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Visual displays play an increasingly important role in 
modern societies, facilitating the communication of com-
plicated information in medicine, economics, weather, cli-
mate, and politics (Ancker, Senathirajah, Kukafka, & 
Starren, 2006; Garcia-Retamero & Cokely, 2013, 2017; 
Spiegelhalter, Pearson, & Short, 2011). Unfortunately, 
graphical communication can also cause judgement and 
decision-making errors. For example, when people are 
shown a bar graph representing a mean and are asked to 
judge the likelihood that a data point is part of its underly-
ing distribution, they often believe that the likelihood is 
larger for points located within the bars than for equidis-
tant points located outside the bars. This tendency, called 
the “within-the-bar bias” (Newman & Scholl, 2012), is 
thought to occur because bars are unique visual objects 
defined by the closure of their boundaries, which originate 
from one particular axis. Consequently, people’s attention 
is drawn to the region within the bar, such that it takes 
precedence over regions outside the bar.

Newman and Scholl (2012) demonstrated that the 
within-the-bar bias affects not only judgements concerning 

the likelihood of different data points but also decisions 
made on the basis of bar graphs. They asked participants to 
imagine they were the CEO of a large car tyre manufacturer 
and presented them with information concerning the tensile 
strength of tyres. Participants were told that the mean tensile 
strength of tested tyres was zero, and that zero was the ideal 
value for safety. No objective reasons were provided to 
either increase or decrease the tensile strength of the tyres. 
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However, participants who viewed the value of zero repre-
sented in a graph where the bar originated from a lower x 
axis (i.e., situated below the mean) often preferred to 
increase the tensile strength. In contrast, those who viewed 
this value in a graph where the bar originated from an upper 
x axis (i.e., situated above the mean) often preferred to 
decrease the tensile strength.

Here, we report three experiments mapping key aspects 
of the generalisability and mechanisms of the within-the-
bar bias. Our central aims in this article were threefold. 
First, we sought to investigate the extent to which the 
within-the-bar bias extends to more common health and 
medical treatment decisions. Second, we aimed to investi-
gate the relations between the bias and a relevant risk lit-
eracy skill, namely, graph literacy. Graph literacy refers to 
the ability to understand and evaluate graphically pre-
sented information, and includes general knowledge about 
making inferences from different graphic formats 
(Freedman & Shah, 2002; Galesic & Garcia-Retamero, 
2011; Kutner, Greenberg, Jin, & Paulsen, 2006). Research 
suggests that this skill may be a particularly relevant factor 
in the within-the-bar bias. As compared to less graph liter-
ate individuals, more graph literate ones often extract more 
complex knowledge from line graphs (Maichle, 1994) and 
more accurately interpret bar graphs depicting interactions 
(Shah & Freedman, 2011). Graph literacy also robustly 
predicts the degree to which various users are likely to 
attend to and integrate decision-relevant information in 
titles of graphs, axes labels, and scales. In addition, graph 
literacy predicts lower reliance on salient but not-necessar-
ily diagnostic spatial features during graph interpretation 
(e.g., heights of bars; Okan, Galesic, & Garcia-Retamero, 
2016; Okan, Garcia-Retamero, Galesic, & Cokely, 2012). 
Accordingly, graph literacy might moderate the within-
the-bar bias.

Finally, we investigated the effectiveness of different 
interventions aimed at reducing the effect of the within-
the-bar bias. Specifically, we examined the effects of add-
ing error bars that can emphasise that values from the 
underlying distributions may come from both below and 
above the mean (Experiments 1 and 2). We also estimated 
the relative influence of using dot plots instead of asym-
metric bars (Experiment 3). Data corresponding to all 
experiments and screenshots reflecting all materials 
viewed by participants can be found in Supplementary 
Materials.

Experiment 1

We first investigated the effect of the within-the-bar bias 
on medical decisions by examining participants’ prefer-
ences for treatments that alter their blood glucose levels. 
We manipulated whether bars in graphs originated from a 
lower versus an upper x axis, as well as whether graphs 

contained error bars. To the extent that participants’ pref-
erences are affected by the within-the-bar bias, those 
who receive their blood test results in a bar graph originat-
ing from a lower x axis (see Figure 1a and c) should seek 
to increase their blood glucose levels, even if the informa-
tion gives them no compelling reason to do so. In contrast, 
those presented with a bar graph descending from an upper 
x axis (see Figure 1b and d) should prefer a treatment that 
decreases their blood glucose levels. We further predicted 
that the within-the-bar bias would be moderated by graph 
literacy, as this skill is generally associated with more 
skilled decision-making processes, including lower reli-
ance on salient spatial features in graphs (e.g., heights of 
bars). As a result, higher graph literacy often leads to more 
accurate graph interpretations and decisions (Okan et al., 
2016, 2012; see also Cokely et al., 2018). Finally, we pre-
dicted that error bars would reduce the bias particularly 
among more graph literate viewers, who should be more 
likely to have the requisite knowledge to effectively inter-
pret and reason about the information conveyed by the 
error bars.

Method

Participants. Participants were 458 undergraduate students 
from the University of Granada (307 female), aged 17 to 
60 years (lower quartile = 18, median = 19, upper quar-
tile = 22; skewness = 4.38). Two participants did not 
provide demographic details.

Materials and procedure. The questionnaire was adminis-
tered in the laboratory of the University of Granada. All 
materials were implemented as an electronic survey in 
Unipark (www.unipark.de). As part of another study, the 
survey first included 30 min of unrelated tasks concerning 
medical risks, which were followed by the current 
15−20 min study (i.e., about 50 min total study time).1 In 
this study, all participants were presented with a hypothetical 
scenario in which they received their blood glucose levels 
from the previous week. The information was structured 
building on Newman and Scholl’s (2012) vignettes. Par-
ticipants were informed that a previous measurement of 
their blood glucose (at the start of the week) had been ideal 
(120 mg/dL); however, since the start of the week, the last 
30 blood tests indicated that their blood glucose levels had 
varied between −20 and +20 in percentage change. Partici-
pants were then reminded that deviation from ideal levels 
could lead to a high risk of severe health consequences, 
and that blood glucose levels typically vary throughout the 
day (e.g., dependent on one’s last meal). Participants were 
further informed that their average percentage change 
throughout the week was zero.

Participants were randomly assigned into one of five 
experimental conditions. In the numerical (control) 

http://journals.sagepub.com/doi/suppl/10.1177/1747021817744546
http://journals.sagepub.com/doi/suppl/10.1177/1747021817744546
www.unipark.de
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condition, participants (n = 90) were presented only with 
a text containing the numerical information. In the 
remaining conditions, they were presented with both the 
numerical information in text and a bar graph depicting 
this information, which appeared immediately below the 
text. Participants were informed that the graph showed 
the average percentage change for the 30 measurements 
of their blood glucose levels. Bar graphs were constructed 
following Newman and Scholl (2012). Specifically, in 
the rising condition (n = 91), the graph displayed a bar 
rising from a lower x axis (see Figure 1a), whereas in the 
falling condition (n = 89), the bar instead descended from 
an upper x axis (see Figure 1b). Graphs in rising with 
error bars and falling with error bars conditions (n = 93 
and n = 95, respectively) were identical to those in the 
first two conditions, with the exception that they included 
bidirectional error bars (see Figure 1c and d). In all cases, 
the y-axis scale ranged from −20 to +20.

Participants were instructed that, based on the informa-
tion provided, they could choose to follow a treatment that 

would either slightly increase or slightly decrease their 
blood glucose levels. They responded using a slider ranging 
from “slightly decrease my blood glucose levels” to “slightly 
increase my blood glucose levels,” with a mid-point indicat-
ing “neither increase nor decrease my blood glucose levels.” 
The numeric slider values ranged from −50 to 50. Following 
Newman and Scholl (2012), the participants did not see the 
numerical values. Time to read the scenario and to answer 
the decision question was unlimited.

Next, graph literacy was measured using the scale 
developed by Galesic and Garcia-Retamero (2011), which 
includes a total of 13 items. Graph literacy scores (lower 
quartile = 8.75, median = 10, upper quartile = 11; skew-
ness = −.60) did not differ across experimental conditions 
(numerical: M = 9.51, standard deviation [SD] = 1.78; 
rising: M = 9.56, SD = 1.71; falling: M = 9.36, SD = 1.96; 
rising with error bars: M = 10.00, SD = 2.08; falling with 
error bars: M = 9.59, SD = 2.07), F(4, 453) = 1.41, p = .23. 
The experiment ended following basic demographic ques-
tions and debriefing.2

Figure 1. Graphs viewed by participants in Experiments 1 and 2 in the (a) rising, (b) falling, (c) rising with error bars, and (d) falling 
with error bars conditions.
In Experiment 2, the y-axis scale ranged from −40 to +40, and values increased by increments of 10 points.
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Results

We first examined the effect of the within-the-bar bias on 
participants’ preferences. As predicted and depicted in 
Figure 2, rising bars led participants to show a preference 
to increase their blood glucose levels relative to the numer-
ical condition, t(191.85) = 2.95, p = .004, d = 0.38, 95% 
confidence interval (CI) = [0.12, 0.63], whereas falling bars 
resulted in a preference to decrease blood glucose levels 
relative to the numerical condition, t(216.85) = 4.08, 
p < .001, d = 0.52, 95% CI = [0.27, 0.78].

Next, we estimated the extent to which graph literacy 
moderated the within-the-bar bias, as well as the degree to 
which error bars reduced the bias. We also examined 
whether any effect of error bars was stronger among more 
graph literate individuals. To this end, we computed bias 
scores by reversing the sign of preference ratings for con-
ditions with falling bars, for comparability with conditions 
with rising bars. Thus, positive values indicated a prefer-
ence in the direction expected according to the bias, 
whereas negative values indicated a preference in the 
opposite direction. We then constructed a linear regression 
model predicting bias scores (skewness = .33) from graph 
literacy scores, the presence of error bars (coded as +1 and 
−1 for conditions with vs without error bars, respectively), 
and the interaction between these two factors. Graph liter-
acy scores were mean centred prior to computing the inter-
action term in this and all other models reported below.3

The linear regression model was not a reliable predictor 
of bias, R2 = .005, F(3, 364) = 0.60, p = .61, such that none 
of the predictors were associated with bias scores (graph 

literacy: β = −.01, t = 0.10, p = .92; error bars: β = −.05, 
t = 0.93, p = .36; interaction term: β = −.05, t = 0.93, p = .35). 
These results suggest that the magnitude of the within-the-
bar bias is not a robust function of graph literacy given the 
current task parameters. Moreover, there was no strong or 
clear effect of error bars on bias reduction, although a non-
significant trend in the expected direction was observed 
for graphs with rising bars. That is, bias scores were 
numerically (if not significantly) smaller when error bars 
were present (see Figure 2), d = 0.18, 95% CI = [−0.11, 47]. 
Finally, exploratory analyses also revealed that the bias 
was overall larger (albeit only slightly) in falling bars con-
ditions (M = 7.53, SD = 20.70) than in rising bars condi-
tions (M = 3.11, SD = 17.01), d = 0.23, 95% CI = [0.03, 
0.44].

Discussion

The results of Experiment 1 provide the first evidence that 
the within-the-bar bias can affect medical treatment 
decisions. Our findings are consistent with the notion that 
people often mistakenly infer that data points located 
within bars are more likely to be part of the underlying 
distribution than equidistant points outside bars. Moreover, 
our results suggest that this bias may predispose decision-
makers to considerable behavioural risks. In our study, the 
within-the-bar bias was associated with a moderate, robust 
preference towards modifying one’s blood glucose levels 
in the absence of justifiable reasons to do so.

The current results also suggest that the magnitude of 
the within-the-bar bias may not reliably vary as a function 
of one’s graph literacy. Even individuals who were rel-
atively skilled in the interpretation and evaluation of 
graphical information showed similar levels of vulnerability 
to the bias as less skilled individuals. This finding is some-
what unexpected in the light of the considerable evidence 
on the decision quality resilience associated with higher 
levels of graph literacy (e.g., Okan et al., 2016, 2012). 
However, there are structural elements of the current 
experimental design that may help to explain the observed 
boundary condition. For example, participants in our study 
could extract relevant information from both the text and 
the graph. Less graph literate individuals may be less com-
fortable with graphs, and thus they may have spent more 
time focusing instead on the numerical and text-based 
information. This may have attenuated the expression of 
the bias among such individuals. Moreover, the bar graphs 
had an unusual configuration and displayed fictional data. 
This may have prompted less graph literate participants to 
further shift their attention towards the textual informa-
tion, and away from the stimuli that is responsible for the 
bias (i.e., the graphical materials). A stronger bias among 
individuals with lower graph literacy may only emerge 
when all participants allocate a similar amount of attention 
to the graphs.

Figure 2. Mean preference ratings by display type in 
Experiment 1. A mean rating of 0 indicates a preference for 
maintaining current glucose levels, whereas ratings over and 
below 0 indicate preference to increase and decrease levels, 
respectively.
The exact numerical values represented in all figures in the article can 
be found in Supplementary Materials.

http://journals.sagepub.com/doi/suppl/10.1177/1747021817744546
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Finally, our findings also suggest that error bars will not 
necessarily reduce the within-the-bar bias, although the 
tendency at the descriptive level was in the expected 
direction for graphs with rising bars. To further explore 
potential mechanisms and boundaries of the within-the-bar 
bias, we conducted a second experiment investigating the 
effects of error bars. We also examined whether graph lit-
eracy affects the bias after equating the degree to which all 
participants are required to attend to the graph.

Experiment 2

Experiment 2 was designed to address three new ques-
tions. First, we sought to determine whether graph literacy 
would affect the magnitude of the within-the-bar bias 
when people are required to attend to both the text and the 
graph. Second, we examined whether the bias extends to a 
scenario involving a different reference point for initial 
blood glucose levels. The reference point described in 
Experiment 1 (120 mg/dL) may have been perceived as 
high by participants, considering that a fasting glucose 
level of 126 mg/dL or more is associated with a diagnosis 
of diabetes (American Diabetes Association, 2012). 
Moreover, high blood glucose levels might be perceived as 
having more severe consequences than low blood glucose 
levels, even though hospital admission rates for the latter 
cause can be higher in certain populations (Lipska et al., 
2014). Thus, in Experiment 2, we used a scenario that 
described a lower initial reference point (100 mg/dL).

Finally, in Experiment 2, we also estimated the extent 
to which the within-the-bar bias would affect people’s 
judgements concerning the likelihood that different data 
points were part of the underlying distribution. Participants’ 
treatment preferences in Experiment 1 were consistent 
with the assumption that people often believe that a given 
data point is more likely to be part of the distribution when 
it is located within the bar than outside the bar. However, 
we did not assess likelihood judgements directly. Thus, in 
Experiment 2, we also asked participants to judge the like-
lihood of two different blood glucose measurements (one 
below the mean and another one above the mean). We 
expected that the within-the-bar bias would lead partici-
pants presented with a rising bar to judge the measurement 
below the mean as more likely than the measurement 
above the mean, as the rising bar encompasses values 
below this point. Instead, we expected to find the reverse 
pattern among those presented with a falling bar. That is, 
the measurement above the mean should be judged as 
more likely in this case, as the falling bar comprises values 
above the mean.

Method

Participants. Participants were recruited via Amazon’s 
Mechanical Turk, which provides access to a paid Internet 

participant panel that has been widely used for behavioural 
decision-making research (Chandler & Shapiro, 2016; 
Paolacci & Chandler, 2014). The task was available only 
to individuals who had an acceptance rate greater than or 
equal to 95% in previous human intelligence tasks (HITs) 
on Mechanical Turk, following recommendations to 
ensure high quality data (Peer, Vosgerau, & Acquisti, 
2014). A total of 954 U.S. residents clicked on the link to 
our study and 822 completed it. Three participants com-
pleted the survey after a break and one participant experi-
enced technical problems with the survey. These 
participants were excluded from our analyses based on a 
priori criteria to exclude participants who did not complete 
the survey in one sitting. The final sample included 818 
participants (525 women, age range 18-77 years, lower 
quartile = 26, median = 33, upper quartile = 47; skew-
ness = .78). Nine percent had no more than a high school 
diploma, 39% had completed up to some college or associate 
degree, 37% had a bachelor’s degree, and 15% had a 
master’s degree or higher. One participant did not indicate 
his or her educational level. The average completion time 
was 18 min.4

Materials and procedure. The web survey was programmed 
using Unipark (www.unipark.de). Participants were 
redirected to the survey after clicking on a link provided in 
the HIT forum on Mechanical Turk. Materials presented to 
participants were identical to those in Experiment 1, with 
the exception that the scenario stated that the value for the 
measurement taken at the start of the week had been 
100 mg/dL and blood glucose levels had varied between 
−40 and +40 in percentage change. The y-axis scale in 
graphs ranged from −40 to +40, with values increasing in 
increments of 10 points (see Supplementary Materials, 
Figures S8-S11).

Participants were randomly assigned to one of the five 
experimental conditions used in Experiment 1 (numerical: 
n = 172; rising: n = 166; falling: n = 161; rising with error 
bars: n = 154; falling with error bars: n = 165). However, 
information was displayed differently, with the aim of 
ensuring that participants attended the graphs as well as 
the accompanying text. Specifically, in the numerical only 
condition, the textual information was first presented alone 
on one screen. This information was then presented again 
on the next screen, accompanied by the slider to assess 
participants’ preferences. In all remaining conditions, the 
textual information was first presented alone on one 
screen, followed by the graph alone on the next screen. 
Participants were informed that the graph showed the aver-
age percentage change for the 30 measurements of their 
blood glucose levels, and were instructed to take some 
time to look at the information represented. Finally, both 
the textual information and the graph appeared together on 
the same screen, accompanied by the slider to assess pref-
erences. Participants in all conditions were required to 

www.unipark.de
http://journals.sagepub.com/doi/suppl/10.1177/1747021817744546
http://journals.sagepub.com/doi/suppl/10.1177/1747021817744546
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view the text alone for at least 10 s, before they could move 
onto the next screen. To this end, the Continue button was 
not visible until 10 s after the screen containing the text 
had been displayed. In the conditions including graphs, 
this also applied to the screen displaying the graph alone.5

As noted above, in Experiment 2, we also assessed par-
ticipants’ judgements of the likelihood that values above 
versus below the mean were part of the underlying distri-
bution. The question assessing the perceived likelihood of 
the value above the mean was as follows: “What do you 
think is the likelihood that one of your blood glucose level 
measurements was 120 mg/dL (i.e., an increase of 20% 
from the measurement taken at the start of the week)?” The 
question assessing the perceived likelihood of the value 
below the mean was identical, with the exception that it 
referred to a measurement of 80 mg/dL (i.e., a decrease of 
20% from the measurement taken at the start of the week). 
Participants responded using a 7-point scale ranging from 
1 (extremely unlikely) to 7 (extremely likely). The order of 
likelihood ratings was counterbalanced. All remaining 
aspects of the procedure were identical to that of 
Experiment 1.6

Graph literacy scores (lower quartile = 9, median = 11, 
upper quartile = 12; skewness = −1.24) did not differ across 
experimental conditions (numerical: M = 10.54, SD = 1.80; 
rising: M = 10.40, SD = 1.96; falling: M = 10.50, SD = 1.96; 
rising with error bars: M = 10.46, SD = 1.94; falling with 
error bars: M = 10.58, SD = 1.95), F(4, 813) = 0.23, p = .92.

Results

The within-the-bar bias again affected preferences in the 
expected direction. As can be seen in Figure 3a, rising bars 
were associated with a preference to increase blood glu-
cose levels relative to the numerical condition, 
t(410.56) = 2.45, p = .02, d = 0.23, 95% CI = [0.05, 0.42], 
whereas falling bars instead led participants to prefer to 
decrease their levels relative to the numerical condition, 
t(407.42) = 9.61, p < .001, d = 0.91, 95% CI = [0.71, 1.10].

A linear regression, including graph literacy scores, 
presence of error bars, and the interaction between these 
factors as predictors of bias scores (computed using the 
same procedure as in Experiment 1; skewness = .35), 
explained a small but significant amount of variance, 
R2 = .02, F(3, 642) = 3.38, p = .02. In contrast to Experiment 
1, in this study, graph literacy scores significantly pre-
dicted bias in preference ratings. Interestingly, however, 
higher scores were related to modest, yet, significantly 
stronger bias, β = .12, t = 3.00, p = .003. Error bars and the 
interaction term were not significant predictors (β = −.03, 
t = 0.78, p = .44 and β = −.03, t = 0.76, p = .45, respectively), 
although for graphs with rising bars, there was again a 
non-significant trend in the expected direction (see Figure 
3a), d = 0.13, 95% CI = [−0.09, 0.35]. In line with 
Experiment 1, exploratory analyses also revealed that the 

bias was overall larger in conditions with falling bars 
(M = 12.43, SD = 22.29) versus rising bars (M = 2.98, 
SD = 17.40), d = 0.47, 95% CI = [0.32, 63].

Next, we examined participants’ likelihood judgements. 
Consistent with the anticipated influence of the within-the-
bar bias, in the falling condition, the blood glucose meas-
urement above the mean was judged to be significantly 
more likely (M = 5.12, SD = 1.59) than the measurement 
below the mean (M = 4.06, SD = 1.93), paired t(160) = 6.48, 
p < .001, d = 0.73, 95% CI = [0.48, 1.03]. This was also the 
case in the falling with error bars condition (judgement 
above: M = 4.62, SD = 1.68; judgement below: M = 3.95, 
SD = 1.81), paired t(164) = 4.67, p < .001, d = 0.46, 95% 

Figure 3. (a) Mean preference ratings by display type in 
Experiment 2. A mean rating of 0 indicates a preference for 
maintaining current glucose levels, whereas ratings over and 
below 0 indicate preference to increase and decrease levels, 
respectively. (b) Differences between likelihood ratings 
corresponding to judgements below the mean (80 mg/dL) and 
above the mean (120 mg/dL) by display type in Experiment 2.
The exact numerical values represented in all figures in the article can 
be found in Supplementary Materials.

http://journals.sagepub.com/doi/suppl/10.1177/1747021817744546
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CI = [0.21, 0.74]. As expected, this trend reversed in the 
rising condition, where the measurement above the mean 
was judged to be less likely (M = 4.20, SD = 1.86) than the 
measurement below the mean (M = 4.51, SD = 1.81), paired 
t(165) = 2.34, p = .02, d = 0.26, 95% CI = [0.02, 0.54]. A 
non-significant trend in the anticipated direction was also 
observed in the rising with error bars condition (judgement 
above: M = 4.38, SD = 1.65; judgement below: M = 4.56, 
SD = 1.56), paired t(153) = 1.53, p = .13, d = 0.17, 95% 
CI = [−0.08, 0.43].

To quantify the bias in likelihood ratings, for each par-
ticipant we deducted the rating corresponding to the value 
above the mean from the rating corresponding to the value 
below the mean. We then reversed the sign in the falling 
conditions, for comparability with the rising conditions, 
and constructed a linear regression model predicting bias 
in likelihood ratings (skewness = .77) from graph literacy 
scores, error bars, and the interaction between these fac-
tors. This model also explained a small but significant 
amount of variance, R2 = .02, F(3, 642) = 4.32, p = .005. 
Graph literacy scores predicted bias in likelihood ratings, 
with higher scores again relating to stronger bias, β = .12, 
t = 3.03, p = .003. As can be seen in Figure 3b, there was 
again a trend for error bars to reduce bias, although this 
factor did not reach conventional levels of significance, 
β = −.07, t = 1.80, p = .07. The interaction term between 
error bars and graph literacy was also not significant, 
β = −.03, t = 0.84, p = .40, and presented no evidence of any 
notable trend. Exploratory analyses again revealed a 
stronger bias in conditions including falling bars (M = 0.86, 
SD = 1.97) versus rising bars (M = 0.25, SD = 1.60), d = 0.34, 
95% CI = [0.19, 50].

Discussion

Results of Experiment 2 showed that the within-the-bar 
bias not only affected participants’ preferences for different 
medical treatments but also their judgements concerning 
their likelihood of having a given blood glucose value. 
Interestingly, we also found that this bias was more marked 
among more graph literate participants (cf. Okan et al., 
2016, 2012). One possible explanation is that, even though 
all participants were required to allocate a similar amount 
of attention to the bar graphs overall, less graph literate 
participants may have attended to a lesser extent to the val-
ues on the y axis (see also Okan et al., 2016). Indeed, the 
within-the-bar bias cannot arise if graph viewers do not 
encode the values on the y axis, as associations must be 
established between the region within the bars and the cor-
responding values on the graph (e.g., values below the 
mean, for rising bars). Eye-tracking evidence supports this 
interpretation, as studies have revealed that lower graph 
literacy is associated with shorter viewing times of con-
ventional features in graphs, such as axes labels or scales 
(Okan et al., 2016). It is also possible that less graph 

literate participants were not able to generate a detailed 
mental model of the bar graph, without which the within-
the-bar bias may not arise. Such differences in processing 
and comprehension capability may have resulted in a 
reduced susceptibility to this bias among individuals with 
lower graph literacy.

In Experiment 2, we again found evidence suggesting 
that error bars may not reliably reduce the bias, although 
there was a marginally significant difference in the 
expected direction for likelihood ratings. Given that all 
participants were required to attend to the graph in this 
experiment, it seems unlikely that the limited effectiveness 
of error bars merely reflects that this design feature was 
neglected. Thus, in Experiment 3, we further evaluated 
potential boundary conditions by examining a different 
intervention that theory suggests may be more effective in 
reducing the within-the-bar bias, namely, the use of dot 
plots to represent means.

In addition, an important question that remains unan-
swered is whether the within-the-bar bias is robust enough 
to affect people’s interpretations of graphs that communi-
cate relevant medical or health information to the public. 
Stimulus materials in Experiments 1 and 2 were designed 
to foster high internal validity and allow clear theory eval-
uation. Nevertheless, it remains unclear whether the find-
ings documented may generalise to graphs used in 
ecological, naturalistic contexts. This question is theoreti-
cally and practically relevant because simple graphical 
displays including bar graphs are increasingly used and 
recommended to communicate health information to 
diverse, and often vulnerable, populations facing high-
stakes medical decisions (see, for example, Garcia-
Retamero & Cokely, 2013; Lipkus, 2007; Trevena et al., 
2013).

Experiment 3

Our main goal in Experiment 3 was to estimate the extent 
to which the within-the-bar bias may affect people’s judge-
ments in relation to ecological materials that are more rep-
resentative of common naturalistic decision-making. 
Specifically, we turned to the website of the Centers for 
Disease Control and Prevention (CDC), which features a 
wide-ranging pool of publicly available graphs summaris-
ing results of national healthcare surveys conducted by the 
U.S. National Center for Health Statistics (NCHS). Such 
statistical information is explicitly intended to inform and 
guide actions and policies in the service of benefiting the 
health and welfare of people in the United States. To the 
extent that the within-the-bar bias affects interpretations of 
graphs in this website, such bias could ultimately have an 
adverse effect on health policy and outcomes. We focused 
on information concerning the consumption of added sug-
ars among U.S. adults given the implications for prevent-
ing obesity and diabetes, and the dramatic increase in the 
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prevalence of these diseases in the last decades (World 
Health & Organization, 2017a, 2017b).

An additional goal of Experiment 3 was to test the 
effectiveness of dot plots to reduce any effect of the within-
the-bar bias. Dot plots were recommended as an alternative 
to bar charts by Cleveland (1984) and Cleveland and 
McGill (1984) based on the notion that they allow for 
more effective visual decoding of data. Newman and 
Scholl (2012) also noted that the use of points to repre-
sent means instead of asymmetric bars could improve the 
accuracy of graph interpretations. Dots do not need to be 
connected to the x axis, and they may attract people’s 
attention to a larger extent than the space between the dots 
and the axis (Godau, Vogelgesang, & Gaschler, 2016). 
Thus, this kind of display should be less likely to trigger 
systematic biases in people’s judgements of the likelihood 
of different data points. However, to our knowledge, this 
prediction has not yet been tested. In Experiment 3, we 
examined this issue by comparing people’s interpretations 
of a bar graph selected from the CDC website versus an 
alternative version of the graph in which bars were replaced 
by simple dots (see Figure 4). In line with previous experi-
ments, we also examined people’s interpretations of data 
when presented with numerical information only (as a 
control condition), which in this case was displayed in a 
tabular format.

As in Experiments 1 and 2, we expected that partici-
pants presented with the bar graph would be affected by 
the within-the-bar bias. As the selected graph contained 
rising bars, we expected that participants would judge val-
ues below the depicted means as more likely than equidis-
tant values above the means. We also predicted that dot 
plots would contribute to reduce or eliminate the bias.

Finally, in Experiment 3, we also examined partici-
pants’ evaluations of the materials. Understanding how 
different types of displays are evaluated is important 
because people may not be motivated to attend to, or take 
actions regarding, graphs that they dislike (Ancker et al., 
2006; Okan, Stone, & Bruine de Bruin, 2017; Stone, 
Bruine de Bruin, Wilkins, Boker, & MacDonald Gibson, 
2017). There is evidence that simple bar graphs are on 
some occasions preferred over other types of graphs, such 
as line graphs, icon arrays, and survival curves (Fortin, 
Hirota, Bond, O’Connor, & Col, 2001). There is also evi-
dence that bar graphs can signal more scientific credibility 
than verbal descriptions, enhancing people’s beliefs in the 
efficacy of products (Tal & Wansink, 2016). It is possible 
that bar graphs will be associated with more positive user 
evaluations than less widespread formats, such as dot 
plots, despite the potential of the former type of graph to 
bias people’s interpretations and decisions.

Participants

Participants were recruited following the same procedure 
as in Experiment 2. A total of 672 U.S. residents clicked on 

the link to our study and 612 completed it. One participant 
indicated that his or her age was 5 years and was thus 
excluded from subsequent analyses. The final sample 
included 611 participants (352 women, age range 
18-77 years, lower quartile = 27, median = 33, upper quar-
tile = 44; skewness = .89). Eight percent had no more than a 
high school diploma, 37% had completed up to some col-
lege or associate degree, 41% had a bachelor’s degree, and 
14% had a Master’s degree or higher. One participant did 
not indicate his or her educational level. The average com-
pletion time was 15 min.

Materials and procedure

The procedure used to host the web survey was identical to 
that used in Experiment 2. Participants were informed that 
they would view data from the National Health and 
Nutrition Survey concerning the consumption of added 
sugars among U.S. adults between 2005 and 2010. 
Participants were further informed that increased con-
sumption of added sugars has been linked to a decrease in 
intake of essential micronutrients and an increase in body 
weight. All information was based on that included in the 
data brief concerning this topic available on the CDC web-
site (Ervin & Ogden, 2013).

Participants were randomly assigned into one of the 
three experimental conditions. In the table (control) condi-
tion (n = 207), participants were presented with a simple 
table summarising the data (see Figure 4a). In the bars 
condition, participants (n = 202) were presented with the 
original bar graph taken from the CDC data brief, depict-
ing mean kilocalories from added sugars consumed per 
day among adults aged 20 years and over, by age group 
and sex (see Figure 4b). Finally, participants in the dot plot 
condition (n = 202) were presented with a redesigned ver-
sion of the original bar graph, which was identical to the 
original in all respects, with the exception that bars were 
replaced by dots (see Figure 4c).

Participants were required to judge the likelihood 
that an individual in one of the groups represented (a 
female aged between 20 and 39 years) had consumed a 
given amount of kilocalories of added sugars, which 
was either above or below the mean for that group. The 
question concerning the value above the mean was as 
follows: “What do you think is the likelihood that a 
female aged between 20 and 39 consumed around 425 
kcal of added sugars on a given day?” The question con-
cerning the value below the mean was identical, with 
the exception that it enquired about a value of 125 kcal. 
As can be seen in Figure 4, the average kilocalories con-
sumed by this group was 275, implying that the values 
enquired about were equidistant to the mean. Participants 
responded using the same 7-point scale as in Experiment 
2, and the order of likelihood ratings was again 
counterbalanced.7
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User evaluations of the materials were next assessed 
with three items asking participants to rate how much they 
liked the way in which the data were presented, how help-
ful was the table/graph for making decisions regarding the 
consumption of added sugars, and how much they would 
trust information represented in a table/graph like the one 
they viewed, using a scale from 1 to 7 (see Bruine de 
Bruin, Stone, Gibson, Fischbeck, & Shoraka, 2013 for a 
similar procedure). We computed a composite measure of 

user evaluations by averaging participants’ responses 
across all three items (Cronbach’s alpha = .86). All remain-
ing aspects of the procedure were identical to that of 
Experiment 2.

Graph literacy scores (lower quartile = 9, median = 11, 
upper quartile = 12; skewness = −1.57) again did not differ 
across experimental conditions (table: M = 10.39, 
SD = 2.27; bars: M = 10.31, SD = 2.31; dot plot: M = 10.29, 
SD = 2.20), F(2, 608) = 0.12, p = .89.

Figure 4. Displays viewed by participants in Experiment 3 in the (a) table, (b) bars, and (c) dot plot conditions (colour figures 
available online).
The graph presented in the bars condition was taken from the Centers for Disease Prevention and Control (CDC) website (http://www.cdc.gov/
nchs/data/databriefs/db122.htm). The original graph contained superscript numbers next to some of the values at the top of the bars to indicate 
statistically significant differences between the groups. Superscripts were removed to avoid confusion.

http://journals.sagepub.com/doi/suppl/10.1177/1747021817744546
http://journals.sagepub.com/doi/suppl/10.1177/1747021817744546
http://www.cdc.gov/nchs/data/databriefs/db122.htm
http://www.cdc.gov/nchs/data/databriefs/db122.htm
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Results

Consistent with previous findings, participants presented 
with bars judged the value below the mean (M = 5.26, 
SD = 1.82) to be more likely than the value above the mean 
(M = 2.62, SD = 1.62), paired t(201) = 14.06, p < .001, 
d = 1.40, 95% CI = [1.15, 1.62], revealing a large, signifi-
cant influence of the within-the-bar bias. A tendency in the 
same direction was also observed among those presented 
with the table (judgement below: M = 4.25, SD = 2.05; 
judgement above: M = 3.01, SD = 1.60) and the dot plot 
(judgement below: M = 4.41, SD = 2.21; judgement above: 
M = 2.72, SD = 1.67).

To examine the relative difference between ratings 
concerning values below versus above the mean for the 
different display types, we constructed a linear regression 
predicting bias in likelihood ratings (i.e., differences 
between both judgement types; skewness = −.10) from 
display type, using dummy coding with the bars condition 
as the reference category. Graph literacy and the interac-
tion between graph literacy and display type were also 
included as predictors. This model explained a moderate 
and significant amount of variance, R2 = .05, F(5, 605) = 6.57, 
p < .001. As expected, bias was significantly smaller in the 
table than in the bars condition, β = −.20, t = 4.42, p < .001, 
and dot plots significantly reduced the bias, β = −.17, 
t = 3.66, p < .001 (see Figure 5). Graph literacy scores 

predicted bias scores with higher graph literacy related to 
stronger bias, β = .22, t = 3.23, p = .001. The interaction 
terms between graph literacy and display type were also 
significant to marginally significant (β = −.13, t = 2.40, 
p = .02 for bars vs table and β = −.10, t = 1.82, p = .07 for 
bars vs dot plot). As illustrated in Figure 5, differences 
between the bars condition versus the table and dot plot 
conditions were larger among more graph literate indi-
viduals. In addition, the correlation between graph liter-
acy and bias was only significant in the bars condition 
(bars: r = .22, p = .001; table: r = −.01, p = .86; dot plot: 
r = −.04, p = .58), once again revealing that the within-the-
bar bias tended to be larger among more graph literate 
individuals.

Finally, we examined participants’ evaluations of the 
materials. As anticipated, bar graphs were evaluated more 
positively (M = 4.95, SD = 1.41) than tables (M = 4.56, 
SD = 1.46), t(407) = 2.74, p = .01, d = 0.27, 95% CI = [0.08, 
0.47] and dot plots (M = 4.58, SD = 1.43), t(402) = 2.65, 
p = .01, d = 0.26, 95% CI = [0.07, 0.46], despite the notable 
reduction of bias associated with the latter two display types.

Discussion

In Experiment 3, we replicated and extended findings of 
Experiments 1 and 2. The within-the-bar bias affected par-
ticipants’ interpretations of ecological graphs concerning 
current health topics, designed to guide actions relevant to 
the promotion and maintenance of public health policies. 
In line with Experiment 2, we also found that the bias was 
stronger among more graph literate participants.

In Experiment 3, we also documented the first evi-
dence on the effectiveness of dot plots to reduce the 
within-the-bar bias in a theoretically and practically rel-
evant context. This type of graph markedly reduced the 
expression of bias, providing additional empirical valida-
tion of long-standing recommendations on the benefits of 
dot plots for improving graph interpretations (Cleveland, 
1984; Cleveland & McGill, 1984). Interestingly, and 
somewhat ironically, bar graphs were evaluated more 
positively than dot plots and tables. This finding may 
reflect participants’ general familiarity with bar charts, 
and adds to the increasing body of work showing that 
people’s preferences for different display types may run 
counter to what is best for their overall performance 
(Feldman-Stewart, Kocovski, McConnell, Brundage, & 
Mackillop, 2000; McCaffery et al., 2012; Okan, Garcia-
Retamero, Cokely, & Maldonado, 2015; Waters, 
Weinstein, Colditz, & Emmons, 2006). That said, it is 
notable that in this study, all types of displays received 
relatively positive user evaluations. Thus, although not 
necessarily the most favoured option, dot plots can be a 
welcome and promising graphical format that promotes 
more accurate interpretations among users who vary 
widely in ability and backgrounds.

Figure 5. Differences between likelihood ratings 
corresponding to judgements below the mean (125 kcal) and 
above the mean (425 kcal) by display type and graph literacy in 
Experiment 3. In this figure, participants are categorised as low 
graph literates if they obtained 10 or fewer correct responses 
(n = 261, mean score = 8.4, SD = 2.1), and as high graph literates 
if they obtained 11 or more (n = 350, mean score = 11.8, 
SD = 0.7), according to a median split. However, continuous 
graph literacy scores are entered in all analyses.
The exact numerical values represented in all figures in the article can 
be found in Supplementary Materials.

http://journals.sagepub.com/doi/suppl/10.1177/1747021817744546
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General discussion

In three experiments, we showed that bar graphs depicting 
means can systematically result in misinterpretation, 
thereby biasing people’s judgements and causing decision 
vulnerabilities. Our findings revealed that the within-the-
bar bias can affect people’s preferences for different medi-
cal treatments, as well as inferences about ecological and 
naturalistic graphs designed to support informed decision-
making by governmental agencies. Moreover, in two 
experiments, we found, ironically, that more graph literate 
participants may be at greater risk for within-the-bar bias. 
These results appear particularly noteworthy considering 
that graph literacy generally is associated with lower risk 
of various biases and misunderstandings (e.g., Okan et al., 
2016, 2012), and given that the use of bar graphs to com-
municate health-related information is widespread 
(Garcia-Retamero & Cokely, 2013; McCaffery et al., 
2012; Mt-Isa et al., 2013). Nevertheless, the current find-
ings also point to a potentially promising method to over-
come the within-the-bar bias, namely, replacing bar graphs 
with simple dot plots.

Concerning the perceptual mechanisms that give rise to 
the within-the-bar bias, Newman and Scholl (2012) argued 
that the bias occurs because bars are unique visual objects 
defined by the closure of their boundaries, which originate 
from one particular axis. Relatedly, Peebles (2008) dem-
onstrated that people presented with bar graphs underesti-
mated the distance of target values to the average 
(represented by a horizontal line parallel to the x axis). 
More recently, Godau et al. (2016) documented converg-
ing evidence that people systematically underestimate 
mean values in graphs with rising bars, independently of 
the height of bars. Theoretically, visual attention is drawn 
to the length of bars, which are identified as objects 
attached to the x axis. These accounts converge with our 
findings to indicate that the within-the-bar bias is likely 
triggered by basic principles of object perception. 
Bottom-up factors such as the format of graphs can influ-
ence the visual chunks that are created, often driven by 
Gestalt principles, including proximity, similarity, and 
connectedness (Ali & Peebles, 2013; Pinker, 1990). 
Although the visual chunks formed by bars can facilitate 
tasks such as making discrete comparisons between indi-
vidual data points (Pinker, 1990) and interpreting interac-
tion data (Ali & Peebles, 2013), they can also lead to 
systematic misinterpretations of bar graphs.

Cognitive process tracing methodologies, such as eye-
tracking and verbal protocol analysis, could be used to 
shed further light on the role of perceptual and attentional 
processes underlying the within-the-bar bias. Such meth-
ods could also help to map the mechanisms underlying the 
debiasing effects of dot plots. For instance, eye-tracking 
methodology could be used to determine whether the dots 
attract people’s attention to a larger extent than the space 

between dots and the x axis (Godau et al., 2016), and the 
extent to which any attentional differences affect interpre-
tations. Process tracing methods could also help to under-
stand how people perceive and interpret error bars, as well 
as their relative effectiveness in different contexts (or lack 
thereof), for different viewers. Future research could also 
investigate the effect of the within-the-bar bias on repre-
sentative decisions with real stakes for decision makers, 
families, organisations, and societies. Finally, future 
research should assess the robustness of the observed 
effects across heterogeneous samples in terms of graph lit-
eracy and other cognitive, social, and demographic varia-
bles. We speculate that the relationship between graph 
literacy and the bias may often be curvilinear, such that 
highest graph literacy levels may be associated with a 
lower bias. That is, we suspect that expert scientists and 
statisticians will not exhibit a within-the-bar bias and will 
be more likely to correctly interpret error bars.

Conclusion

The present work provides new evidence that bar graphs 
depicting means can be associated with systematic biases 
likely caused by common, basic principles of object per-
ception. We also found that such biases can predispose 
decision makers to misinterpretations and judgement 
errors that may have counterproductive and potentially 
dangerous downstream effects on health-related deci-
sion-making. Surprisingly, we also found some of the 
first evidence that essential risk literacy skills (i.e., graph 
literacy) may promote rather than reduce decision vul-
nerability. We suspect these effects may be best charac-
terised as reflecting issues that result from modest but 
still relatively insufficient skills. That is, high expert 
level decision-makers may not be affected by the within-
the-bar bias, whereas normally sufficient levels of skill 
may predispose individuals to this and other potentially 
costly biases.

Due to the perceptual nature of the within-the-bar bias, 
even bar graphs designed according to principles of effec-
tive graph design have the potential to mislead viewers. 
Although the implications of this failure should not be dis-
counted, we also found that other formats may address this 
issue. That is, graph designers may be able to use alterna-
tive graphical formats (e.g., points or depictions of the dis-
tributions) to represent means to good effect, helping 
reduce decision and interpretational vulnerabilities. Taken 
together, the present research adds to the increasing body 
of literature on skilled decision-making and the design of 
interventions that promote informed decision-making. Our 
work also contributes to theories on graphical risk com-
munication that aim to predict when and why biases will 
occur, and how to best design graphs and communications 
that empower diverse decision-makers facing high-stakes 
personal, social, and economical decisions.
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Notes

1. In the unrelated tasks, participants were presented with 
visual aids (icon arrays) depicting the effectiveness of 
hypothetical drugs for heart attack prevention. We assessed 
participants’ risk understanding, confidence in their risk 
estimates, and evaluations of the visual aids. Further details 
concerning this part of the survey can be found in Okan, 
Garcia-Retamero, Cokely, and Maldonado (2015).

2. In all experiments, we also measured participants’ numer-
acy (i.e., the ability to understand and manipulate different 
numerical expressions of probability; Lipkus, Samsa, & 
Rimer, 2001). We reasoned that numeracy may affect peo-
ple’s preferences to increase versus decrease their blood glu-
cose, as this skill is a robust predictor of medical decisions 
and health outcomes (e.g., Cokely et al., 2012; Peters, 2012; 
Petrova et al., 2017), including glycemic control (Osborn, 
Cavanaugh, Wallston, & Rothman, 2010). Numeracy was 
assessed using the four items in the Berlin Numeracy 

Test (Cokely et al., 2012), together with either nine items 
(Experiment 1) or three items (Experiments 2 and 3) selected 
from the numeracy scale developed by Lipkus et al. (2001). 
Numeracy items were always included after the graph lit-
eracy scale. In addition, as part of the demographic ques-
tions, participants were asked to indicate whether they had a 
chronic disease and, in case of an affirmative response, indi-
cate which disease. The latter questions were included as we 
considered that previous experience with endocrine disor-
ders associated with glycemic control (pre-diabetes, diabe-
tes, or thyroid disease) may also affect decisions concerning 
blood glucose. However, neither numeracy nor the presence 
of endocrine disorders were correlated with preference rat-
ings (numeracy: r = −.03 in Experiments 1 and 2; presence 
of endocrine disorders: r = .03 and r = .02 in Experiments 1 
and 2, respectively).

3. We thank Catherine Fritz for her valuable suggestions con-
cerning this approach to analyses.

4. Considering recent recommendations for detecting inatten-
tion in online studies (Maniaci & Rogge, 2014), we com-
puted the 5% trimmed mean completion time (17 min 46 s 
in Experiment 2 and 14 min 32 s in Experiment 3), and rerun 
our analyses excluding the participants who completed the 
study in less than half of this time (n = 39 in Experiment 2 
and n = 36 in Experiment 3). All results remained unchanged, 
with the exception of the effect of error bars on bias in likeli-
hood ratings in Experiment 2 (which reached conventional 
levels of significance, β = −.08, t = 1.99, p = .047), and the 
interaction term between graph literacy and bars versus 
table in Experiment 3 (which no longer reached conven-
tional levels of significance, β = −.10, t = 1.73, p = .08). All 
analyses reported included the full sample. Results corre-
sponding to the analyses with the trimmed data set for both 
experiments are available upon request.

5. Participants could not proceed to the next page until the 
Continue button had been displayed, although they could 
spend as much time as needed viewing each page. To avoid 
confusion or frustration associated with the absence of the 
Continue button in the initial 10 s, the following instruc-
tions were displayed at the bottom of the screen: “Click 
on the button that will appear below when you are ready 
to continue (please note that the button may NOT appear 
immediately, and therefore you may need to wait a few sec-
onds until it appears).” In addition, the screen displaying the 
slider to assess participants’ preferences included a sentence 
informing participants that they would be presented with 
information that they had already seen earlier (“Below you 
can view again the information presented in the last page/
two pages”).

6. In Experiments 2 and 3, participants also answered four 
questions assessing their knowledge and familiarity with 
blood glucose (Experiment 2) and consumption of added 
sugars (Experiment 3), which were presented immediately 
before the graph literacy scale. In Experiment 3, participants 
also answered two questions concerning hypothetical policy 
decisions, based on Stone, Gabard, Groves, and Lipkus 
(2015), which were included for exploratory purposes. The 
first question asked participants to indicate what percentage 
of the Centers for Disease Control and Prevention (CDC) 
budget they would designate for researching ways to deal 

http://journals.sagepub.com/doi/suppl/10.1177/1747021817744546
http://journals.sagepub.com/doi/suppl/10.1177/1747021817744546
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with the consumption of added sugars (vs the consump-
tion of tobacco). The second question asked participants to 
assume that the CDC presently spends US$10,000 on edu-
cating the public regarding the effects of the consumption of 
added sugars, and asked participants to indicate their agree-
ment with this amount. Further details are available upon 
request.

7. Participants in the bars and dot plot conditions were 
instructed to focus on the group of female between 20 and 
39, and were informed that this group was represented on 
the right side of the graph in light blue colour. Such instruc-
tions were included to facilitate interpretation of the graphs 
prior to the elicitation of likelihood judgements.
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