Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Light scattering control in transmission and reflection with neural networks

MPG-Autoren

Turpin,  Alex
external;
Max Planck Research Group Neural Circuits, Center of Advanced European Studies and Research (caesar), Max Planck Society;

/persons/resource/persons250112

Vishniakou,  Ivan
Max Planck Research Group Neural Circuits, Center of Advanced European Studies and Research (caesar), Max Planck Society;

/persons/resource/persons188171

Seelig,  Johannes D.       
Max Planck Research Group Neural Circuits, Center of Advanced European Studies and Research (caesar), Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

oe-26-23-30911.pdf
(Verlagsversion), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Turpin, A., Vishniakou, I., & Seelig, J. D. (2018). Light scattering control in transmission and reflection with neural networks. Optics Express, 26(23), 30911-30929. doi:10.1364/OE.26.030911.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-42D3-4
Zusammenfassung
Scattering often limits the controlled delivery of light in applications such as biomedical imaging, optogenetics, optical trapping, and fiber-optic communication or imaging. Such scattering can be controlled by appropriately shaping the light wavefront entering the material. Here, we develop a machine-learning approach for light control. Using pairs of binary intensity patterns and intensity measurements we train neural networks (NNs) to provide the wavefront corrections necessary to shape the beam after the scatterer. Additionally, we demonstrate that NNs can be used to find a functional relationship between transmitted and reflected speckle patterns. Establishing the validity of this relationship, we focus and scan in transmission through opaque media using reflected light. Our approach shows the versatility of NNs for light shaping, for efficiently and flexibly correcting for scattering, and in particular the feasibility of transmission control based on reflected light.