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Abstract
Pedigree-based analyses of intelligence have reported that genetic differences account for 50–80% of the phenotypic
variation. For personality traits these effects are smaller, with 34–48% of the variance being explained by genetic
differences. However, molecular genetic studies using unrelated individuals typically report a heritability estimate of around
30% for intelligence and between 0 and 15% for personality variables. Pedigree-based estimates and molecular genetic
estimates may differ because current genotyping platforms are poor at tagging causal variants, variants with low minor allele
frequency, copy number variants, and structural variants. Using ~20,000 individuals in the Generation Scotland family
cohort genotyped for ~700,000 single-nucleotide polymorphisms (SNPs), we exploit the high levels of linkage
disequilibrium (LD) found in members of the same family to quantify the total effect of genetic variants that are not
tagged in GWAS of unrelated individuals. In our models, genetic variants in low LD with genotyped SNPs explain over half
of the genetic variance in intelligence, education, and neuroticism. By capturing these additional genetic effects our models
closely approximate the heritability estimates from twin studies for intelligence and education, but not for neuroticism and
extraversion. We then replicated our finding using imputed molecular genetic data from unrelated individuals to show that
~50% of differences in intelligence, and ~40% of the differences in education, can be explained by genetic effects when a
larger number of rare SNPs are included. From an evolutionary genetic perspective, a substantial contribution of rare genetic
variants to individual differences in intelligence, and education is consistent with mutation-selection balance.

Introduction

The scores from different types of cognitive ability tests
correlate positively and the variance that is shared between
tests is termed general intelligence, general cognitive abil-
ity, or g [1]. General intelligence typically accounts for
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around 40% of the overall variance among humans in bat-
teries that contain tests of diverse cognitive abilities. The
personality traits of extraversion and neuroticism are two of
the five higher-order personality factors that are consistently
identified in dimensional models of personality. High levels
of extraversion are associated with positive affectivity and a
tendency to engage with, and to enjoy, social situations.
High levels of neuroticism are associated with stress sen-
sitivity, as well as mental and physical disorders [2]. All of
these traits are partly heritable, but have also been linked to
evolutionary fitness. This paradox, that cognitive ability and
personality appear to be under selective pressure yet retain
heritable variation, could be resolved if rare variants, which
are less amenable to selection, are found to play a major role
in the genetic contribution to variance in these traits. We
test whether genetic variants not in LD with genotyped
single-nucleotide polymorphisms (SNPs) (including rare
variants, copy number variants (CNVs) and structural var-
iants) make a contribution to intelligence and personality
differences using two separate methods.

Firstly, using a recently developed analytic design for
combined pedigree and genome-wide molecular genetic data,
we test whether rare genetic variants, CNVs, and structural
variants make an additional contribution to the genetic var-
iance in intelligence, neuroticism, and extraversion. Secondly,
using unrelated individuals, and genotype data imputed using
the Haplotype Reference Consortium [3, 4] (HRC) data, we
use minor allele frequency (MAF) stratified GREML
(GREML-MS) to quantify the effect of SNPs with a MAF
of ≥ 0.001 to determine if this additional variance can also be
recovered based on SNPs alone using imputation.

General intelligence has been found to be heritable, with
twin and family studies estimating that 50 to 80% [5] of
phenotypic variance is due to additive genetic factors, a
proportion that increases with age from childhood to adult-
hood [6]. Heritability can also be estimated from molecular
genetic data. Using the genomic-relatedness-matrix restricted
maximum likelihood single component (GREML-SC)
method, the additive effects of common SNPs are estimated
to collectively explain between 20 and 50% of variation in
general intelligence [7, 8], with an estimate of around 30% in
the largest studies [9]. General intelligence is also a sig-
nificant predictor of fitness components including mortality
[10], fertility [11, 12] and higher social status [13], as well as
mental and physical disease [6]. General intelligence is
associated with developmental stability [14, 15], suggesting
that it is not selectively neutral.

As directional selective pressure on a trait is expected to
deplete its genetic variation, the existence of such robust
heritability findings seems paradoxical when evolutionary
theory is considered [16]. However, mutation-selection
balance provides an explanation of how genetic variation
can be maintained for quantitative traits that are under

directional selective pressure. Mutation-selection balance
describes instances where mutations that are deleterious to
the phenotype occur within a population at the same rate
that they are removed through the effects of selective
pressure. Due to the removal of variants with deleterious
effects on the phenotype, the existence of common variants
with medium to large effects is not expected under
mutation-selection balance. This is consistent with the
current findings from large genome-wide association studies
(GWAS) on cognitive phenotypes, including general intel-
ligence and education, where common SNPs collectively
explain a substantial proportion of phenotypic variance, but
the individual effect size of each genome-wide significant
SNP discovered so far is around 0.02% [17, 18].

Population genetic simulations show that very rare
(MAF < 0.1%) variants explain little of the population
variance in traits that are not under selection [19]. However,
the contribution made by rare variants increases when their
effects on a trait and on fitness are correlated either through
pleiotropy, or by the trait directly affecting fitness [19]. The
genetically informative evidence that is available tends to
show that variants associated with intelligence are also
linked to better health [20, 21], although these effects may
be outweighed by a negative effect on fertility [22, 23].
There is also evidence that the regions of the genome
making the greatest contribution to intelligence differences
have undergone purifying selection [24]. Whereas this does
not necessarily imply that intelligence has been selected for
or against across our evolutionary history, it does indicate
that genetic variants that are associated with intelligence are
also associated with fitness, which suggests that rare genetic
variants and hence mutation-selection balance, may act to
maintain intelligence differences [19].

Empirical studies so far have failed to find evidence of a
link between intelligence and rare variants [25]. These
studies have often been limited in scope, with only CNVs or
exonic regions being considered, or being limited in sta-
tistical power because all rare variants were treated as
having the same direction of effect through the use of
burden tests [25–29]. Where such tests have found an
association these have been in small samples and subse-
quently failed to replicate [30]. However, in large samples,
rare variants found within regions of the genome under
purifying selection have been found to be associated with
educational success [31], an effect that was greater for genes
expressed in the brain. Hence, rare variants found in some
genes appear to have an effect on intelligence.

Less is known about the genetics of personality [32]. As
with intelligence, heritability estimates for extraversion and
neuroticism are much higher, around 34–48%, when based
on quantitative (twin- and family-based) genetic methods
[33] compared to molecular genetic estimates (4–15% for
neuroticism [34] and 0–18% for extraversion [35, 36]).
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Both extraversion and neuroticism are predictive of social
and behavioural outcomes as well as anxiety, well-being,
and fertility [37–40]. Positive genetic correlations have been
reported for extraversion with attention deficit hyperactivity
disorder and bipolar disorder, and for neuroticism with
depression and anorexia nervosa [36].

In the current study, we quantify the total genetic effect
across the autosomes on intelligence (including education,
which shows strong genetic correlations with general intelli-
gence [41] and is used as a proxy-phenotype for it in genetic
studies [42]), extraversion and neuroticism. Two recent
approaches allow us to include genetic variation not normally
captured using GWAS. Firstly, as our sample included
nominally unrelated individuals with varying degrees of
genetic similarity, as well as family members who all pro-
vided genome-wide SNP data, we were able to decompose
two genetic sources of variance corresponding to genetic
effects associated with common SNPs at the population level
(h2g), and genetic effects associated with kinship (h2kin) (i.e.,
associated with SNPs on a family basis). Among related
individuals, LD is stronger and hence allows us to capture
variation not tagged by common SNPs at the population level.
This includes rare variants, CNVs, and other structural var-
iants. As the inclusion of family members can introduce
confounding between shared genetic effects and shared
environmental effects [43], we use the GREML-KIN method
by Xia and colleagues [44] to control for sibling effects,
spouse effects and family effects. By using information from
both nuclear family relationships and the many more distant
pedigree relationships in the cohort we analyse, this novel
approach allows us to estimate kin-specific genetic variation
net of common environmental effects. Secondly, we validate
the findings for intelligence and education using unrelated
individuals by using genotypes imputed using the HRC panel
[4]. By using GREML-MS to derive a heritability estimate we
were able include rare SNPs (MAF 0.001–0.01) as well as
partition the SNPs by MAF to determine the contribution
made to trait variation by rare variants.

Materials and methods

Samples

Data was used from the Generation Scotland: Scottish
Family Health Study (GS:SFHS) [4, 45, 46]. A total of
24,090 individuals (Nmale= 9927, Nfemale= 14,163,
Agemean= 47.6) were sampled from Glasgow, Tayside,
Ayrshire, Arran and North-East Scotland of whom 23,919
donated blood or saliva for DNA extraction. These samples
were collected, processed, and stored using standard pro-
cedures and managed through a laboratory information
management system at the Wellcome Trust Clinical

Research Facility Genetics Core, Edinburgh [47]. The yield
of DNA was measured with a PicoGreen and normalised to
50 ng/μl prior to genotyping. Genotype data were generated
using an Illumina Human OmniExpressExome -8- v1.0
DNA Analysis BeadChip and Infinium chemistry [48]. We
then used an identical quality control procedure as Xia et al.
[44]. that included removing SNPs not on autosomes or
with a MAF of< 0.05, a Hardy–Weinberg Equilibrium P-
value < 10−6, and a missingness of> 5%. This left 519,729
common SNPs from 22 autosomes. Following quality
control, a total of 20,032 genotyped individuals (Nfemale=
11,804) were retained; 18,293 of these individuals were a
part of 6578 nuclear or extended families [49]. The mean
age of the sample was 47.4 years (SD= 15.0, range 18 to
99 years). The degree of the relationships found in GS:
SFHS as well as the size of each of the matrices can be
found in Table 1.

Ethics

The Tayside Research Ethics Committee (reference 05/
S1401/89) provided ethical approval for this study.

Phenotypes

General intelligence (g), years in education (Education),
neuroticism, and extraversion were examined using
GREML-KIN, and GREML-MS. Four cognitive tests were

Table 1 Degree of relatedness in the 20,032 GS:SFHS data and
number of pair-wise relationships

Matrix Number of non-zero
off-diagonal entries

GRMg 200,630,496

GRMkin 41,174

SRMFamily 20,115

SRMSibling 1767

SRMCouple 8495

Degree of relationship Number of pairs

1st degree 18,320

2nd degree 7851

3rd degree 4129

4th degree 3950

5th degree 11,032

Unrelated individuals 200,585,162

For the G matrix all off-diagonal entries are non-zero

The distance of the relationship is identified using SNP relatedness and
according to approximate ranges of the expected pair-wise relatedness,
0.5i−0.5 to 0.5i+0.5 for ith degree relatives

Unrelated individuals defined as more than 5th degree relatives
r ≤ 0.022

Genomic analysis of family data 2349



used to derive general intelligence; the Mill Hill Vocabulary
Scale (MHVS) (test re-test reliability over 2 years 0.90, split
half reliability r= 0.90) [50, 51], the Wechsler Digit
Symbol Substitution Task (DST) (test re-test reliability
r= .90) [52], Wechsler Logical Memory, which measures
Verbal declarative memory (split half reliability, part
1= 0.88, part two 0.79) [53] and executive function (pho-
nemic Verbal fluency, using letters C, F, L) (Cronbach’s
alpha= 0.83) [54]. The general factor of intelligence (g)
was derived by extracting the first unrotated principal
component from the four cognitive tests. This single com-
ponent accounted for 42.3% of the variance in the total
sample and each of the individual tests used demonstrated
strong loadings on the first unrotated component (DST 0.58,
Verbal Fluency 0.72, MHVS 0.67 and Verbal declarative
memory 0.63). Education was calculated in the GS:SFHS as
the years of full time formal education, which was recoded
into an ordinal scale from 0 to 10 (0: 0 years, 1: 1–4 years,
2: 5–9 years, 3: 10–11 years, 4: 12–13 years, 5: 14–15
years, 6: 16–17 years, 7: 18–19 years, 8: 20–21 years, 9:
22–23 years, 10: > 24 years of education). Education and
general intelligence were positively correlated (r= 0.38,
SE= 0.01, P< 2.20× 10−16).

The other two measures examined were the personality
traits of extraversion and neuroticism, which were measured
using the Eysenck Personality Questionnaire Revised Short
Form, a self-report questionnaire requiring a yes or no
response to 24 items [55]. Both scales have reliabilities of
Cronbach’s alpha > 0.85 [55].

The effects of age, sex and population stratification were
adjusted for using regression prior to fitting the models in
GREML. Supplementary Fig. 1 shows the number of
principal components used to control for population strati-
fication for each of the phenotypes used.

Statistical method

GREML-KIN: partitioning phenotypic variance into five
components

For each of the phenotypes examined here, variance was
partitioned into five corresponding effects plus residual
variance. This variance components analysis is based on the
work of Zaitlen and colleagues [43] who developed a
method for estimating two genetic sources of variance in a
data set with a measured family structure. Firstly, the var-
iance component G can be estimated and used to derive h2g,
the proportion of phenotypic variance explained by com-
mon SNPs, and secondly, the additional genetic effects
associated with pedigree can be captured by K and used to
derive h2kin, the proportion of phenotypic variance that is
explained by genetic effects that are clustered within
families. More recently this method has been extended by

Xia and colleagues [44] to adjust for similarity between
siblings, spouses and nuclear family members. We refer to
the extended method as GREML-KIN. The two genetic
matrices described by Zaitlen et al. and Xia et al. model the
effects associated with common SNPs (h2g) at the popula-
tion level and those associated with pedigree (h2kin),
respectively. These two genetic sources of variance were
quantified using a genetic relationship matrix (GRM)
derived in the GCTA software [56].

Matrix construction

Genetic matrices A genomic relationship matrix (GRMg)
was used to derive the variance component of G in order to
quantify the contribution made by common SNPs, h2g. This
was derived in the manner set out by Yang and colleagues
[56], where the estimated genomic relatedness between each
pair of individuals is derived from identity by state SNP
relationships and is found in each off-diagonal entry in the
GRM). As the variance attributable to the shared environ-
ment was explicitly modelled here, no relationship cutoff
(typically, 0.025 is used) was applied to the GRM.

1
N

XN

i¼1

xji � 2pi
� �

xki � 2pið Þ
2pi 1� pið Þ

MAF for SNP i is denoted as pi and the allelic dose (x) for
individuals j or k at locus i is described as xji or xki. N
indicates the total number of SNPs.
The kinship relationship matrix, GRMkin, (used to derive

the variance component K) was derived using the method
described by Zaitlen et al. [43] by modifying the GRMg.
Here, values in the GRMg that were equal to or <0.025 were
set to 0.

Similarity matrices Three similarity matrices (SRM) were
used to capture the variance associated with specific rela-
tionships between individuals. Each SRM was created by
deriving an N by N matrix (where N is number of indivi-
duals) with diagonal entries set to 1 and non-diagonal
entries set to 1 if the pair of individuals have the relation-
ship described, or set to zero otherwise. The three SRMs
derived here captured variance associated with the similarity
of spouses, (SRMCouple, similarity variance component C),
siblings (SRMSibling, similarity variance component S) and
nuclear families (SRMFamily, similarity variance component
F). As discussed by Xia et al. [44], whereas these matrices
are not formed using genetic data, the SRMCouple will very
likely will capture some effects of assortative mating, which
can be couples who, before meeting, were more similar than
chance in terms of the trait under investigation, as well as
couples who become more similar due to time spent
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together. Dominance effects can be captured with the
SRMSibling. These variance components were derived in an
identical manner to Xia et al. [44], however, we have
changed the matrices’ names to reflect that they may also
capture non-additive genetic influences, as well as the
effects of assortative mating.

Estimating the phenotypic variance explained For each
trait we first fitted the two GRMs and the three SRMs
simultaneously using a linear mixed model (LMM) using
the GCTA software [56, 57]. This full model is referred to
as the GKFSC model, as it includes the genetic, kinship,
family, sibling and couple matrices.

Y ¼ Gþ K þ F þ Sþ C þ ε

Here, Y is a vector of standardised residuals derived from
one of the phenotypes. Random genetic effects were
explained by fitting the G and K, which captured variants
in LD with common SNPs found across a population and
the extra genetic effects captured by the increase in LD
found between members of the same extended family,
respectively. Similarity between related pairs of individuals
was adjusted for by fitting the F, S and C to control for the
contributions made by environmental similarities, as well as
any effect of assortative mating and dominance, that could
result in members of a nuclear family, siblings, and couples,
being more similar. This enabled us to extract the variance
associated with these matrices from our genetic matrices to
ensure that the genetic estimates derived are not biased by
these confounding influences.
Restricted maximum likelihood (REML), implemented

using the GCTA software [56], was used to estimate the
variance explained by each of the variance components,
with statistical significance determined using a log-
likelihood ratio test (LRT) and the Wald test. Model

selection began with the full GKFSC model (referred to as
the full model). Components were dropped if they were not
statistically significant according to both the Wald and the
LRT tests. The model that contained only components that
explained a significant proportion of variance is referred to
as the selected model. If more than one component could be
dropped from the model, we dropped the one with the worse
fit first and then tested the significance of the other. The full
results of each model can be seen in Supplementary Table 1.
The phenotypic variance explained by the variance
components of G, K, S, F and C used to derive h2g
(common SNP-associated effects), h2kin (pedigree-asso-
ciated genetic effects), ef

2 (family effects), es
2 (sibling

effects) and ec
2 (couple effects) were estimated (Table 2).

Interpretation of the variance explained by GREML-
KIN Despite collinearity between the five matrices, simu-
lations conducted by Xia et al. [44] show that this method
provides robust results due to the dense relationships within
the GS:SFHS cohort. The GS:SFHS is a family-based
cohort and the participants are related to varying degrees,
including 1767, 18,320, 7851, 4129, 3950 and 11,032 pairs
of couples, 1st, 2nd, 3rd, 4th, and 5th degrees of relatives,
respectively. Therefore, what is shared between the
SRMFamily matrix and GRMkin matrix is information on the
~18k 1st degree relatives. However, SRMFamily holds ~1.8k
pairs of unique entries (couple pairs) and GRMkin holds
~23 k pairs of unique entries (equivalent 2nd–5th degree
relative pairs of who were greater than 0.025 genetically
identical). The unique entries from both matrices result in
an increase of power, which allows the disentangling of the
variance from those two different sources.
An additional point is that the pedigree-associated genetic

effects decay as the distance of the relationship increases,
whereas nuclear family similarity effects do not. Thus, the
fact that GS:SFHS consist of different classes of relatives,

Table 2 Results of variance components analyses for cognitive abilities and personality from the full model and the final model selected in a
stepwise selection procedure

Phenotype N Model Variance
components

GRMg

h2 g %(S.E.)
GRMkin

h2kin % (S.E.)
SRMFamily

ef
2 % (S.E.)

SRMSibling

es
2 % (S.E.)

SRMCouple

ec
2 % (S.E.)

Cognitive

g 19,036 Full GKFSC 21.1 (2.0) 41.5 (4.8) 1.0× 10−4 (2.2) 8.9 (1.3) 26.4 (2.6)

19,036 Selected GKSC 22.7 (2.1) 31.3 (2.9) — 9.2 (1.3) 22.1 (2.0)

Education 18,528 Full GKFSC 13.3 (2.0) 39.4 (5.1) 1.0× 10−4 (2.4) 10.9 (1.4) 36.1 (2.7)

18,528 Selected GKSC 15.6 (2.1) 28.1 (3.0) — 11.4 (1.4) 31.3 (2.8)

Personality

Neuroticism 19,494 Full GKFSC 10.7 (2.0) 14.9 (5.1) 2.3 (2.5) 1.0× 10−4 (1.4) 1.0× 10−4 (3.4)

Selected GK 10.8 (2.0) 19.2 (2.5) — — —

Extraversion 19,487 Full GKFSC 11.3 (2.0) 4.9 (5.1) 7.3 (2.5) 1.0× 10−4 (1.4) 1.0× 10−4 (3.3)

19,487 Selected GF 13.0 (1.7) — 9.0 (1.1) — —

Genomic analysis of family data 2351



as well as the unique entries within the GRMkin and
SRMFamily, helps to capture the property of pedigree-
associated genetic variants. This logic extends to separating
the variance from each of the similarity matrices. Although
SRMCouple and SRMSib are nested within the SRMFamily,
there are 9853 pairs of unique entries (representing parents-
offspring) within the SRMFamily, which helps to separate the
similarity matrices. As shown by Xia et al. [44], this method
reliably identifies the major sources of variance that
contribute to trait architecture in a realistic simulation
of confounding. However, as with any method, effects
become harder to detect as significant as they become
smaller, since more power is needed for the reliable
detection of small signals. This means that if one of the
matrices only contributes to a small proportion of the
overall phenotypic variance (e.g., <5% in GS:SFHS) the
component will be dropped in the model selection
procedure as it will not attain statistical significance. The
small effects from the excluded component will have only a
limited influence on the estimates of the major components
that are retained in the final model. Thus, the major
components we detected for each trait should be estimated
reliably.
An additional caveat of the GREML-KIN method is that

it requires a cohort of related individuals where there are a
sufficient number of different degrees of relatives and
family members so that pedigree genetic effects can be
disentangled from the family environmental influences.
Due to these requirements, a simulation study should be
conducted in a data set before using GREML-KIN. The
goal of these simulations is to examine whether there are a
suitable level of appropriate relationships, and whether the
confounding environmental and genetic factors can be
discomposed accurately in the population under investiga-
tion as was shown by Xia et al. in the ~20,000 members of
GS:SFHS.
In the current study, we computed SRMSib, SRMFamily,

and SRMCouple to measure the similarity shared between
siblings, nuclear family members, and couples, respectively.
The similarity shared between siblings is a product of
additive genetic effects and dominance genetic effects, in
addition to any environmental influences. However, as
GRMg and GRMkin capture additive genetic effects, only
environmental influences and some of the total dominance
genetic effect remain in SRMSib. Similarly, SRMFamily

models similarity between nuclear family members, which
is composed of additive genetic effects and environmental
factors. In the presence of GRMg and GRMkin, what
remained in SRMFamily will be variance attributable to
environmental factors. The SRMCouple represents the
similarity between couples, which can be due to assortative
mating and shared environmental influences.

GREML-MS analysis In order to show that the GRMkin in
GREML-KIN captures the contributions made by genetic
variants poorly tagged by genotyped SNPs and is not con-
founded by the inclusion of close relatives, we replicated
our results using unrelated individuals. Using genotyped
data, imputed using the Haplotype Consortium (HRC) [3, 4]
data set, allowed investigation into low-frequency variants
using the Sanger Imputation Service (https://imputation.sa
nger.ac.uk/). A quality control check was performed by
checking autosomal haplotypes to ensure that strand
orientation, reference allele and position matched the
reference panel. Data were then pre-phased using the Sha-
peit2 duohmm option provided by the Shapeit2
v2r837 software [58–60], where the family structure of GS:
SFHS was used to improve the imputation quality [61].
Finally, an imputation quality score of info< 0.4 was used
to exclude poorly imputed variants and non-bi-allelic var-
iants. This resulted in 11,497 491 bi-allelic SNPs with
MAF> 0.001 available for analysis.
A relatedness cutoff was applied to the participants of GS:

SFHS of 0.025 resulting in a sample size of 7370. Note, that
relatedness was based on the GRMg, -i.e., estimated by using
all genotyped common SNPs on the autosomes for the whole
population. To test whether the additional variance captured
by our GRMkin is due to less common variants, imputed and
genotyped variants were assigned to one of six matrices
describing the frequency of the minor allele. The six bins, and
the matrices derived using them, were MAF= 0.001–0.01
(GRM0.001–0.01), MAF=> 0.01–0.1 (GRM0.01–0.1), MAF=>
0.1–0.2 (GRM0.1–0.2), MAF=> 0.2–0.3 (GRM0.2–0.3),>
0.3–0.4 (GRM0.3–0.4), MAF=> 0.4–0.5 (GRM0.4–0.5) [62].
These six matrices were then fitted simultaneously and
analysed using REML.

Results

The results of the full GKFSC models as well as the results
of the selected models, can be seen in Table 2. For general
intelligence (g) the final model was the GKSC model,
allowing for a significant contribution from additive com-
mon genetic effects, additive pedigree-associated genetic
variants, sibling similarity and couple similarity. For g,
common SNPs (h2g) explained 23% (SE= 2%) of the
phenotypic variation. Pedigree-associated genetic variants
(h2kin) added an additional 31% (SE= 3%) to the genetic
contributions to g, yielding a total contribution of genetic
effects of 54% (SE= 3%) on g. The sibling effects (es

2) and
couple effects (ec

2), accounted for 9% (SE= 1%) and 22%
(SE= 2%), respectively. As noted previously, these esti-
mates could also include effects of dominance and assor-
tative mating, respectively.
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The GKSC model was also the selected model for edu-
cation. As with general intelligence, pedigree genetic variants
accounted for the majority of the total genetic contribution to
phenotypic variation in these traits. Pedigree-associated
genetic variants explained 28% of the variation in educa-
tion, whereas common SNP effects explained 16% (Fig. 1).
The genetic results, i.e., SNP and pedigree contributions
combined, for g and education are similar to the heritability
estimates derived using the traditional pedigree study design
in the same data set, which found a heritability estimate of
54% (SE= 2%) for g and 41% (SE= 2%) for education
(Fig. 2) [63]. This indicates that the genetic variants with the
greater estimated cumulative effect on cognitive abilities
are those that are poorly tagged on current genotyping
platforms.

The results for each of the individual tests of cognitive
ability used to derive general intelligence are each highly
similar to general intelligence (Supplementary Table 2). For
each of the single tests the K component captured a sub-
stantial and significant amount of phenotypic variance.

The selected model for the Mill Hill Vocabulary test,
the Verbal Fluency test and Digit Symbol test was the

GKSC model. The C component did not attain statistical
significance for logical memory with the selected model
being GKS.

For neuroticism the final model consisted of contribu-
tions from the variance components G and K. Additive
common genetic effects explained 11% (SE= 2%) of the
variance with pedigree-associated variants explaining an
additional 19% (SE= 3%). The F, S, and C components
were not statistically significant and the family similarity
component accounted for only 2% of the variance in the full
model and 1% in a model that included only the G and the
K in addition to F.

For extraversion the only detectable source of genetic
variation came from the G, which accounted for 13% (SE=
2%), with F explaining a further 9% (SE= 1%) of
the phenotypic variation. The lack of pedigree-associated
genetic effects could be due to low statistical power, as
K explained 5% of the variance in the full model and 6% in
a GKF model, but with a relatively large SE, estimated
at 5%.

In addition to our model selection procedure, we also fit
all possible component combinations for all phenotypes, to
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Genetic and environmental contributions to phenotypic variance in GREML−KIN

Fig. 1 Genetic contribution to each phenotype using the selected
models plotted for each of the phenotypes. Each component from
the selected models is plotted individually, with the stacked bar

plot showing the total proportion of the variance explained by
genetic factors in the selected models. Error bars indicate standard
errors
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show a more complete account of the data and to give
readers the ability to explore the consequences of including
different components for the results, even when some of
those components were not significant. The results have
been made interactively available at https://rubenarslan.
github.io/generation_scotland_pedigree_gcta/.

The results of GREML-MS are consistent with
GREML-KIN. The total contribution of all SNPs resulted
in a heritability estimate of 50% (SE= 10%) for intelli-
gence and 37% (SE= 10%) for education (Table 3). This
trend for the total heritability estimate derived from
GREML-MS being similar to, but lower than, the herit-
ability estimates derived from summing the G and K from
GREML-KIN, and those derived from traditional pedigree-
based methods (Fig. 2) was evident across all cognitive
variables. This attenuation is consistent with the findings of
Evans et al. [64] who showed that with imputation to HRC,
GREML-MS can underestimate heritability by as much as

20% if the genetic architecture of a trait includes many rare
variants.

When examining the variance explained by MAF using
GREML-MS (Figs. 3 and 4) for general intelligence and
education it is clear that the variants tagged by SNPs with a
MAF between 0.001–0.01 make a large contribution to
phenotypic variation. These low-MAF variants explain 23%
(SE= 10%) of the variation in intelligence, compared to
28% from variants with a MAF greater than 0.01. For
education, low-MAF variants explain 12 % (SE= 10%),
with all other variants explaining a total of 25%. Similar
findings were also evident for each of the cognitive tests
used in the general intelligence phenotype (Supplementary
Table 3). This was also found for extraversion, where var-
iants with a MAF of 0.001–0.01 explained 17% (SE= 9%)
whilst all other SNPs explained only 4% of phenotypic
variance. However, for neuroticism there was no evidence
of any contribution made by the SNPs with a MAF of
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Comparison between molecular genetic and family−based pedigree estimates

Fig. 2 Bar plots showing the proportion of variance explained using
family-based methods and using molecular genetic data in related
and unrelated samples. All of these analyses were performed using
the same GS:SFHS data (n= 20,522, Education n= 22,406). Using
related individuals and GREML-KIN, a sample size of 19,036 was
available for general intelligence, and 18,528 for education after
quality control. GREML-MS was conducted on unrelated indivi-
duals using a sample of n= 7019 for general intelligence and 6860
for Education. Estimates depicted in red were derived in the current
study using GREML-KIN and show two sources of genetic

variance. Bright red being common genetic effects captured by the
GRMg matrix and dark red being the additional genetic effects
captured by exploiting the higher level of linkage disequilibrium
between family members using the GRMkin matrix. Estimates
shown in shades of blue were derived using GREML-MS and
indicate the variance explained using unrelated individuals with
genotyped data imputed to the HRC reference panel. The estimates
in dark green are taken from Marioni et al. [63] and show the total
genetic effects using ASReml-R mixed model when relatedness is
inferred using identity by descent
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0.001–0.01, and all variants only explained 11% (SE= 9%)
of phenotypic variance.

We next examined if there was evidence of selective
pressure acting on the cognitive and personality variables
using GREML-MS. For a trait that is not under selective
pressure while the majority of genetic variants will be rare, the

majority of genetic variation associated with the trait is
expected to be common [65]. A trait that is evolutionary
neutral will, therefore, show a linear proportional relationship
between MAF and cumulative genetic variance explained
[62]. As can be seen in Fig. 4 general intelligence shows a
deviation from the neutral evolutionary model. Education, an

Table 3 Results of GREML-MS variance components analyses for cognitive abilities and personality using six minor allele frequency cutoffs

Minor allele frequency (MAF)

Phenotype N 0.001–0.01
h2 % (S.E.)

>0.01–0.1
h2 % (S.E.)

>0.1–0.02
h2 % (S.E.)

> 0.2–0.3
h2 % (S.E.)

>0.3–0.4
h2 % (S.E.)

>0.4–0.5
h2 % (S.E.)

Total variance
explained
h2 % (S.E.)

Number of
SNPs

3,898,626 3,320,146 1,413,929 1,061,603 930,841 872,346 11,497,491

Cognitive

g 7019 22.6 (9.5) 5.6 (5.3) 1.1 (3.5) 5.9 (3.4) 7.5 (3.3) 7.7 (2.9) 50.4 (9.9)

Education 6860 12.1 (9.6) 1.5 (5.2) 4.0 (3.6) 9.3 (3.6) 9.0 (3.4) 1.3 2.8) 37.2 (9.9)

Personality

Neuroticism 7195 1.0× 10−4 (8.8) 3.6 (5.0) 1.0× 10−4 (3.2) 2.3 (2.9) 0.9 (2.9) 4.7 (2.6) 11.4 (9.4)

Extraversion 7188 17.0 (9.2) 1.0× 10−4 (4.7) 1.0× 10−4 (3.2) 1.1 (3.1) 1.1 (3.0) 1.8 (2.5) 20.9 (9.6)
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Genetic contributions to phenotypic variance by minor allele frequency (MAF)

Fig. 3 Genetic contributions to each of the phenotypes by MAF
derived using unrelated individuals and GREML-MS. Each MAF
cutoff used is plotted separately, with the stacked bar plot showing the

total proportion of the variance explained by the each MAF cutoff.
Error bars indicate standard error
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often used proxy-phenotype for intelligence [42] showed no
such deviation.

Extraversion also demonstrated evidence that low-MAF
variants made a greater contribution than more common
variants. Neuroticism, however followed the model pre-
dicted under the assumption of evolutionary neutrality.

Discussion

This study aimed to decompose and quantify additive
genetic sources of variation to intelligence and personality
in novel manners, using molecular genetic and pedigree
data from the same large sample. In doing so, we sought to
identify reasons for the gap between pedigree-based and
SNP-based estimates of heritability in samples of unrelated
individuals, a difference that might be due to genetic var-
iants in poor LD with SNPs genotyped on current platforms.
A number of novel findings speak to long-standing ques-
tions in behaviour genetics and evolutionary genetics of
psychological differences [16, 32, 66].

Firstly, using GREML-KIN we could account for the
entire heritability of general intelligence and education, as
estimated in twin and family studies, by adding the G and K
estimates we derived directly from genome-wide molecular

genetic data [63, 67]. Secondly, using GREML-MS, we
replicated this finding with imputed data on unrelated
individuals. For general intelligence and education, a sub-
stantial and significant proportion of the phenotypic var-
iance was found to be explained by pedigree-associated
genetic effects (h2kin). The pedigree-associated genetic
variants accounted for over half of the genetic effects in
these phenotypes. Even though GREML-MS is expected to
underestimate heritability for traits where the genetic
architecture includes the contribution of CNVs, structural
variants and very rare variants [64], we were nevertheless
able to recover the majority of this heritability following
imputation to the Haplotype Reference Consortium. For
neuroticism, G plus K estimates were ~30%, even slightly
exceeding the narrow-sense heritability estimates meta-
analytically derived from family and adoption studies with
heterogeneous measurements of personality [33]. However,
the K component was dropped for extraversion in our model
selection procedure. We believe that is due to the stringent
statistical test, as described by Xia et al. if a component only
explains ~5% of the phenotypic variance in GS:SFHS, it
might escape from model selection procedure (and K is 5%
for extraversion). Furthermore, results were less consistent
between GREML-KIN and GREML-MS for personality
traits. These convergences and divergences between our

Fig. 4 MAF plotted against the cumulative genetic variance explained.
The diagonal grey line indicates evolutionary neutrality where the
proportion of genetic variance is proportional to the MAF. Error bars

represent standard errors for the cumulative variance components
derived using the delta method, they are clipped if they leave the range
of 0 to 1 [62]
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two methods, and published results, are potentially diag-
nostic for the genetic architecture of the traits under study.

The GREML-SC method of estimating heritability from
unrelated individuals using common genome-wide SNPs,
often produces lower heritability estimates than those
derived using family-based studies because it relies on LD
between genotyped SNPs and causal variants at the popu-
lation level. Should LD between genotyped SNPs and
causal variants be low, then the genetic similarity between a
pair of individuals at the causal variant will be different to
the genetic similarity at genotyped SNPs, resulting in an
underestimation of heritability. In within-family and twin
studies, relatedness is based on identity by decent (IBD),
where segments of DNA have been inherited from a recent
common ancestor. Should a region be IBD between a pair
of individuals, then all variants within that segment, except
de novo mutations, are shared. Population-based SNP
methods are sensitive to allele frequency, whereas IBD
methods are blind to such effects. Therefore, the dis-
crepancy between heritability estimates is consistent with
the idea that causal variants in low LD with genotyped
SNPs account for difference between IBD methods and
population-based estimates derived using molecular genetic
data.

In the current study, we investigate if variants in poor LD
with genotyped SNPs account for additional heritability by
using DNA from close family members. Higher genetic
relatedness within families leads to an increase in the LD
between genotyped SNPs and potentially causal variants,
resulting in heritability estimates in our study that are
comparable to pedigree-based methods. This provides evi-
dence that for intelligence the gap between the heritability
estimates derived using IBD methods and those derived
using SNP-based population methods is most likely due to
causal variants in low LD with genotyped SNPs. In addi-
tion, we were able to model this missing variance and
separate it from the additive common genetic effects that are
estimated in a GREML-SC analysis based on unrelated
individuals. The additional source of additive genetic var-
iance from closely related family members, captured here in
our kinship matrix (GRMkin), would be unmeasured in a
GWAS on unrelated individuals using genotyped data.

The use of related individuals can result in the con-
founding of pedigree genetic effects with shared family
environmental effects. We were able to adjust for phenotype
similarity driven by couple similarity, family similarity and
sibling similarity, but some residual, uncorrected con-
founding might remain. Potential sources include geo-
graphical confounding, e.g., cousins attending the same
school, and other environmental similarities that we could
not adjust for. Such confounding was not modelled by Xia
et al. and if present may represent a source of environmental
variance still present in the genetic estimates of GREML-

KIN. However, previous work by Conley et al. [68] has
shown that although environmental similarity can be cor-
related with relatedness, the effect this has on heritability is
minor.

The three similarity matrices, SRMSib, SRMFamily and
SRMCouple captured phenotypic similarity shared between
siblings, nuclear family members and couples, respectively.
The similarity shared between siblings is a product of
additive genetic effects, dominance genetic effects, in
addition to any environmental influences. However, by
including the GRMg and the GRMkin, what variance
remained in SRMSib is mainly due to environmental influ-
ences and some of the total dominance genetic effect as the
additive genetic effects are captured by GRMg and GRMkin.
Similarly, SRMFamily models similarity between nuclear
family members, which is composed of additive genetic
effects and environmental factors. In the presence of GRMg

and GRMkin, what remained in SRMFamily will be variance
attributable to environmental factors. The SRMCouple

represents the similarity between couples, which is mainly
due to environmental influences, as well as the effects of
assortative mating. However, the effect of couple environ-
ment and assortative mating are not confounded with the
other matrices SRM’s nor with either of the GRM’s, because
of this both the effects of assortative mating and the effects
of any shared environmental influences acting to increase
couple similarity will remain in the SRMcouple.

It should be noted that, the average age of participants in
GS:SFHS is 47.4-years-old, which means that the people
still cohabiting together are most likely couples whereas
parents-offspring and siblings no longer live in the same
household. Additionally, dominance has been shown to
have little impact on complex traits [69]. Therefore, in our
selected model, the variance explained by SRMSib,
SRMFamily and SRMCouple will represent past environment
shared by siblings and little dominance (SRMSib), past
environment shared by nuclear family members (SRMFamily)
and assortative mating, in addition to potential current
environmental factors shared by couples (SRMCouple).

However, the replication of the GREML-KIN findings
with GREML-MS in the subsample of unrelated individuals
provides further evidence that the heritability estimates are
not majorly affected by residual confounding. Indeed, for
intelligence and education both of these methods provide
highly similar estimates differing by <4 and 7 percentage
points, respectively, well within one standard error of
GREML-MS. These estimates in turn are highly similar to
the estimate found using traditional pedigree-based analyses
[63], indicating that the total narrow-sense heritability of
intelligence can be captured using GREML-KIN. When
using genotyped or imputed data, GREML-MS has been
shown to underestimate the contribution made by rare
variants to a polygenic traits by as much as 20% [64]. This
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is most likely due to the low imputation quality of rare
SNPs, which can be ameliorated by using whole-genome
sequencing data (WGS) to derive a heritability estimate.
However, for traits where very rare variants have an effect
(minor allele count > 5), a downward bias is still apparent
with WGS [64]. GREML-KIN can also capture non-SNP-
associated variants like CNVs, which will also be missed by
GREML-MS. This indicates that the accuracy of the herit-
ability estimate provided by GREML-MS is dependent on
the frequency of the causal variants that make up trait
architecture, albeit much less so than using GREML-SC on
genotyped data alone. Using GREML-KIN only a minor
underestimation of heritability is seen in Evans et al. [64].
Supplementary Figs. 15 and 16 where regardless of MAF,
heritability estimates are as accurate for genotyped data as
they are for WGS. This suggests that, in the absence of
environmental confounding, GREML-KIN approximates the
true heritability better than GREML-MS. However, it should
be noted that family-based analysis would be unsuitable for
some phenotypes, such as those based on area or household
measurements, as is the case with socioeconomic status or
household income [70]. Converging estimates from the dif-
ferent methods increase our confidence in their interpretation
as genetic effects, whereas the divergences between methods
can help diagnose potential unmeasured sources contributing
to broad-sense heritability or confounding.

The patterns found in our GREML-MS analyses were
consistent with the findings of Evans et al. [64] for neuro-
ticism and fluid intelligence. However, both GREML-KIN
and GREML-MS estimates for neuroticism and extraver-
sion fell short of estimates of broad-sense heritability in
twin studies (47% [33]; 45% [71]). As previous research has
suggested [33, 72], this is consistent with epistasis playing a
major role in personality genetics, as a non-additive genetic
component is not captured well outside of twin studies.
Previous research [72] did not discuss gene-environment
correlation and interaction as a plausible cause for herit-
ability estimates being higher in twin than in adoption and
family studies, presumably because the shared environment
contribution to personality variation was usually estimated
not to be different from zero. Still, the difference between
twin estimates of heritability and those presented here may
also be explained to some extent by gene-by-environment
interactions and gene-environment correlations [32].

Another noteworthy divergence occurred between
GREML-KIN and GREML-MS results for the personality
traits. For extraversion, SNPs with a MAF of 0.001–0.01
explained 17.0% (SE= 9.2) while the K component
explained only 4.9% (SE= 5.1) and was dropped from the
final selected model. However, the G plus K estimate for
extraversion is 16.2%, which is not significantly different
from the total heritability estimate provided by GREML-
MS (20.9%). This is consistent with the interpretation that

there is an effect of the K component for extraversion,
which is too small to attain statistical significance in this
sample. The results of neuroticism also do not match
between GREML-KIN and GREML-MS. The total herit-
ability estimate for GREML-MS was 11.4%, similar to the
G estimate, but in GREML-KIN the K explained a further
19% (SE= 2.5), while almost no effect was found for SNPs
with a MAF of 0.001–0.01 using GREML-MS. As the
GREML-KIN estimate is closer to twin and family study
estimates of the narrow-sense heritability for neuroticism, this
discrepancy might mean that the causal variants involved in
neuroticism are even rarer, or perhaps due to non-SNP-
associated genetic variants captured by GREML-KIN, but
missed in GREML-MS. Potentially, the slightly lower mea-
surement reliabilities for our personality measures may
explain why results are less consistent than for intelligence.

The pattern we found using GREML-KIN is consistent
with rare variants explaining much of the gap between
heritability estimates from pedigree and GREML-SC ana-
lyses, although CNVs, and structural variation could also
play a part, because they are poorly tagged by genotyped
SNPs as well. This can be seen in Evans et al. [64], who
used two genomic matrices, corresponding to the GRMg

and the GRMkin in the current study (for continuity, we will
use our terms to describe their matrices). By varying the
frequency of the causal variants in a simulated data set,
Evans et al. showed that even when using only array markers,
the total variance captured by these two matrices was equal to
the true heritability in the data set, irrespective of the fre-
quency of the causal variants. Consistent with the notion that
the pedigree genetic effects captured by the GRMkin are due to
the effect of rare variants, GRMkin captured an increasingly
greater proportion of variance as the causal variant frequency
fell. The reverse was true for the GRMg, which captured less
variance as causal variant frequency fell.

We found further, more direct support for an important
role of rare variants using GREML-MS, which showed that
for each of the cognitive variables examined here, a large
contribution to phenotypic variance was made by SNPs with
a MAF between 0.001 and 0.01. For extraversion, almost all
of the heritability was tagged by low-MAF SNPs. Altogether
this indicates that the genetic signal to be found in imputed
GWAS is much larger than GREML-SC estimates based on
genotyped unrelated individuals would suggest.

In our GREML-MS results for general intelligence and
extraversion the relationship between MAF and cumulative
genetic variance explained was not proportionately linear,
with increasing contributions being made to the genetic
variance explained as MAF fell. This pattern contradicts the
neutral evolutionary model [65] and suggests that rarer
variants have a larger effect on intelligence and extraver-
sion. This is consistent with previous findings that genetic
variance in regions of the genome that have undergone
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purifying selection also make the greatest contributions to
intelligence differences [24].

The GREML-KIN results favour the inclusion of a large
K component for all traits except extraversion. This is
consistent with a major contribution by rare and other
poorly tagged variants. Previous work has already sug-
gested a role for mutation-selection balance acting on harm
avoidance and novelty seeking [73], traits that are related to
neuroticism and extraversion, respectively [74].

A limitation of this the GREML-KIN approach is that X-
specific variance will go unnoticed. This is due to males being
haploid and females being diploid at these regions and so the
expected relationship on X chromosome is different between
pairs of individual of the same sex and pairs of individuals of
different sexes, even though they share the same degree of
relationship, e.g., ~0.5 for mothers-and-daughters but 0 for
fathers-and-sons. As all unmodelled variance remains in the
residuals, the majority of the variance due to the X chromo-
some will, therefore, remain in the residuals.

Another limitation is that the variance analyses are blind
to the direction of effects and the number of variants
involved in each genetic component. If, as we would pre-
dict, future work finds that variants with the lowest minor
allele frequencies tend to have larger negative effects on
intelligence, it would imply a coupling between the selec-
tion coefficient of alleles and their effect on intelligence, as
selective pressure would act to minimise the frequency of
highly deleterious variants. If this coupling were strong
[75], future work might infer that selection on intelligence
was important in the past, even though current selective
pressure appears to go in the opposite direction [76]. If the
impact of intelligence on fitness were limited to instances of
pleiotropy with, for example, health, as some initial research
suggests [20, 21], the coupling between the selection
coefficients of alleles and their effect sizes would be
expected to be weaker. Selective pressure would act on the
health-linked variants, whereas intelligence-linked variants
would only be selected to the extent of their pleiotropic
effects on health. This would de-couple the selection coef-
ficient of an allele and its effect on intelligence. Therefore,
such analyses could disentangle how much directly or
indirectly intelligence has been under selection. Future
work can use the SNPs known to affect intelligence and
personality [17, 18] to empirically quantify the coupling
between allele frequency (indicating selection strength) and
effect size in order to test this explanation directly, as has
been demonstrated for height and BMI [62]. Targeted re-
sequencing of enriched genetic regions [24, 77, 78] might
be necessary to find very rare genetic variants associated
with intelligence and personality, as has proven fruitful for
example in prostate cancer research [79].

The sibling similarity component, which was retained in
all models of intelligence, tracks the meta-analytic estimate

of shared environmental variance (11%) from twin studies
almost exactly. However, in our study the sibling component
might also include the quarter of the dominance variation that
siblings share, because siblings are the only relationship in
this study where dominance plays a significant role [44]. In
the classical twin design, dominance variation (making
dizygotic twins more dissimilar than half the similarity of
monozygotic twins) can be obscured by shared environment
effects (making dizygotic twins more similar). There is some
evidence from other approaches that dominance only plays a
minor role in intelligence differences [80–83].

The family similarity component was only retained in the
model for extraversion, although the point estimate was
non-zero in the full neuroticism model as well. This is
consistent with meta-analytic estimates of shared environ-
ment for adults [71]. However, it may also be due to some
level of confounding between K and F, where the associa-
tion between extraversion and the F is due to contributions
of the genetic factors accounted for by the K.

The couple similarity component is somewhat complex to
interpret. For intelligence and education, there is evidence of
assortative mating [84], which will increase both the genetic
and environmental similarity between couples. The couple
similarity component may mostly reflect this spousal simi-
larity, and possibly also the effects of more recent environ-
mental influences. Beyond that, intelligence is not perfectly
stable across the life course and studies of twins in earlier
childhood frequently find a sizeable shared environment
component. The importance of shared environment is usually
said to decline from childhood to adulthood [85], as indivi-
duals pick their environmental individual niches (i.e., active
gene-environment correlation), but this is based only on
environment shared with siblings. However, it may also be
that the current environment remains important and that the
spouse is a better aggregated indicator of the current envir-
onment than the sibling with whom one usually no longer
shares a home in adulthood. We find no couple similarity
component for personality, which is consistent with much
weaker assortative mating on personality, especially neuro-
ticism and extraversion [86–88].

In the current study, we were able to exploit the high LD
found between members of the same family to estimate the
contribution of genetic effects that are normally missed in
GREML-SC analyses of GWAS data. Using GREML-KIN,
we simultaneously modelled the effect of the family, sibling
and couple similarity to avoid potential environmental con-
founds inflating our estimates of the genetic effects. For
intelligence and education, we find that genetic variants
poorly tagged on current genotyping platforms explained a
substantial proportion of the phenotypic variance, raising our
heritability estimates to match those derived using pedigree-
based quantitative methods. Such variants can include CNVs,
structural variants, and rare variants. We find similar effects
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for neuroticism. For extraversion, pedigree-associated var-
iants appear to play a smaller role in phenotypic variation.
GREML-MS analyses, used with data imputed to the
HRC reference panel, allowed us to examine lower frequency
variants in a sample of unrelated individuals and provides
strong convergent evidence, especially for intelligence
and educational attainment. These results indicate that
future GWAS using HRC imputation will be successful in
finding the large majority of variants associated with intelli-
gence. However for neuroticism whole-genome sequencing
is likely to be more successful as our results from GREML-
KIN suggest a large contribution from non-SNP/very rare/
poorly tagged genetic variants. Finally, our results suggest
mutation-selection balance has maintained heritable variation
in intelligence, and potentially to some degree also in neu-
roticism and extraversion, explaining why differences in
these traits persist to this day despite selection. Future work
should directly measure rare variants, as well as CNVs and
structural variants, and test the direction of their effects.
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