
Running head: IPC REGRESSION FOR DYNAMIC PANEL MODELS 1

Identifying Heterogeneity in Dynamic Panel Models with Individual Parameter

Contribution Regression

Manuel Arnold

Humboldt University of Berlin, Germany

Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin,

Germany

Daniel L. Oberski

Utrecht University, the Netherlands

Andreas M. Brandmaier

Max Planck Institute for Human Development, Berlin, Germany

Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin,

Germany

Manuel C. Voelkle

Humboldt University of Berlin, Germany

Max Planck Institute for Human Development, Berlin, Germany



IPC REGRESSION FOR DYNAMIC PANEL MODELS 2

Abstract

Dynamic panel models are a popular approach to study interrelationships between

repeatedly measured variables. Often, dynamic panel models are specified and

estimated within a structural equation modeling (SEM) framework. An endemic

problem threatening the validity of such models is unmodelled heterogeneity. Recently,

individual parameter contribution (IPC) regression was proposed as a flexible method

to study heterogeneity in SEM parameters as a function of observed covariates. In the

present paper, we derive how IPCs can be calculated for general maximum likelihood

estimates and evaluate the performance of IPC regression to estimate group differences

in dynamic panel models in discrete and continuous time. We show that IPC regression

can be slightly biased in samples with large group differences and present a bias

correction procedure. IPC regression showed generally promising results for discrete

time models. However, due to highly nonlinear parameter constraints, caution is

indicated when applying IPC regression to continuous time models.

Keywords: autoregressive cross-lagged model, continuous time modeling,

heterogeneity, structural equation modeling
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Identifying Heterogeneity in Dynamic Panel Models with Individual Parameter

Contribution Regression

Introduction

Dynamic panel models (Hsiao, 2014) are routinely used in econometrics,

psychology, and sociology to model the coupling between several repeatedly measured

variables. Building upon the idea of Granger causality (Granger, 1969), dynamic

models allow answering questions concerned with the direction and strength of

reciprocal relationships. Especially in psychological research, it is common practice to

specify and estimate dynamic panel models within the structural equation modeling

framework (e.g., Bollen & Brand, 2010; Allison, Williams, & Moral-Benito, 2017). An

endemic problem that complicates the analysis of longitudinal panel data is potential

heterogeneity in processes of interest between individuals. For instance, the subjects

may show stable or trait-like differences in the levels of the observed variables; a

random shock might have a long-lasting effect on one person, while its effect vanishes

quickly for another individual; or the coupling of the variables may differ between

subjects. By overlooking such differences between individuals or groups, researchers

may risk obtaining meaningless parameter estimates and incorrect standard errors

(Halaby, 2004).

Various approaches are used to identify and account for heterogeneity in dynamic

panel models. A popular way is the use of multilevel models with random effects (e.g.,

Singer & Willet, 2003). Multilevel models are often applied when heterogeneity is

considered to be unobserved, that is in situations without a priori knowledge about the

source of potential individual or group differences in the population. For instance,

dynamic panel models are often specified with random intercepts to account for

trait-like differences in the levels of the observed variables (e.g., Hamaker, Kuiper, &

Grasman, 2015). By regressing the random effects on additionally observed covariates,

multilevel models can also be used to explore correlates and predictors of heterogeneity.

Another popular approach to investigate heterogeneity are multi-group structural

equation models (MGSEM, Sörbom, 1974) which allow the specification of panel models
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with different parameter values across groups. MGSEMs are particularly useful for

looking at the effect of one grouping variable at a time. However, using MGSEMs to

disentangle the effects of several grouping variables can become tedious as multiple

MGSEMs needs to be specified and estimated. Moreover, MGSEM requires continuous

covariates to be split into meaningful discrete grouping variables which often prove to

be a difficult and time-consuming task. Fortunately, there exist approaches to perform

such testing automatically, which become feasible with large sample sizes: Brandmaier,

von Oertzen, McArdle, and Lindenberger (2013) and Brandmaier, Prindle, McArdle,

and Lindenberger (2016) proposed a combination of MGSEMs and recursive

partitioning methods to recover groups with similar parameter values of a hypothesized

SEM. These so-called SEM trees or SEM forests fit a large number of MGSEMs to

identify which grouping variables are important and should be considered to improve

the fit of a model while categorizing continuous covariates in the process. Recently,

Brandmaier, Driver, and Voelkle (2018) demonstrated the use of these methods for

dynamic panel models. Although SEM trees or forest solve many shortcomings of

MGSEMs, their computational burden that increases with sample size and constitute a

major impediment to implementing this approach in practice.

While the above methods are all well-understood and are able to detect and

qualify heterogeneity in a wide range of situations, they also share a certain drawback:

each method requires the user to formulate a complete joint model that not only include

the original observed variables but also the putative predictors of heterogeneity. Much

of the specification of this joint model merely forms a set of so to speak nuisance

parameters for investigating differences in a target parameter of interests. For example,

in random-effects modeling with covariates, aside from the panel model itself, not only

the effect of the covariate of interest on the random effect of interest needs to be

specified, but also its relation to all other random effects, and their mutual covariance

structure. SEM trees and MGSEM compare the group-wise likelihoods, which

necessarily consider differences in all parameters across levels of the covariates jointly,

apart from the SEM specification and distributional assumptions. Such joint
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approaches, apart from the aforementioned increased computational complexity, may

also experience difficulties when there is a clear set of target parameters of interest. If

the main parameter differences across levels of a covariate are to be found in parameters

other than the parameter of interest, the differences of interest may be obscured – an

effect that is well-known in the regression mixture literature (George et al., 2013). This

may occur particularly in the case of distributional misspecification (e.g., Usami, Hayes,

& McArdle, 2017). In other words, joint methods, while asymptotically efficient under

the model, may be less robust, and are, by definition, not targeted to differences in the

parameter of interest.

As an alternative approach to identify and estimate heterogeneity in dynamic

panel models, we propose the use of individual parameter contribution (IPC) regression

(Oberski, 2013). IPC regression is a simple exploratory tool to test if the validity of a

theorized model is threatened by substantial heterogeneity and can be used to guide

researchers in re-formulating their original models. The method proceeds in three steps.

First, a theory-driven (confirmatory) SEM is specified and estimated. Second,

parameter values are calculated for every individual in the sample. Third, these

individual parameter contributions (IPCs) are regressed on a set of additional covariates

that were originally not hypothesized to be part of the model. Thus, IPC regression

allows modeling SEM parameters as a function of additional covariates. For instance, a

researcher could regress the IPCs to one parameter estimate on individuals’ age in the

sample to test whether this parameter is invariant to age differences and to estimate

how the parameter might change as a function of age. The primary advantages of IPC

regression over other approaches to heterogeneity outlined above are its simplicity and

low computational demand. IPC regression separates the estimation of the

theory-driven model from the investigation of individual or group differences. This

separation is especially useful if the theory-driven model is complex, that is with many

observed variables and parameters. IPC regression allows testing every type of SEM

parameter for individual or group differences without the need of specifying random

effects. Moreover, the method allows studying the effect of multiple discrete as well as
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continuous covariates and their interactions simultaneously. Furthermore, on the side of

the applied researcher, only knowledge of linear regression analysis is required to

successfully apply IPCs in practice.

IPCs are not limited to SEMs and can be derived for every type of maximum

likelihood estimate. The contributions are calculated by using a Taylor series expansion

of the casewise derivative of the log-likelihood function around the maximum likelihood

estimates. The casewise derivative of the log-likelihood function, also known as score

function, has long been used to investigate the plausibility of statistical models (e.g.,

Zeileis, 2005; Zeileis & Hornik, 2007). Recently, score-based tests became popular in the

exploration of measurement invariance in SEM (Merkle, Fan, & Zeileis, 2014; Merkle &

Zeileis, 2013; Wang, Merkle, & Zeileis, 2014; Wang, Strobl, Zeileis, & Merkle, 2018).

These score-based tests are used to test measurement invariance with respect to a

continuous or ordinal auxiliary variable. IPC regression is different to these tests by

providing estimates of how a model parameter varies as a function of covariates. Other

frequently applied score-based approaches to identify misspecification in SEMs are the

modification index (Sörbom, 1989) and the expected parameter change (Saris, Satorra,

& Sörbom, 1987), which both test the validity of certain parameter restrictions but do

not address the problem of parameter heterogeneity even though they are closely

related (Oberski, 2013).

As of now, IPC regression has only been evaluated for confirmatory factor analysis

models (CFA; Brown, 2006) on cross-sectional data. In a Monte Carlo simulation,

Oberski (2013) reported excellent finite sample performance. IPC regression provided

nearly unbiased estimates of group differences in a factor loading and a latent

covariance parameter. Furthermore, the power of the method to detect heterogeneity

was comparable to the power of MGSEM and the type I error rate was close to the

nominal rate for all parameters that were equal across subgroups.

The present study goes beyond this earlier research by evaluating the performance

of IPC regression to uncover heterogeneity in contemporary dynamic panel models. We

show that large individual or group differences can lead to biased IPC regression
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estimates. To solve this problem, we propose a bias correction procedure. At the formal

level, we explicitly derive how IPCs can be calculated for general maximum likelihood

estimates that are not limited to SEMs. The explicit derivation is important because it

allows expressing the IPCs in terms of derivatives of the likelihood function. In

addition, we briefly present a software implementation of IPC regression for the

statistical programing language R (R Core Team, 2018). The remainder of this article is

organized as follows: first, we will briefly present bivariate dynamic panel models in

discrete and continuous time. Second, IPCs regression is formally introduced and its

asymptotic properties are discussed. Third, we evaluate the finite-sample properties of

IPC regression for dynamic panel models in two simulation studies.

Autoregressive and Cross-Lagged Models for Panel Data

Figure 1 shows a path diagram for a bivariate dynamic panel model for three

waves of data. This structural model can be described with the following two equations:

xi,t = βxxxi,t−1 + βxyyi,t−1 + ui,t (1)

yi,t = βyyyi,t−1 + βyxxi,t−1 + vi,t, i = 1, . . . , n, t = 2, 3 (2)

Here, xi,t and yi,t are the measurements of two different variables of individual i at time

point t. For sake of simplicity, we assume that x and y are free of measurement error as

well as mean-centered and we do not model any stable differences between individuals.

The regression coefficients βxx and βyy are called autoregressive parameters and

they describe the stability in each x and y from one measurement occasion to the next.

The regression coefficients βxy and βyx are referred to as cross-lagged or reciprocal

effects. The initial assessments of x and y are treated as exogenous variables with zero

mean and variance φxx, φyy respectively, and covariance φyx. For the remaining

measurement occasions, u and v denote the dynamic error terms. The variance and

covariance parameters of the dynamic error terms are symbolized by ψxx, ψyy, and ψyx

respectively.
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Equations 3a to 3c show the SEM specification of the model in Figure 1.

yi = Byi + ζi (3a)

xi,1

yi,1

xi,2

yi,2

xi,3

yi,3



=



0 0 0 0 0 0

0 0 0 0 0 0

βxx βxy 0 0 0 0

βyx βyy 0 0 0 0

0 0 βxx βxy 0 0

0 0 βyx βyx 0 0





xi,1

yi,1

xi,2

yi,2

xi,3

yi,3



+



xi,1

yi,1

ui,2

vi,2

ui,3

vi,3



(3b)

Cov(ζi, ζi) = Φ =



φxx φyx 0 0 0 0

φyx φyy 0 0 0 0

0 0 ψxx ψyx 0 0

0 0 ψyx ψyy 0 0

0 0 0 0 ψxx ψyx

0 0 0 0 ψyx ψyy



(3c)

The resulting model-implied covariance matrix of x and y is given by

Cov(yi,yi) = Σ(θ) = (I6 −B)−1 Φ
(
(I6 −B)−1

)>
, (4)

where θ is a vector with the model parameters and I6 denotes an identity matrix of

order six.

Although not explicitly stated, the temporal spacing between assessments plays an

important role in the model as presented in Figure 1. The model treats time as a

discrete variable that indicates the temporally ordering of the assessments and is

therefore also referred to as discrete-time dynamic panel model. As pointed out

elsewhere (e.g., Oud, 2007; Oud & Delsing, 2010; Voelkle, Oud, von Oertzen, &

Lindenberger, 2012), treating time as a discrete variable complicates comparing

estimates from models with different sample schemes and can bias estimates if

assessments are not equally spaced. A solution to these problems is treating time as a

continuous variable using stochastic differential equation models (Oud & Jansen, 2000;
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for a recent overview of continuous-time modeling in the behavioral and related

sciences, see van Montfort, Oud, & Voelkle, 2018). These continuous-time dynamic

panel models allow estimating continuous-time parameters which can be used to

extrapolate to any arbitrary time point.

Following Voelkle, Oud, Davidov, and Schmidt (2012), we specify a

continuous-time model by constraining the discrete-time model parameters from Figure

1 to functions of underlying continuous-time parameters A and Q, and the time

intervals ∆tj. The new parameter matrix A corresponds to the continuous-time version

of auto- and cross-lagged effects, the drift parameters, while Q contains the

continuous-time version of dynamic error term variance parameters, or diffusion

parameters:

A =

axx axy

ayx ayy

 Q =

qxx qyx

qyx qyy

 (5)

Let ∆tj be the time interval between the assessments j and j + 1; then the discrete-time

regression coefficients are constrained as a function of A:bxx bxy

byx byy

 = exp(A ·∆tj), (6)

where exp denotes the matrix exponential function. The corresponding constraint for

the variance of the dynamic error term isψxx ψyx

ψyx ψyy

 = irow
{
A−1

# [exp(A# ·∆tj)− I4] row(Q)
}
, (7)

where A# := A⊗ I2 + I2 ⊗A. The operator row puts the elements of Q into a column

vector and the operator irow stacks the elements of a vector row-wise into a matrix.

The interpretation of the continuous-time model parameters can be facilitated by

transforming them into the discrete-time parameters for an arbitrary time interval ∆tj.

For example, plugging ∆tj = 1 into the estimated drift parameters on the right-hand

side of Equation 6 gives the discrete-time regression coefficients for a time interval of

one between assessments.
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Individual Parameter Contribution Regression

In the following, we will show how heterogeneity in the parameters of dynamic

panel models in discrete or continuous time can be identified and explained by IPC

regression. To this end, we first motivate the derivation of IPCs for general maximum

likelihood estimation. Next, we show how the contributions of SEM parameter

estimates can be obtained. Then, we demonstrate that IPC regression can be biased in

samples with large individual or group differences and, as a solution to this problem,

present a bias correction procedure.

Individual Parameter Contributions to Maximum Likelihood Estimates

Let y1, . . . ,yn be a sample of independently distributed p-variate random

variables with corresponding density functions f(θ1; y1), . . . , f(θn; yn). IPC regression

is applicable in situations where individual differences between the values of the

q-variate parameter vector θi can be expressed as a function of a vector of covariates zi.

For instance, if zi is a single dummy-coded grouping variable, the sample would be

generated from a two-group population with group-specific parameter values θg1 and

θg2.

For sake of illustration, we will assume that f is a multivariate normal density.

The associated log-likelihood function for a single individual i is given by

lnL(θ; yi) =− 1
2

{[
yi − µ(θ)

]>
Σ(θ)−1

[
yi − µ(θ)

]
+ ln [det(Σ(θ))] + p ln(2π)

}
, (8)

with model-implied mean vector µ(θ) and model-implied covariance matrix Σ(θ). In

the following, we will use θ to denote parameter values. True values of the parameters

will be marked by a subscript, for instance θi, and the maximum likelihood estimate

will be denoted by θ̂.

The first and second derivatives of the log-likelihood function for a given person

are important for computing IPCs. The first-order partial derivative of the individual

log-likelihood function with respect to the parameters is the score function

S(θ; yi) =
[
∂ lnL(θ; yi)

∂θ(1) . . .
∂ lnL(θ; yi)

∂θ(q)

]>
, (9)
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where θ(j) denotes the j-th element of the parameter vector θ. Evaluation of the score

function at specific parameter values measures to which extent an individual’s

log-likelihood is maximized. Note that the expected values of the score function at the

true parameter values are zero, that is E [S(θi; yi)] = 0 holds for all individuals in the

sample. The second-order partial derivative is known as Hessian matrix and will be

denoted by

H(θ; yi) = ∂2 lnL(θ; yi)
∂θ ∂θ>

. (10)

The expected value of the negative Hessian matrix evaluated at the true individual

specific parameter values

I(θi) = E
−∂2 lnL(θ; yi)

∂θ ∂θ>

∣∣∣∣∣
θ=θi

 (11)

is called the Fisher information matrix and plays a key role in determining standard

errors and asymptotic sampling variance of the maximum likelihood estimates.

The maximum likelihood parameter estimate θ̂ can be obtained by solving the

first order conditions

n∑
i=1
S(θ̂; yi) = 0, (12)

such that θ̂ is an extremum. In homogeneous samples, where θi = θ0 for i = 1, . . . , n,

the resulting parameter estimate θ̂ is a consistent estimate of true parameter values θ0.

In heterogeneous samples, θ̂ lies roughly near the mean of the individuals’ true

parameter values θ1, . . . ,θn.

The underlying idea behind the derivation of the IPCs is to find the individual

roots of the score function instead of finding the roots of the sum of all individual score

values as shown in Equation 12. Hypothetically, solving S(θ̂i; yi) = 0 for every

individual in the sample would yield individual parameter estimates θ̂1, . . . , θ̂n.

Unfortunately, for many probability distribution such as the normal distribution, the

system of equations S(θ̂i; yi) = 0 does not have a unique solution for a single data

point. However, we can approximate the individual scores by linearizing the mean of all
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scores around the maximum likelihood estimate and then disaggregate the resulting

expression:

1
n

n∑
i=1
S(θ; yi) ≈

1
n

n∑
i=1
S(θ̂; yi) + 1

n

n∑
i=1
H(θ̂; yi)

(
θ − θ̂

)
(13)

Without changing the right-hand side of Equation 13, the Hessian matrix can be

replaced by the estimated negative Fisher information matrix.

1
n

n∑
i=1
S(θ̂; yi)− I(θ̂)

(
θ − θ̂

)
(14)

In geometric terms, Equation 14 approximates the mean of scores with a tangent line at

the maximum likelihood estimate. Now, we disaggregate this averaged tangent into n

individuals tangents by replacing the mean of scores evaluated at the maximum

likelihood estimate with the individual score values evaluated at the maximum

likelihood estimate:

S(θ̂; yi)− I(θ̂)
(
θ − θ̂

)
(15)

Finally, setting Equation 15 to zero and solving for θ yields the individual parameter

contributions which approximate individual parameter values:

0 = S(θ̂; yi)− I(θ̂)
(
IPC(θ̂; yi)− θ̂

)
IPC(θ̂; yi) = θ̂ + I(θ̂)−1S(θ̂; yi) (16)

Figure 2 illustrates the derivation of the IPCs using the rate parameter of the

exponential distribution as an arbitrary example.

The interpretation or meaning of the IPCs, and all averages or statistics based on

them, follows from the interpretation of the pooled parameter estimates. This property

is particularly important for dynamic panel models. The IPCs of autoregressive or

cross-lagged parameter will only approximate the individual within-person relationship

if the pooled dynamic model separates the within-person process from stable

between-person differences (Hamaker et al., 2015).
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Individual Parameter Contributions to Structural Equation Model

Parameter Estimates

Instead of the sum of individual log-likelihoods in Equation 8, it is common to use

the aggregated log-likelihood function (also called fitting function) in structural

equation modeling (Voelkle, Oud, von Oertzen, & Lindenberger, 2012). The maximum

likelihood fitting function for multivariate normally distributed variables is

F (ȳ,S,µ(θ),Σ(θ)) =
[
ȳ− µ(θ)

]>
Σ(θ)−1

[
ȳ− µ(θ)

]
+ tr

(
SΣ(θ)−1

)
− ln

(
|SΣ(θ)−1|

)
− p, (17)

with sample means ȳ and sample covariance matrix S (Yuan & Bentler, 2007).

Optimizing either the sum of individual log-likelihood functions or an aggregated fitting

function yields equivalent parameter estimates (Bollen, 1989).

Using the aggregated fitting function, IPCs to SEM parameter estimates are a

function of the individual’s data and two matrices ∆ and V that are provided by most

standard structural equation modeling software packages. The first matrix ∆ is the

following Jacobian matrix

∆ = ∂[µ(θ),σ(θ)]>
∂θ

, (18)

where σ(θ) denotes the half-vectorized model-implied covariance matrix. ∆ indicates

the sensitivity of the model-implied mean vector and covariance matrix to changes in

the parameters. The second matrix is the weight matrix V which depends on the

chosen estimator (e.g., Savalei, 2014). In SEMs estimated with normal theory maximum

likelihood, V is

V =

Σ(θ)−1 0

0 1
2D>p [Σ(θ)−1 ⊗Σ(θ)−1] Dp

 , (19)

with duplication matrix Dp (Magnus & Neudecker, 2007). Sample estimates of ∆ and

V can be obtained by replacing θ with θ̂.

Following Satorra (1989) and Neudecker and Satorra (1991), the Fisher

information matrix can be expressed as I(θ) = ∆>V∆ and a partial derivative of the
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fitting function is given by

−1
2
∂F (ȳ,S,µ(θ),Σ(θ))

∂θ
= ∆>V


ȳ

s

−
µ(θ)

σ(θ)


 . (20)

Individual score values can be obtained by replacing the aggregated mean vector and

covariance matrix in Equation 20 by the individual contributions to these sample

moments. To this end, we define n vectors

di :=


yi

vech
([

yi − ȳ
] [

yi − ȳ
]>)

 (21)

(Satorra, 1992), where the operator vech half-vectorizes a symmetric matrix. Note that

the averaged individual contributions to the sample moments are identical to the

observed sample moments, that is 1
n

∑n
i=1 di =

[
ȳ s

]>
1. Thus, analogous to Equation

16, the individual contributions to SEM parameter estimates can be estimated by

IPC(θ̂; yi) = θ̂ +
(
∆̂
>
V̂∆̂

)−1
∆̂
>
V̂

di −

µ(θ̂)

σ(θ̂)


 . (22)

The above definition of the IPCs should replace that given by Oberski (2013),

which yields incorrect means of the IPCs to factor loading and regression parameters.

Predicting Heterogeneity in Panel Models with IPC Regression

The IPCs of a single individual are usually plagued by random fluctuation and

will most likely be poor estimates of the true individual parameter values. However,

studying the IPCs of groups of individuals or jointly modeling the IPCs of the whole

sample can average out this noise. One obvious method for revealing meaningful

differences in the parameters is linear regression. Regressing the IPCs on a set of

additional covariates z allows to test and estimate if and how individual parameter

values vary as a function of z.

For instance, we could investigate via IPC regression whether the cross-lagged

estimated effect β̂yx from x on y in the model shown in Figure 1 differs between women

1 The biased estimate of the sample covariance is used.
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and men. To this end, the IPCs to β̂yx are regressed on a dummy variable z

representing gender. Using women as a baseline group, the following IPC regression

equation is estimated

IPC(β̂yx; yi) = γ̂0 + γ̂1zi + νi, (23)

where νi is a random residual with mean zero. In the above equation, the IPC

regression intercept γ̂0 is the estimated value of βyx for women and γ̂1 denotes the

estimated difference between between women and men in βyx. In other words, the IPC

regression slope estimate γ̂1 is a measure of heterogeneity in the cross-lagged effect β̂yx

with respect to the covariate gender. As in standard regression analysis, a t-test could

be applied to test γ̂1, that is, to infer whether the estimated subgroup difference

between women and men in β̂yx is significantly different from zero. In this setup,

Oberski (2013) showed that γ̂1 and its Wald statistic are equivalent to the robust

expected parameter change and robust modification index familar from MGSEM

(Satorra, 1989). Based on the size of the estimate and the test result, an informed

decision can be made to modify the original model or not. An obvious choice of

modification would be to use age as a grouping variable in a MGSEM. Note that the

estimated cross-lagged effect of men can be obtained by summing γ̂0 and γ̂1.

The partial effects of several covariates on the parameters can be investigated

using multiple linear regression analysis. To investigate parameter heterogeneity in the

complete model presented in Figure 1, an IPC regression equation needs to be

estimated for each of the ten model parameters:

IPC(β̂xx; yi) = γ̂>βxx
zi + νi,βxx (24a)

IPC(β̂yx; yi) = γ̂>βyx
zi + νi,βyx (24b)

...

IPC(ψ̂yy; yi) = γ̂>ψyy
zi + νi,ψyy (24j)

In Equation 24a to 24j, the IPC regression estimates γ̂ indicates the estimated effects

from multiple covariates z on a certain parameter estimate.
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Due to its flexibility and computational efficiency, the linear regression framework

offers researchers many possibilities to investigate heterogeneity by means of IPC

regression. The interplay of the covariates could be studied by adding interactions to

Equation 24a to 24j. Furthermore, higher order polynomial terms, such as quadratic or

cubic terms can be easily specified to test for nonlinear relationships. If the number of

covariates is large, regularization techniques like lasso (Tibshirani, 1996) could be used

to aid the selection of important covariates. Finally, latent variables could be included

by replacing the regression equations above with SEMs.

Bias of Individual Parameter Contributions

IPCs as estimators of individual- or group-specific parameter values can be

systematically biased under certain circumstances. As a rule of thumb, IPCs to a

parameter estimate will be biased if they depend on a pooled estimate of a

heterogeneous parameter. The size of this bias depends on the distance between the

maximum likelihood estimate and the true individual- or group-specific value of the

parameter. It is important to note that this bias is unaffected by sample size. As a

result, IPC regression estimates based on biased IPCs will also be systematically biased.

In the following, we illustrate the bias with the help of a simple example.

Consider the individuals y1, . . . , yn sampled from the corresponding exponential

distributions f(λ1; y1), . . . , f(λn; yn). In order to determine the bias of the IPCs, we first

derive the conditional expected value of the IPC from individual i given the pooled

maximum likelihood estimate of λ. Using E[yi] = λ−1
i , it follows that

E
[
IPC(λ̂; yi)

∣∣∣ λ̂] = E
[
λ̂+ I(λ̂)−1S(λ̂; yi)

∣∣∣ λ̂]
= E

[
λ̂+ λ̂2

(1
λ̂
− yi

) ∣∣∣∣ λ̂]

= 2λ̂− λ̂2

λi
. (25)

Next, we define the distance between the true individual parameter value and the

pooled maximum likelihood estimate as δi := λ̂− λi. By substituting λ̂ = λi + δi in
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Equation 25, we obtain:

E
[
IPC(λ̂; yi)

∣∣∣ λ̂] = λi −
δ2
i

λi
(26)

Thus, the bias of the IPCs is −δ2
i /λi, ignoring the sampling error of λ̂. In homogeneous

samples, this bias vanishes since λ̂ approaches the true parameter value λ0 as sample

size increases. In heterogeneous samples, however, the bias persists as λ̂ does not

approach any of the true individual parameter values. Moreover, the bias grows with

the distance between the true individual- or group-specific parameter value from the

pooled maximum likelihood estimate.

It should be noted that the expected biases will typically be small and only large

differences in the true parameters will substantially bias the IPCs. For instance,

consider a sample drawn in equal shares from two different populations with λg1 = 0.5

and λg2 = 1.5. These parameter values imply that the expected value of the pooled

maximum likelihood estimate λ̂ is 0.75. The expected value of IPCs from the first group

is 0.375 and 1.125 for IPCs from the second. Notice that both, the group-specific

estimates and the size of the group difference, are underestimated.

Deriving the bias of IPC regression for more complex models such as SEMs is

challenging. However, later in the manuscript we will demonstrate by means of Monte

Carlo simulations that the results derived above generalize to dynamic panel models.

Iterative IPC Regression: Bias Correction Procedure

Here, we propose an iterative bias correction procedure similar to the Fisher

scoring algorithm (e.g., Demidenko, 2013). As discussed in the previous section, IPCs

are systemically biased if they depend on estimates of heterogeneous parameters.

However, this bias can be removed by replacing the pooled maximum likelihood

estimates with individual- or group-specific parameter estimates. Such estimates can be

obtained in a stepwise fashion. First, IPC regression is conducted as outlined above.

Second, the IPC regression estimates are used to predict individual- or group-specific

parameter estimates which are then used to re-calculate the IPCs. By alternately

re-calculating the IPCs and re-estimating the IPC regression estimates, the bias of the
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IPCs is filtered out. A graphical demonstration for this bias correction procedure is

presented in Figure 3.

The resulting updating procedure, which we call iterative IPC regression, can be

summarized as follows:

1. Fit a SEM and obtain pooled parameter estimates θ̂.

2. Calculate IPCs as a function of the data y1, . . . ,yn and the parameter estimates θ̂.

3. Estimate the initial IPC regression estimates γ̂.

4. Predict individual- or group-specific parameter estimates θ̂g as a function of the

covariates z and the IPC regression estimates γ̂.

5. Use those individual- or group-specific parameter estimates θ̂g to re-calculate the

IPCs.

6. Pool the re-calculated IPCs and re-estimate the IPC regression estimates γ̂.

7. Repeat step 4 to 6 until γ̂ converges.

The algorithm converges if the change in γ̂ becomes negligibly smaller than a

pre-specified numerical threshold. Unfortunately, the iterated IPC algorithm does not

always converge. Especially, if the true individual- or group-specific value of a

parameter lies close to (or at) the border of its parameter space, the algorithm might go

awry. However, given strong heterogeneity in a sample, we observed in simulation across

various models that the iterations often yield substantial improvement over the initial

IPC regression estimates before breaking down. Therefore, we recommended to compute

the log-likelihood value for every iteration. Even if the algorithm fails to converge, the

iteration with the largest log-likelihood might be preferred to the initial results.

We would like to note two more observations on the behavior of IPC. First, IPC

regression estimates are unbiased in homogeneous samples and therefore cannot be

further improved by updating the IPCs. If iterated IPC regression is used in a

homogeneous sample, the algorithm will overfit the estimates to random fluctuation of
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the data. In this case, the resulting estimates can be marginally worse than the initial

estimates, but the difference will be inconsequential for most practical purposes. Second,

updating the IPCs comes at the cost of additional computational demands. In our

experience, however, the algorithm usually converges quickly with few iterations needed.

Even for samples with a few thousand individuals and models with more than thirty

parameters, updating the IPCs took less than a minute with a standard desktop PC.

Software Implementation

IPC regression is implemented as a package for the statistical programming

language R (R Core Team, 2018), termed ipcr. The ipcr package makes it easy for

researchers to study heterogeneity in the parameter estimates of a SEM fitted with the

OpenMx package (Neale et al., 2015). The ipcr package performs “vanilla” IPC

regression as introduced by Oberski (2013) as well as iterated IPC regression. More

information of how the ipcr package can be installed and used can be found under

https://github.com/manuelarnold/ipcr/.

Monte Carlo Simulations

To evaluate the performance of vanilla and iterated IPC regression to detect and

estimate heterogeneity in dynamic panel models in discrete and continuous time we

conducted the following two Monte Carlo simulations. The first simulation aims to

substantiate our theoretical considerations regarding the bias for bivariate dynamic

panel models. The second simulation investigates whether IPC regression provides valid

inferences and compares the power of the method with MGSEM.

Simulation I: Demonstration of the Bias

In the following simulation studies, we used the discrete-time dynamic panel

model depicted in Figure 1 with five measurement waves (instead of three) as a

simulation model. The data were sampled from a multivariate normal distribution with

two distinct sets of parameter values. 125 observations were generated per group,

resulting in a pooled sample with 250 observations in total. A discrete-time and a
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continuous-time dynamic panel model were fitted to the same data, ignoring the group

differences. Then, we used vanilla and iterated IPC regression with a dummy variable

to recover the group differences in the parameter values of the dynamic panel models.

We repeated this procedure 10,000 times.

The discrete-time population parameter values used to generate the data are

shown in the upper half of Table 1, separated for both groups. For easy reference, we

transformed these parameter values into continuous time and printed them in the lower

half of the table. As clearly apparent from Table 1, group 1 and 2 differ substantively.

The first group is characterized by strong autoregressive coefficients and no cross-lagged

effects, whereas the second group exhibits substantial cross-lagged effects and smaller

autoregressive coefficients. In addition, the variance of x and y was chosen twice as high

for the second group as compared to the first.

We will first discuss the results for the discrete-time dynamic panel model. As

expected from the theoretical example, both IPC regression methods provided accurate

estimates of heterogeneity in the initial variance and covariance parameters. Further,

IPC regression estimates for regression coefficients and dynamic error term variance

parameters were slightly distorted. Figure 4 depicts boxplots visualizing the bias of the

IPC methods for regression coefficients (top graph) and dynamic error term variance

parameters (lower graph). The estimates of vanilla IPC regression are printed in red and

estimates after updating the IPCs are depicted in blue. Boxplots whose median lines lie

close to the dotted black line indicate that the corresponding IPC regression estimates

were approximately unbiased. Using the vanilla method, the intercepts (marked with

the subscript 0) of the IPC regression equations were more biased than the slopes

(subscript 1). Our updated IPC method erased the bias in the intercepts and provided

accurate estimates for all type of model parameters. Averaged over all parameters, the

root mean squared error of iterated IPC regression (RMSE = 0.089) was slightly smaller

than the one of the vanilla procedure without updating (RMSE = 0.094).

The performance of the IPC regression methods for the continuous-time dynamic

model was similar to the findings for the discrete-time parameters above. The estimates
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for the initial variance and covariance parameters provided by both IPC regression

methods were near the true values, whereas estimates for the remaining model

parameters were biased. Figure 5 presents the bias in the IPC regression estimates for

drift and diffusion parameters. Overall, the IPC regression estimates showed more

variability for the continuous-time parameters than for the discrete-time parameters. As

for the discrete-time model, vanilla IPC regression exhibited a slight bias. Updating the

IPCs reduced this bias at the cost of increased variability of the IPC regression

estimates. Moreover, the updating algorithm converged only in 53.78% of the trials and

fell back to the starting values or an intermediate solution in the remaining trials.

Nevertheless, in terms of the RMSE averaged over all parameters, iterated IPC

regression (RMSE = 0.168) slightly outperformed vanilla IPC regression (RMSE =

0.174).

Simulation II: Statistical Power and False Positive Rate

In the second simulation, we investigated the power to detect a difference in a

parameter value and the false positive rate for homogeneous parameters of the IPC

regression methods. We generated multivariate normal data from bivariate dynamic

panel models with five measurement occasions. We specified the population models in a

way that only the cross-lagged effects from the variable x on y differed slightly between

two groups. All other parameters were equal. In contrast to the previous simulation, we

used different population models for the discrete- and continuous-time models. The

corresponding parameter values for both population models (shown in Table 2) resulted

in similar but not identical population covariance matrices. After a data set was

generated, a pooled dynamic panel model was fitted, and parameter heterogeneity was

tested with IPC regression (vanilla and iterated) using a dummy variable. We

investigated power and false positive rate for group sizes of 100, 125, 150, 175, and 200

resulting in total sizes of 200, 250, 300, 350, and 400. For each sample size, we

replicated this process 10,000 times.

As a reference, we compared the power of the IPC regression methods to the
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power of MGSEM. Although MGSEM lacks the flexibility and computational simplicity

of IPC regression, in simple (single-variable) group comparisons with correctly specified

models, standard maximum-likelihood theory suggests it should provide the uniformly

most powerful test. MGSEM therefore presents a good gold standard reference for these

cases. The MGSEMs were specified by letting only the cross-lagged effects of x on y

differ between groups. We computed the power of the MGSEMs by conducting

likelihood ratio tests that compared the fit of the MGSEMs to the fit of the pooled

models.

Figure 6 shows the power of IPC regression for the discrete-time model. Depicted

is the rejection rate of the null hypothesis that the cross-lagged effects from x on y are

equal in both groups, plotted against the number of individuals for a significance level

of 5%. Red lines refer to the power of vanilla IPC regression, blue lines to iterated IPC

regression, and black lines mark the power of MGSEM. For the discrete-time model, the

IPC regression methods appeared to be on average 3.97 percentage points (range: [3.03,

5.30]) percentage points less powerful than MGSEM. Iterated IPC regression achieved a

marginally larger power with a difference of 0.66 percentage points (range: [0.35, 0.94]).

The power for the continuous-time model is presented in Figure 7. We found that the

difference in power between the IPC regression methods and MGSEM were

substantively larger for the continuous-time model than for the discrete-time model. On

average, the power of the IPC regression was 20.68 percentage points (range: [14.25,

27.47]) smaller than the power of MGSEM. In addition, the power of IPC regression

appeared to grow more slowly as a function of sample size. Again, iterated IPC

appeared slightly more powerful than vanilla IPC regression (average difference: 0.28,

range: [0.17, 0.44]).

Besides power, the false detection rate of the IPC regression methods is of great

importance for drawing correct conclusions from the data. We assessed the type I error

rate for population parameters that are identical in the two groups for a significance

level of 5%. We summarize the results by averaging the type I error rate for the three

parameter types in the models (initial variance, regression coefficients/drift, dynamic
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error term variance/diffusion). Table 3 shows the proportions of type I errors for the

discrete-time model and Table 4 for the continuous-time model. As suggested by the

theoretical results in (Oberski, 2013), the type I error rates were close to 5% for most

parameters. Iterated IPC regression committed slightly more type I errors for regression

and drift parameters. These findings imply that the standard errors of iterated IPC

regression for regression/drift parameters were slightly too small and could explain why

iterated IPC regression appeared marginally more powerful to detect heterogeneity.

In contrast to Simulation I, there was not a single case of non-convergence of the

iterated IPC regression algorithm in Simulation II. This finding suggests that the

convergence problems for the continuous-time dynamic panel model were mainly driven

by the larger group differences used in the previous simulation.

Discussion

The present study investigated the performance of IPC regression (Oberski, 2013)

to identify and estimate heterogeneity in dynamic panel models. Overall, we found that

IPC regression is a promising method to identify and estimate heterogeneity in model

parameters. In comparison to other contemporary approaches formally addressing

heterogeneity, IPC regression fills an important niche for applied researchers: IPC

regression offers a general framework that encompasses all kind of model parameter

(e.g., regression coefficients, intercepts, variances, covariances) and makes identifying

and explaining heterogeneity as simple and fast as linear regression.

IPC regression was evaluated in terms of bias in the recovery of true group

differences, the power to detect parameter heterogeneity, and the type I error rate for

homogeneous parameters. By means of a theoretical example and through Monte Carlo

simulations, we demonstrated that original, “vanilla” IPC regression estimates can be

slightly biased due to large differences in regression parameters. Additional

heterogeneity in variance parameters may amplify this bias. As a rule of thumb, the

bias seems to affect mainly parameters connected to endogenous variables like

regression and residual variance parameters, whereas the IPC regression estimates for
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parameters associated with exogenous variables such as the initial variance parameters

remain comparatively unbiased. Hence, IPC regression may perform worse for SEMs

with many directed paths such as dynamic panel models than for models with few

directed paths such as CFA models. This argument would also explain why Oberski

(2013) found nearly unbiased estimates of group differences in a CFA model.

To correct the bias, in vanilla IPC regression, we introduced a novel updating

procedure, which we termed iterated IPC regression. Iterated IPC regression produced

approximately unbiased estimates of group differences in the parameters of a

discrete-time dynamic panel model and outperformed vanilla IPC regression in terms of

the RMSE. For the continuous-time dynamic panel model, however, iterated IPC

regression corrected the bias but at the cost of adding additional variability to the

estimates. Nevertheless, updating the IPCs still improved the estimates on average as

indicated by a smaller RMSE.

In situations in which MGSEM could be applied as an alternative to IPC

regression, we compared the power of IPC regression to that of MGSEM, which theory

suggests is uniformly most-powerful in these cases. IPC regression yielded power only

slightly below that of this theoretically optimal method to detect group differences in

the cross-lagged effect of a discrete-time dynamic panel model. For the continuous-time

model, however, IPC regression was no more than half as powerful as MGSEM. It

should be noted that MGSEM cannot be applied to all scenarios allowed by IPC

regression; for example, MGSEM does not investigate partial effects of multiple

covariates of model parameters. In agreement with earlier theoretical findings, both

IPC regression methods did control the Type I error rate accurately.

In summary, our findings demonstrate that (iterated) IPC regression is a useful

tool to study heterogeneity in discrete-time dynamic panel model. For continuous-time

dynamic panel models, however, our findings were mixed: high variance caused by the

bias correction procedure and a small power make (iterated) IPC regression

unappealing especially in smaller data sets. We believe that these problems are caused

by non-linear parameter constraints and high correlation between parameter estimates



IPC REGRESSION FOR DYNAMIC PANEL MODELS 25

of the continuous-time dynamic panel model. Considering these difficulties, IPC

regression seems more appropriate for models that can be parameterized without

non-linear constraints such as the discrete-time dynamic panel model or many other

contemporaneous models for longitudinal data such as latent growth curve models

(Bollen & Curran, 2006) or latent change score models (McArdle, 2001), if these models

are applicable.

Although IPC regression is a general, easy to use, and flexible approach to

heterogeneity, we want to stress that it is not always the most appropriate one.

Depending on a study’s objective, other methods for addressing heterogeneity should be

preferred to IPC regression. For example, multilevel models appear like an obvious

choice in situations where it is sufficient to allow for varying parameter values between

individuals and there is no interest in explaining these differences. In contrast, if a

study aims to test differences between few known groups in the data (e.g., in variance

parameters), MGSEM will often be the better choice. If a study’s goal is to determine

homogeneous groups in the data with help of additionally observed covariates,

partitioning methods like SEM trees or forests often are better suited for the task, in

particular if computation time is not an issue.

Moreover, we will briefly touch upon some limitations of IPC regression that

researchers should consider. First, the usefulness of IPC regression depends on the

covariates available. If none of the additional covariates is related to individual or group

differences in the data set, IPC regression will fail to detect the source of heterogeneity.

In cases of unobserved group membership, researchers may resort to methods like finite

mixture models (Jedidi, Jagpal, & DeSarbo, 1997; Lubke & Muthén, 2005; Muthén &

Shedden, 1999). Second, IPC regression is a data-driven or exploratory procedure and

therefore susceptible to capitalize on chance characteristics of the data set (MacCallum,

Roznowski, & Necowitz, 1992). Modifying models by blindly following the advice of IPC

regression may lead to a model that works well in the observed sample but does not

generalize to others. We thus recommend paying not only close attention to the p-value

provided by IPC regression, but also to the size of the estimated individual or group
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difference. See also Saris, Satorra, and van der Veld (2009), for a related discussion

about model modification using the modification index and expected parameter change.

Third, using IPC regression to investigate the effect of a large number of covariates on

complex models with many parameters will yield large number of IPC regression

estimates that can be challenging to interpret. Regularization techniques such as lasso

(Tibshirani, 1996) could be used to find a subset of the most important covariates.

In summary, however, we believe that IPC regression is a useful tool to investigate

parameter heterogeneity in SEMs for longitudinal data such as dynamic panel models

that combines flexibility with its unique computational simplicity.
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Table 1

Group-specific population parameter values for the dynamic panel models in discrete and

continuous time.

Time θ Group 1 Group 2 θ Group 1 Group 2

Discrete

βxx 0.700 0.450 φyx 0.300 1.000

βyx 0.000 0.300 φyy 1.000 2.000

βxy 0.000 0.300 ψxx 0.510 1.145

βyy 0.700 0.450 ψyx 0.153 0.168

φxx 1.000 2.000 ψyy 0.510 1.145

Continuous

axx −0.357 −1.092 φyx 0.300 1.000

ayx 0.000 0.805 φyy 1.000 2.000

axy 0.000 0.805 qxx 0.713 2.760

ayy −0.357 −1.092 qyx 0.214 −1.034

φxx 1.000 2.000 qyy 0.713 2.760
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Table 2

Population parameter values for the dynamic panel models used in Simulation II. Note

that the cross-lagged effects βyx and ayx differ between the two groups.

Discrete time Continuous time

θ Value θ Value θ Value θ Value

βxx 0.500 φyx 0.300 axx −0.780 φyx 0.300

βyx 0.200/0.300 φyy 1.000 ayx 0.424/0.546 φyy 0.300

βxy 0.200 ψxx 0.650 axy 0.424 qxx 1.306

βyy 0.500 ψyx 0.013 ayy −0.780 qyx −0.379

φxx 1.000 ψyy 0.650 φxx 1.000 qyy 1.306

Table 3

Proportions of type I errors for the parameters estimates of the discrete-time dynamic

panel model.

Vanilla IPC Iterated IPC

Group size β φ ψ β φ ψ

100 5.483 5.047 5.353 6.097 5.047 5.437

125 5.167 5.163 5.133 5.663 5.163 5.277

150 5.037 5.143 5.010 5.500 5.143 5.207

175 5.173 4.940 5.150 5.600 4.940 5.090

200 5.093 4.900 4.850 5.443 4.900 4.983
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Table 4

Proportions of type I errors for the parameters estimates of the continuous-time

dynamic panel model.

Vanilla IPC Iterated IPC

Group size a φ q a φ q

100 5.333 5.083 5.353 5.250 5.083 4.477

125 5.103 5.007 5.263 5.183 5.007 4.620

150 5.207 5.090 5.143 5.247 5.090 4.657

175 5.077 5.193 4.993 5.157 5.193 4.580

200 4.810 5.207 4.803 4.920 5.207 4.463
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Figure 1 . Path diagram of a bivariate autoregressive and cross-lagged panel model for

three waves of data.
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Figure 2 . IPCs to the rate parameter λ of the exponential distribution. 10 observations

were sampled from an exponential distribution with λ = 1. The solid black line

indicates the mean of the 10 individual score values for different values of λ. The solid

red line approximates the mean scores at the maximum likelihood estimate of the rate

parameter (marked as a large red dot). Disaggregating the tangent of the mean scores

yields 10 individual tangents depicted as dashed red lines. The x-intercepts of these

individuals tangents (highlighted with small red dots) correspond to the IPCs to the

rate parameter estimate as derived in Equation 16.
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Figure 3 . Bias correction procedure. 200,000 individuals were sampled in equal shares

from two exponential distributions with group-specific rate parameters λg1 = 0.5 and

λg2 = 1.5. The solid black line represents the mean scores of the pooled sample for

different values of the rate parameter λ. The pooled maximum likelihood estimate is

found at the x-intercept of the black line, marked as a large black dot. The solid blue

line indicates the mean scores of the second group with λg2 = 1.5. The group-specific

maximum likelihood estimate is depicted as a large blue point. The dashed lines

approximate the group-specific mean scores and their x-intercepts (marked with smaller

dots) correspond to the group-specific mean IPCs. The dashed green line uses the

pooled maximum likelihood estimate to approximate the group-specific mean scores.

The orange dashed line uses the group-specific estimate provided by the green line

instead of the pooled maximum likelihood estimate and the purple dashed line uses the

estimate provided by the orange line. Note that the bias decreases with each iteration.

After two more iterations, the bias correction procedure converges to the group-specific

maximum likelihood estimate of λg2.
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Figure 4 . Boxplots of the bias of the IPC regression estimates for the discrete-time

dynamic panel model.
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Figure 5 . Boxplots of the bias of the IPC regression estimates for the continuous-time

dynamic panel model.



IPC REGRESSION FOR DYNAMIC PANEL MODELS 40

0
.4

0
0
.5

0
0
.6

0
0
.7

0

100 125 150 175 200

Group Size

P
o
w

e
r

Figure 6 . Power to detect that the population group difference in the cross-lagged effect

βyx of the discrete-time model is different from zero.
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Figure 7 . Power to detect that the population group difference in the drift parameter

ayx of the continuous-time model is different from zero.


