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Retrospective model-based inference guides
model-free credit assignment

Rani Moran® 2, Mehdi Keramati?3, Peter Dayan 145 & Raymond J. Dolan 12

An extensive reinforcement learning literature shows that organisms assign credit efficiently,
even under conditions of state uncertainty. However, little is known about credit-assignment
when state uncertainty is subsequently resolved. Here, we address this problem within the
framework of an interaction between model-free (MF) and model-based (MB) control
systems. We present and support experimentally a theory of MB retrospective-inference.
Within this framework, a MB system resolves uncertainty that prevailed when actions
were taken thus guiding an MF credit-assignment. Using a task in which there was initial
uncertainty about the lotteries that were chosen, we found that when participants’
momentary uncertainty about which lottery had generated an outcome was resolved by
provision of subsequent information, participants preferentially assigned credit within a
MF system to the lottery they retrospectively inferred was responsible for this outcome.
These findings extend our knowledge about the range of MB functions and the scope of
system interactions.
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ARTICLE

fficient adaptation to the environment requires that

organisms solve a credit-assignment problem (i.e. learn

which actions are rewarding in different world-states).
Previous research has demonstrated that organisms use flexible
efficient learning strategies to cope with situations that entail
uncertainty about the state of the world!-7. However, little
attention has been paid to a common case where there is
uncertainty about a state at the time an action is executed and
an outcome is received, but where this state uncertainty can
subsequently be resolved by an inference process. This retro-
spective resolution can dramatically color and explain (away)
the implications of action-outcome pairings. Indeed, whole genres
of detective fiction depend on this very scenario, as does the
dawning realisation of an unwitting victim fleeced by a devious
card shark, who had initially seduced the victim into thinking
they are skilled or blessed with good luck by providing early
rewards. The question we address here concerns the effect of
this retrospective inference on credit-assignment and whether,
and how, it modulates fundamental signatures of reinforcement
learning.

Our experimental approach was framed within the perspective
of dual reinforcement learning (RL) systems. Here, an extensive
body of psychological and neuroscientific literature indicates that
behaviour is governed by two distinct systems®-22—a rigid, ret-
rospective model-free (MF) system?324 and a flexible, prospective
model-based (MB) system?32>, Unlike the MF system, which
tends to repeat actions that were successful in the past, the MB
system deliberates upon the likely future effects of potential
actions. Recent findings suggest that when making decisions, an
agent’s behaviour reflects contributions from both systems!®2>. A
range of theories highlights diverse principles underlying dual
system interactions, such as speed accuracy trade-offs2°, an actor-
trainer dichotomy!7-?7, reliability-based arbitration®?8 and a
plan-to-habit strategy?®. A separate rich body of research shows
that when RL occurs in the face of state uncertainty, beliefs about
states underlie the calculation of prediction errors and guide
learning!~7.

Here we develop and test a theory of retrospective MB infer-
ence. We propose that, in addition to prospective planning, a MB
system performs retrospective inference about states in order to
resolve uncertainty operative at the actual time of a decision. We
can summarise this as posing a question that asks not only “where
should I go?” but also “where did I come from?” Our theory
draws inspiration from a dual role that cognitive models play in
real-life not only in predicting future states and outcomes, but
also in retrospectively inferring past hidden states. In a social
domain, for example, one relies on models of close others not
only to predict their future actions but also to cast light on
motives that underlined their past actions. Our key proposal is
that in situations involving temporary state uncertainty, a MB
system exploits its model of task structure to resolve uncertainty
retrospectively, i.e., following a choice. Furthermore, we suggest
that a MF system can exploit the outcome of a MB inference to
assign the credit from a choice preferentially to an inferred state,
thus underpinning a form of interaction between the MB and MF
systems.

To test this hypothesis we designed a task with state uncer-
tainty and in which it was possible to dissociate MB and MF
control of behaviour. At selected points, subjects had to choose
between pairs of bandits (i.e., lotteries), and were informed that
only one of the two bandits of their chosen pair will be executed.
Critically, observers were not informed explicitly which of the
two bandits this actually was but they could retrospectively infer
the identity of the executed bandit once they observed which
outcomes ensued. We found evidence for MF learning that was
greater for the executed bandit, supporting a hypothesis that a

MB system retrospectively infers the correct state and that this
inference directs a MF credit assignment. In our discussion we
consider potential algorithmic and mechanistic accounts of these
findings.

Results

Behavioural task. We developed a dual-outcome bandit task in
which we introduced occasional instances of uncertainty with
respect to which bandit was actually executed. In brief, at the
outset, participants were introduced to a treasure castle that
contained pictures of four different objects. Subjects were trained
as to which pair of rooms—out of four castle rooms characterised
by different colours—each object would open. Each individual
room was opened by two distinct objects, while each object
opened a unique pair of rooms (Fig. 1a).

Following training, each participant played 504 bandit trials.
Two out of every three trials were “standard trials”, in which a
random pair of objects that shared a room as an outcome were
offered for 2 s. Subjects had to choose between this pair. Once a
choice was made, the two corresponding rooms opened, one after
the other, and each could be either empty or contain a bonus
point worth of treasure (Fig. 1b). Every third trial was an
“uncertainty trial” in which, rather than two objects, two disjoint
pairs of objects were presented for choice. Crucially, each of these
presented pair of objects shared one Common-room outcome.
Participants were informed that a “transparent ghost” who
haunted the castle would randomly nominate, with equal
probability, one of the objects within this chosen pair. Since the
ghost was transparent, participants could not see which object
it nominated. Nevertheless, in this arrangement subjects still
visited the opened rooms and collected any treasure they found.
Importantly, when the ghost nominated an object, the room
Common to both objects in the chosen pair opened first, and the
room that was Unique to the ghost-nominated object opened
second. Thus, it was at this second point that participants could
infer the object that the ghost had nominated. Across the time-
course of the experiment, room reward probabilities were
governed by four independently drifting random walks (Fig. 1c).

Model-free and model-based contributions in standard trials.
Because our main analysis concerns the effect of MB inference
on MF-learning, it is important to show first that participants
in the task relied on contributions from both systems. Thus,
we begin by specifying how each putative system contributes
to performance and, in so doing, show significant MF and MB
contributions to choices.

The MF system caches the rewards associated with previous
object choices. In the choice phase of standard trials, the
MF system feeds retrieved QMF-values of the objects offered
for choice into a decision module. In the learning phase
on standard trials, the simplest form of MF system performs
a Rescorla-Wagner30 update with learning-rate Ir, based on a
prediction error corresponding to the total reward of the two
consequent rooms (ignoring the sequence):

QMF(chosen object) « Q" (chosen object) + Ir * (total reward — Q™F(chosen object))

(1)

Importantly, as the MF system lacks a model of the task
transitions, on each trial its credit-assignment is restricted to
updates generated by the object chosen on that trial (as in
Doll et al., 20152°). For example, a blue-room reward following
a choice of the stove will update the MF QMF-value of the
stove but not of the light-bulb, which also happens to open
the blue room.
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Design of the task
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Fig. 1 Task Structure. a Participants were introduced to four objects and learned which unique pair of rooms each object could open. Each room was opened
by either of two different objects. When opened, rooms probabilistically provided a one-point value treasure. b During standard trials (left) participants
were asked to choose, within 2 s, one of two randomly-offered objects, and then visited sequentially the pair of rooms opened by that chosen object. At this
point, participants discovered, for each room, whether it contained a treasure or was empty. In every third, uncertainty, trial (right), participants chose
one of two object-pairs (left or right). Participants were instructed that a hidden hand (a ghost) would nominate one of the objects in their chosen pair
randomly without revealing which. Participants then visited the pair of rooms that the object, nominated by the ghost, opened and earned whatever

treasure was available in those rooms. Importantly, on an uncertainty trial, the first outcome was common to both objects in the chosen pair and hence
did not support an inference about the ghost's nomination. The second outcome, however, was unique to the ghost-nominated outcome and hence,

allowed an MB retrospective inference with respect to the ghost's nomination. We hypothesized that participants not only inferred the ghost's nomination
but that in addition this inference would guide the expression of MF learning. This in turn leads to a specific prediction that MF learning will be stronger for
a ghost-nominated object compared to a ghost-rejected object. € Across trials, reward probabilities for the four rooms drifted according to independent

Gaussian random walks with reflecting bounds at O and 1. Images adapted from the stimulus set of Kiani et al. 2007, ref. 40

There are various possible MB systems. The most important
difference between them concerns whether the MB system learns
directly about the rooms, and uses its knowledge of the transition
structure to perform an indirect prospective calculation of the
values of the objects presented on a trial based on the values of
the rooms to which they lead (henceforth, a ‘room value learning’
MB system), or whether it uses knowledge of the transition
structure to learn indirectly about the objects, and then uses these
for direct evaluation (henceforth, an ‘object value learning’ MB
system). While these two formulations of an MB system are
similar in that they both allow generalization of observations

about rewards to objects that were not chosen or nominated,
they nevertheless differ in their value calculations and generate
different experimental predictions.

Until the very end of this section, our presentation relies on
the room value learning formulation. This is justified because a
model comparison (Supplementary Fig. 5) revealed that it was
superior to an object-value learning formulation. According
to this model, rather than maintaining and updating QMB-values
for the objects, an MB system instead does so for the rooms, and
prospectively calculates on-demand QMB-values for the offered
objects. In standard trials, this is (normatively) based on the
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arithmetic sum of the values of their corresponding rooms:

Q"®(object) = Q5 (corresponding room 1) + Q™®(corresponding room 2) (2)

During the learning phase of standard trials, the system
performs Rescorla~Wagner updates for the values of the observed
rooms:

Q"®(room) « QB(room) + Ir * (room reward — Q"®(room)) (3)

Consequently, unlike MF, MB credit-assignment generalizes
across objects that share a common outcome. To continue the
example, when a blue room is rewarded, QMB(blue room)
increases and in following calculations, the on-demand QMB-
values for both the stove and light-bulb will benefit.

We next show, focusing on model-agnostic qualitative
behavioural patterns alone, both MF and MB contributions to
choices. These analyses are accompanied by model-simulations of
pure MF and pure MB contributions to choices. The main
purpose of these simulations is to support the reasoning
underlying our analyses. A full description of these models is
deferred to a later section.

In this behavioral analysis we confine ourselves to Standard—
Standard trial transitions. Consider a trial-n + 1, which offers for
choice the trial-n chosen object (e.g. key), against another object
(e.g. stove; Fig. 2a). The two offered objects open a “Common
room” (e.g. green, denoted C) but the trial-n chosen object also
opens a “Unique room” (brown, denoted U). We tested if the
probability of repeating a choice depended on the trial-n
Common-room outcome, while controlling for the Unique-
room outcome (Fig. 2b). From the perspective of the MB system
(Fig. 2c), the value of the Common room, and in particular,
whether it had been rewarded on trial-n, exerts no influence on
the relative QMB-values of the currently offered objects, because
this value “cancels out”. For example, the calculated MB value of
the key on trial-n + 1 is the sum of the MB Q values of the green
and brown rooms. Similarly, the calculated MB value of the stove
on trial-n 4 1 is the sum of the MB Q values for the green and the
blue rooms. The MB contribution to choice depends only on the
contrast between these calculated key and stove values, which
equals the difference between the MB values of the brown and
blue rooms. Notably, the value of the green room is absent from
this contrast and hence does not affect MB contributions to
choice on trial-n 4 1. From the perspective of the MF system,
however, a Common-room reward on trial-n reinforces the
chosen object alone leading to an increase in its repetition
probability, as compared to non-reward for this Common room
(Fig. 2d).

Using a logistic mixed effects model, in which we regressed the
probability of repeating the trial-n choice on Common and
Unique trial-n outcomes, we found (Fig. 2b) a main effect for the
Common outcome (b= 0.98, #(3331) = 8.22, p = 2.9e-16; this is
evident in the red, C-Rew, line being above the blue, C-Non, line),
supporting an MF contribution. Additionally, we found a main
effect for the Unique reward (b=2.03, #(3331)=14.8, p=
4.9e-48; evident in the increase of both red and blue lines from
U-Non to U-Rew), as predicted by both MF and MB
contributions, and a significant interaction between Common
and Unique outcomes (b=0.46, #(3331)=2.49, p=0.013)
indicating that the effect of the Common outcome was modestly
larger when the Unique room was rewarded than unrewarded. An
analysis of simple effects revealed that the Common room had a
positive effect irrespective of whether the Unique room was
unrewarded (b=0.75, #(3331) =4.60, p=4e-6) or rewarded
(b=1.21, #(3331) =8.73, p = 4e-18; See Supplementary Note 1
for clarifications about Fig. 2).

Turning next to a MB contribution, consider a trial-n + 1,
which excludes the trial-n chosen object (e.g., key; Fig. 2f) from
the choice set. In this case, the trial-n chosen object shares a
Common room (e.g. green) with only one of the trial-n+1
offered objects (e.g. stove), whose choice we label a “general-
ization”. Additionally, the trial-n-chosen object shares no outcome
with the other trial-n + 1 offered object (e.g. bulb). We examined
whether the probability of generalizing the choice depended on
the Common outcome on trial-n (Fig. 2g). A MB contribution
(Fig. 2h) predicts a higher choice generalization probability when
the Common-room was rewarded on trial-», as compared to non-
rewarded, because this reward increases the calculated Q-values of
all objects (including the stove) that open that room.

Considering the MF system (Fig. 2i), trial-n reward-events
cannot causally affect choices on trial-n + 1, because learning
on trial-n was restricted to the chosen object, which is not
present on trial-n + 1. However, MF predictions are somewhat
complicated by the fact that a Common green outcome on trial-
n (reward vs. non-reward) is positively correlated with the
MF Q-value of the stove on trial-n + 1. To understand this
correlation, note that the reward probability time series for each
room is auto-correlated since it follows a random walk. This
means coarsely that the green room’s reward probability time
series alternates between temporally extended epochs during
which the green room is better or worse than its average in
terms of a reward probability. When the green room is
rewarded vs. unrewarded on trial-n, it is more likely that the
green room is currently spanning one of its better epochs.
Importantly, this also means that the stove was more likely to
earn a reward from the green room when it had recently been
chosen prior to trial-n. Thus, a Common-room reward for the
key on trial-n is positively correlated with the MF value of
the stove on trial-n + 1. It follows that an MF contribution
predicts a higher generalization probability when the Common
room is rewarded as compared to non-rewarded (Fig. 2i).
Critically, because this MF prediction is mediated by the reward
probability of the Common room (i.e., how good the green
room is in the current epoch), a control for this probability
washed away a MF contribution to the effect of the Common
trial-n outcome on choice generalization (Fig. 2m), hence
implicating the contribution of an MB system (Fig. 21I).

A logistic mixed effects model showed (Fig. 2k) a positive
main effect for the Common outcome (b = 0.40, #(3225) = 3.328,
p =9e-4) on choice generalization, supporting an MB contribu-
tion to bandit choices. Additionally, we found a significant main
effect for the Common outcome’s reward probability (b=1.94,
(3225) =7.08, p = 2e-12) as predicted by both systems (Fig. 21,
m) and no interaction between the Common trial-n outcome and
the Common room’s reward probability (b= —0.75, #(3225) =
—1.76, p = 0.079). Note that unlike our analysis which pertained
to an MF contribution (Fig. 2a-e), the analysis pertaining to MB
contributions did not control for the effect of the Unique room
(e.g. brown), because it was an outcome of neither choice object
on trial-n + 1. Hence, this room’s outcome was expected to exert
no influence on choice generalization from the perspective of
either MB or MF. Indeed, when we added the Unique-room trial-
n outcome to the mixed effect model, none of the effects involving
the Unique-room outcome were significant (all p > 0.05), and the
effects of the Common room’s outcome and Common reward
probability remained significantly positive (both p < 0.001) with
no interaction. Consequently, this room was not considered in
our analyses pertaining to a MB’s contribution to performance.

MB inference guides MF learning on uncertainty trials. Having
established that both systems contribute to performance we next
addressed our main set of questions: do people infer the ghost-
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nominated object and, if so, does this inference guide the
expression of MF learning? To address these questions we probed
whether on uncertainty trials, MF learning discriminated between
constituent chosen-pair objects, a finding that would implicate a
retrospective inference of the ghost-nominated object. MF
learning in this instance was gauged by probing on uncertainty
trials the effect of outcomes on follow-up standard trial choices
(Fig. 3).
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Recall that following a ghost nomination, agents observe first
the room that is common to the objects in their chosen pair, and
then the room unique to the ghost-nominated object. Therefore,
agents have a 50-50% belief with respect to the ghost-nominated
object when they choose a pair, and this belief is maintained upon
observing the first outcome, which is non-informative with
respect to inference of the ghost’s nominee. Critically, following
the second outcome, an MB system can infer the ghost-
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Fig. 2 MF and MB contributions to performance. a In showing a contribution of the MF system, we analysed only standard trials that followed a standard
trial and that offered for choice the previously chosen object. For clarity, we represent objects by their associated pair of rooms; in the experiment
participants saw the object images alone. Places for objects whose identity did not affect the analysis (and were marginalized over) are left empty. b The
empirical probability of repeating a choice as a function of the previous-trial Common (“C"), and Unique (“U") outcomes. The main effect of the Common
outcome highlights an MF contribution to bandit choices. ¢ Indeed, a pure MB model failed to predict this effect (our models are described in the
computational modelling section), d but a pure MF-action model predicted it. e The full model predicted this effect. f In showing a contribution of the
MB system, we analysed only standard trials that followed a standard trial and that excluded the previously chosen object. g The empirical main effect
of the Common room on generalization probability. h-j The pure MB, pure MF and the full model, all predicted a positive effect for the Common room.
k The empirical coefficients of the trial-n Common room’s outcome (unrewarded vs. rewarded; Rew), reward probability (Prob) and their interaction (Int)
when choice generalization is regressed on these variables. The positive coefficient of the Common outcome highlights a MB contribution to bandit
choices. | Indeed, a pure MB model predicted a positive coefficient for the Common reward, m whereas a pure MF-action model did not. n The full
model predicted a positive coefficient for the Common outcome. Error bars correspond to SEM across-participants calculated separately in each condition
(n=40). Dotted arrows indicate the main effect of focal interest. *,** and *** denote p < 0.05, p<0.01 and p <0.001, respectively. When no asterisk
appears, the effect of interest is non-significant (p > 0.05). In g-j p-values were calculated based on paired-samples t-tests. In panels b-e, k-n p-values
were calculated based on mixed effects logistic regression models. Dots in panels b, g correspond to individual participant results. Images adapted from

the stimulus set of Kiani et al. 2007, ref. 40

nominated object, with perfect certainty, based upon a repre-
sentation of task transition structure. The second outcome is
therefore informative with respect to inference of the ghost’s
nominee. Henceforth, we denote the first and second outcomes
by “N” (for Non-informative) and “I” (for Informative). We
hypothesised that inferred object information is shared with the
MF system and this directs learning towards the chosen object.
Here we assume that after outcomes are observed, the MF system
updates the QMF-values of both objects in the chosen pair,
possibly to a different extent (i.e., with different learning rates). In
the absence of inference about the ghost’s nomination, the MF
system should update the QMF-values of both objects to an equal
extent. Thus, a finding that learning occurred at a higher rate for
the ghost-nominated, as compared to the ghost-rejected, object
would support a retrospective inference hypothesis.

Consequently, we examined MF learning in uncertain trials
by focusing on Uncertain—Standard trial transitions. The task
included three sub-transition types, which were analysed in turn.
We first present the findings in support of our hypothesis. In the
discussion we address possible mechanistic accounts for these
findings.

Informative outcome credit assignment to nominated object.
First, we show that MF assigns credit from the Informative out-
come to the ghost-nominated object. Consider a standard trial-n
+ 1 (following an uncertainty trial-n) that offered for choice the
ghost-nominated object (e.g. key) alongside an object (e.g. phone)
from the trial-n non-selected pair that shared the previously
inference-allowing, I, outcome (e.g. brown) with the ghost-
nominated object; (Fig. 4a). We label such trials “repeat trials”. A
choice repetition is defined as a choice of the previously ghost-
nominated object. We tested whether a tendency to repeat a
choice depended on the trial-n Informative outcome. Note that
from the perspective of MB evaluations on trial-n+ 1 the
Informative room’s value cancels out because this room is asso-
ciated with both offered objects. From the perspective of the MF
system, however, if Informative outcome credit was assigned to
the ghost-nominated object on trial-n, then reward vs. non-
reward on an Informative room should increase the repetition
probability.

A logistic mixed effects analysis, in which we regressed the
probability of repeating the choice on trial-n outcomes, showed a
main effect for the Informative (I) outcome (b = 0.84, £(2204) =
7.17, p = le-12), supporting an hypothesis that MF assigns credit
from this outcome to the ghost-nominated object. Additionally,
we found a main effect for the Non-informative (N) outcome (b

=149, #(2204) =10.63, p =9e-26), as predicted by both MF
credit-assignment to the ghost-nominated object and by MB
contributions, and no significant interaction between the
Informative and Non-informative outcomes (b= 0.35, £(2204)
= 1.66, p =0.098).

Informative outcome credit assignment to rejected object.
Second, we tested whether credit from the Informative outcome
was also assigned by an MF system to the ghost-rejected object.
Consider a standard trial-n + 1 that offered for choice the ghost-
rejected object (e.g. stove) alongside an object from the trial-n
non-selected pair (e.g. bulb) that shares an outcome with the
ghost-rejected object (Fig. 4b). We label such trials “switch trials”.
A choice generalization is defined as a choice of the previously
ghost-rejected object. Does the tendency to generalize a choice
depend on the trial-n Informative outcome? An MB contribution
predicts no effect, because the Informative room is an outcome of
neither trial-n + 1 choice-object. From the perspective of the MF
system, however, if credit had been assigned to the ghost-rejected
object on trial-n, then reward versus non-reward on an Infor-
mative outcome should increase the generalization probability.

A logistic mixed effects model, in which we regressed the
choice generalization probability on the trial-n outcome, showed
a main effect for the Informative outcome (b= 0.32, £(2207) =
2.92, p=0.004), supporting the hypothesis that an MF system
assigns credit to the ghost-rejected object. This result is striking
because it shows that the MF system assigned credit from
the Informative outcome to an object that is not related to
that outcome. This challenges any notion of perfect MB guidance
of MF credit-assignment. However, it is consistent with
the possibility that some participants, at least some of the time,
do not rely on MB inference because when MB inference does
not occur, or when it fails to guide MF credit-assignment,
the MF system has no basis to assign credit unequally to both
objects in the selected pair. Additionally, we found a main
effect for the Non-informative outcome (b = 1.15, #(2207) = 8.80,
p = 3e-18), as predicted, not only by an MF credit-assignment to
the ghost-rejected object account but also by MB contributions.
We found no significant interaction between the Informative
and Non-informative outcomes (b= —0.07, t(2207) = —0.31,
p=0.755).

Informative outcome preferential credit assignment. Hitherto
we showed that on uncertainty trials, credit obtained from an
Informative, inference-allowing, outcome was assigned in a MF
manner to both the ghost-nominated and the ghost-rejected
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Fig. 3 MB retrospective inference and its effects on MF learning. After the
agent choses an object pair (here, left), the ghost nominates randomly (and
latently) one of the objects in this selected pair (here, top). The agent,
therefore, has a 50-50% belief with respect to the ghost-nominated object.
The posterior belief after observing the first (green) outcome remains
50-50% since this outcome is common to both chosen-pair objects. The
second (brown) outcome is unique to the ghost-nominated object and
hence, a model of the transition structure allows for perfect inference on
the ghost's nomination. We probed different types of standard follow-up
trials to examine how the MF system assigned credit to rewards that were
obtained on the uncertainty trials. In the absence of any inference about the
ghost's nomination, learning should be equal in strength for both objects
in the pair chosen by the subject. Supporting our retrospective-inference
theory, we found that an MF assignment of credit received from the second
outcome is mainly attributed to the ghost-nominated object (indicated

by the thickness of the bottom “reinforcement” arrows). Strikingly, we also
found that credit from the first outcome was assigned to a larger extent
to the ghost-nominated object (indicated by the thickness of the top
“reinforce” arrows). Images adapted from the stimulus set of Kiani et al.
2007, ref. 40

objects. We hypothesized that the Informative outcome would
support MB retrospective inference, and boost MF learning
for the ghost-nominated object. Thus, we compared (Fig. 4d)
effects that the Informative outcome exerted over choice on
follow-up repeat and switch trials, ie. the effects from the
previous two analyses (Fig. 4a, b). For each participant, we cal-
culated the contrast for the probability of repeating a choice
in repeat follow-ups when the Informative trial-n outcome
was rewarded vs. non-rewarded (M =0.159, SE=0.024).

Additionally, we computed the corresponding contrast for the
probability of generalizing the choice in switch follow-ups (M =
0.086, SE = 0.024). Importantly, the former contrast was larger
than the latter (#(39) = 2.29, p = 0.028), implicating enhanced MF
credit-assignment to the ghost-nominated object.

Non-informative outcome preferential credit assignment. We
next examine MF credit assignment for the first Non-informative
outcome. Consider a standard trial-n + 1 that offered for choice
the trial-n ghost-nominated object alongside the ghost-rejected
object, i.e. the trial-n chosen pair (Fig. 4c). We label such trials
“clash trials”. We defined a choice repetition as a trial-n+1
choice of the object the ghost-nominated on trial-n. As in pre-
vious cases, the MB contribution predicts no effect of the trial-n
Non-informative outcome due to cancelling out. From the per-
spective of the MF system, however, if credit was assigned pre-
ferentially to the ghost-nominated object on trial-n, then a Non-
informative-reward, as compared to non-reward, should increase
the repetition probability.

A logistic mixed effects model, in which we regressed the
choice repetition probability on trial-n outcomes, showed a main
effect for the Non-informative outcome (b = 0.20, #(2197) = 1.98,
p =0.048), supporting the hypothesis that MF credit assignment
is mainly directed to the ghost-nominated object. This finding
is striking, because during reward administration for the first
room, participants have a 50-50% belief about which object
had been nominated by the ghost. We suggest that this supports
the idea of an MF credit-assignment mediated by a later
retrospective-inference. Additionally, we found a main effect for
the Informative outcome (b= 1.40, #(2197) =9.41, p = le-20),
as predicted by both the enhanced MF credit-assignment for
the ghost-nominated object hypothesis and by a MB contribution.
We found no significant interaction between Non-informative
and Informative outcomes (b=0.48, #(2197)=1.89, p =0.059)
(See Supplementary Fig. 1 for supporting model simulations
demonstrating that preferential credit-assignment for the ghost-
rejected object is necessary to account for the empirical effects).

Computational modelling. One limitation of the analyses
reported above is that they isolate the effects of the immediately
preceding trial on a current choice. However, the actions of RL
agents are influenced by the entire task history. To account for
such extended effects on behavior, we formulated a computa-
tional model that specified the likelihood of choices. The model
allowed for a mixture of contributions from MB and MF pro-
cesses. Critically, our model included three free MF learning-rate
parameters, which quantified the extent of MF learning for
standard trials (Irgandarq), for the ghost-nominated object in
uncertainty trials (Irghost-nom) and for the ghost-rejected object on
uncertainty trials (Irgnost.rej). Additionally, we formulated four
sub-models of interest: (1) a pure MB model, which was obtained
by setting the contribution of the MF and its learning rates to 0
(ie. wmp =1 Ifgandara = lrghostfnom = lrghost—rej =0), (2) a pure
MF-action model, which was obtained by setting the contribution
of the MB system to choices and its learning rate to 0 (i.e. wyp =
0; Irpg = 0; Note that in this model, a MB inference was allowed
to guide MF inference), (3) a ‘non-inference’ sub-model obtained
by constraining equality between the learning rates for the ghost-
nominated and rejected objects, Irghost-nom = Ifghost-rej and (4) a
‘no-learning for ghost-rejected’ sub-model, which constrained
the learning rate for the ghost-rejected object to Irgnogt-rej = 0.
We fitted these models to each participant’s data using a
Maximum-Likelihood method (See the methods for full details
about the models; See Supplementary Table 1 for the full model’s
fitted parameters).
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Fig. 4 MF Learning for ghost-nominated and ghost-rejected objects on uncertainty trials. a The probability of repeating a choice, i.e., select the trial-n ghost-
nominated object, as a function of the previous-trial non-informative, “N" (here green), and informative, inference-allowing, “I” (here brown) outcomes
(bottom). Only “repetition” standard trials that offered for choice the previously ghost-nominated object alongside the object from the previously non-
chosen pair, which shared the previously informative outcome with the ghost-nominated object, were analysed. The main effect of the Informative outcome
implies that credit from this outcome was assigned by a MF learner to the ghost-nominated object. b Similar to a, but here, the probability to generalize
the choice, i.e., select the ghost-rejected object is shown. Only “switch” standard trials that offered for choice the previously ghost-rejected object
alongside an object from the previously unchosen pair (the one that shares an outcome with the ghost-rejected object) were analysed. The main effect of
the Informative (brown) outcome implies that credit from this outcome was assigned by MF to the ghost-rejected object. ¢ Similar to a but only “clash”
standard trials that offered for choice the previously ghost-nominated and rejected objects, i.e., the previously chosen pair, were analysed. The main effect
of the non-Informative outcome (green) implies that credit from this first outcome was assigned by MF mainly to the ghost-nominated object. Each
standard trial after an uncertain trial was either a repeat, switch or a clash trial and hence contributed to exactly one of the panels. d Comparing the main
effects from the analyses in a and b shows that credit from the second informative, inference-allowing, outcome was assigned by MF mainly to the ghost-
nominated object. Error bars correspond to SEM across-participants calculated separately in each condition, n = 40. Dotted arrows indicate the main effect
of interest. *,** and *** denote p < 0.05, p<0.01 and p < 0.001, respectively. In case no asterisks are presented, the effect of interest was not significant.

In a-c p-values were calculated based on a mixed effects logistic regression models. In d, p-values were calculated based on a paired-sample t-test.
Dots represent individual participant results. Images adapted from the stimulus set of Kiani et al. 2007, ref. 40

We next compared our full model separately with each of these
sub-model. Our model comparisons were all based on a bootstrap
generalized-likelihood ratio test (BGLRT3!) between the full
model and each of its sub-models in turn (see methods for
details). In brief, this method is based on hypothesis testing,
where, in each of our model comparisons, a sub-model serves
as the HO null hypothesis and the full model as the alternative
H1 hypothesis. The results were as follows. First, we rejected
the pure MB and the pure MF-action sub-models for 26 and
34 individuals, respectively, at p <0.05, and at the group level
(both p <0.001) (Fig. 5a, b). These results support a conclusion
that both MB and MF systems contribute directly to choices in
our task. Next, we rejected the ‘no-learning for ghost-rejected’
sub-model for 10 individuals at p <0.05, and at the group level
(p<0.001) (Fig. 5¢), showing that in uncertainty trials, learning
occurs for ghost-rejected objects. Additionally, and most
importantly, we rejected the ‘non-inference’ sub-model for 12
individuals at p < 0.05, and at the group level (p < 0.001) (Fig. 5d),
showing that learning is different for the retrospectively inferred
ghost-nominated than the ghost-rejected object. We note that
although the ‘non-inference’ and the ‘no learning for ghost
rejected” models were each rejected for a minority of the
participants (10 and 12 participants, respectively), the size of
these minorities are nevertheless substantial considering that our
task was not optimally powered to detect individual participant
effects, and given significance testing at p = 0.05 should yield on
average two rejections (out of 40 participants) when the null
hypothesis holds for all participants. Finally, applying the

Benjamini-Hochberg procedure3? to control for the false
discovery rate, the ‘non-inference’ and the ‘no learning for ghost
rejected’ models were rejected for 10 and four individuals,
respectively.

We next ran a mixed effects model in which we regressed the
MF learning rates from the full model on the learning context
(standard/ghost-nominated/ghost-rejected). This analysis (Fig. 6a)
showed that the three learning rates differed from each other
(F(2,117) = 3.43, p =0.036). Critically, as expected the learning
rate for the ghost-nominated object was greater than for the
ghost-rejected object (F(1,117) =6.83, p=0.010). Additionally,
the learning rate for the standard condition was larger than
for the ghost-rejected object (F(1,117) =4.05, p =0.047), with
no significant difference between the learning rate for the
ghost-nominated object and for standard trials (F(1,117) =
0.920, p=0.340). These findings provide additional support
for the hypothesis that a retrospective inference process directs
MF learning towards the object that could be inferred to have
been nominated, and away from the one that was rejected.

Finally, because the models reported in the main text did
not include MF eligibility traces’3, we examined whether such
traces, rather than preferential learning based on retrospective
inference, might account for the qualitative “preferential
MF credit assignment” patterns presented in Fig. 4c, d. We
found that models based on eligibility-driven MF learning failed
to account for the observed patterns (See methods for full model
descriptions; See Supplementary Fig. 1I-L for the predictions
of these models).
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Fig. 5 Model-comparison results. a Results of the bootstrap-GLRT model-comparison for the pure MB sub-model. The blue bars show the histogram of the
group twice log-likelihood improvement (model vs. sub-model) for synthetic data that was simulated using the sub-model (10001 simulations). The blue
line displays the smoothed null distribution (using Matlab’s “ksdensity”). The red line shows the empirical group twice log-likelihood improvement. Zero
out of the 10001 simulations yielded an improvement in likelihood that was at least as large as the empirical improvement. Thus, the sub-model can be
rejected with p<0.001. b Same as a, but for the pure MF-action sub-model. This sub-model was rejected with p<0.001. ¢ Same as a but for the no
learning for ghost-rejected sub-model, p <0.001. d Same as a but for the non-inference sub-model, p < 0.001
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Fig. 6 Analyses based on the ML parameters of the full model. a Group averaged MF learning rates for standard trials, ghost-nominated and the ghost-
rejected object. Error bars represent standard errors, n=40. * denotes p < 0.05 according to a mixed effects linear model. Dots represents individual
participants. b The specificity of MF learning, i.e. the contrast between learning rates for the ghost-nominated and rejected objects (ordinate), is plotted
against the relative MB contribution (abscissa). Each dot corresponds to a single participant. The dashed line is the regression line. Error bars represent the
densest interval that contained 50% of the mass of the estimated learning-rate difference distribution obtained by parametrically bootstrapping the data
(see methods for details). The p-value was calculated based on a one-sided permutation test

Correlation between MB contribution and learning specificity.
As model-basedness increases, the relative contribution of MF to
performance, and hence the influence of MF’s learning rates
on performance, decreases. Importantly, the full model allowed
for an estimation of the extent to which each subject’s MF credit
assignment prefers the ghost-nominated over the ghost-rejected
object (Ifghost-nom — Ifghost-rej)s controlling for the extent to
which that subject relies on MB in his/her choices (wyp). Our
retrospective-inference theory predicts that MB inference of the
ghost-nominated object, which relies on knowledge of the task’s
transition structure, directs MF learning towards this inferred
object. This suggests that the greater the degree of a subject’s
model-basedness, the better they can infer the ghost’s

nominations and hence, the more specific MF-learning might
be on uncertainty trials. In support of this hypothesis, we found
(Fig. 6b) a positive across-participants correlation (r=0.29,
p=0.034 based on one-sided permutation test) between wyp
and Irgnost-nom — Ighostrep @8 quantified by the maximum-
likelihood model-parameters (Supplementary Fig. 7 for a fur-
ther control analysis, addressing the higher learning-rate
measurement noise as model-basedness increases).

Object value learning MB system. As noted, all the main ana-
lyses in this section are based on a room value learning version of
MB reasoning. This was motivated by its superior fit to the data.
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However, in order to support the robustness of our results we
repeated our analyses of the influence of MB inference on MF
value updating, but now assuming that an object-value learning
version was responsible for the MB values (noting that the MB
inference about which object had been nominated by the ghost is
unaffected). In this approach we obtained the same conclusions
(Supplementary Figs. 2-4 and 6).

Discussion

Extensive research in dual systems RL has emphasized a funda-
mental “temporal-orientation” distinction between the MF and
MB system. According to this notion, a MF system is retro-
spective, as it merely caches the “effects” of past actions, whereas
a MB system is prospective, in that it plans actions based on
evaluating the future consequences of these actions with respect
to one’s goals. However, models of the task and the environment
can be used for other functions. Here, we introduce a theory of
MB retrospective inference. This theory addresses the frequent
occurrence in which many of our actions are executed under
conditions of state uncertainty, i.e. when important aspects of the
state are latent. The theory proposes that we use our model of the
world to resolve retrospectively, at least partially, an uncertainty
operative at the very time actions were taken with implications
for credit assignment. The MB system, therefore, does not focus
solely on forming future action-plans, but has a function in
shaping the impact of past experiences.

Our findings show that in the context of our task a MF system,
which caches rewards obtained from choosing different objects
without relying on a transition structure, can use retrospectively
inferred knowledge about the ghost’s nomination to selectively
assign outcome credit to the relevant object. Indeed, we found
that on uncertainty trials, MF learning was spared for the ghost-
nominated object, i.e. it occurred with a rate that was similar to
standard, no-uncertainty, trials. For the ghost-rejected object, on
the other hand, learning was hindered. Note that credit was still
assigned to the ghost-rejected object, a finding that is expected if
some participants do not retrospectively resolve uncertainty, or if
participants resolve it only part of the time. A striking aspect of
our findings is that MF credit assignment discriminated in favour
of the inferred ghost-nominated object, not only for an infor-
mative, inference-supporting, second outcome, but also for the
non-informative first outcome when observers still maintain a
50-50% belief. An important question pertains to potential
mechanisms that might account for these findings. We consider
two, which we discuss in turn, namely delayed learning and a
DYNA!7:27 architecture.

A delayed learning account rests on the idea that an MF-
teaching prediction-error signal, based on total trial-reward, is
calculated only at the end of uncertainty trials, after inference has
already occurred. Notably, our task offered certainty that this
uncertainty would be resolved later (ie. after observing both
outcomes). Thus, the MF system could in principle postpone a
first-outcome credit assignment and “wait” for a MB inference
triggered by observing a second outcome. Once a MB system
infers the relevant object it can presumably increase a MF elig-
ibility trace33 for the inferred object and reduce it for the non-
selected object, a process manifest as a higher MF learning rate
for the inferred object. Many real-life situations, however, impose
greater challenges on learners because it is unknown when, and
even whether, uncertainty will be resolved. Indeed, there can
often be complex chains of causal inference involving successive,
partial, revelations from states and rewards. In such circum-
stances, postponing credit assignment could be self-defeating.
Thus, it may be more beneficial to assign credit in real-time
according to one’s current belief state, and later on, if and when

inferences about past states become available, enact “corrective”
credit assignments adjustments. For example, upon taking an
action and receiving a reward in an uncertain state, credit could
be assigned based on one’s belief state. Later, if the original state is
inferred, then one can retrospectively deduct credit from the non-
inferred state(s) and boost credit for the inferred state. Our
findings pave the way for deeper investigations of these important
questions and where it would be appealing to exploit tasks in
which uncertainties arise, and are resolved, in a more naturalistic
manner, gaining realism at the expense of experimental precision.
More broadly, we consider much can be learned from studies that
address neural processes that support MB-retrospective inference,
how such inferences facilitate efficient adaptation, and how they
contribute to MB-MF interactions.

Our findings also speak to a rich literature concerning various
forms of MB-MF system interactions. In particular, the findings
resonate with a DYNA architecture, according to which the MB
system trains a MF system by generating offline (i.e. during inter-
trial intervals) hypothetical model-based episodes from which an
MF system learns as if they were real. Our findings suggest
another form of MB-guidance, inference-based guidance whereby
upon resolving uncertainty, an MB system indexes appropriate
objects for MF credit assignment. One intriguing possibility arises
if one integrates our findings with DYNA-like approaches.
Consider a case where the MF system assigns credit equally to
inferred and non-inferred objects online (ie. during reward
administration), but that MB inference biases the content of
offline-replayed MB-episodes. For example, if the MB system is
biased to replay choices of the inferred, as opposed to the non-
inferred object (i.e. replay the last trial with its uncertainty
resolved), then this would account for enhanced MF-learning for
inferred relative to the non-inferred object. Future studies can
address this possibility by manipulating variables that affect
offline-replay such as cognitive load!” or perhaps by direct
examination of replay that exploits neurophysiological measures.

The importance of retrospective inference chimes with a truism
that those who learn from history can also improve upon it.
Consider, for example, a situation in which the ghost’s nomina-
tions are biased towards the upper object rather than being
uniform. In this case, inference about the ghost nominations
would allow an agent to learn about the ghost’s bias, which could
subsequently be deployed in the service of better planning. A
critical facet of our task, however, is that the MB system was
provided with no incentive to perform retrospective inference
about the ghost’s nominee. Indeed, in our task the challenge faced
by the MB system was to maintain accurate representations of the
values of the various rooms and to calculate, based on the task’s
transition structure, prospective expected rewards for offered
bandits. Because outcomes were fully-observed in uncertainty
trials, their values could still be updated and the question of
which object the ghost actually nominated was inconsequential.
Put differently, retrospective inference was irrelevant with respect
to either MB learning or future planning. We contend that the
fact that an MB system still engaged in this effort-demanding
process attests to its ubiquity and importance, and this is likely to
be a “lower bound” on its extent. We would expect retrospective
inference to be more substantial when it aids forthcoming MB
planning, and this is an interesting question for further study. We
acknowledge here theories that posit an intrinsic value of infor-
mation34-3%, according to which information (which could be
obtained by retrospective-inference) is rewarding in itself even
when it lacks instrumental importance.

We conclude by noting that while there has been ample the-
oretical and empirical work on both dual RL systems, and on state
uncertainty RL, these two literatures have mostly developed along
distinct trajectories with minimal cross-talk. We believe that an
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integration of these interesting fields can yield fundamental
insights. The current work is but a first step in this project.

Methods

Participants. Forty seven participants (29 female, 18 male) were recruited form the
SONA subject pool (https://uclpsychology.sona-systems.com/Default.aspx?
ReturnUrl=/) with the restrictions of having normal or corrected vision and being
born after 1971. The study was approved by the University College London
Research Ethics Committee (Project ID 4446/001). Subjects gave written informed
consent before the experiment.

Experimental procedures. Participants were first familiarised with four pictures of
objects and learned which pair of rooms each object opened (the pictures of the
four objects were adopted from previous studies*>#1). Each room was opened by
two different objects and each object opened a unique pair of rooms. The mapping
between objects and rooms was created randomly anew for each participant and
remained stationary throughout the task. After learning, participants were quizzed
about which rooms each object opened and about which object they would choose
to open a target room. Participants iterated between learning and quiz phases until
they achieved perfect quiz performance (100% accuracy and RT < 3000 ms for each
question).

After learning participants played 16 practice standard bandit trials, to verify
that the task was understood. These practice trials proceeded as described below
with the sole difference that no time limit was imposed on a choice. They next
played a single block of 72 standard bandit trials. On each trial, a pair of the four
objects were offered for choice and participants had 2 s to choose one of these
objects (left or right). Offered objects always shared one Common outcome. This
defined four object-pairs, each presented on 18 trials, in a random order. Following
a choice, the room Unique to the chosen object was opened and it was either empty
(0 pt.) or included a treasure (1 pt.). Next, the room that was Common to both
objects was opened, revealing it to be empty or with treasure. The reward
probabilities of the four rooms evolved across trials according to four independent
Gaussian-increment random walks with reflecting boundaries at p=0 and p=1
and a standard deviation of 0.025 per trial.

On completion of the first block participants were instructed about the
uncertainty trials. On uncertainty trials participants were offered two disjoint
object-pairs and were asked to choose the left or right pair. Objects within each pair
always shared one room outcome. Participants were instructed that a ghost would
toss a fair and transparent coin and choose the vertically upper or lower object in
their chosen pair, based on the coin-outcome. Once the ghost-nominated an object
the trial proceeded as a standard trial, i.e. the two related rooms opened and
treasures earned. Importantly, the room that was Common to the objects in the
chosen pair was opened first while the room that was Unique to the ghost-
nominated object was opened later. Following instructions, participant played a
practice block consisting 18 trials, with each third trial being an uncertainty trial.
During this practice block there was no time limit on choices. Following the
practice trials, the test trials started. Participants played seven block of 72 trials each
and short breaks were enforced between blocks. Choices were limited to 2 s and
each third trial was an uncertainty trial. The 168 3n + 1 standard trials included 42
presentations of each of the four eligible object-pairs, in a random order. The 168,
3n 4 2 uncertainty trial included 84 repetitions of each of the two eligible pairings
in a random order. Trials 37 + 3 were defined according to their transition types
relative to the choice on the preceding uncertainty trial. These 168 trials included
56 of each of the “repeat”, “switch” of “clash” types in random order. A repeat trial
presented the ghost-nominated object alongside its vertical counterpart, a switch
trial presented the ghost-rejected object alongside its vertical counterpart and a
clash trial presented the previously selected pair.

The task lasted between 90-120 min. Participants were paid £7.5 per hour plus a
performance based bonus, which was calculated based on the total amount of
earned treasure points.

Data analysis. One participant reported not feeling well and retired voluntarily
from the experiment. Six other participants failed to pass the quiz within an hour
and therefore did not start the task. The remaining 40 participants were the targets
for the analysis.

Model agnostic analysis. Our model-agnostic analyses were conducted using
logistic mixed effect models (implemented with MATLAB’s function “fitglme”)
with participants serving as random effects with a free covariance matrix. For the
ME-contribution analysis (Fig. 2a—e), we analysed only standard trials n + 1 that
offered for choice the standard trial-n chosen object. Our regressors C (Common
outcome) and U (Unique outcome) coded whether trial-n outcomes were
rewarding (coded as +0.5 for reward and —0.5 for non-reward), and the regressed
variable REPEAT indicated whether the choice on the focal trial-n + 1 was repe-
ated. PART coded the participant contributing each trial. The model, in Wilkinson
notation, was: REPEAT~ C*U + (C*U|PART). For the MB-contribution analysis
(Fig. 2f-n), we analysed only standard trials n + 1 that excluded from choice the
standard trial-n chosen object. The regressors C, U and PART were coded as in the
previous analysis and one additional regressor P coded the reward probability of

the Common outcome (we centralized this regressor by subtracting 0.5). The
regressed variable GENERALIZE indicated whether the choice on the focal trial-n
+ 1 was generalized. The model, in Wilkinson notation, was: GENERAL-
IZED~C*P + (C*P|PART). We also tested an extended model GENERALIZED~
C*U*P + (C*U*P|PART) but found that none of the effects involving U were
significant while the C*P effects supported the same conclusions.

The analyses that focused on MF learning on uncertainty trials considered
standard n + 1 trials following an uncertainty n-trial (Fig. 4). The first analysis that
examined learning for the ghost-nominated object (Fig. 4a) focused on “repeat”
follow-ups, that is trials n 4 1, that offered for choice the ghost-nominated object
alongside the object from the previously non-selected pair that provided the
previously inference-allowing outcome. A choice repetition was defined as a choice
of the ghost-nominated object. We used the model REPEAT~ N*I + (N*I |PART),
where N and I coded outcomes (—0.5, 0.5) obtained on trial-n from the Non-
informative and the Informative room, respectively. The second analysis that
examined learning for the ghost-rejected object (Fig. 4b) focused on “switch”
follow-ups, that is trials n + 1, that offered for choice the ghost-rejected object
alongside an object from the previously non-selected pair that shared an outcome
with the previously ghost-rejected object. A choice generalization was defined as a
choice of the ghost-rejected object. We used the model GENERALIZE~ N*I+
(N*I|PART). Finally, the third analysis that compared first-outcome learning for
the ghost-nominated and -rejected objects (Fig. 4c) focused on “clash” follow-ups,
that is trials n + 1, that offered for choice the ghost-nominated and ghost-rejected
objects. A choice repetition was defined as a choice of the ghost-nominated object.
We used the model REPEAT~N*I + (N*I|PART).

Computational models. We formulated two hybrid RL models to account for the
series of choices for each participant. In both models, choices are contributed by
both the MB and MF systems and they differed only in how the MB system
operates.

In both models, The MF system caches a QMF-value for each object,
subsequently retrieved when the object is offered for choice. When a pair of objects
is offered for choice (on uncertainty trials), the MF pair-value was calculated as the
average of constituent object’s MF-values:

QM (object 1) + QMF(object 2)
2

QM (pair) = (4)

On standard trials, the total reward (in points) from outcomes is used to update
the QMF-value for the chosen object, based on a prediction error (with a free
learning rate parameter Irgandard):

QYF(object) « QMF(object) 4 Iryyndara * (total reward — QYF (object))  (5)

On uncertainty trials, the MF system updates the QMF-values for both the
ghost-nominated and -rejected objects with free learning rate parameters Irghost-nom
and Irghost.rej» T€Spectively:

QM (selected) «— Q™F(selected) + Ir,

shost—nom * (total reward — QY (selected))

(6)

Q" (rejected) — QY (rejected) + Iryoq_r * (total reward — Q' (rejected) )

7)

Our two models postulated alternative “room-value learning” and “object-value
learning” formulations for an MB system. We describe these models in turn. In the
room-value learning formulation (the model variant presented in the main text),
the MB system maintains QMB-values for the four different rooms. During choice
on standard trials the QMB-value for each offered object is calculated based on the
transition structure:

QY (object) = Q"B (room 1) + Q™ (room 2) (8)

During uncertainty trials the QYB-value of each pair is calculated based on the
average constituent values:
QMB(object 1) + QMB (object 2)
2

QM® (pair) = 9)

Following a choice, the MB system updates the QMB-values of each observed
rooms:

QY8 (room) « Q™B(room) + lIryy, * (reward — Q'®(room)) (10)
where Iryg is an MB learning rate parameter.

Alternatively, in the object-value learning formulation, during the choice phase
the MB system retrieves the values of the choice-objects, much like the MF system.
Additionally, MB learns during reward administration the values of objects rather
than rooms, but unlike MF, it takes into account the task’s transition structure. For
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the chosen object, i.e. the object that was chosen by the participant on standard
trials or by the ghost on ghost trials, a “full update” is performed:

Q" (object) «— Q™" (object) + Iryy * (total reward — Q™" (object
MB bj MB bj Iryg 1 d MB bj

(11)

For each of the two other non-chosen objects, each of which provides only one
of the two experienced room-outcomes, a “half update” was performed based on
the relevant room.

QB (object) + QMB(object) + Iry * (room reward — 0.5 + QYB (object))  (12)

For example (see Fig. 1a), when the key was chosen (either by the participant or
the ghost) a full update was performed for the key, and half updates based on the
brown and green rooms, respectively, were performed for the phone and the stove.

In both models, when a pair of objects are offered for choice on standard trials
the net Q value of each object is calculated as

Q11el<0bjeCt) = WM * QMB (Obje‘:t) + (1 - WMB) * QMF (ObjeCt) +p * llastchosen

(13)

Where wyp is a free parameter (between 0-1) that quantifies the relative
contribution of the MB system (1 — wyp is therefore the relative MF contribution),
p is a free perseverance parameter, which quantifies a general tendency to select the
object that was last selected, and 1j,s¢chosen indicates whether the focal object was
selected on the previous trial. On uncertainty trials the value of each offered pair is
calculated similarly as:

Quer(pair) = wygp * Q"% (pair) + (1 — wyp) * QF (pair) + p * Lygehosen  (14)

where here, 1jstchosen indicates whether the focal pair includes the previously
selected object. The Q, values for the two choice options (objects or object-pairs)

are then injected into a softmax choice rule with a free inverse temperature
parameter 8 > 0 so that the probability to choose an option is:

o Queoption)
eB*[Que (option) + Q. (other option)]

Prob(option) = (15)

MF QMF_values where initialized to 1 for each object and MB QMB-values were
initialized to 0.5 for each room.

We also formulated two pure MF models with either accumulating or replacing
eligibility traces®? to test whether these mechanisms, rather than MB inference
guided learning, could account for our findings. In these models, the MB
contribution was silenced by setting wyp = 0 and removing Iy from the model.
These models included a single free learning rate parameter for the MF system,
Irye, and a free eligibility trace (decay) parameter, denoted A. For each of the four
objects we maintained throughout the series of trials, an eligibility trace, e(object).
At the beginning of the experimental session, these traces were initialized to 0. At
the end of each trial all four eligibility traces decayed according to

e(object) «— A x e(object) (16)

Immediately after a choice was made on a standard trial the eligibility trace of
the chosen object was updated. In accumulating traces model we set

e(chosen object) «— 1 + e(chosen object) (17)

And in the replacing traces model we set

e(chosen object) — 1

(18)

On ghost trials the eligibility traces for both objects in the chosen pair were thus
updated. Finally, following reward administration the value of each of the four
objects was updated. For accumulating eligibility traces we set

QMF(object) « QY (object) + (1 — A) * lry: * e(object) * (total reward — Q™ (object))

(19)

And for replacing trace:
QM (object) — QMF (object) + lry * e(object) * (total reward — Q" (object))
(20)

In sum, in the eligibility-trace models, the sequence of model calculation during
a trial consisted of subjecting all eligibility traces to a decay, making a choice,
increasing the eligibility trace(s) for the chosen object(s), obtaining outcomes
(rewards or non-rewards) and updating the values of all four objects.

Model fitting and model comparison. We fit our models to the data of each
individual, maximizing the likelihood (ML) of their choices (we optimized like-
lihood using MATLAB’s ‘fmincon’, with 200 random starting points per

participant). Each of our two full hybrid models, which allowed for contributions
from both an MB and an MF system, served as a super-model in a family of nested
sub-models: the room-value learning and the object-value learning families. Each
family consisted of four sub-models: The first, a pure MB model, constrained the
model-based relative contribution to 1, wyp = 1, and the learning rates of the MF
system to 0, Itgiandard = Ighost-nom = Ighost-rej = 0. The second, a pure MF-action
model, constrained the MF relative contribution to choices to 1, wyg = 0, and the
MB learning rate to 0, Iry;g = 0. Note, however, that the MB system was still able to
guide MF learning through inference. The third, ‘non-inference’ sub-model
constrained equal learning rates for the ghost-nominated and -rejected objects
Irghost-nom = Ifghost-rej- The fourth, ‘no-learning for ghost rejected object’ con-
strained the learning rate of the ghost-rejected object to 0: Irgnogtrej = 0. The best-
fitting parameters for the super-model are reported in Supplementary Table 1.

We next conducted, for each family separately, a bootstrapped generalized
likelihood ratio test (BGLRT?!) for the super-model vs. each of the sub-model
separately (Fig. 5). In a nutshell, this method is based on the classical-statistics
hypothesis testing approach and specifically on the generalized-likelihood ratio test
(GLRT). However, whereas GLRT assumes asymptotic Chi-squared null
distribution for the log-likelihood improvement of a super-model over a sub-
model, in BGLRT these distributions are derived empirically based on a parametric
bootstrap method. In each of our model comparison the sub-model serves as the
HO null hypothesis whereas the full model as the alternative H1 hypothesis.

For each participant, we created 1001 synthetic experimental sessions by
simulating the sub-model with the ML parameters on novel trial sequences, which
were generated as in the actual data. We next fitted both the super-model and the
sub-model to each synthetic dataset and calculated the improvement in twice the
logarithm of the likelihood for the full model. For each participant, these 1001
likelihood-improvement values served as a null distribution to reject the sub-
model. The p-value for each participant was calculated based on the proportion of
synthetic dataset for which the twice logarithm of the likelihood-improvement was
at least as large as the empirical improvement. Additionally, we performed the
model comparison at the group level. We repeated the following 10,000 times. For
each participant we chose randomly, and uniformly, one of his/her 1000 synthetic
twice log-likelihood super-model improvements and we summed across
participant. These 10,000 obtained values constitute the distribution of group
super-model likelihood improvement under the null hypothesis. We then
calculated the p-value for rejecting the sub-model at the group level as the
proportion of synthetic datasets for which the super-model twice logarithm of
the likelihood improvement was larger or equal to the empirical improvement in
super-model, summed across-participants.

Additionally, we compared between the room-value learning and the object-
value learning full models using the parametric bootstrap cross-fitting method
(PBCM*2). For each participant, and for each of the two model-variants, we
generated 100 synthetic experimental sessions by simulating the model using the
ML parameters on novel trial sequences (which were generated as in the
experiment). We then fit each of these synthetic datasets with both models. Next
we repeated the following 10,000 times, focusing on data that was generated by
the room-value learning model. For each participant we chose randomly and
uniformly one of his/her 100 synthetic datasets and calculated twice the log-
likelihood difference between the fits of the room-value learning model and the
object-value learning models. These differences were averaged across participants.
Thus, we obtained 10,000 values that represent the distribution of the group twice
log-likelihood difference for data that is generated by the room-value learning
model. Next, we repeated the same steps but this time for synthetic data that was
generated by the object-value leaning model, to obtain a distribution of the group
twice log-likelihood difference for data that is generated by the object-value
learning model. An examination of these two distributions (Supplementary Fig. 5)
showed that each model provided a better fit for the group data in terms of
likelihood when it is the generating model. We thus set log-likelihood difference of
0 as the model-classification criterion with positive difference supporting the room-
value learning model and negative values supporting the object-value learning
model. Finally, we averaged twice the log-likelihood difference for the empirical
data across participants, to obtain the empirical group difference. This difference
was 4.71, showing that the room-value learning model provides a superior account
for the group data.

Model simulations. To generate model predictions (Fig. 2, Supplementary

Figs. 1-3), we simulated for each participant, 25 synthetic experimental sessions
(novel trial sequences were generated as in the actual experiment), based on his or
her ML parameters obtained from the corresponding model fits (the models are
described above). We then analysed these data in the same way as the original
empirical data (but with datasets that were 25 times larger, as compared to the
empirical data, per participant).

Comparing MF learning rates. We compared the estimated MF learning rates for
standard-chosen, ghost-nominated and ghost-rejected objects, using a linear mixed
effect model (implemented with MATLAB’s function “fitglme”) with participants
serving as random effects with a free covariance matrix (Fig. 6a). Regressors

GS (ghost-nominated) GR (ghost-rejected) indicated whether the learning rate
corresponded to the ghost-nominated object and to the ghost-rejected object,
respectively. The regressed variable LR was the estimated learning rate. PART
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coded the participant. The model, in Wilkinson notation, was: LR~GS+GR + (GS
+ GR|PART). We followed-up with an F-test that rejected the hypothesis that
both GS and GR main effects were 0, indicating that the three learning rates are
different. We next contrasted all three learning rates pairs.

Correlation between MB and MF preferential learning. Based on the ML para-
meters of the full models, we calculated (Fig. 6b) the across-participants correlation
between model-basedness (wyp) and the MF preferential learning for the ghost-
nominated object (Ifghosi-nom — Ighost-rej)- The significance of this correlation was
calculated based on a permutation test in which wyp was shuffled across participants.

We note, however, that the empirical data showed an increase in participant
heterogeneity with respect to preferential learning as a function of model-
basedness. This is evident in Fig. 6b in both the differences between participants
and in the increase of individual error bars as model basedness increases. This
occurs because the MF learning rates exert a weaker influence on performance as
“model-basedness” increases (and the relative MF contribution decreases) and
hence, learning-rate estimation noise increases. One caveat pertaining to the above
permutation test is that it fails to control for this increasing heterogeneity pattern,
as this pattern will vanish in shuffled data. To address the possibility that this
pattern generated a spurious positive correlation we conducted a control test
(Supplementary Fig. 7). We parametrically bootstrapped (using model simulations)
1000 synthetic experimental sessions for each participant’s data based on the ML
parameters from the non-inference model in which, preferential learning for the
ghost-nominated object is absent (Itghost-nom = Ighost-rej). We next fitted each of
these synthetic datasets with the full model to obtain estimates of model-baseness
and preferential learning. Next we repeated the following 100,000 times: We chose
for each participant randomly the fitting parameters obtained for one of his/her
1000 synthetic datasets and we calculated the group correlation between model-
baseness and preferential learning. Because this correlation is calculated for data
that featured no correlation, the 100,000 values comprise a null distribution for
the expected correlation. The significance value of the empirical correlation was
calculated as the proportion of samples in the null distribution that were larger
than the observed correlation.

Error bars for the MF preferential learning effect. We calculated the individual
error bars for the difference between MF-learning rates for the ghost-nominated
and ghost-rejected objects (Fig. 6b) as follows. For each participant, we generated
100 synthetic experimental sessions by bootstrapping his/her data based on the ML
parameters of the full room-value learning model. We then fitted the full model
to each of these synthetic datasets and calculated the difference between the ghost-
nominated and ghost-rejected learning rates. This provided an estimate of the
expected distribution of the learning rate-difference, had we been able to test a
participant multiple times. Next we found the densest (i.e. narrowest) interval
that contained 50% of the mass of this distribution, conditional on the interval
including the empirical learning rate difference.

Reporting summary. Further information on experimental design is available
in the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study and data analysis code have been
deposited in the Open Science Framework (OSF) and are available in the following link:
[https://osf.io/8j7yf/?view_only=8362bdb2672643de98daaa8e509aae30].
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