroblasts 

from Gaucher patients, suffering from a loss of GBA1, and GBA1-deficient human fibroblast-

like cell lines exhibit a decrease in GBA2 activity, whereas GBA2 mRNA and expression levels 

remained unchanged (Schonauer et al., 2017). A similar effect was seen upon 

pharmacological inhibition of GBA1 by CBE in human fibroblasts and mice (Schonauer et al., 

2017). However, vice versa, loss of GBA2 activity did not affect GBA1 activity (Schonauer et 

al., 2017), a result that was also resembled in my study: No increase in GBA1 activity upon 

loss of GBA2 was detected in spinal cord, cerebellum, brain, skeletal muscle, and dermal 

fibroblasts from GBA2-knockout mice compared to wild-type mice (see 3.7, 3.8). Also, AMP-

DNM treatment of cerebellar neurons, completely inhibiting GBA2 activity, did not result in 

increased GBA1 activity (see 3.11.1). In line with my finding, in lymphoblasts isolated from a 

patient carrying the R630W mutation, GBA1 activity remained unchanged (Martin et al., 2013). 

Thus, GBA1 does not compensates for the loss of GBA2. Another enzyme that might 

compensate for the loss of GBA2 is the GlcCer synthase. Both enzymes reside at the 

cytoplasmic side of the cis Golgi (Körschen et al., 2013; Schweizer et al., 1994), and loss of 

either enzyme might directly influence the activity of the other. An accumulation of GlcCer in 

the absence of GBA2 might induce an inhibition of GlcCer synthase activity, ameliorating 

GlcCer accumulation. One could envision that GlcCer levels only increase up to a certain point, 

without reaching a critical level to drive neurological defects. However, why such an effect 

might solely occur in the CNS remains elusive. 

Of note, GBA2 also exerts a transglucosylation activity and can transfer a glucose moiety from 

GlcCer to cholesterol, or vice versa deglycosylate glucosylcholesterol (GlcChol), transferring 

the glucose moiety to ceramide (Akiyama et al., 2011; Marques et al., 2016). In mice, GlcChol 

is highly abundant in the brain, sciatic nerve, and lung (Marques et al., 2016). Loss of GBA2 is 

accompanied by a decrease in GlcChol levels, as observed in murine dermal fibroblasts, testis 

(Dr. Diana N. Raju, unpublished data), thymus, liver, and blood plasma (Marques et al., 2016). 

Upon glycosylation, cholesterol relocalizes from ordered to less ordered membrane domains 

(Halling et al., 2008). Thus, not only GlcCer and GlcChol metabolism is strongly linked, but 

also the function of these lipid metabolites might be intertwined on the level of lipid rafts. In a 

GBA2-deficient condition, in which glycosylation of cholesterol is diminished, cholesterol might 

still localize to more ordered membrane domains, promoting the effect of accumulated GlcCer 

on membrane stacking. However, whether GlcChol levels also decrease in the brain upon loss 

of GBA2 is not known. Moreover, the cellular function of GlcChol is still unclear. Since GlcChol 

is more water-soluble than cholesterol, a potential role of GlcChol as an ATP-independent 

transport metabolite of cholesterol was suggested (Marques et al., 2016). Interestingly, a 
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glycosylated sterol (sitosterol) from cycads was shown to be toxic to neurons in vivo in mice 

and in vitro (Ly et al., 2007). However, whether GlcChol in mammals also exerts a neurotoxic 

function and whether a decrease in GlcChol ameliorates neuronal damage needs to be 

elucidated. 

 

In a mouse model of autosomal-recessive HSP, which lacks paraplegin due to a loss-of-

function mutation in the Spg7 gene, minor defects in motor coordination were observed at 

4 month of age, axonal swelling occurred at 8 month, abnormal gait at 17 month, severe axonal 

degeneration at 12 month, and axon degeneration in the corticospinal tract at 29 month of age 

(Ferreirinha et al., 2004). Thus, symptoms – in contrast to human HSP patients – developed 

slowly, and only became severe in mice older than 17 month. Also, lack of GM3 synthase, 

impairing the synthesis of complex glycosphingolipids downstream of LacCer, has been 

associated with an epileptic syndrome in humans (Simpson et al., 2004) but not in mice (Proia, 

2004; Yamashita et al., 2003). Thus, several mouse models of neurological disorders develop 

symptoms only at later stages compared to humans or solely suffer from mild CNS defects, 

indicating that compensatory mechanisms also occur in other lipid disorders in mice. The 

phenotypical discrepancy between human and mouse might underlie species-specific 

differences in the lipidome. In comparison to other mammalian species, humans display the 

largest lipidomic difference in the brain compared to non-neural tissues, whereas mice reveal 

the smallest difference, as demonstrated in a lipidomic study of the brain cortex, kidney, and 

skeletal muscle of humans, primates (chimpanzee, macaque), and mice (Bozek et al., 2015). 

Comparing the lipid species of different tissues in humans to 31 mammalian species of rodents, 

primates, and bats revealed that the lipid composition of the brain cortex, heart, and kidney 

significantly differed from that of the tissues in the other species (Khrameeva et al., 2018). 

Given the high lipid complexity and the evolutionary distinct lipid composition of the human 

brain compared to other mammalian species, no effective compensatory mechanisms might 

have evolved to prevent neurological defects caused by impaired glycosphingolipid 

metabolism. 

 

In mouse models of the lipid storage disorders Sandhoff disease, characterized by an 

accumulation of GM2, and Niemann-Pick type C (NPC) disease, the iminosugar NB-DNJ or 

Genz-529468 was administered to ameliorate glycosphingolipid accumulation (Ashe et al., 

2011; Nietupski et al., 2012). Strikingly, in both studies, an accumulation of GlcCer in the CNS 

was observed, indicating that the used drugs not only inhibited GlcCer synthase, but also 

GBA2 (Ashe et al., 2011; Nietupski et al., 2012). In the Sandhoff and NPC disease background, 

NB-DNJ or Genz-529468 treatment was shown to improve neuropathic symptoms and prolong 

lifespan in mice (Ashe et al., 2011; Nietupski et al., 2012). However, NB-DNJ (Miglustat®, 
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Zavesca) administration in patients suffering from the neuronopathic form of Gaucher disease 

did not ameliorate their symptoms (Schiffmann et al., 2008). In contrast, non-neuronopathic 

Gaucher and NPC patients positively responded to treatment with three dosages of 100 mg or 

200 mg Miglustat® (Zavesca) per day, respectively, as their GlcCer levels and liver and spleen 

enlargement was reduced (Aerts et al., 2006) and disease progression was slowed down 

(EMA: European public assessment report Miglustat® - Zavesca, 2009). However, the 

treatment is often accompanied by side effects such as peripheral neuropathy, ataxia, 

amnesia, paresthesia, hypoesthesia, dizziness, headache, or muscle weakness and cramps 

(EMA: European public assessment report Miglustat® - Zavesca, 2009). Thus, detailed 

analyses of other neuronopathic and non-neuronopathic lipid storage diseases with respect to 

GBA2 activity and function will help to refine the enzyme’s role – also in the CNS – in relation 

to other glycosphingolipid synthases or hydrolases. 

 

4.2.3 AMP-DNM – a potent GBA2 inhibitor applicable in vivo 

My study shows that GBA2 can be inhibited by picomolar concentrations of AMP-DNM (IC50: 

1.7-4.8 pM) that do not affect GBA1 activity (see 3.11.1). AMP-DNM can also be used to inhibit 

GBA2 in vivo in rodents: A 2-week oral administration of 25 mg/kg AMP-DNM per day, yielding 

a constant plasma concentration of 108 nM AMP-DNM, significantly reduced GlcCer levels in 

liver and skeletal muscle in 6-week-old C57Bl/6J and obese (ob/ob) mice (Aerts et al., 2007). 

According to the IC50 values determined in previous studies, this concentration of AMP-DNM 

present in the plasma would induce inhibition of GBA2 (IC50: 0.3-1.7 nM; in vitro), but not affect 

GBA1 (IC50: 200 µM; in vitro) or GlcCer synthase activity (IC50: 150 µM; in vivo) (Aerts et al., 

2007; Wennekes et al., 2010). Another study reported a significant reduction of GlcCer in blood 

plasma and liver of 7-week-old obese (ob/ob) mice after 4-week oral administration of 

100 mg/kg AMP-DNM per day (Wennekes et al., 2010). However, oral uptake of AMP-DNM 

also has an inhibitory effect on intestinal glucosidases, thereby affecting assimilation of 

carbohydrates and lowering blood glucose and insulin levels (Aerts et al., 2007; Wennekes et 

al., 2010). In summary, administration of AMP-DNM would also allow to study the effect on 

brain function upon loss of GBA2 activity. In line with the studies already performed in this 

thesis, loss of GBA2 could be induced at specific time points during development, which would 

prevent compensation by other mechanisms. Alternatively, an inducible GBA2-knockout 

mouse model could be generated, e.g. by utilizing the tetracycline-inducible transgenic 

approach. Introduction of a tetracycline-responsive promotor element (TRE) would allow to 

control the expression of GBA2 by tetracycline. In the Tet-Off expression system, the 

tetracycline-controlled transactivator protein (tTA) binds to the TRE and activates transcription 

(Saunders, 2011). Administration of tetracycline to these transgenic mice prevents binding of 

tTA to the TRE, thereby, inactivating transcription (Saunders, 2011). 
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6 Appendix 

 

Figure 79: Amino-acid sequence alignment of hGBA2 and mGBA2. Mutated amino acids in hGBA2, which have 

been identified in human patients suffering from autosomal-recessive ataxia (ARCA), hereditary spastic paraplegia 
(HSP), and Marinesco-Sjögren-like syndrome (MSLS), and in mGBA2 are depicted (red). Conserved amino acids 
are referred to as “I”, strongly similar properties as “:”, and weakly similar properties as “.” (EMBL-EBI – EMBOSS 
Needle Tool, Rice et al., 2000). The N-terminal domain (hGBA2: aa151-aa455) and the predicted catalytic 
glucosylceramidase domain (hGBA2: aa521-aa886) are indicated in grey and blue, respectively. The functional 
domains were assigned according to InterPro (Finn et al., 2017). 
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Table 38: Primer sequences. 

Internal primer # Sequence (5’ to 3’) 

C0609 TCTTCTAGATTAGGCGTAGTCGGGCACGTCGTAGGGG 

C0895 GCATGTACAACACATACGATGTCCA 

C0896 GTGCTGGCTCACTGAGCTGGA 

C0897 CCAGTCAGCAGTATCATGAATCAA 

C1054 ACAGAATTCCACCATGGTAACCTGCGTCCCGGCC 

C1055 CATCATCCGGATCCCCAATGTCATG 

C1056 CATGACATTGGGGATCCGGATGATG 

C1061 ATATATATACATATGGTAACCTGCGTCCCGGCC 

C1067 ATCTGCACTGTTCAATGAACTGTAC 

C1216 TGATGATGGTGATGGTGATGCTCTGAATTGAGGTTTGCCAGCG 

C1217 
TGTCTCGAGCTAATGGTGATGGTGATGATGGTGATGGTGATGCT

C 

C1997 GACACCTACTCAGACAATGCGATGC 

C2062 TAGTCGGGCACGTCGTAGGGGTACCTCAAGCCCATACCGAGG 

C2063 TAGTCGGGCACGTCGTAGGGGTAACGACAGAACTGGCCTCTCC 

C2064 TAGTCGGGCACGTCGTAGGGGTAGGGATAGAGGGCGTGGTAG 

C2065 TAGTCGGGCACGTCGTAGGGGTATGCAGCCACAGCCATGGTG 

C2066 CAGGTAATAGTCCCAATAAATTTGCAATAC 

C2067 GTATTGCAAATTTATTGGGACTATTACCTG 

C2068 GGCCAGGGAGTGGAACACTTGTTG 

C2069 CAACAAGTGTTCCACTCCCTGGCC 

C2070 GCTGCTGCCGGCCACGCTGTGCCTGCCTCCATCGGCCAGGAAG 

C2071 
TAGTCGGGCACGTCGTAGGGGTAGCTGCTGCCGGCCACGCTGT

G 

C2152 TCGTGGTATCGTTATGCGCC 

C2153 CTGCTCCAGTTCAAGGTCCC 

C2154 ATCACGACGCGCTGTATC 
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Internal primer # Sequence (5’ to 3’) 

C2155 ACATCGGGCAAATAATATCG 

C2436 
ATCATCATCATCTTTATAATCCTCTGAATTGAGGTTTGCCAGCGAT

C 

C2440 CAGGTAATAGTCCTTATAAATTTGCAATAC 

C2441 GTATTGCAAATTTATAAGGACTATTACCTG 

C2442 CAGGTAATAGTCCTGATAAATTTGCAATAC 

C2443 GTATTGCAAATTTATCAGGACTATTACCTG 

C2444 GTAGGCCAGGGATTTGAACACTTGTTGC 

C2445 GTAGGCCAGGGATTTGAACACTTGTTGC 

C2446 GTAGGCCAGGGATTTGAACACTTGTTGC 

C2447 GTAGGCCAGGGATTTGAACACTTGTTGC 

C2473 GGATCCCCAATGTGATGAGGGATGACG 

C2474 CGTCATCCCTCATCACATTGGGGATCC 

C2475 GTAAGCACTGGGGCGTGTGGTGACCCATG 

C2476 CATGGGTCACCACACGCCCCAGTGCTTAC 

C2477 GTAGTTGTAATAGTGTCCGTTCCACAG 

C2478 CTGTGGAACGGACACTATTACAACTAC 

C2609 CCAGAATTCCACCATGCACTATGCAGACTGGGAGGACAG 

C2610 TACGAATTCCACCATGGGGCGATTTGGCTATCTTGAAGG 

C2663 AAAGAATTCCACCATGACCCCTTTCATCGACATGCTCAATTC 

C2664 AAAGAATTCCACCATGCCCCTGAGACAGATCTATGGTTGTC 

C2665 
GTAGTCGGGCACGTCGTAGGGGTATTGCAGGGCCAGCTGCATG

GCC 

C2793 CGCGGATCCACCCCTTTCATCGACATGCTCAATTCTCTAC 

C2794 CTCATCATCCGGATCTCCAATGTCATGAG 

C2795 CTCATGACATTGGAGATCCGGATGATGAG 

C2796 GCTGAATTCATTGCAGGGCCAGCTGCATGGCCCAGATG 
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Internal primer # Sequence (5’ to 3’) 

C3462 GGTAAGCTTCCACCATGGTAACCTGCGTCCCGG 

C3463 GTCTCTCATAAGCCTCTCGGCCTCGGC 

C3464 GCCGAGGCCGAGAGGCTTATGAGAGAC 

C3476 
CACTCCACTTCCAGGTGGCTTATCATCATCATCTTTATAATCCTCT

G 

C3477 
GGTCAAAATTCAAAGTCTGTTTCACTCCACTTCCAGGTGGCTTAT

C 

C3478 
GTCTCCTGCCAACTTGAGAAGGTCAAAATTCAAAGTCTGTTTCAC

TC 

C3479 
GGGCCCGGGGTTGGACTCCACGTCTCCTGCCAACTTGAGAAGGT

C 

C3480 GTGGAATTCCCTCCACTTCCGGGCCCGGGGTTGGACTCCACG 

C3635 GGCTTTTAGCTCCAACCATGATCTTAGG 

C3636 CCTAAGATCATGGTTGGAGCTAAAAGCC 

C3802 ATCATCATCATCTTTATAATCACGACAGAACTGGCCTCTCCAGCC 

C3803 
CACTCCACTTCCAGGTGGCTTATCATCATCATCTTTATAATCACGA

CAG 

C3804 ATCATCATCATCTTTATAATCTGCAGCCACAGCCATGGTGTAGGG 

C3805 
CACTCCACTTCCAGGTGGCTTATCATCATCATCTTTATAATCTGCA

GCC 

C3866 
CTTATCATCATCATCTTTATAATCGGGATAGAGGGCGTGGTAGAA

AGC 

C3867 CACTCCACTTCCAGGTGGCTTATCATCATCATCTTTATAATCGGG 
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