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Abstract
This paper focuses on the model reduction problem for a special class of linear
parameter-varying systems. This kind of systems can be reformulated as bilinear
dynamical systems. Based on the bilinear system theory, we give a definition of the
H2 norm in the generalized frequency domain. Then, a model reduction method is
proposed based on the gradient descent on the Grassmann manifold. The merit of the
method is that by utilizing the gradient flow analysis, the algorithm is guaranteed to
converge, and further speedup of the convergence rate can be achieved as well. Two
numerical examples are tested to demonstrate the proposed method.

Keywords Model order reduction · Linear parameter-varying systems ·
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1 Introduction

Linear parameter-varying (LPV) systems are usually used to represent lineariza-
tions of nonlinear systems along certain state trajectories. Those trajectories are
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unknown in advance, can be time-dependent and can only be measured online. One
simple example is the aero-elastic dynamics of an aircraft depending on the wind
speed and the altitude, which are both unknown and cannot be modeled by any func-
tions of time. A natural idea is to treat the parameters as extra input signals and
bring the LPV system into the form of bilinear dynamical systems [3]. Once the sys-
tem is in such a form, bilinear model order reduction techniques can be applied to
reduce it.

The bilinearization approach is first introduced in [3]. In [28], a gradient flow
method is applied to solve the bilinear model order reduction problem. However,
the authors did not discuss the convergence of the method in terms of the projection
matrix. The definition of system Gramians and the associated generalized Lyapunov
equations are given there as well. Based on the generalized Lyapunov equations,
interpolation-based H2 optimal methods such as bilinear iterative rational Krylov
algorithm (BIRKA) and multipoint Volterra series interpolation methods are devel-
oped by [4, 15], respectively. To overcome the stability preservation problem, two
approaches are developed [8], which are variations of the BIRKA method. In [9],
Bruns considered the geometric nature of the projection matrix and developed a
fast gradient flow algorithm (FGFA) and a sequential quadratic programming (SQP)
method to find the (locally) optimal projection matrix, which is a generalization of
the linear time-invariant (LTI) system cases proposed in [26]. For more works on
model order reduction for LTI systems in this direction, i.e., model order reduction
by Riemannian optimization methods, we refer to [22, 23].

The work presented in this paper focuses on the gradient flow method proposed by
[9]. Since a first-order optimization method is applied, we are interested in speeding
up the convergence rate of the optimization algorithm by bounding the line search
step size. Following the work for LTI systems [27], two types of upper bounds of the
line search step size are proposed. The first one is uniform in every iteration but quite
conservative. The second varies over each iteration and speeds up the convergence
rate significantly.

The paper is organized as follows. The remaining part of this section briefly
reviews the bilinearization approach, which turns an LPV system into a bilinear
dynamical system. Section 2 shows the basic system theoretic aspects on stability,
system Gramians, and the associated generalized Lyapunov equations. The upper
bounds on the Gramians and the definition of the H2 norm are given in this section
as well. Then, the model order reduction problem is formulated as an optimiza-
tion problem in Section 3. The gradient flow analysis is applied to find the upper
bound of the line search step size, which can guarantee convergence of the optimiza-
tion algorithm. Numerical examples are tested in Section 4. Section 5 concludes the
paper.

1.1 Bilinearization of LPV systems

Consider the LPV system as follows:

�(p) :
{

ẋ(t) = Â(p(t))x(t) + B̂û(t),

y(t) = Cx(t),
(1.1)
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with x ∈ R
n, û ∈ R

m̂, y ∈ R
q , and p(t) ∈ R

np . In many applications, the matrix
Â(p(t)) has affine dependence on p(t), i.e.,

Â(p(t)) = A +
np∑
i=1

Aipi(t).

If Â(p(t)) does not have affine parameter dependence, first-order Taylor expansion
can be used to approximate Â(p(t)), which results in an affine parameter-dependent
system. Better approximation of non-affine parametric matrices can be obtained by
empirical matrix interpolation (see, e.g., [6, 19]). To bring the system (1.1) into a
bilinear dynamical system, we first augment the input signal as follows:

u(t) = ( û(t) p1(t) . . . pnp (t)
)�

.

Using the following notation,

Nj =
{
0n×n, j = 1, 2, . . . , m̂,

Ai, j = m̂ + i, i = 1, 2, . . . , np,
B = ( B̂ 0n×np

)
,

a bilinear dynamical system is obtained as follows:

�bl :
{

ẋ(t) = Ax(t) +∑m
j=1Njx(t)uj (t) + Bu(t),

y(t) = Cx(t),
(1.2)

where x ∈ R
n, u ∈ R

m, and y ∈ R
q . The constant m is defined as m := m̂ + np.

The model order reduction problem considered in this paper is to find an
orthonormal matrix V ∈ R

n×r with r � n such that the reduced-order system

�̂bl :
{

ẋr (t) = V �AV xr(t) +∑m
j=1V

�NjV xr(t)uj (t) + V �Bu(t),

yr (t) = CV xr(t),
(1.3)

minimizes the difference ‖�bl − �̂bl‖ between the original system and the reduced-
order one. In this paper, the H2 norm is considered to quantify the distance above,
which will be defined in the following.

The method described in (1.3) is a Galerkin projection approach to model order
reduction, while a Petrov–Galerkin-type method would be used when replacing V �
with some W� such that W�V = Ir . Note that in case A is symmetric negative
definite as it is often the case in applications, asymptotic stability of (1.3) is automat-
ically preserved by the Galerkin projection [9, 10] in contrast to the bilinear iterative
rational Krylov algorithm (BIRKA) [4] and other Petrov–Galerkin-like methods.

2 Bilinear system theory

Some basic system theoretic aspects are discussed in this section. We review the
stability definition and stability criterion in the literature. Then, we focus on the
system Gramians, which play a significant role in the model reduction procedure.
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Based on the convolution kernels (Volterra kernels) and the generalized transfer func-
tions of the bilinear dynamical system, the H2 norm is defined, which quantifies the
difference between the full-order system and its reduced-order duplicate.

Recall the bilinear dynamical system given by (1.2). Assume that the system input
satisfies u(t) = 0, t < 0, and the zero initial state x(0) = 0. The state of the bilinear
system given by (1.2) has a Volterra series expansion [17]:

x(t) =
∞∑
i=1

∫ ∞

0
· · ·
∫ ∞

0

m∑
j1,j2,...,ji=1

eA(t−τ1)Nj1e
A(τ1−τ2)Nj2e

A(τ2−τ3) · · ·

Nji−1e
A(τi−1−τi )bji

uj1(τ1) · · · uji
(τi)dτ1 · · · dτi, (2.1)

where bji
is the ji th column of B. It is proved in [28] that if the above Volterra series

converges, it converges to the solution of the system in (1.2). For a bounded input, the
Volterra series converges on any finite time interval. The system stability can then be
interpreted in terms of the Volterra series.

Definition 1 (BIBO stability) The bilinear dynamical system �bl given by (1.2) is
bounded-input bounded-output (BIBO) stable, if for any bounded-input, the output
is bounded on [0, ∞).

Since the output is determined by the Volterra series in (2.1), the system is BIBO
stable if for any bounded input, the Volterra series converges on [0, ∞). Unlike for
LTI systems, the stability of bilinear systems relates not only to the eigenvalues of A

but also to the bound ofNj , j = 1, 2, . . . , m. In general, if the spectrum�(A) ⊂ C
−,

then there exist two constants μ > 0 and c > 0 such that

‖eAt‖2 ≤ ce−μt/2, t ≥ 0. (2.2)

Assume that ‖u‖ :=
√∑m

j=1 ‖uj‖2 ≤ M with M > 0. Let κ = ∑m
j=1 ‖Nj‖. Then,

we are ready to give the stability criterion of a bilinear dynamical system.

Theorem 1 ([28]) The Volterra series (2.1) converges on the time interval [0, ∞) for
any bounded input if the following two conditions hold,

i) The matrix A is stable, i.e., the spectrum �(A) ⊂ C
−.

ii) The matrices Nj are sufficiently bounded, i.e., κ <
μ

cM
.

Reachability and observability of bilinear dynamical systems can date back to the
early work of [11]. The definitions are quite standard. In simple words, a bilinear
system is reachable if for any state in the state space, there exists an L2 input function
to steer the system from the zero state to the desired state in a finite time interval. A
bilinear system is observable if any initial state can be uniquely determined from the
input-output pair (u(t), y(t)) in a finite time interval which contains the initial time
t0. For a more comprehensive discussion of reachability and observability, we point
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to [11, 13]. As an alternative, one can also reformulate the bilinear dynamical system
as an affine nonlinear control system (ANCS) as follows:

�ANCS :
{

ẋ(t) = Ax(t) +∑m
j=1(Njx(t) + Bj )uj (t),

y(t) = Cx(t),

and define the reachability and observability in the sense of distribution algebra [20].
Recalling the input-to-state Volterra series expansion in (2.1) and changing the

variables [7], we can write the input-output mapping as

y(t) =
∞∑
i=1

∫ ∞

0
· · ·
∫ ∞

0

m∑
j1,j2,...,ji=1

CeAti Nj1e
Ati−1Nj2e

Ati−2 · · · Nji−1e
At1 ·

bji
uj1(t − ti ) · · · uji

(t − ti − · · · − t1)dt1 · · · dti . (2.3)

Correspondingly, the convolution kernels are

h
j1,...,ji

i (t1, . . . , ti) = CeAti Nj1e
Ati−1Nj2e

Ati−2 · · · Nji−1e
At1bji

. (2.4)

One application of the convolution kernel is to quantify the system energy [5]. The
reachability Gramian represents the input-to-state energy, which can be written as

R =
∞∑
i=1

∫ ∞

0
· · ·
∫ ∞

0
PiP

�
i dt1 · · · dti :=

∞∑
i=1

Ri (2.5)

with

P1 = eAt1B,

Pi = eAti
[
N1 . . . Nm

]
(Im ⊗ Pi−1), i = 2, 3, . . . ,

where ⊗ stands for the Kronecker product and Im is the m-dimensional identity
matrix. A close observation of (2.5) shows [28] that Ri, i = 1, 2, . . . , satisfy the
following equation:

ARi + RiA
� + Zi−1 = 0, i = 1, 2, . . . , (2.6)

with

Z0 = BB�,

Zi = N(Im ⊗ Ri)N
�, N = [N1 . . . Nm

]
.

The matrices Ri thus satisfy

Ri =
∫ ∞

0
eAti Zi−1e

A�ti dti . (2.7)

Theorem 2 a) The reachability Gramian R given by (2.5) exists, if the following
two conditions hold

i) the matrix A is stable, i.e., the spectrum �(A) ⊂ C
−.

ii) the inequality η <
√

μ/c holds, where μ quantifies the decay rate of eAt as

in (2.2), η =
√

‖∑m
j=1 NjN

�
j ‖.

2245



P. Benner et al.

b) If the reachability Gramian R given by (2.5) exists, then it is bounded by

‖R‖• ≤ c2‖BB�‖•
μ − η2c2

,

where ‖ · ‖• is either the 2,2-induced matrix norm or the Frobenius norm.

Proof Recall the expression for Ri in (2.7). The integrand has the upper bound as
follows [27]:

‖eAti Zi−1e
A�ti ‖• ≤ c2‖Zi−1‖•e−μti . (2.8)

Then, we can show that

‖Ri‖• ≤
∫ ∞

0
‖eAti Zi−1e

A�ti ‖•dti ≤ c2‖Zi−1‖•
∫ ∞

0
e−μti dti = c2‖Zi−1‖•

μ
.

Since R is an infinite sum of Ri , we have the following:

‖R‖• = ‖
∞∑
i=1

Ri‖• ≤
∞∑
i=1

‖Ri‖• ≤ c2
∑∞

i=1 ‖Zi−1‖•
μ

.

Noting that Zi−1, i = 1, 2, . . . , are given as

Z0 = BB�, Zi = N(Im ⊗ Ri)N
�,

we can derive that

‖Z0‖• = ‖BB�‖•,

‖Zi‖• ≤ ‖
m∑

j=1

NjN
�
j ‖‖Ri‖• ≤ η2

c2‖Zi−1‖•
μ

= η2c2

μ
‖Zi−1‖•.

Hence, the upper bound for ‖Zi−1‖•, i = 1, 2, . . . , defines a geometric series. It is

immediate that if η2c2

μ
< 1, then,

∞∑
i=1

‖Zi−1‖• ≤ ‖BB�‖•
1

1 − η2c2

μ

= μ‖BB�‖•
μ − η2c2

.

Then, the upper bound of R is

‖R‖• ≤ c2
∑∞

i=1‖Zi−1‖•
μ

≤ c2‖BB�‖•
μ − η2c2

.

Existence of the above upper bound yields that η2c2

μ
< 1, i.e., η <

√
μ/c.

Remark 1 In many applications, the matrixA is unitarily diagonalizable. Thus, c = 1
holds. Then, the upper bound of the Gramian R is

‖R‖• ≤ ‖BB�‖•
μ − η2

.
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For systems where A is not unitarily diagonalizable, the constant c must be computed
to determine the upper bound.

From (2.6), each Ri solves a Laypunov equation. Summing up all the Ri, i =
1, 2, . . ., we can show that R =∑∞

i=1 Ri solves a generalized Lyapunov equation.

Proposition 1 ([28]) Suppose that the matrix A is stable and Nj , j = 1, 2, . . . , m
are sufficiently bounded so that the reachability Gramian R exists. Then,

a) R satisfies the generalized Lyapunov equation

AR + RA� +
m∑

j=1

NjRN�
j + BB� = 0. (2.9)

b) The bilinear dynamical system given by (1.2) is reachable if and only if R is
positive definite.

Similar to LTI systems, observability is dual to reachability. Let Q denote the
observability Gramian. Then, it can be expressed as

Q =
∞∑
i=1

∫ ∞

0
· · ·
∫ ∞

0
O�

i Oidt1 · · · dti :=
∞∑
i=1

Qi (2.10)

with

O1 = CeAt1 ,

Oi = (Im ⊗ Oi−1)ÑeAti , i = 2, 3, . . . ,

where Ñ = col(N1, . . . , Nm) is the column concatenation of matrices Nj . The upper
bound and the existence of the observability Gramian are stated by the following
corollary.

Corollary 1 a) The observability Gramian given by (2.10) exists if

i) the matrix A is stable.
ii) the inequality η <

√
μ/c holds.

b) If the Gramian Q exists, it is bounded by

‖Q‖• ≤ c2‖C�C‖•
μ − η2c2

.

Again, the Gramian matrixQ can be computed by solving a generalized Lyapunov
equation.
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Proposition 2 ([28]) Suppose A is stable and Nj , j = 1, 2, . . . , m are sufficiently
bounded so that the observability Gramian Q exists. Then,

i) Q satisfies the generalized Lyapunov equation

A�Q + QA +
m∑

j=1

N�
j QNj + C�C = 0. (2.11)

ii) The bilinear dynamical system given by (1.2) is observable if and only if Q is
positive definite.

For stable LTI systems, transfer functions are analytic functions in C+. Hence, the
transfer functions live in the Hardy space

H+
p :=

{
f : C+ → C

q
∣∣∣‖f ‖H+

p
< ∞, f is analytic.

}
.

Then, theH2 norm is defined as
√

1
2π

∫∞
−∞ f (ıω)f ∗(ıω)dω, where ı is the imaginary

unit and ∗ stands for the conjugate transpose. By applying Parceval’s identity, one can
easily show that the H2 norm equals the impulse response energy, which is defined
in the time domain. For bilinear dynamical systems, theH2 norm originally given by
[28] was defined in the time domain, so it is better to be interpreted as the convolution
kernel energy (or Volterra kernel energy). To be more precise, we define the H2
norm in the (multi-dimensional) frequency domain. Consider the generalized transfer
functions obtained by the Laplace transform of the convolution kernels

H
j1,...,ji

i (s1, s2, . . . , si) := L [hj1,...,ji

i (t1, t2, . . . , ti)]
= C(siI − A)−1Nj1(si−1I − A)−1Nj2 · · · (s2I − A)−1Nji−1(s1I − A)−1bji

.
(2.12)

A stable matrix A guarantees that the matrix functions (siI −A)−1, i = 1, 2, . . . are
analytic in C+. Then, the H2 norm can be defined as follows.

Definition 2 Suppose that the bilinear dynamical system given by (1.2) is stable and
the Gramians R and Q exist. Then, the H2 norm is defined as

‖�bl‖2H2
:=

∞∑
i=1

1

(2π)i

∫ ∞

−∞
· · ·
∫ ∞

−∞
H

j
i (ıω1, . . . , ıωi)

(
H

j
i (ıω1, . . . , ıωi)

)∗

×dω1 . . . dωi,

where j denotes the abbreviation of the multi-index j1, . . . , ji .

Applying Parceval’s identity, the H2 norm defined above equals the convolution
kernel energy.

Theorem 3 ([28]) For the bilinear system �bl given by (1.2), if the system is stable
and the reachability Gramian R (and the observability Gramian Q) exists, the H2
norm of the system can be computed by

‖�bl‖H2 =
√
trace(CRC�) =

√
trace(B�QB).
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3 Model order reduction

As stated in Section 1.1, the model order reduction problem is to find a reduced-order
bilinear dynamical system �̂bl with a much lower complexity r � n, such that the
distance ‖�bl − �̂bl‖H2 is minimized. Define the error system �bl − �̂bl as

�bl,e :

⎧⎪⎪⎨
⎪⎪⎩

(
ẋ(t)

ẋr (t)

)
=
(

A 0
0 Ar

)(
x(t)

xr(t)

)
+∑m

j=1

(
Nj 0
0 Nrj

)(
x(t)

xr(t)

)
uj (t) + Bu(t),

e(t) =(C −Cr

) ( x(t)

xr(t)

)
,

with

Ar = V �AV, Nrj = V �NjV, j = 1, 2, . . . , m, Br = V �B, Cr = CV .

Note that the reduced-order system �̂bl in (1.3) is uniquely defined by the projec-
tion matrix V . Since the bilinear dynamical system is input-output invariant under
coordinate transformations, the reduced-order system is uniquely determined by the
subspace spanned by V rather than the matrix V itself. According to this fact, we
reformulate the model order reduction problem as an optimization problem on the
Grassmann manifold Gn,r . Then, the gradient flow analysis is applied to guarantee
the convergence of the optimization algorithm as well as to speed it up. TheH2 norm
criterion describes the approximation accuracy in the frequency domain. In the time
domain, the approximation is only accurate for impulsive input signals. In order to
make the time domain simulation more accurate, we propose to match the steady
state if the low-frequency behavior of the system is of more interest or the system
reaches the steady state.

3.1 Problem formulation

To solve theH2 model order reduction problem for a bilinear dynamical system given
by (1.2), equivalently, the following problem needs to be solved as follows:

min J (V ) = 1
2 trace

((
C −CV

) (Rf X

X� Rr

)(
C�

−V �C�
))

s.t . V �V = Ir , V �ξ = ξ�V = 0, and(
A 0
0 Ar

)(
Rf X

X� Rr

)
+
(

Rf X

X� Rr

)(
A� 0
0 A�

r

)

+
m∑

j=1

(
Nj 0
0 Nrj

)(
Rf X

X� Rr

)(
N�

j 0
0 N�

rj

)
+
(

BB� BB�
r

BrB
� BrB

�
r

)
=
(
0 0
0 0

)
,

(3.1)

where Re =
(

Rf X

X� Rr

)
is the reachability Gramian of the error system �bl − �̂bl ,

and ξ ∈ TV Gn,r denotes an element of the tangent space of the Grassmann manifold
Gn,r at span{V }. The objective function in (3.1) is derived from Theorem 3, which
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computes the half of the squared H2 norm of the error system �bl,e. Hence,
minimizing the objective function results in finding an (at least locally) optimal
reduced-order system. The constraint V �V = Ir indicates that the matrix V is
orthonormal. The second constraint V �ξ = ξ�V = 0 means that the subspace
spanned by V is perpendicular to the tangent space at span{V }. Equivalently, one can
express these two constraints together as span{V } ∈ Gn,r . The third constraint is used
to compute the reachability Gramian of the error system. In fact, one also needs to

compute the observability Gramian Qe =
(

Qf Y

Y� Qr

)
of the error system by solving

(
A� 0
0 A�

r

)(
Qf Y

Y� Qr

)
+
(

Qf Y

Y� Qr

)(
A 0
0 Ar

)

+
m∑

j=1

(
N�

j 0
0 N�

rj

)(
Qf Y

Y� Qr

)(
Nj 0
0 Nrj

)
+
(

C�C −C�Cr

−C�
r C C�

r Cr

)
=
(
0 0
0 0

)
,

(3.2)
because it is required to compute the gradient.

To solve the optimization problem in (3.1), gradient descent optimization is con-
sidered in this paper. Then, the gradient of J with respect to V needs to be computed.
An easy way is that we first neglect the geometry of the manifold, i.e., consider
V ∈ R

n×r and compute the gradient JV , which is called the Euclidean gradient.
Then, the Euclidean gradient is projected onto the tangent space of the Grassmann
manifold at span{V }, i.e., TV Gn,r . The obtained gradient ∇J is the actual gradient
of J , which is called the Riemannian gradient. For detailed explanations, we refer
to [14].

The Euclidean gradient for the objective function J in (3.1) is given by [9] as

JV (V ) = A�V (Y�X + QrRr) + AV (X�Y + RrQr)

+BB�(Y + V Qr) + C�C(−X + V Rr)

+
m∑

j=1

N�
j V (Y�NjX + QrV

�NjV Rr)

+
m∑

j=1

NjV (X�N�
j Y + RrV

�N�
j V Qr). (3.3)

Since for any matrix V satisfying span{V } ∈ Gn,r , ∀ξ ∈ TV Gn,r , there holds V �ξ =
ξ�V = 0, the Riemannian gradient can be obtained by [14]:

∇J (V ) = (I − V V �)JV (V ), (3.4)

which means projecting the Euclidean gradient onto the orthogonal complement
of V , i.e., the tangent space TV Gn,r . With the gradient computed, the optimization
problem in (3.1) can be solved by the following algorithm.
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Algorithm 1H2 MOR by gradient descent on Gn,r .

Require: initial guess V0.
Ensure: the optimal projection matrix V̄ .
1: for k = 0 : K − 1 do
2: Compute the gradient Gk = ∇J (Vk) by (3.4). Set the search direction ξk =

−Gk .
3: Compute line search step size αk , such that J (V (αk)) decreases.
4: Set Vk+1 = V(αk, Vk, ξk).
5: end for
6: Set V̄ = VK

Algorithm 1 requires the computation of the line search step size αk and an update
method Vk+1 = V(αk, Vk, ξk). In general, the line search step size can be obtained
by the back-tracking line search [21]. However, such a method can result in a large
amount of computational effort because the Gramians Re and Qe need to be updated
as long as Vk is updated. To compute Vk+1 = V(αk, Vk, ξk), a retraction mapping
needs to be constructed [1]. By investigating the geometry of the Grassmann mani-
fold Gn,r , the geodesic can be used as the retraction mapping. Solutions of these two
problems lead to the main results of this paper.

Remark 2 If instead of the subspace spanned by V , the matrix V is of interest, one
may formulate the optimization problem on the Stiefel manifold. In that case, we
only have V �ξ + ξ�V = 0. If the canonical metric is used, the projection of the
Euclidean gradient onto the tangent space can be computed by the following [14]:

∇J (V ) = JV − V J�
V V .

3.2 Gradient flow analysis

The geodesic on the Grassmann manifold is used to update the projection matrix Vk

in each iteration.

Proposition 3 ([14]) Given a point V ∈ R
n×r on the Grassmann manifold Gn,r ,

i.e., V �V = Ir , and a tangent direction ξ ∈ TV Gn,r with its thin singular value
decomposition (SVD) ξ = USZ�, the geodesic emanating from V in the direction of
ξ has the expression

V(α, V , ξ) = V Z cos(Sα)Z� + U sin(Sα)Z�, α ∈ [0, 1]. (3.5)

Then, at the kth iteration of Algorithm 1, the matrix Vk+1 can be updated as
follows:

Vk+1 := V(αk, Vk, ξk) = VkZk cos(Skαk)Z
�
k + Uk sin(Skαk)Z

�
k ,

where UkSkZ
�
k = ξk is the thin SVD of ξk . To compute the line search step size, the

gradient flow ofV(α, V , ξ) in terms of the step size α is discussed.V(α, V , ξ)will be
abbreviated as V(α) for notational convenience. Without further specification, Ḟ (α)
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stands for the derivative of the function F with respect to α. A simple calculation
shows that the geodesic satisfies a first-order ordinary differential equation (ODE).

Theorem 4 The geodesic equation given by (3.5) is the solution of the first-order
constant coefficient ODE

V̇(α) := ∂

∂α
V(α) = (ξV � − V ξ�)V(α), α ∈ [0, 1]. (3.6)

Proof From (3.5), the first-order derivative ofV(α) in terms of α is

V̇(α) = −V ZS sin(Sα)Z� + US cos(Sα)Z�.

Notice that V �U = U�V = 0 because V �ξ = ξ�V = 0, we have the following:

ξ�V(α) = ZS sin(Sα)Z� ⇒ −V ξ�V(α) = −V ZS sin(Sα)Z�,

V �V(α) = Z cos(Sα)Z� ⇒ ξV �V(α) = US cos(Sα)Z�,

which imply that

V̇(α) = −V ξ�V(α) + ξV �V(α) = (ξV � − V ξ�)V(α).

Remark 3 In general, a geodesic is the solution of a second-order ODE [16]. In case
of the Grassmann manifold, the corresponding second-order ODE is [14]:

V̈(α) + V(α)(V̇�(α)V̇(α)) = 0, α ∈ [0, 1].

Direct computation shows that (3.5) satisfies the above equation. In our case, since
the explicit expression of the geodesic exists and V �ξ = ξ�V = 0 holds, the
geodesic equation satisfies a first-order ODE. However, to solve the ODE in (3.6),
one still needs the initial value of V and ξ . Hence, the second-order structure is
included implicitly in (3.6) as an initial condition requirement.

The Euclidean gradient JV (V ) satisfies a symmetry property, which can be used
to simplify the ODE in (3.6) further.

Proposition 4 ([9]) The Euclidean gradient JV (V ) given by (3.3) has a symmetry
property

V �JV (V ) = J�
V (V )V .

At the kth iteration, if the steepest descent direction acts as the tangent direction
in the geodesic equation (3.5), the coefficient matrix in (3.6) only relates to Vk and
JVk

(Vk), i.e., the Euclidean gradient at Vk . For convenience, we abbreviate JVk
(Vk)

as JVk
.
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Corollary 2 Given the starting point of the geodesic as Vk and let ξk = (VkV
�
k −

In)JVk
be the tangent direction, then the geodesic equation given by (3.5) solves the

following first-order ODE

V̇(α) = (VkJ
�
Vk

− JVk
V �

k )V(α) := �kV(α), V (0) = Vk, α ∈ [0, 1]. (3.7)

Proof Taking the steepest descent direction as the line search direction, i.e.,

ξk = (VkV
�
k − In)JVk

,

then, we have the following:

ξkV
�
k = (VkV

�
k − In)JVk

V �
k = VkJ

�
Vk

VkV
�
k − JVk

V �
k ,

Vkξ
�
k = VkJ

�
Vk

VkV
�
k − VkJ

�
Vk
.

Hence,

ξkV
�
k − Vkξ

�
k = VkJ

�
Vk

− JVk
V �

k := �k .

Based on the derivative of V(α) in Corollary 2, the following results show how
the line search step size can be selected to guarantee the convergence of Algorithm 1.

Theorem 5 Consider the optimization problem in (3.1) with the Euclidean gradient
given by (3.3). Let V(α) ∈ Gn,r , α ∈ [0, 1] be a geodesic, which is certainly differ-
entiable with respect to α. Then, the Euclidean gradient JV (α) := JV (V(α)) and its
derivative J̇V (α) := ∂JV /∂α have the upper bounds

‖JV (α)‖F ≤ ζ1, (3.8)

‖J̇V (α)‖F ≤ ζ2‖V̇(α)‖F , (3.9)

where,

ζ1 := 4
√

rc2‖B‖2‖C‖2(μ + c2‖A‖)
(μ − η2c2)2

, (3.10)

ζ2 := 2‖B‖2‖C‖2
(μ − η2c2)3

(
3(μ+η2c2+2c2‖A‖)2+c2(μ−η2c2)(μ+3η2c2+2c2‖A‖)

)
.

(3.11)

Proof See Appendix A.

Remark 4 The computation of J̇V (α) shows that at the kth iteration, J̇Vk
(α) =

−‖�k‖2F ≤ 0. Hence, the gradient descent algorithm should always converge.

Corollary 3 Let ζ1 and ζ2 be given by Theorem 5. In the optimization process, let Vk

denote the projection matrix at the kth iteration and ξk be the corresponding steepest
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descent direction. Then, the projection matrix in the k + 1st iteration is given by
V(αk) := V(αk, Vk, ξk) in (3.5) with αk the step size. If the step size satisfies

0 < αk <

√
2

ζ1 + √
2ζ2

, (3.12)

then the objective function J (V ) decreases, i.e., J (V(αk)) ≤ J (Vk), k = 0, 1, . . ..
The equality holds if and only if Vk is the critical point of J (V ).

Proof The proof is similar to the proof of Theorem 4.1 in [27]. According to Taylor’s
Theorem, there exists a constant τ ∈ [0, α] such that

J (V(α)) ≤ J (Vk) + αJ̇ (Vk) + α2

2
J̈ (V(τ )).

Then, applying Corollary 2 and following the proof of Theorem 4.1 in [27], the proof
can be completed.

The step size in (3.12) is uniformly upper bounded by a constant, which is inde-
pendent of the number of iterations and the projection matrix in each iteration.
Sometimes this constant can be really small, which makes the step size too conser-
vative. Although Algorithm 1 is guaranteed to converge under such a step size, the
convergence speed is not guaranteed to be fast. Hence, theoretically, one can only
conclude that Vk → V̄ if k → ∞.

To obtain a more effective and practical line search step size, the basic idea is to
use the higher order Taylor expansion of J (V(α)) as a function of α, i.e., the step
size. Consider the third-order Taylor expansion of the objective function J (V(α)).
By Taylor’s Theorem, at the kth iteration, ∃τk ∈ R

+, for any 0 < α < τk , we have
the following [27]:

J (V(α)) ≤ J (Vk) + αJ̇ (Vk) + α2

2
J̈ (Vk) + α3

6
max

0≤α≤τk

|J (3)(V(α))|. (3.13)

To make sure that the objective function J given by (3.1) decreases, we need to find
an αk such that J (V(αk)) ≤ J (Vk). Note that we already know that there exists an
upper bound τk of αk . Hence, first we need to find an effective τk , which is solved by
the following Corollary.

Corollary 4 Let V(α), α ∈ [0, 1], be the geodesic equation which satisfies (3.7),
where V(α) is orthogonal and �k is skew-symmetric, and let sk denote the unique
positive real root of the polynomial

2β0s
4
k c2 + 2β1s

3
k c2 + 2β2s

2
k c2 + 2β3skc

2 − μ + η2c2. (3.14)

Let the Lie bracket operations be defined as

L1(A, B) = AB − BA, Lk(A, B) = Lk−1(A, B)B − BLk−1(A, B), k ≥ 2.

(3.15)
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The constants βi, i = 0, 1, 2, 3, are given as follows:

β0 = ‖L4(A, �k)‖ (3.16)

+
3∑

j=1

(
‖Nj‖‖L4(Nj , �k)‖+4‖L1(Nj ,�k)‖‖L3(Nj ,�k)‖+3‖L2(Nj ,�k)‖2

)
,

(3.17)

β1 = 4‖L3(A, �k)‖+
m∑

j=1

(
4‖Nj‖‖L3(Nj , �k)‖ + 12‖L1(Nj , �k)‖‖L2(Nj , �k)‖

)
,

(3.18)

β2 = 6‖L2(A, �k)‖ + 6
m∑

j=1

(
‖Nj‖‖L2(Nj , �k)‖ + ‖L1(Nj , �k)‖2

)
, (3.19)

β3 = 3‖L1(A, �k)‖ + 3
m∑

j=1

‖Nj‖‖L1(Nj , �k)‖. (3.20)

Then, for any given τk ∈ (0, sk), J (3)(V(α)) is upper bounded by

max
0≤α≤τk

|J (3)(V(α))| ≤ 1

2
θk . (3.21)

Denote BB� and C�C asB and C, respectively. The constant θk is defined by

θk =

⎛
⎜⎜⎝

‖ (2�3
kC L3(C, �k)

) ‖F

3‖ (2C�2
k L2(C, �k)

) ‖F

3‖ (2C�k L1(C, �k)
) ‖F√

5‖C‖F

⎞
⎟⎟⎠

�⎛
⎜⎜⎝

max0≤α≤τk
‖W(α)‖F

max0≤α≤τk
‖Ẇ (α)‖F

max0≤α≤τk
‖Ẅ (α)‖F

max0≤α≤τk
‖W(3)(α)‖F

⎞
⎟⎟⎠ , (3.22)

where W(α) = (
X�(α) Rr(α)

)
and the upper bounds on W(α) and its first three

derivatives are computed from (B.12) in Appendix B. Furthermore, if one chooses a
parameter ρ1 ∈ (0, 1) and let τk = ρ1sk, then there exists a Vk-independent constant
ψ such that

θk ≤ ψ‖�k‖3F .

Proof The proof requires technical calculations, so we put it in Appendix B.

Remark 5 Corollary 4 tells that the upper bound of max0≤α≤τk
|J (3)(V(α))| is related

to ‖�k‖3F , which indicates the speed of convergence of such an upper bound.

Now let’s discuss how to derive an upper bound of αk from the Taylor expan-
sion given in (3.13). To guarantee the decrease of J , we need to find an α such that
J (V(α)) − J (Vk) ≤ 0. From (3.13), we know that

J (V(α)) − J (Vk) ≤ αJ̇ (Vk) + α2

2
J̈ (Vk) + α3

6
max

0≤α≤τk

|J (3)(V(α))|.
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Since,

J̇ (Vk) = trace(J�
Vk
V̇(α))|α=0 = trace(J�

Vk
�kVk) = −1

2
trace(��

k �k) = −1

2
‖�k‖2F ,

and for convenience, we denote J̈ (Vk) as 1
2γk , then,

J (V(α)) − J (Vk) ≤ α

2
(−‖�k‖2F + α

2
γk + α2

6
θk) ≤ 0.

Hence, we need to find a line search step size αk such that

αk

(
−‖�k‖2F + αk

2
γk + α2

k

6
θk

)
≤ 0. (3.23)

Factorizing (3.23), it can be obtained that

θkαk

6

⎛
⎜⎝αk−

−3γk−
√
9γ 2

k + 24θk‖�k‖2F
2θk

⎞
⎟⎠
⎛
⎜⎝αk−

−3γk+
√
9γ 2

k +24θk‖�k‖2F
2θk

⎞
⎟⎠

≤ 0 (3.24)

Let,

φk =
−3γk +

√
9γ 2

k + 24θk‖�k‖2F
2θk

≥ 0, (3.25)

which is the unique positive root of (3.24). It is not difficult to derive that when αk is
bounded by the following:

0 ≤ αk ≤ φk, (3.26)

Equation (3.23) is satisfied. Combining this result with the fact that 0 ≤ αk ≤ τk , the
following corollary can be stated.

Corollary 5 Let φk be given as in (3.25) and γk := 2J̈ (Vk). Let the constant τk be
given by Corollary 4, i.e., 0 < τk < sk . Then, for any step size αk which satisfies the
following:

αk ≤ min(τk, φk), (3.27)

it can be guaranteed that J (V(αk)) ≤ J (Vk), k = 0, 1, . . ., for any initial guess
V0 ∈ Gn,r . Furthermore, for any smaller step size αk = min(ρ1sk, ρ2φk) with ρ1,2 ∈
(0, 1), Algorithm 1 converges.

2256



A bilinearH2 model order reduction approach to linear...

Proof The first part of the corollary, i.e., (3.27), has already been shown in Corol-
lary 4. We only need to prove the second part here. If there exists some constant ρ2
such that αk ≤ ρ2φk , from (3.24), we have

θkαk

6

⎛
⎜⎝αk +

3γk +
√
9γ 2

k + 24θk‖�k‖2F
2θk

⎞
⎟⎠ (αk − φk)

≤
3γk +

√
9γ 2

k + 24θk‖�k‖2F
12

αk(αk − φk)

≤
3γk +

√
9γ 2

k + 24θk‖�k‖2F
12

φk(ρ2 − 1)αk

= (ρ2 − 1)‖�k‖2F αk ≤ 0.

It is immediate that 0 < ρ2 < 1 is the condition to guarantee the decrease of the
objective function, which means that for k → ∞, �k → 0.

3.3 Matching steady state

TheH2 norm criterion describes how well a system is approximated in the frequency
domain. For asymptotically stable LPV systems or nonlinear dynamical systems such
as bilinear dynamical systems, usually the time domain simulation is of more interest.
Since theH2 norm is equivalent to the convolution kernel energy in the time domain,
the time domain performance can only be guaranteed for impulsive input signals,
which is not always the case especially for LPV systems. When the low-frequency
behavior of the system is dominant or the system reaches its steady state for a non-
impulsive input, the reduced-order system can introduce bias in the time domain
simulation. To overcome such a problem and make the reduced-order model more
accurate, one can match the steady state by adding an input-dependent feedthrough
term to the output equation of (1.3). Consider the bilinear dynamical system in (1.2).
Suppose the steady state is x̄, then we have

˙̄x(t) = 0 = Ax̄(t) +
m∑

j=1

Nj x̄(t)uj (t) + Bu(t) ⇒ x̄(t)

= −
⎛
⎝A +

m∑
j=1

Njuj (t)

⎞
⎠

−1

Bu(t).

The steady-state output is ȳ(t) = Cx̄(t). Similarly, the steady state of the reduced-
order system in (1.3) is

x̄r (t) = −
⎛
⎝Ar +

m∑
j=1

Nrjuj (t)

⎞
⎠

−1

Bru(t).
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Correspondingly, the reduced-order steady state output is ȳr (t) = Crx̄r (t). If the
steady states of the full-order and the reduced-order systems are matched, we have
ȳ(t) = ȳr (t). Then, the next proposition directly follows.

Proposition 5 Define an input-dependent matrix Dss(t) by

Dss(t) = Cr

⎛
⎝Ar +

m∑
j=1

Nrjuj (t)

⎞
⎠

−1

Br − C

⎛
⎝A +

m∑
j=1

Njuj (t)

⎞
⎠

−1

B. (3.28)

The steady states of the full-order and the reduced-order systems are matched if the
output of the reduced-order system in (1.3) is given by

yr(t) = Crxr(t) + Dss(t)u(t).

By matching the steady state, the reduced-order system can mimic the low-
frequency behavior of the original system. If only the high-frequency behavior of the
system is of interest, matching steady state can make the approximation worse, which
is not advisable.

Although a large-scale system (A +∑m
j=1 Njuj (t))z = −B needs to be solved

at each time instant, the computational effort is still much less than solving the orig-
inal bilinear dynamical system. A more effective method would be only computing
the steady state of the full-order system at some sampled values of u(t) offline and
then applying an interpolation technique online to achieve a speedup, which can be a
future research topic.

To close this section, we provide a complete algorithm for reducing a bilinear
dynamical system by the proposed method. As for the constant step size method, one
can compute the step size by Theorem 5 and Corollary 3 and then simply substitute
it into Algorithm 1, the next algorithm only discusses the adaptive step size case.

In the proposed algorithm,λ(·) stands for the eigenvalue of amatrix. IfA+A� is neg-
ative definite, μ = λmin(−A − A�) is used. Otherwise, μ < 2λmin(−A) must hold.
For the constant c, only if A is unitarily diagonalizable, c = 1 holds. In case that the
matrix A is not unitarily diagonalizable, c depends on ‖T ‖‖T −1‖, if A = T DAT −1

for some diagonal matrix DA. For the case of A having non-trivial Jordan blocks, c
cannot be computed numerically. The algorithm is considered to be converged when
the norm of the Riemannian gradient Gk is smaller than a user specified tolerance or
a maximum number of iterations is reached. Similar to BIRKA, one can also check
the eigenvalues of the reduced-order matrix Ar . If the change of the eigenvalues is
small enough, the resulting projection matrix Vk is also close to the optimal one.

The computational cost of Algorithm 2 is mainly dominated by solving the second
row of the generalized Lyapunov equations in (B.3) to (B.6), i.e., the corresponding
generalized Sylvester equations and the reduced-order generalized Lyapunov equa-
tions for the matrices Xk, Rrk, Yk, Qrk . Since the reduced-order r is usually much
smaller than n, the computational cost mainly comes from solving the generalized
Sylvester equations. In this article, we use direct solvers naively, that is, solving the
matrix equations by vectorizing them first and then solving the corresponding linear
system of equations directly. Hence, the computational cost would beO(n3r3). Other
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efficient methods such as the fixed-point method [24], ADI-preconditioned Krylov
method [12], and even an extended version of the residual approximation-based iter-
ative Lyapunov solver (RAILS) [2] can be employed to reduce the computational
complexity. In both [12, 24], iterative methods such as the fixed-point iteration are
introduced to solve the generalized Lyapunov equation. In each iteration, the general-
ized Lyapunov equation is transformed into the classic Lyapunov equation. Then, in
[12], the ADI-preconditioned Krylov subspace method is employed to solve the clas-
sic Lyapunov equation in each fixed-point iteration while in [24] the extended Krylov
subspace method is used. The RAILS method [2] is a Krylov subspace method as
well. When these Krylov subspace methods are employed to solve the classic Lya-
punov equation, the original solution is projected onto a low-dimensional subspace.
Then, one only needs to solve a small-scale Lyapunov equation. To construct the
Krylov subspaces, the computational complexity is linear in the number of non-zeros
(nnz) in the A matrix. Namely, if matrix A is sparse, i.e., nnz = O(n), the computa-
tional complexity is O(n) (see, e.g., [25]). In case that A is dense, the computational
complexity is O(n2). The total computational cost of combining the fixed point iter-
ation and the Krylov subspace methods is thus either O(nK) or O(n2K), where K is
the number of fixed-point iterations. The numerical examples in [24] show that when
A is sparse, their method allows one to solve large-scale problems where n is at the
level of 105 within a few minutes on a commercially available laptop. Although the
aforementioned methods are designated for Lyapunov equations, their concepts can
be generalized to Sylvester equations.

Algorithm 2H2 MOR by gradient descent on Gn,r with adaptive step size.

Require: State space matrices A, B, C, Nj , j = 1, 2, . . . , m and initial guess of the
projection matrix V0. Two constants ρ1,2 ∈ (0, 1).

Ensure: H2 optimal reduced-order system matrices Ar, Br, Cr, Nrj , j =
1, 2, . . . , m and the optimal projection matrix V̄ .

1: Compute μ ≤ 2λmin(−A), η =
√

‖∑m
j=1 NjN

�
j ‖ and the constant c.

2: Compute the full-order Gramians Rf and Qf for the evaluation of the objective
function J (V ).

3: while not converged do
4: Compute the Gramians Xk, Rrk, Yk, Qrk according to the generalized Lya-

punov equations in (3.1) and (3.2), respectively.
5: Compute the Euclidean gradient JVk

(Vk) by (3.3).
6: Compute the Riemannian gradient Gk = ∇J (Vk) by (3.4). Set the search

direction as ξk = −Gk .
7: Compute �k = VkJ

�
Vk

− JVk
V �

k .
8: Compute βj , j = 0, 1, 2, 3 by (3.16) – (3.20) and solve (3.14) to derive sk .
9: Solve the second row of the generalized Lyapunov equations in (B.3) – (B.6).
10: Compute γk = 2J̈ (Vk) by (B.1c). Compute θk by (3.22) and (B.12).
11: Compute φk by (3.25). Set αk = min(ρ1sk, ρ2φk).
12: Set Vk+1 = V(αk, Vk, ξk) by (3.5).
13: end while
14: Set V̄ = VK and compute the optimal reduced-order system matrices by (1.3).
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During the reduction, the reduced-order r needs to be determined. One heuristic
method is to investigate the decay rate of

√
λ(Qf Rf ), which can be considered as a

generalization of the Hankel singular values of LTI systems. Although these values
are not really the Hankel singular values of the system in general, they still pro-
vide a hint on how well a system can be approximated at a certain order. Another
method would be trial-and-error. By reducing the system to different orders and con-
sidering the computational cost, one could determine r . In the numerical examples
of this paper, we investigated the decay rate of the aforementioned generalized Han-
kel singular values. For both examples, a reduced-order system of dimension ten can
guarantee the approximation accuracy as well as low computational cost.

Remark 6 An important point we would like to address is that during the model
order reduction process, the bilinear dynamical system only serves as an auxiliary
system. It is clear that if, e.g., the parameters are constant (like material parameters),
the resulting auxiliary input function cannot be an L2 function unless the parameters
were zero. Nevertheless, once we have the form of a bilinear system, we ignore this
discrepancy and assume that we have L2 inputs and that theH2 norm of the auxiliary
bilinear system exists. This allows us to compute an H2-(sub)optimal reduced-order
model. We use the projection subspaces that lead to the reduced bilinear system then
for the LPV system to obtain a reduced-order LPV system. There are no claims about
stability of the reduced-order LPV system, and also not about optimality with respect
to any norm that could measure the approximation quality. The usage of the asso-
ciated low-dimensional subspaces in order to compute a reduced-order LPV system
is only a heuristic, but the numerical experiments in the next section, also in the
previous papers introducing this “trick” [8, 9], demonstrate that it often works very
well.

4 Numerical examples

Two numerical examples are tested to demonstrate the performance of the proposed
method.

4.1 The synthetic example

The first example is the modified version of the synthetic example onMORwiki [18].
The system was originally single-input and single-output and given as follows:

ẋ(t) = (A0 + εAε)x(t) + Bu(t),

y(t) = Cx(t), ε ∈ (0, 1].
For the test purpose, the system is modified to

ẋ(t) = (A0 + 50 × Aε)︸ ︷︷ ︸
A

+N1u1(t)x(t) + 0.01 × Aε︸ ︷︷ ︸
N2

u2(t)x(t) + (B 0
) (u1(t)

u2(t)

)
,

y(t) = Cx(t),
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where u1(t) is the original input signal and N1 = 0. The second input u2(t) ∈
(0, 100] is the time-varying parameter. In this setting, 1000 = μ > η2 = 100 and
the matrix A is stable. Hence, the Gramians exist. The system dimension is reduced
from n = 100 to r = 10 with the cut-off generalized Hankel singular values smaller
than 10−9. In Fig. 1, we show the time domain simulation of the full-order and the
reduced-order systems for the parameter variation u2(t) = 50+50 sin(0.8πt+4π/3)
and the input u1(t) = 16 + 20 cos(0.4πt), which is a sinusoidal signal as well. In
this example, the gradient descent optimization stops when the norm of the gradient
is less than 10−4 and it takes 474 iterations. Let the relative approximation error in
the H2 norm sense be defined as

‖�bl − �̂bl‖H2

‖�bl‖H2

.

The relative error for this example is about 0.0066.
Both the input and the parameter variation are low-frequency signals in this test.

Hence, matching steady state would be relevant. It can be seen that without match-
ing the steady state, although the dynamics are captured, there is a mismatch in the
amplitude of the output. By matching the steady state, the mismatch (in the abso-
lute value) is reduced from 10−1 to 10−3. The uniform line search step size in this
example is around 1.18×10−6. The minimal value for the adaptive step size is about
0.0197 which is much larger. Hence, although the uniform step size can guarantee
convergence, the convergence speed is too slow. By proposing the adaptive step size,
the convergence rate has a significant speed up. If we compare the convergence speed
in the first 100 iterations, the adaptive step size method is about four million times
faster than the uniform step size method.

Fig. 1 Time domain simulation and the absolute response error of the synthetic model
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4.2 2D heat transfer model

The second examplewe test is a 2D heat transfermodel, which is amodified version of
the one in [4]. The system is governed by the partial differential equation

ρCTt = κ(Txx + Tyy) + S(x, y), (x, y) ∈ [0, 1]2,

with the following boundary conditions

– Dirichlet boundary conditions on left and right, T = 0
– Robin boundary conditions on top and bottom, n · ∇T = 0.25(T − 1)S(x, y)

with S(x, y) the space-dependent source term and n the normal direction. Spatial
discretization leads to a bilinear dynamical system as follows:

ẋ(t) = Ax(t) + N1x(t)u1(t) + N2x(t)u2(t) + Bu(t)

y(t) = Cx(t).

Suppose that the number of grid points is ng = 10, the system has 102 = 100 states.
The output is taken as the sum of the temperature at all the grid points scaled by
1/n2g , i.e., the average temperature. Again, we reduce the system dimension to 10.
The cut-off generalized Hankel singular values are all less than 10−5. In 250 itera-
tions, the relative approximation error is reduced from about 0.9717 to about 0.1619.
Admittedly, the relative error is rather large, but qualitatively, we obtain very good
simulation results.

Fig. 2 Time domain simulation and the absolute response error of the heat transfer model
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In this example, the uniform line search step size is 0.0015. However, the minimal
value of the adaptive step size is about 25.3831, which exceeds 1, but convergence is
still guaranteed. We observed that the magnitude of the step size is closely related to
the scaling of the output, which deserves further investigation. For testing purposes,
the first input channel is set to a step function with amplitude 100. The second input
signal is set to a sinusoidal wave u2(t) = 10 sin(πt) + 15. Time domain simulation
results and the absolute response errors are depicted in Fig. 2. In the numerical test,
the system response reaches the steady state and only varies according to the variation
of the input u2(t). Hence, matching the steady state would give a better time domain
approximation. It can be seen that without matching the steady state, the mismatch in
the output amplitude is really non-negligible, which in this case is at the same level
as the output signal (10−1). By matching the steady state, although there is still a
mismatch in the amplitude, it is suppressed to the level of 10−3, which results in the
relative error at the level of 10−2.

5 Conclusions

This paper discusses a model order reduction method for bilinear dynamical systems.
Bilinear dynamical systems can be used to represent a special class of LPV systems.
We review the basic system theory for bilinear dynamical systems and propose to
define the H2 norm in the frequency domain, which coincides with the definition
of the convolution kernel energy in the literature. As the H2 norm can be computed
from the system Gramians, the model reduction problem amounts to an optimization
problem on the Grassmann manifold. We propose to solve the nonlinear, non-convex
optimization problem by gradient descent on the Grassmann manifold. To guarantee
convergence and speed up the convergence rate, we propose a uniform line search
step size and an adaptive step size, which are generalized from the method for LTI
systems. Since the H2 norm is defined in the frequency domain and in the time
domain, it is equivalent to the convolution kernel energy, the time domain approxima-
tion accuracy is only guaranteed for impulsive input signals. For LPV systems, this is
not always the case because the parameters show continuous time-varying behaviors
rather than the impulsive behavior. To increase the approximation accuracy, we pro-
pose to match the steady state. Although additional computational efforts are needed,
the simulation time can still be shortened significantly, especially for multi-query
purposes.

Acknowledgments The authors would like to thank the European Cost Action: TD1307-European Model
Reduction Network (EU-MORNET) for the funding of a short-term scientific mission, which leads to this
work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

2263

http://creativecommons.org/licenses/by/4.0/


P. Benner et al.

Appendix A: Proof of Theorem 5

Recall the Euclidean gradient given by (3.3). Rewrite it into two parts.

JV 1 = A�V (Y�X + QrRr) + AV (X�Y + RrQr)

+BB�(Y + V Qr) + C�C(−X + V Rr)

JV 2 =
m∑

j=1

N�
j V (Y�NjX + QrV

�NjV Rr)

+
m∑

j=1

NjV (X�N�
j Y + RrV

�N�
j V Qr).

Applying Theorem 2 and Corollary 1, we can derive the upper bound of the reduced-
order Gramians Rr, Qr and the solutions of the Sylvester equations X and Y , which
are

max(‖X‖F , ‖Rr‖F ) ≤
√

rc2‖B‖2F
μ − η2c2

, max(‖Y‖F , ‖Qr‖F ) ≤
√

rc2‖C‖2F
μ − η2c2

;
(A.1)

max(‖X‖, ‖Rr‖) ≤ c2‖B‖2
μ − η2c2

, max(‖Y‖, ‖Qr‖) ≤ c2‖C‖2
μ − η2c2

. (A.2)

Applying the bounds in (A.1) and (A.2), the upper bound of JV 1 is derived as

‖JV 1‖F ≤ 4
√

rc2‖B‖2‖C‖2(c2‖A‖ + μ − η2c2)

(μ − η2c2)2
.

The upper bound of JV 2 is computed as follows:

‖JV 2‖F ≤ 2‖
m∑

j=1

N�
j V (Y�NjX + QrV

�NjV Rr)‖F

≤ 2
m∑

j=1

‖NjN
�
j ‖(‖Y‖‖X‖ + ‖Qr‖‖Rr‖)‖V ‖F

≤ 4η2
√

rc4‖B‖2‖C‖2
(μ − η2c2)2

.

As a result, the upper bound of JV is

‖JV ‖F ≤ ‖JV 1‖F + ‖JV 2‖F ≤ 4
√

rc2‖B‖2‖C‖2(μ + c2‖A‖)
(μ − η2c2)2

:= ζ1.
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In order to derive ‖J̇V ‖F , we need to obtain the upper bound on ‖Ẋ‖F , ‖Ẏ‖F , ‖Ṙr‖F ,
and ‖Q̇r‖F . Consider (B.4) with �1 given by (B.8). Applying Theorem 2, it is not
difficult to derive that

‖Ẋ‖F ≤ ‖B‖2(μ + η2c2 + 2c2‖A‖)
(μ − η2c2)2

‖V̇ ‖F , (A.3)

‖Ṙr‖F ≤ 2‖B‖2(μ + η2c2 + 2c2‖A‖)
(μ − η2c2)2

‖V̇ ‖F . (A.4)

In the same way, it can be computed that

‖Ẏ‖F ≤ ‖C‖2(μ + η2c2 + 2c2‖A‖)
(μ − η2c2)2

‖V̇ ‖F , (A.5)

‖Q̇r‖F ≤ 2‖C‖2(μ + η2c2 + 2c2‖A‖)
(μ − η2c2)2

‖V̇ ‖F . (A.6)

Differentiating JV 1 and computing its Frobenius norm, we obtain

‖J̇V 1‖F ≤ ‖B‖2‖C‖2
(μ − η2c2)3

(
6(μ − η2c2 + 2c2‖A‖)(μ + η2c2 + 2c2‖A‖)

+2c2(μ − η2c2)2 + 4c2‖A‖(μ − η2c2)
)

‖V̇ ‖F .

Now differentiate JV 2 and compute its Frobenius norm to obtain

‖J̇V 2‖F ≤ 2c2‖B‖2‖C‖2
(μ − η2c2)3

(
4η2c2(μ − η2c2) + 6η2(μ + η2c2 + 2c2‖A‖)

)
‖V̇ ‖F .

Summing them up, we can derive

ζ2 = 2‖B‖2‖C‖2
(μ − η2c2)3

(
3(μ + η2c2+2c2‖A‖)2+c2(μ−η2c2)(μ+3η2c2 + 2c2‖A‖)

)
.

Note that here, V̇ stands for V̇(α).
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Appendix B: Proof of Corollary 4

The inequality in (3.13) requires up to the third-order derivatives of the objective
function J (V(α)) with respect to α. Denote the matrix �(α) as

�(α) =
(

0 X(α)

X�(α) Rr(α)

)
.

The derivatives of J (V(α)) are computed as

J (V ) = 1
2 trace

(
CRf +

(
0 −CV

−V �C V �CV

)
�(α)

)
, (B.1a)

J̇ (V ) = 1
2 trace

((
0 −C�kV

V ��kC V �L1(C, �k)V

)
�(α) +

(
0 −CV

−V �C V �CV

)
�̇(α)

)
,

(B.1b)

J̈ (V ) = 1

2
trace

((
0 −C�2

kV−V ��2
kC V �L2(C, �k)V

)
�(α)

+
(

0 −C�kV

V ��kC V �L1(C, �k)V

)
2�̇(α)

+
(

0 −CV

−V �C V �CV

)
�̈(α)

)
, (B.1c)

J (3)(V ) = 1

2
trace

((
0 −C�3

kV

V ��kC V �L3(C, �k)V

)
�(α)

+
(

0 −C�2
kV−V ��2

kC V �L2(C, �k)V

)
3�̇(α)

+
(

0 −C�kV

V ��kC V �L1(C, �k)V

)
3�̈(α)

+
(

0 −CV

−V �C V �CV

)
�(3)(α)

)
,

Note that here, we abbreviate V(α) as V for convenience and the matrix �k given
by (3.7) is skew-symmetric. Let W(α) = (

X(α)� Rr(α)
)
denote the second row of

�(α). Since ‖V(α)‖ = 1, it is not difficult to derive the following:

|J (3)(α)| ≤ 1
2

⎛
⎜⎜⎝

‖W(α)‖F

‖Ẇ (α)‖F

‖Ẅ (α)‖F

‖W(3)(α)‖F

⎞
⎟⎟⎠

�⎛
⎜⎜⎝

‖ (2�3
kC L3(C, �k)

) ‖F

3‖ (2C�2
k L2(C, �k)

) ‖F

3‖ (2C�k L1(C, �k)
) ‖F√

5‖C‖F

⎞
⎟⎟⎠ . (B.2)
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To derive the bound on |J (3)(α)|, we need to compute the bound on ‖W(α)‖F and
its first three derivatives. Since W(α) depends on the step size, it is reasonable to
consider max0≤α≤τk

‖W(α)‖F and its derivatives for some positive scalar τk , which
varies over the iteration. To do so, we consider the generalized Lyapunov equa-
tion associated with �(α) and the derivatives of the generalized Lyapunov equation.
Let,

Ae =
(

A 0
0 V(α)�AV(α)

)
, Nej =

(
Nj 0
0 V(α)�NjV(α)

)
,

j = 1, 2, . . . , m,

denote the system matrices of the error system in the kth iteration. The generalized
Lyapunov equations associated with �(α), �̇(α), �̈(α), and �(3)(α) are

Ae� + �A�
e +

m∑
j=1

Nej�N�
ej + �0 = 0, (B.3)

Ae�̇ + �̇A�
e +

m∑
j=1

Nej �̇N�
ej + �1 = 0, (B.4)

Ae�̈ + �̈A�
e +

m∑
j=1

Nej �̈N�
ej + �2 = 0, (B.5)

Ae�
(3) + �(3)A�

e +
m∑

j=1

Nej�
(3)N�

ej + �3 = 0, (B.6)

where,

�0 =
(

0 BV

V �B V �BV

)
, (B.7)

�1 =
(

0 B�kV

−V ��kB V �L1(B, �k)V

)
+
(
0 0
0 V �L1(A, �k)V

)
�

+�

(
0 0
0 V �L1(A

�, �k)V

)
+

m∑
j=1

((
0 0
0 V �L1(Nj , �k)V

)
�N�

ej

+Nej�

(
0 0
0 V �L1(N

�
j , �k)V

))
, (B.8)
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�2 =
(

0 B�2
kV

V ��2
kB V �L2(B, �k)V

)
+ 2

(
0 0
0 V �L1(A, �k)V

)
�̇

+2�̇

(
0 0
0 V �L1(A

�, �k)V

)

+2
m∑

j=1

((
0 0
0 V �L1(Nj , �k)V

)
�̇N�

ej + Nej �̇

(
0 0
0 V �L1(N

�
j , �k)V

))

+
(
0 0
0 V �L2(A, �k)V

)
� + �

(
0 0
0 V �L2(A

�, �k)V

)

+
m∑

j=1

((
0 0
0 V �L2(Nj , �k)V

)
�N�

ej + Nej�

(
0 0
0 V �L2(N

�
j , �k)V

))

+2
m∑

j=1

(
0 0
0 V �L2(Nj , �k)V

)
�

(
0 0
0 V �L2(N

�
j , �k)V

)
, (B.9)

�3 =
(

0 B�3
kV

−V ��3
kB V �L2(B, �k)V

)
+ 3

(
0 0
0 V �L1(A, �k)V

)
�̈

+3�̈

(
0 0
0 V �L1(A

�, �k)V

)

+3
m∑

j=1

((
0 0
0 V �L1(Nj , �k)V

)
�̈N�

ej + Nej �̈

(
0 0
0 V �L1(N

�
j , �k)V

))

+3

(
0 0
0 V �L2(A, �k)V

)
�̇ + 3�̇

(
0 0
0 V �L2(A

�, �k)V

)

+3
m∑

j=1

((
0 0
0 V �L2(Nj , �k)V

)
�̇N�

ej + Nej �̇

(
0 0
0 V �L2(N

�
j , �k)V

))

+6
m∑

j=1

(
0 0
0 V �L1(Nj , �k)V

)
�̇

(
0 0
0 V �L1(N

�
j , �k)V

)

+
(
0 0
0 V �L3(A, �k)V

)
� + �

(
0 0
0 V �L3(A

�, �k)V

)

+
m∑

j=1

((
0 0
0 V �L3(Nj , �k)V

)
�N�

ej + Nej�

(
0 0
0 V �L3(N

�
j , �k)V

))

+3
m∑

j=1

(
0 0
0 V �L2(Nj , �k)V

)
�

(
0 0
0 V �L1(N

�
j , �k)V

)

+3
m∑

j=1

(
0 0
0 V �L1(Nj , �k)V

)
�

(
0 0
0 V �L2(N

�
j , �k)V

)
. (B.10)
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Denote the second row of �i, i = 0, 1, 2, 3, as Z�i
, i = 0, 1, 2, 3. According to

Theorem 2, the bound of ‖W(3)(α)‖F satisfies

(μ − η2c2) max
0≤α≤τk

‖W(3)(α)‖F ≤ c2 max
0≤α≤τk

‖Z�3(α)‖F .

Now apply Lemma A.3 in [27] and let �k denote Z�3(0), then we obtain the
following:

(μ − η2c2) max
0≤α≤τk

‖W(3)(α)‖F

≤ c2‖�k‖F + c2τk‖
(
�4

kB L4(B, �k)
) ‖F

+2c2τk

(
β0 max

0≤α≤τk

‖W(α)‖F + β1 max
0≤α≤τk

‖Ẇ (α)‖F

+ β2 max
0≤α≤τk

‖Ẅ (α)‖F + β3 max
0≤α≤τk

‖W(3)(α)‖F

)
, (B.11)

where βi, i = 0, 1, 2, 3 are given by (3.16) to (3.20). Again, repetitively applying
Lemma A.3 in [27], we derive that

max
0≤α≤τk

‖W(α)‖F ≤ ‖W(0)‖F + τk max
0≤α≤τk

‖Ẇ (α)‖F ,

max
0≤α≤τk

‖Ẇ (α)‖F ≤ ‖W(0)‖F + τk max
0≤α≤τk

‖Ẅ (α)‖F ,

max
0≤α≤τk

‖Ẅ (α)‖F ≤ ‖W(0)‖F + τk max
0≤α≤τk

‖W(3)(α)‖F .

Substituting the above inequalities to (B.11), it can be obtained that

(μ − η2c2 − 2β0τ
4
k c2 − 2β1τ

3
k c2 − 2β2τ

2
k c2 − 2β3τkc

2) max
0≤α≤τk

‖W(3)(α)‖F

≤ a positive number .

To make sure that max0≤α≤τk
‖W(3)(α)‖F is bounded, it must hold that

μ − η2c2 > 2β0τ
4
k c2 + 2β1τ

3
k c2 + 2β2τ

2
k c2 + 2β3τkc

2.
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It is also not difficult to show that the upper bound of W(α) and its first three
derivatives satisfy a system of linear inequalities as follows:⎛

⎜⎜⎝
1 −τk 0 0
0 1 −τk 0
0 0 1 −τk

−2β0τkc
2 −2β1τkc

2 −2β2τkc
2 μ − η2c2 − 2β3τkc

2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

max0≤α≤τk
‖W(α)‖F

max0≤α≤τk
‖Ẇ (α)‖F

max0≤α≤τk
‖Ẅ (α)‖F

max0≤α≤τk
‖W(3)(α)‖F

⎞
⎟⎟⎠

≤

⎛
⎜⎜⎝

‖W(0)‖F

‖Ẇ (0)‖F

‖Ẅ (0)‖F

‖�k‖F + ‖ (�4
kB L4(B, �k)

) ‖F

⎞
⎟⎟⎠ . (B.12)

By following the proofs of Lemma 4.2 and 4.3 in [27], the proof can be completed.
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