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A B S T R A C T

Event-related potentials (ERPs) provide a window into how the brain is processing language.
Here, we propose a theory that argues that ERPs such as the N400 and P600 arise as side effects
of an error-based learning mechanism that explains linguistic adaptation and language learning.
We instantiated this theory in a connectionist model that can simulate data from three studies on
the N400 (amplitude modulation by expectancy, contextual constraint, and sentence position),
five studies on the P600 (agreement, tense, word category, subcategorization and garden-path
sentences), and a study on the semantic P600 in role reversal anomalies. Since ERPs are learning
signals, this account explains adaptation of ERP amplitude to within-experiment frequency
manipulations and the way ERP effects are shaped by word predictability in earlier sentences.
Moreover, it predicts that ERPs can change over language development. The model provides an
account of the sensitivity of ERPs to expectation mismatch, the relative timing of the N400 and
P600, the semantic nature of the N400, the syntactic nature of the P600, and the fact that ERPs
can change with experience. This approach suggests that comprehension ERPs are related to
sentence production and language acquisition mechanisms.

1. Introduction

It is currently not known how neural activity in the brain implements mental processes. However, more is known about the
linguistic version of this mind-body problem (Kim, 1998) due to experimental work on event-related potentials (ERPs). These are
averaged, time-locked brain signals recorded through electroencephalography (EEG) that are linked to the mental operations sup-
porting language processing (Kutas & Hillyard, 1980). ERPs have shown that the language system is sensitive to the mismatch
between its expectations and linguistic input, and distinct components that differ in their timing are produced in response to different
types of expectation violations. Two of the most extensively studied sentence-level ERP components are the N400 and the P600. The
N400 is a negative deflection of the EEG signal with a centro-parietal scalp distribution peaking around 400ms after stimulus onset
which has been linked to semantic processing (Kutas & Hillyard, 1980, 1984; see Kutas & Federmeier, 2011 for a review). The P600,
on the other hand, is a positive deflection of the EEG signal with an onset around 600ms, which is associated with syntactic
processing (Hagoort, Brown, & Groothusen, 1993; Osterhout & Holcomb, 1992; see Gouvea, Phillips, Kazanina, & Poeppel, 2010 for
an overview). Even though ERPs have been used to study language for more than three decades, the interpretation of these
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components is still controversial (Kaan, 2007; Swaab, Ledoux, Camblin, & Boudewyn, 2013).
The present paper will attempt to explain four critical features of ERPs. One feature is that ERPs reflect a mismatch of linguistic

expectations, where the signal is larger when incoming linguistic material is unexpected. For example, a sentence with an anomalous
ending like I take coffee with cream and dog elicits an N400 effect, which is a greater negative deflection for the unexpected final word
relative to an expected ending (e.g., cream and sugar, Kutas & Federmeier, 2011). P600 effects show a larger positive deflection for
various syntactic violations relative to grammatical controls. In both cases, larger amplitude ERPs occur when expectations are
violated. This sensitivity to expectation mismatch is not an obvious feature for a system to have. For example, imagine a computer
where the fan would make more noise not when it was working hard, but when you did something unexpected (e.g., opening a rarely
used file). A second unexplained feature of ERPs is that different components have particular, relatively fixed temporal signatures.
Again, this is different from computers, where the time needed for processing depends on the amount of work to carry out (e.g., the
time to open a file depends on its size). Another feature is that components with different latencies are associated with semantic or
syntactic processing. Since comprehension involves the integration of syntactic and semantic cues to compute the target meaning, it is
not clear why these components should be separated in time. The final feature is that ERPs change with linguistic experience and it is
not obvious why mismatch signals in the brain should adapt to the input. In this paper, we argue that these features can be better
understood when ERPs are viewed as traces of a prediction error-based learning mechanism that supports language acquisition and
adaptation.

1.1. ERPs as error propagation for learning

ERPs have been viewed as a direct reflection of sentence comprehension processes. However, it has been difficult to reconcile
results in ERP studies with other comprehension studies using self-paced reading and eye-tracking (Rayner & Clifton, 2009). In ERPs,
the semantic N400 precedes the syntactic P600. But in non-ERP eye-tracking studies, syntactic processing can sometimes precede
semantic processing. For example, Clifton et al. (2003) found that syntactic ambiguity influenced first fixations within 258ms of
hearing a relative clause verb and this syntactic effect was not removed by earlier animacy information (contra Trueswell,
Tanenhaus, & Garnsey, 1994, but consistent with Ferreira & Clifton, 1986; Just & Carpenter, 1992). These studies provided support
for models of comprehension where syntactic processing comes first (e.g., garden-path model, Frazier & Rayner, 1982). Constraint-
based models of comprehension, on the other hand, allow both syntactic and semantic knowledge to influence first pass parsing
(MacDonald, Pearlmutter, & Seidenberg, 1994; Trueswell et al., 1994). For example, Trueswell, Tanenhaus, and Kello (1993) found a
difference in reading times at the determiner following the matrix verb due to the presence or absence of a complementizer and this
syntactic effect occurred between 360 and 420ms, which is within the time window of the semantic N400. These first pass parsing
effects, which are explained by early syntactic processes in both types of non-ERP theories, are difficult to explain in comprehension
theories derived from ERPs where syntactic processing typically occurs later, at around 600ms. Thus, the absolute timing of syntactic
and semantic processes is a problem for unifying comprehension theories based on ERPs and non-ERP measures.

To address this mismatch, we provide an alternative account where ERPs and non-ERP comprehension phenomena are due to
distinct processes. We argue that ERPs can be explained as a learning signal that is created in the sentence production system when it
is adapting to linguistic input. We will show that it is possible to explain data from twelve ERP studies using a production model
without adding any ERP-specific mechanisms. To understand this account, it is necessary to look at how production representations
are learned. One mechanism that explains how these representations are learned is back-propagation of error within connectionist
architectures like simple recurrent networks (Elman, 1990). By spreading activation forward in the network, these systems generate
predictions about the next word in a sequence and compute the error, which is the mismatch between predicted and actual next word
(Rumelhart, Hinton, & Williams, 1986). The error is then propagated backwards through the network to change the connection
weights between layers in order to make future predictions more accurate. These models can learn syntactic categories and con-
structions, and they can explain a range of syntactic phenomena in comprehension, production, and acquisition (Chang, 2009;
Christiansen & Chater, 1999; Fitz & Chang, 2017; Reali & Christiansen, 2005; St. John & McClelland, 1990). Thus, error-based
learning is one way to explain how different types of linguistic representations are acquired.

The idea that ERPs might be related to prediction error was first proposed by Gehring, Goss, Coles, Meyer, and Donchin (1993).
Holroyd and Coles (2002) directly instantiated the link between ERPs and error for learning within a reinforcement learning model.
Later, Rabovsky and McRae (2014) showed that word-level N400s could also be explained by prediction error. What was missing in
this literature is a motivation for why prediction error ERPs are generated regularly during normal sentence comprehension. Our
explanation is that ERPs reflect linguistic adaptation processes that occur whenever input is heard (Dell & Chang, 2014). For example,
structural priming is a phenomenon where a participant’s tendency to use a particular structure in production is increased by their
previous experience with that structure (Bock, 1986). These changes seem to be persistent (Bock & Griffin, 2000; Bock, Dell, Chang, &
Onishi, 2007; Branigan & Messenger, 2016) and have been modeled in connectionist networks by leaving error-based learning ON
during the processing of the prime, which leads to weight changes that bias the system towards the prime structure (Chang, Dell, &
Bock, 2006). On this account, the production system generates a covert lexical prediction during comprehension, and the difference
between that prediction and the heard input creates an error signal. This lexical error is propagated through the network to layers
that represent syntax and changes are made to improve prediction. Thus, if production representations are adapting to the heard
input through error-based learning, then production-based prediction error should be generated automatically during language
comprehension.

Here, we propose that ERPs are summary signals of brain activity that index prediction error propagation during comprehension.
This Error Propagation account explains the four features of ERPs that we mentioned earlier. Although comprehension attempts to
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construct a meaning representation that matches the linguistic input, this account argues that ERPs reflect the prediction error signals
needed for learning, and that is why ERP amplitudes are larger when a mismatch occurs. If this error signal is automatically used for
learning, then it is natural that ERP amplitude will change in response to linguistic experience, even if the linguistic input is un-
grammatical (“the language acquisition process never really stops”, Dell & Chang, 2014). Although non-ERP theories disagree about
the timing of the use of syntactic and semantic cues in comprehension (Clifton et al., 2003; Trueswell et al., 1994), they agree that
integration of these cues is ultimately needed for comprehension. In contrast, sentence production theories have argued that the
independence of syntax and semantics is an important part of our ability to be productive with language (Bock & Loebell, 1990;
Chang, 2002; Dell, Oppenheim, & Kittredge, 2008). The Error Propagation account uses production-based representations to explain
ERPs, and the independence of syntax and semantics in production helps to explain the temporal difference in ERP components. Since
error signals reach the lexical-semantic system before they propagate to the syntactic system, the N400 occurs earlier than the P600.
Thus, the Error Propagation account can explain the P600 using the same error-based learning mechanism that generates the N400
and supports adaptation more generally.

1.2. Overview of the Error Propagation account of ERPs

Since the Error Propagation account of ERPs is complex, we will first provide a general overview of the approach. When a person
hears I take coffee with cream and, we assume that they generate a prediction within their production system. The production system of
our model has a Sequencing Layer that maps to a Lexical Layer (Fig. 1). After hearing these words, the model might predict the word
sugar in the Lexical Layer (black circle in Fig. 1 shows the high activation for sugar unit, while the white circle for dog is not
activated). The actual final word dog is heard and the error is the difference between target and prediction (error is shown in Fig. 1 as
squares with a minus sign inside). Since sugar was predicted and not heard, while dog was heard, but not predicted, there is error for
both of these units (both Lexical Layer error squares are black). After the Lexical error is generated, it is propagated to units in the
Sequencing Layer to support adaptation of syntactic representations. This schematic represents the processing and learning behavior
in the brain during comprehension, and we will now describe how these error signals might be related to EEG measurements. EEG

Fig. 1. Schematic of error-based learning account of language ERPs.
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yields continuous value signals that summarize the activity of many synapses and neurons at particular points in time (summation
symbol in Fig. 1). Our claim is that the synchronized activity during the generation and propagation of error signals at the Lexical and
Sequencing Layers is reflected in the EEG signal. We also assume that it takes approximately 400ms for the heard input to generate
error at the Lexical Layer. Then it takes another 200ms for the error to be propagated to the Sequencing Layer. If this is the case, the
large error at both the dog and sugar units in the Lexical system will influence the summed EEG signal at around 400ms. This effect
will occur across multiple trials (multiple EEG waves in Fig. 1) and these are averaged to create an ERP with a negative deflection that
resembles an N400. If a large amount of error is generated instead by the representations at the Sequencing Layer, then this will
influence EEG at 600ms and create a P600-like deflection in the ERP signal (this is not the case in Fig. 1, since these stimuli create an
N400). This overview captures the key features of the Error Propagation account, such as the forward spread of activation to predict
the next word and the backwards propagation of prediction error that generates the N400 and P600 components. In the following
section we will present a more detailed example of this account to illustrate the differences between N400 and P600.

1.2.1. Error Propagation account of the N400
The N400 is a negative deflection of the EEG signal which peaks around 400ms after the onset of a critical word. It was first found

by Kutas and Hillyard (1980) in response to semantically anomalous words in sentence-final position (e.g., He spread the warm bread
with socks). This is considered to be semantically conditioned because the N400 effect was found relative to a control sentence where
the final word was semantically appropriate but in a form that was unexpected (e.g., capital letters, She put on her high heeled SHOES).
Subsequent studies have shown that the amplitude of this component reliably indicates the degree of the semantic relationship
between words and the sentence context in which they occur. For instance, the cloze probability of a word, defined as the proportion of
subjects who complete a sentence fragment with that particular word, is the most important determinant of N400 amplitude. There is
a reliable inverse correlation between cloze probability and N400 amplitude (Kutas & Hillyard, 1984) and this has been replicated
many times in different languages and modalities (Besson, Faita, Czternasty, & Kutas, 1997; Federmeier, Wlotko, De Ochoa-Dewald,
& Kutas, 2007; Moreno, Federmeier, & Kutas, 2002; Van Petten, Coulson, Rubin, Plante, & Parks, 1999).

Expectations about upcoming words are influenced by sentence context (Kutas & Hillyard, 1984). Context can be strongly con-
straining where certain words are highly likely (e.g., The children went outside to …), or weakly constraining in that many verb
arguments are plausible (e.g., Joy was too frightened to …). Nevertheless, different contextual strength can create identical cloze
probabilities and it has been found that N400 amplitude is determined by word expectancy rather than the strength of contextual
constraints (Federmeier et al., 2007).

To see how the prediction error account can explain the N400, we trace a simplified example based on the study of Federmeier
et al. (2007), where they manipulated both cloze probability (Expected, Unexpected) and contextual constraint (Strong, Weak,
examples in Table 1). First we examine the hypothetical predictions in the Lexical Layer for these contexts (Predicted panel of Fig. 2).
In the Strong context, a single word play is expected, but in the Weak context, several different words are weakly predicted (e.g.,
move, play). The expectations for these words are the same in the Unexpected condition, because the predictions are due to the
preceding context, which is identical for both. The Target panel in Fig. 2 shows the target word and these words differ in the Expected
(play and move) and Unexpected conditions (look). The Error panel in Fig. 2 shows the generated error, which is the difference
between the predicted activations and the target. In the Strong Context Expected condition, the word play was predicted and this
word was the target. The Weak Context predicts several words weakly, so there is error for the target word move as well as for non-
target words like play. In contrast, in the Unexpected conditions, the target is the word look and there is a large negative error for the
target, as well as positive error for the predicted words.

ERPs are stimulus-aligned EEG signals that reflect synaptic activity pooled from a large number of neurons in the brain (sum-
mation symbol in Fig. 1). To approximate this averaged signal, we computed the sum of the absolute value error (Sum Abs. Error) for
all the units in the layer in each condition as our linking function for mapping the model’s response onto ERPs (there is only one value
for the whole layer in each condition in Sum Abs. Error panel in Fig. 2). In the Expected condition, the context directly influences the
prediction error for the target words and hence there is a relatively large difference between the two contexts in the Sum Abs. Error.
When the target is unexpected, its error is not modulated by the context. The Sum Abs. Error for the non-target words is similar,
because there is a soft-max constraint on the Lexical system such that its activation will sum to 1. Since there is large equal amount of
error for the Unexpected target and similar total absolute error for the Predicted words, this creates a large Sum Abs. Error that does
not vary with context, as was found in the results of Federmeier et al. (2007).

To see this more clearly, we present model data in Fig. 3 in a way that resembles ERP waveforms where time relative to stimulus
onset is shown on the x-axis. To allow us to see the two Unexpected conditions, a small amount of jitter has been added. The timing
features will be explained after we introduce the model’s account of the P600. For now, we can see that the Sum Abs. Error at the

Table 1
Example items from Federmeier et al. (2007).

Example sentence Context Expectation

The children went outside to play Strong Expected
Joy was too frightened to move Weak Expected
The children went outside to look Strong Unexpected
Joy was too frightened to look Weak Unexpected
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Lexical Layer shows a difference due to context for the Expected condition, but not the Unexpected condition, similar to the human
data. This pattern is consistent with an account based on cloze probability, because cloze varies with context for expected words, but
not for unexpected words. In general, however, it is not obvious why a comprehension effect like the N400 should be related to cloze
probability, which measures the likelihood of producing a particular word. In the Error Propagation account proposed here, the N400
reflects error in production-based prediction, and this explains why production norms are the best predictor of mismatch signals in
comprehension.

1.2.2. Error Propagation account of the P600
The other component that we will examine is the P600, which is a positive deflection of the EEG signal that peaks between 600

and 900ms after target word onset (Gouvea et al., 2010). Relative to suitable controls, a P600 was found in response to morpho-
syntactic anomalies such as number agreement mismatch between the sentence subject and the main verb (Hagoort et al., 1993),
violations of gender agreement (Osterhout & Mobley, 1995), tense inflection (Allen, Badecker, & Osterhout, 2003), and case marking
(Coulson, King, & Kutas, 1998). Similarly, a P600 occurred in response to syntactic anomalies such as word category mismatches
(Wassenaar & Hagoort, 2005), word order violations (Hagoort et al., 1993), verb subcategorization violations (Ainsworth-Darnell,
Shulman, & Boland, 1998; Osterhout & Holcomb, 1992) and violations of phrase structure (Friederici, Hahne, & Mecklinger, 1996;
Hagoort et al., 1993). A P600, however, was also elicited by perfectly grammatical, temporarily ambiguous garden-path sentences
where the dispreferred continuation is more difficult to process than unreduced controls (Osterhout, Holcomb, & Swinney, 1994), and
in unambiguous grammatical items where long-distance dependencies have to be established (Fiebach, Schlesewsky, & Friederici,
2002; Felser, Clahsen, & Münte, 2003; Kaan, Harris, Gibson, & Holcomb, 2000; Phillips, Kazanina, & Abada, 2005). Thus, the P600
indexes not only processing difficulty caused by syntactic violations, but also by temporary ambiguity and sentence complexity and
its amplitude is a function of a word’s syntactic fit with the preceding context.

To see how the Error Propagation account can explain the P600, we will examine the tense inflection results of Allen et al. (2003)
in the model. They found a P600 when future tense auxiliaries were combined with past tense verbs will worked. To examine this in
the model, we will compare Control sentences like a father will sip the beer with Violation sentences like a father will sipped the beer. In
the model simulations, we treated morphology as a separate unit, so sipped is separated into its stem sip and the past tense morpheme
-ed. Thus the difference between the control and violation condition is in the position after the verb sip. One critical feature of

Fig. 2. Predicted/Target activation and Error/Sum Abs. Error in the Lexical Layer for Federmeier et al. (2007) study.

Fig. 3. ERP-type figure showing N400 pattern for Federmeier et al. (2007) study.
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syntactic phenomena is the fact that sets of words are compatible with preceding material. For example, will sip can be followed by
various words such as articles a and the. On the other hand, if no auxiliary was present in this context, then a third person singular
morpheme -ss or past tense morpheme -ed would be acceptable continuations since the subject is singular and aspect is simple. Thus,
unlike N400 phenomena where there is often only one plausible word candidate, P600 studies compare items where the context
predicts categories of words. The Target panel in Fig. 4 shows that the target is the in the Control condition and -ed in the Violation
condition. The Error panel shows the difference between the Predicted and Target. Since ERPs are recorded in the same way for both
N400 and P600 studies, the Sum Abs. Error for the Lexical Layer is computed for both conditions.

An important feature of the error back-propagation algorithm (Rumelhart et al., 1986) is that a system could learn useful internal
representations by propagating error generated at the output back to internal layers. In this process, error terms at one layer are
multiplied by the connection weights projecting from the previous layer. In the present account, error at the Lexical Layer is mul-
tiplied by the weights to the Sequencing Layer and this error is used to learn the syntactic representations in the Sequencing Layer. To
make this more concrete, let us assume that there are two Sequencing units S1 and S2. S1 becomes activated after verbs following
future tense auxiliaries. It has positive weights of 4 to the Lexical units the and a, which can occur in this context (Fig. 5). S2 is
activated after a verb when no auxiliary is present and hence it has positive weights to morphemes that can occur in this context,
namely -ed and -ss. Since future and non-future tense are mutually exclusive, the model will learn negative weights between S1/S2
and the words in the other category to inhibit activation of ungrammatical continuations (these are set to −1 in Fig. 5). Normally,
these weights support predictions and the arrows in Fig. 5 show the forward direction for prediction/production. But in error-based
learning, error at the Lexical Layer is propagated backward in the network by multiplying the error terms by the weights and this
creates the Weighted Lexical Error values for each Sequencing unit (Weighted Lexical Error panel in Fig. 6). These error values are
summed for each Sequencing unit (Sequencing Error panel in Fig. 6) and this summation is an important reason for the differences
between the N400 and P600. In the Control condition, S1 weakly predicted the and a, but since the is the target, there was negative
error for the target and positive error for a (Error panel of Fig. 4). Both of these units are connected by a weight of 4 to the S1 unit
(Fig. 5), so the Weighted Lexical Error is more negative for the target the and more positive for the word a (dark S1 lines in Weighted
Lexical Error panels of Fig. 6). Since the words -ss and -ed were not predicted and not seen, the error for these words is low. The
Weighted Lexical Error for the S2 links are similar to S1 links, but are smaller because the weight is only −1 (light S2 lines in
Weighted Lexical Error panels of Fig. 6). In the back-propagation algorithm, the Weighted Lexical Error is summed at each Se-
quencing unit. Since the Weighted Lexical Errors for S1 point in different directions, these cancel when summed to create the
Sequencing Error (top panel in Fig. 6). This also happens for the Weighted Lexical Errors for S2, but the values are already small.

The same process applies in the Violation condition but now there is large negative error for the unexpected -ed as well as positive
error for the predicted words the and a (Error panel of Fig. 4). Since -ed has a negative weight to S1 (Fig. 5), the Weighted Lexical

Fig. 4. Predicted/Target activation and Error/Sum Abs. Error in the Lexical Layer for Allen et al. (2003) study.

Fig. 5. Weights between Sequencing Layer and Lexical Layer. Arrows show forward direction of prediction, but error signals travel backwards and
are summed at each unit in the Sequencing Layer.
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Errors to S1 are mostly positive. When these are summed at the Sequencing unit S1, the error will be the combined positive value.
Likewise for the S2 unit, the negative error -ed will be multiplied by the weight of 4 to S2 (Fig. 5) and that will create a large negative
Weighted Lexical Error. When error is summed at the Sequencing unit S2, it accumulates toward a large total value (bottom Se-
quencing Error panel in Fig. 6).

The summations at each sequencing unit are a part of error back-propagation, which is creating error signals at the Sequencing
layer to support weight changes. When we apply our linking function (Sum Abs. Error), we sum error signals for all of the units within
a layer to capture the fact that ERPs are summary signals from a large volume of neurons. Thus, the Sum Abs. Error panel of Fig. 6
shows a single value that combines the absolute value error for the S1 and S2 units for each condition. The Sum Abs. Error is smaller
for the Control condition compared to the Violation condition, because the error cancelled in the Control condition and accumulated
in the Violation condition.

We now describe how our interpolated ERP-like figures are created (Fig. 7). The Control condition has one Sum Abs. Error value
at the Lexical Layer (Fig. 4) and another value at the Sequencing Layer (Fig. 6). Since we assume that it takes 400ms to generate error
at the Lexical Layer, the Sum Abs. Error value for the Lexical Layer is placed at x-position 400ms. Likewise, the Sum Abs. Error value
for the Sequencing Layer is placed at x-position 600ms. Since ERPs are time-locked to the onset of the critical word, our ERP lines
pass through 0 at time 0ms. We also added a constraint that the value at time 100ms would be 10% of the value of the Lexical Layer
Sum Abs. Error. This helps to align model responses with patterns in human N400/P600 studies where stimulus properties require

Fig. 6. Weighted Lexical Error, Sequencing Error, and Sum Abs. Error for Allen et al. (2003) study.

Fig. 7. ERP-type figure showing P600 pattern for Hagoort et al. (1993) study.
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some time before they begin to influence the signal (waveforms rarely diverge immediately after a word is heard). These four Sum
Abs. Error values at time 0ms, 100ms, 400ms, and 600ms are fitted with piecewise cubic hermite interpolation (Fritsch & Carlson,
1980), which creates a smooth line that passes through each point without exceeding the limit values. A similar procedure was used
for the Violation condition. In Fig. 7, for example, there is a larger difference in error at the Sequencing Layer compared to the Lexical
Layer and this corresponds to a P600 pattern. This procedure was applied in all simulations, regardless of whether they modeled
N400 or P600 effects.

1.2.3. Linking the Error Propagation account to human ERPs
Fig. 8 provides a summary of the Error Propagation account for a P600 study comparing a syntactic Violation condition with a

Control condition. The Lexical Layer error is computed as the difference between the activation and the heard word target (shown by
minus symbols in Fig. 8). The Sum Abs. Error is used to create the ERP signal (large summation symbol), but because the Control and
Violation conditions do not strongly predict individual lexical items, there is no N400. Back-propagation of error causes the Lexical
Layer error to be multiplied by the weights to the Sequencing Layer and the weighted error values are summed at each Sequencing
Layer unit (small summation symbol). Sum Abs. Error is computed from the Sequencing Layer error (large summation symbol) and
this creates a difference between Control and Violation in the P600 time window. The Lexical and Sequencing Layers represent brain
areas that process different aspects of language, and error in these layers is akin to intracranial source ERPs. Consistent with this
account, Guillem, N’Kaoua, Rougier, and Claverie (1995) examined the relationship between scalp and intracranial ERPs for the
N400 and P600 in a memory task and found that different intracranial sources were associated with each component. They also
showed that the skull's shielding effect caused spatial averaging of different signals, which means that ERPs recorded at the scalp
contain more noise that is not related to language sources (shown by larger grey noise bands for scalp ERPs compared to source ERPs
in the Fig. 8).

The difference between scalp and source ERPs has implications for how the model is compared to human data. The model’s layer-
specific error generates source-specific ERPs that are less noisy than human scalp ERPs and this means that we may find differences in
layer-specific error, when the human scalp ERP show no difference (Source ERPs in Fig. 8 show differences between Violation and
Control, that are not seen in the noisier scalp ERPs). It is non-trivial to model the additional noise in human studies as some of it is
task-related (e.g., visual processing of the stimuli). Instead, we will test for an interaction of condition with the layers in the model. If
there is a significant interaction, this implies that the error difference due to condition is greater in one layer than the other and
therefore a noise level can be found which will make the source ERPs significantly different at one layer but not at the other. If the
condition distinction is greater in the Sequencing Layer, we argue that this corresponds to a P600 component. If there is a greater
effect in the Lexical Layer compared to the Sequencing Layer, we conclude that an N400 is found (the negative deflection of the
source ERP is greater at 400ms than at 600ms in Fig. 8). This approach is used as a heuristic to be consistent across studies. In cases
where human studies have found multiple components, e.g., both an N400 and P600 effect, we will conduct additional analyses to
justify the claim that a biphasic pattern was also present in the model.

Fig. 8. Source and scalp ERPs.
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To summarize the account, it is assumed that listeners are constantly learning from comprehended input in order to explain
syntactic adaptation behavior like structural priming. This learning mechanism is error-driven, where covert predictions are made
within the sentence production system, and the error signal is used to adapt learned representations. Error differences in the Lexical
Layer are assumed to be generated at around 400ms and if a difference in conditions is found at this layer, we argue that an N400
effect is present. After another 200ms, the error signal is propagated to the Sequencing Layer. If a large difference between conditions
is found there, a P600 effect is assumed to be present. Due to the model’s production architecture, the learning mechanism acquires
different representations at the Lexical and Sequencing Layers and this explains why the N400 is more sensitive to lexical-semantic
factors, while the P600 is more sensitive to grammatical factors. Since error is both a signal that generates ERPs and a learning signal
that supports adaptation, this model naturally adapts the weights that support ERPs.

Human ERPs are a complicated phenomenon to study, because they are influenced by the individual linguistic experience of
participants and the multiple electrical signals in the brain that are active during sentence processing. The goal of a computational
model is to simplify this complexity to allow us to understand the core phenomena. In this section, we provided a simplified set of
examples of how N400 and P600 effects are generated in our account. This allows us to trace how predictions are combined with
targets to generate error which is aggregated to explain ERPs. Later we will present actual simulations demonstrating that the account
can explain a range of human ERP findings within a model that makes various simplifying assumptions to allow us to understand its
behavior. Before describing these simulations, however, we will contrast the Error Propagation approach with other computational
models of ERPs.

1.3. Alternative accounts of ERPs

Many verbal theories have put forward a range of different mechanisms like prediction, activation, and integration to interpret
ERPs (Bornkessel & Schlesewsky, 2006; DeLong, Urbach, & Kutas, 2005; Friederici, 2002; Hagoort, Baggio, & Willems, 2009; Kutas &
Federmeier, 2000; Otten & Van Berkum, 2008). These mechanisms are all involved in the comprehension of meaning, which is
different from the Error Propagation account that explains ERPs as learning signals. Since these comprehension mechanisms are not
implemented explicitly, it can be difficult to determine how they differ from one another. However, there are several explicit
computational models of ERPs which provide a clearer characterization of these mechanisms. The first set of models that we will
examine are word ERP models which explain ERP processing related to single isolated words. We briefly describe these approaches in
order to better understand the different ways of linking models to ERPs.

One word-level model is described by Laszlo and Plaut (2012). It was trained with back-propagation of error to map from visually
presented words to semantics, and the N400 was modeled as the mean activation of the semantic output layer (see also Laszlo &
Federmeier, 2011). For example, they found higher mean semantic activation for words than illegal strings and this difference was
argued to be an N400 effect. Laszlo and Armstrong (2014) refined this approach to explain the effect of repetition on N400 mag-
nitude. Cheyette and Plaut (2017) further extended the approach to cover a wider range of phenomena such as word frequency,
semantic richness, priming, and orthographic neighborhood size effects. These models incorporate biologically motivated assump-
tions about connectivity and when they are combined with an appropriate training regime, they can show peaks around the N400
time window. Since the timing of the N400 is shaped by excitatory and inhibitory weights, it can change in response to the input that
the model has been trained on.

Another approach to link models with ERPs is to use prediction error. Rabovsky and McRae (2014) developed a model of the N400
within a word-level connectionist network, where ERPs reflected prediction error between the semantics that is activated by a word
and the target semantics of that word. Using an attractor network where activation would gradually approach the targets, they
generated predictions based on the input word and after 10 ticks (stipulated to represent approximately 400ms), they presented the
target to measure the generated error. For example, if the word dog was presented to the network, it would generate a prediction for
2526 semantic feature units. Then the actual meaning of DOG (2526 semantic features derived from a norming study, McRae, Cree,
Seidenberg, & McNorgan, 2005) would be activated by another part of the model to create a target signal, and the error between the
model’s predicted meaning and the target meaning would correspond to the N400. This model was able to explain a range of word-
based effects related to frequency, repetition, number of semantic features, and neighborhood size. In three of their simulations, they
left back-propagation learning ON and the model adapted its representations in response to the input. One of the main issues for this
model is that it needs to guess the meaning of words in order to generate N400s, even though it already knows their target meaning.

Given the problematic assumptions with respect to the target semantics, Rabovsky, Hansen, and McClelland (2018) developed a
new approach to explain sentence-level N400 effects based on the Sentence Gestalt model (St. John & McClelland, 1990). This model
has two networks: Update and Query. The Update network maps from localist word units into a layer that stores the overall sentence
meaning called the Sentence Gestalt. The Query network takes thematic role probe queries (e.g., AGENT) and the system tries to use
the information in the Sentence Gestalt to generate 176 semantic features for the probed role. The training language did not include
articles and morphology, and prepositions were cliticized to nouns (e.g., at-breakfast man eats eggs in-kitchen). By removing function
words, the model does not learn syntactic regularities and that is why it is only sensitive to semantics. In training, each word or words
was presented to the Update network and activation spread to the Sentence Gestalt. Then the Query network used the Sentence
Gestalt together with the probe role to activate the lexical semantic features (e.g., location role predicts features for kitchen). The
difference between model activation and target was used as the error signal and back-propagated through the Query network. The
error for all of the role-semantic pairs in the sentence meaning was combined at the Sentence Gestalt and this combined Query
network error was used to train the Update network. Through this training procedure, the Update network develops weights that
attempt to store semantic information from the unfolding sentence in the Sentence Gestalt in order to support probe queries in the
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Query network. To link this model to ERPs, they used the forward change in the Sentence Gestalt activation from time t 1 to t,
which they called the Semantic Update (the difference in predicted meaning before and after a word is heard). They found that
Semantic Update could model various N400 effects related to semantic congruity, cloze probability, sentence position, reversal
anomalies, semantic and associative priming, categorically related incongruities, and lexical frequency. They also modeled repetition
priming which is a kind of linguistic adaptation. Since participants in ERP studies do not know the intended meaning of utterances
before they hear them, they were not able to use the combined Query network error training procedure to model linguistic adap-
tation. Instead, they used a temporal difference learning approach where the Sentence Gestalt activation at the next word was used as
the target for the layer at the current timestep in back-propagation. The temporal difference learning procedure would not be
sufficient by itself to train the Sentence Gestalt representation to encode the input language, because the initial representation was
random and training the model with random targets will not yield a semantic representation of sentence meaning. Hence this model
used different procedures for language learning (combined Query network error) and linguistic adaptation (temporal difference
error).

A related approach is offered by Brouwer, Crocker, Venhuizen, and Hoeks (2017), who provide a sentence-level model that uses
back-propagation to map between localist word inputs and semantic feature representations of utterance meaning. This model has a
Retrieval component that maps words and a sentence context to 100 lexical-semantic features, and an Integration component that
maps lexical-semantic features onto the meaning of the whole utterance. They first trained the Integration component, then froze that
system and trained the Retrieval component. The link between the model and ERP components is made in terms of the change in
activations before and after a word is processed (Activation Update), with the N400 being the lexical semantic feature activation
update and the P600 the utterance meaning activation update. They showed that the model could explain the N400 and P600 results
from a single study by Hoeks, Stowe, and Doedens (2004). The Integration component is similar to the Sentence Gestalt in the
Rabovsky et al. (2018) model, but the update in this layer is used to explain the P600, rather than the N400.

Another sentence-level approach that does not require target semantics is proposed by Frank, Otten, Galli, and Vigliocco (2015).
They used word surprisal (the negative logarithm of conditional word probability) generated by various models to predict compo-
nents in ERP waveforms. One such model was a recurrent network trained with back-propagation that predicted the next word at its
output layer (Fernandez Monsalve, Frank, & Vigliocco, 2012). This layer had a soft-max activation function, so that its output would
sum to 1, representing a probability distribution over words. The loss function for soft-max is proportional to the negative log
activation, so this model was optimizing network weights to reduce surprisal (Jaeger & Snider, 2013). Frank et al. (2015) found that
n-gram language models and recurrent networks were better at predicting N400 amplitude than models based on a probabilistic
phrase structure grammar. They did not find any relationship between word or grammar-based predictions and the P600. This
approach suggests that a linking theory which uses word prediction, rather than semantic feature prediction, can explain N400
patterns.

To compare these existing models with the Error Propagation account, we have highlighted their differences and commonalities in
Table 2. The first distinction is whether they can explain sentence-level effects, as opposed to word-level effects. The next set of
distinctions relates to their theory for linking the model to ERPs. Laszlo and colleagues (Laszlo & Plaut, 2012; Laszlo & Federmeier,
2011; Laszlo & Armstrong, 2014), as well as Cheyette and Plaut (2017), use mean or total activation at each point in time to represent
N400 waveforms. The Rabovsky et al. (2018) and Brouwer et al. (2017) models use the activation change or update between two
adjacent time points to encode ERPs. The Error Propagation account, as well as the models of Rabovsky and McRae (2014) and Frank
et al. (2015), uses prediction error to explain ERPs. Only the Error Propagation and Brouwer et al. (2017) models account for the
P600.

Another difference concerns the type of representations that are employed in linking the models to human ERPs. Most of the
models postulate a Semantic Link, where activation/update/error is applied to semantic features. This account trivially explains the
semantic nature of the N400, as long as appropriate semantic features are given to the model in training. The Frank et al. (2015) and
Error Propagation accounts, on the other hand, use a Lexical Link, where ERPs are due to prediction error on words and hence these
models must learn semantic word sequencing regularities. Simple recurrent networks (SRN) do learn these regularities, because
syntactic and semantic categories are useful for next word prediction (see Chang, 2009, for an example of learning animacy features

Table 2
Comparison of the features of the different ERP models.

Feature Laszlo and
Federmeier
(2011)

Laszlo
and Plaut
(2012)

Laszlo and
Armstrong
(2014)

Rabovsky
and McRae
(2014)

Frank
et al.
(2015)

Rabovsky
et al. (2018)

Cheyette
and Plaut
(2017)

Brouwer
et al.
(2017)

Error
Propagation
account

Sentence Level • • • •
Activation ERPs N4 N4 N4 N4
Update ERPs N4 N4/P6
Prediction Error ERPs N4 N4 N4/P6
Back-prop. learning • • • • • • • • •
Semantic Link • • • • • • •
Lexical Link • •
Cloze Prob. N400 • •
Adaptation= Learning N4 N4/P6
Comprehension • • • • • • • •
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or Twomey, Chang, & Ambridge, 2014, for learning verb semantic features in the Dual-path model). For example, after the verb eat,
all nouns might become activated to some extent, but semantically appropriate edible nouns might be activated particularly strongly
(e.g. cake). An SRN model that predicted phonemes instead of words (e.g., Elman’s (1990) letter-in-word model) would not acquire
syntactic categories, because these categories cannot be signaled by the activation of multiple phoneme units which are arbitrary
across categories. The existence of syntactic and semantic categories in language processing requires a mechanism for their acqui-
sition and in SRNs, this is most easily accomplished with localist lexical targets that are the basis for the Lexical Link.

Another feature of a Lexical Link is that it is easy to explain the sensitivity of the N400 to cloze probability. Cloze probability is
estimated from word production norms, but the models that use a Semantic Link are models of comprehension and do not explicitly
produce words. Since there is no word production system in these models, cloze probability is just a convenient index of predictability
or expectation. On the other hand, Lexical Link models predict words on the output layer and that layer has a soft-max activation
function which constrains it to sum to 1, hence the predicted activation of a word unit corresponds to its cloze probability. This means
that prediction error on the output layer, which is the Lexical Link to the N400, will be closely related to cloze. Semantic Link theories
can model cloze effects on the N400 as probabilistic information that is distributed across many semantic features. If this approach is
right, word-based probabilities like cloze should NOT predict N400 amplitude as well as semantic-feature based frequency in-
formation. This prediction has not been tested, but it would provide a way to evaluate different linking theories.

The Semantic and Lexical Link approaches are different ways to explain ERPs and they make different predictions about the
processing of synonyms. Several studies have found that N400 amplitude varies for high/low cloze synonyms (e.g., Thornhill & Van
Petten, 2012). Semantic Link theories explain these differences in terms of less accurate semantic feature representations for low
cloze synonyms (high cloze wheel activates more accurate semantics features than low cloze tire), while Lexical Link theories explain
these differences in terms of the effect of cloze on word prediction. One way to control for semantic feature accuracy is to examine
translated words in fluent bilinguals. Moreno et al. (2002) presented participants with English sentences with a high cloze final word
and they varied whether this word occurred in English or Spanish (fire or fuego). Since participants were highly fluent bilinguals, the
ability to map the word to its semantic features should be the same across languages (no Semantic Update). However, they found a
difference in the N400 for the Spanish final word in English sentences compared to the English version of the word and this suggests
that the low cloze probability for Spanish words in English sentences may be contributing to ERPs. Thus, testing words with similar
meaning but different cloze probabilities is one way to compare the predictions of the Semantic and Lexical Link theories.

All of the models in Table 2 used back-propagation of error to learn their internal representations (language learning), but they
differ in the way that adaptation in adults is explained. The Error Propagation account learns its representations during next word
prediction and linguistic adaptation is explained by applying the same procedure on utterances in ERP studies. Rabovsky and McRae
(2014) also used the same procedure for both language learning and linguistic adaptation, but adaptation required that the predicted
semantic features are different from the target semantic features, and it is not clear why there are two different sets of semantic
features for each concept in the lexicon. Although back-propagation is used for both learning and adaptation in the Rabovsky et al.
(2018) model, they used a temporal difference update procedure for linguistic adaptation that was different from the meaning probe-
query training procedure for language learning. Brouwer et al. (2017) trained the Integration and Retrieval components separately,
so it is not clear how this account of language acquisition would be applied to adaptation phenomena. Finally, Delaney-Busch,
Morgan, Lau, and Kuperberg (2019) have used Bayesian update procedures to explain trial-by-trial adaptation in the N400 with a
Lexical Link (word surprisal). Although this approach is formally similar to error-based learning with soft-max lexical outputs, it is
only an account of linguistic adaptation and does not explain how word or syntactic regularities are acquired in the first place.

Further evidence that language acquisition processes should be active in adults comes from ERP studies of novel word learning.
These studies present novel words in sentence contexts (e.g., He tried to put the pieces of the broken plate back together with marf, where
marf was a synonym of glue) without explicit definitions, and they found that N400 amplitude for these novel words changes with
exposure in adults (McLaughlin, Osterhout, & Kim, 2004; Borovsky, Elman, & Kutas, 2012; Borovsky, Kutas, & Elman, 2010; Mestres-
Misse, Rodriguez-Fornells, & Munte, 2007). The Rabovsky and McRae (2014) model uses back-propagation for language learning and
linguistic adaptation, so it could potentially explain the changes in the N400 if the system can infer the target meaning of the novel
word. The Error Propagation account on the other hand attempts to predict the word form from the preceding information by linking
the novel word to an existing semantic or syntactic category that is triggered by the context. Using the same algorithm that is used in
language acquisition, the lexical prediction error N400 will be reduced with even a few exposures and without the word meaning.
Thus, theories of ERPs can be distinguished by how much meaning is required to explain ERPs for novel words.

In most of these models, turning off the computation of summary signals of mean activation or activation update disrupts the
model’s ability to explain ERPs, but no other functions are affected (e.g., comprehension of meaning can still take place). In the Error
Propagation account, turning off the error computation that supports ERPs also prevents the model from learning, which means that
it can no longer explain adaptation effects like structural priming (Chang et al., 2006) or second language acquisition in adults
(Janciauskas & Chang, 2018). In contrast, deactivating the computation of the Semantic Update in the model of Rabovsky et al.
(2018) would not affect any of the comprehension results obtained with the Sentence Gestalt model in St. John and McClelland
(1990). The Rabovsky and McRae (2014) model requires that the target meaning of a word appears within 400ms, so the model is not
needed to explain word comprehension. Instead, it is a model of the N400 as guessing the meaning of words that the model already
knows. Thus, within the Error Propagation account, ERPs index prediction error used for non-ERP linguistic adaptation and learning,
while in the other models, the summary signals that are interpreted as ERPs play no role other than to explain electrical signals on the
scalp. Furthermore, although previous approaches have modeled ERPs as prediction error (Rabovsky & McRae, 2014; Frank et al.,
2015), in the Error Propagation account ERPs correspond to the learning signal that is being computed from prediction error (see
Section 2.2). This distinction is important because a learning signal has causal consequences for the language system (acquisition and
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adaptation) while prediction error in itself has no such consequences.
An important difference between the error-based accounts and other theories is the claim that ERPs are due to learning me-

chanisms that run in parallel during comprehension, but which are partially independent of comprehension. Most theories implicitly
claim that ERPs reflect word- or sentence-level comprehension processes. Comparing ERPs and eye-tracking results is difficult,
because different methods are typically used in each paradigm (Rayner & Clifton, 2009). ERP studies often use fixed duration
presentation paradigms, while eye-tracking studies use free reading paradigms where participants can decide how long to fixate a
word. However, there are studies which control for some of this variation, by using eye-tracking with fixed duration presentations
and recording ERPs to the same stimuli (Dambacher & Kliegl, 2007; Sereno, Rayner, & Posner, 1998). More importantly, there are
studies which co-registered ERP and eye movement results in the same participants as they read (Dimigen, Sommer, Hohlfeld, Jacobs,
& Kliegl, 2011). Both of these approaches have yielded similar results, where N400 amplitude, but not timing, is sensitive to word
factors (e.g. predictability), but the same lexical factors influence the timing of eye movements. The fact that the same lexical factors
have different effects on timing in ERPs and eye-tracking is still not well explained in existing theories of comprehension. Most of the
sentence-level models here can explain effects of predictability. In the Rabovsky et al. (2018) Sentence Gestalt model of compre-
hension, its Semantic Update N400 is different for high and low constraint sentences. But eye-tracking studies have found earlier
effects of constraint (Ashby, Rayner, & Clifton, 2005; Rayner & Well, 1996). For example, Ehrlich and Rayner (1981) found a
difference between high and low constraint before 255ms. Sereno and Rayner (2003) argued that the effect of context appears even
earlier, as it takes about 100ms to program an eye movement. These results suggest that constraint has an effect at 150ms in order to
drive eye movement planning, but then the system waits another 250ms before allowing the constraint to influence the N400
amplitude. Thus, the timing of eye-tracking fixations and ERPs appear to be mismatched and this is a problem for theories that argue
that ERPs are a way to study the basic processes underlying comprehension.

A similar issue concerns the relationship between sentence meaning and ERPs. For example, the Brouwer et al. (2017) model
argues that the P600 indexes all changes in utterance meaning in the Integration system between time t 1 and t. When the model is
garden-pathed, this requires a large change in meaning to recover and this creates a P600. If the updated representation is correct,
then the model will be able to answer comprehension questions accurately by querying its utterance meaning. In this case, the P600
will correlate with correct responses to comprehension questions. However, there are studies that suggest that human sentence
comprehension does not exhibit this correlation. Using a Good-Enough-Processing paradigm (Ferreira & Patson, 2007), Christianson,
Hollingworth, Halliwell, and Ferreira (2001) found that participants who heard sentences like While the man hunted the deer ran into
the woods tended to incorrectly answer comprehension questions like Did the man hunt the deer? in the affirmative, because they
retained temporary interpretations they had computed during parsing. Qian, Garnsey, and Christianson (2017) conducted an EEG
version of this study and found a P600 in response to the disambiguating verb (e.g., ran), which provides ERP evidence that par-
ticipants were garden-pathed and/or attempted a repair. But when they separated the data by whether the comprehension questions
were answered correctly or not, there was no difference in the P600 effect. Thus, this study is problematic for theories that argue that
the P600 reflects changes in semantic meaning that support question answering.

In addition, there are several cases where experimental variables have different effects on sentence judgements and ERPs. For
instance, Kaan (2002) found that subject-verb agreement errors were sensitive to the distance between subject and verb. Yet, the
P600 in the same participants showed no sensitivity to subject-verb distance. Thus, distance was an important factor in judgements,
but not ERPs. A similar mismatch was found for the N400, where Fischler, Bloom, Childers, Arroyo, and Perry (1984) varied the truth
value (true vs false, e.g., false: your father is a woman) and its strength (strong vs weak, e.g., weak true: your favorite food is steak) in a
sentence verification task. Mean response RTs were around 800ms and there was a main effect for truth value in that people were
faster for true facts than false statements, and faster for strong than for weak facts. However, they also found an interaction of these
factors for the N400, where false statements elicited a larger amplitude than true ones, and this difference was smaller in the weak
items. This study shows that an interaction in ERPs around 400ms can disappear in judgements at 800ms. Thus, even if the timing
issues with existing ERP models could be resolved, it would still be necessary to postulate two sets of representations to explain the
way that distance, truth value, and strength differentially influence ERP and non-ERP measures.

To summarize, most of the above models of ERPs claim that ERPs reflect comprehension processing. But factors that influence
amplitude in ERP studies appear to also influence timing in non-ERP studies. Eye-tracking exhibits earlier effects of semantic and
syntactic processing than ERPs. Furthermore, ERP and non-ERP effects within the same participants do not always correlate or yield
the same pattern of main effects and interactions. These mismatches are problematic for theories that assume that ERPs directly track
comprehension processes. To explain these mismatches, we argue that ERPs are the result of production-based learning processes that
are distinct from those that engaged in the comprehension of meaning.

Most ERP models view the N400 and P600 as signals related to the comprehension of meaning, and hence they use a Semantic
Link to connect with human ERPs. Since ERPs in these models are related to comprehension, separate mechanisms are needed to
explain changes due to learning. Thus, Rabovsky et al. (2018) uses one procedure to train the model in language acquisition (e.g.,
combined Query network error backpropagation), another procedure for linguistic adaptation (e.g., temporal difference learning),
and a third procedure to generate N400s (e.g., semantic update). In contrast, the Error Propagation account treats all ERPs as learning
signals. Since humans are not always given semantic features as inputs, learning accounts use the words that are heard to generate
ERP signatures such as the prediction error on words (Lexical Link). Since linguistic adaptation takes place whenever input is
comprehended and is due to the same learning mechanism underlying language acquisition, the Error Propagation account generates
prediction error ERPs as a side effect of these learning processes.
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2. A connectionist model of event-related potentials

To develop an explicit account of ERPs, we extended a model of language acquisition and sentence production called the Dual-
path model (Chang, 2002) which has several features that make it appropriate for this task. The model has two pathways, one for
sequencing and one for meaning (Fig. 9). In language acquisition, the model learns syntax and semantic regularities and associates
them with different layers (Chang, 2009; Chang et al., 2006; Fitz & Chang, 2017; Twomey et al., 2014) and this can help to explain
the existence of syntactic and semantic components. In addition, the model produces sentences incrementally. Thus, syntactic and
semantic activations change at different points in a sentence (Fitz, Chang, & Christiansen, 2011; Chang, 2009) and this is important
for explaining how ERPs vary in response to the sentence context. Furthermore, the model has been shown to be able to model
linguistic adaptation phenomena like structural priming using its error-based learning mechanism (Chang et al., 2006). This requires
that it generates predictions by spreading activation in the forward direction (upward arrow in Fig. 9) from the heard input in
PREVWORD layer. Prediction error is generated at the NEXTWORD layer and this error is propagated backwards in the network to modify
syntactic representations (downward arrow in Fig. 9). Thus, error related to semantic and syntactic representations is being generated
during comprehension and this error could be used to model ERPs. These features suggest that the model might be a suitable starting
point for developing an account of multiple, distinct ERP components.

The sequencing system in the Dual-path model is a simple recurrent network (Elman, 1990) that learns syntactic representations
by predicting the next word in sentences, one word at a time. The difference between the model’s predictions and the actual next
word (error) is computed and this error is propagated through the network to adjust the weights. This learning algorithm gradually
makes future predictions more accurate (Rumelhart et al., 1986). The sequencing system maps from the previous word (PREVWORD

layer) to a HIDDEN layer, that maps to the present word (NEXTWORD layer) through a COMPRESS layer that forces the model to develop
categories. The NEXTWORD layer corresponds to the Lexical Layer and the HIDDEN layer corresponds to the Sequencing Layer in the
simplified model of Section 1.2. The HIDDEN layer receives activation from a CONTEXT layer that holds a copy of the previous HIDDEN

layer activation state and this memory allows the model to learn sequence regularities. In the present work, we are interested in
capturing cloze probabilities, which are dependent on particular word associations. Therefore, the PREVWORD layer was directly
connected to the HIDDEN layer, rather than passing through a compression layer as in previous versions of the Dual-path model. To
further enhance the encoding of these sentence context regularities, we also added a PREVWORDHISTORY layer that held a running
average of the PREVWORD layer activation state.

The meaning system encodes the sentence message (the meaning that the speaker is trying to convey) in fast-changing links
between a ROLE layer and a CONCEPT layer. For example, the message for the sentence the boy chased the girl would be instantiated as a
fixed connection between a ROLE layer unit for AGENT and a CONCEPT layer unit for BOY. Likewise there would be a fixed connection
between the PATIENT ROLE layer unit and the GIRL CONCEPT layer unit. Prior to production these links are set by message planning and
are not changed by learning like the other links in the model. The CONCEPT layer was linked to the NEXTWORD layer, and this allowed
the model to learn which words were associated with which concepts. The HIDDEN layer in the sequencing system was connected to the
ROLE layer. Thus, the model could learn to activate the units in the ROLE layer which activated the message-specific concepts at
particular points in a sentence. A second component of the message was a reverse message in the CCONCEPT and CROLE layers, where
each link in the message was created in reverse (e.g. to match the above message, CCONCEPT unit for BOY would be linked to CROLE for
AGENT). This message was set at the same time as the production message and the CROLE layer received input from the PREVWORD

layer. This system allowed the model to determine the thematic role of the previous word and this information was propagated to the
HIDDEN layer which supported the ability of the model to produce syntactic alternations (e.g., active-passive). To enhance memory for
the roles that have already been produced, there was a CROLEHISTORY layer which held a running average of the CROLE activations. The

Fig. 9. The Dual-path model architecture. Word input arrives at the PREVWORD layer, predicted words are activated at the NEXTWORD layer. Solid
arrows indicate connection weights that are adapted during learning, copy connections are represented by dashed arrows. Thick solid lines between
roles and concepts encode the message.
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final part of the message was the EVENTSEMANTICS layer, which held information about the number and relative prominence of ar-
guments in the message, as well as tense and aspect information. This information was provided to the HIDDEN layer and helped the
model to select appropriate structures in production.

This complex architecture is motivated by the need to explain a range of different behaviors from production (structural priming,
Chang et al., 2006; heavy NP shift, word order effects, Chang, 2009; aphasia, Chang, 2002) and acquisition studies (auxiliary
inversion, Fitz & Chang, 2017; acquisition of verb classes, Twomey et al., 2014; accessibility hierarchy, Fitz et al., 2011). It has also
been applied to learn syntactic constraints from different languages (German, Chang, Baumann, Pappert, & Fitz, 2015; Japanese,
Chang, 2009; English-learning Korean speakers, Janciauskas & Chang, 2018). In this work, we are testing whether ERP effects in
comprehension can arise out of an architecture that was designed originally for production and acquisition.

2.1. Language input and model performance

The goal of building an explicit computational model of ERPs is to clarify the complex relationship between the brain and
language processing. One of the challenges in understanding human ERPs is the large amount of variation due to the linguistic input.
To reduce this variation, we used a simplified version of the English language that covers the linguistic distinctions needed to test
several ERP phenomena. The model’s input language was created by a symbolic grammar that generated message-sentence pairs (see
Appendix B for details). Table 3 shows the different constructions in the grammar and each construction was associated with a set of
abstract roles (e.g., action 0A, agents 0X, theme/patients 0Y, goals 0Z) and event-semantics information (0E).

Each role contained concepts that were appropriate for the construction (e.g., agents tend to be animate) as well as information
about number and definiteness of determiners (e.g., 0X=BOY,THE,PL would generate the boy -s, 0Z=BROTHER,PRN,PL would
generate the pronoun them). Event-semantics contained tense/aspect information (e.g., PRESent/PAST/FUTURE tense, SIMPle/
PROGressive aspect) and information about the number of arguments (e.g., AA,XX,YY,ZZ implies that there are three arguments in
addition to the action). Prominence was signaled by varying the activation of these argument markers (shown in bold in Table 3) and
these were associated with structural choices (XX,YY active transitive, XX,YY passive). Transitives occurred in passive voice 20%
of the time (active otherwise) and prepositional and double object forms of the dative construction occurred equally often. Believe-
type verbs could occur in transitive and sentence complement forms and that omission occurred 25% of the time in complements.
Morphemes were treated as separate words (e.g., plural -s). Verbs could be in past (-ed), present (third person singular -ss), or future
tense as well as simple or progressive aspect (e.g., is jump -ing). There was also a past participle morpheme -par. There were other
important features of the language which will be presented in more detail in the sections below.

The symbolic grammar was used to generate message-sentence pairs and the model had to learn the language from these pairs.
Ten training sets were created to simulate the variability in the input across different participants, resulting in ten model subjects.
Each training set contained 50,000 randomly generated sentences that were paired with messages that encoded their meaning. The
model was trained for 2 sweeps through the training set for a total of 100,000 input sentences. Since meaning cannot always be
inferred from the visual environment during language acquisition, a randomly selected 70% of the training items had the message
removed. At the end of training, the model was tested on 200 novel sentences randomly drawn from the language. It was able to
produce the exact target sentence 88% percent of the time (Bock (1986) reports human picture description accuracy at producing
target structures varied between 78% and 88%).

Table 3
Example message-sentence pairs from model’s input language.

Type Example Message-Sentence Pair

Unaccusative 0A=BOUNCE 0Y=TOY,THE,PL 0E=PAST,PROG,AA,YY
Intransitive the toy -s were bounce -ing.
Unergative 0A=WALK 0Y=GRANDMA,THE,PL 0E=PAST,SIMP,AA,YY
Intransitive the grandma -s walk -ed.
Unergative 0A=JUMP 0Y= SISTER,THE 1Y=HUSBAND,A,NEAR 0E=PRES,SIMP,AA,YY
Locative the sister jump -ss near a husband.
Active 0A=SNIFF 0X=TEACHER,A 0Y=WINE,THE,PL 0E= FUTURE,SIMP,AA,XX,YY
Transitive teacher will sniff the wine -s.
Passive 0A=PUSH 0X=GIRL,THE 0Y=BREAD,PRN 0E=PRES,SIMP,AA,XX,YY
Transitive it is push -par by the girl.
Believe 0A=BELIEVE 0X=FRIEND,PRN 0Y=FATHER,THE 0E=PRES,SIMP,AA,XX,YY
Transitive she believe -ss the father.
Believe 0A=BELIEVE 0X=MAN,THE,PL 0E=PRES,SIMP,AA,XX,YY
Sentence 1A=WALK 1Y=DRIVER,PRN 1E=PAST,SIMP
Complement the man -s believe that he walk -ed.
Prepositional 0A=SEND 0X=FATHER,A 0Y=BEER,THE,PL 0Z=BROTHER,PRN,PL
Dative 0E=PRES,SIMP,AA,XX,ZZ,YY

a father send -ss the beer -s to them.
Double 0A=SEND 0X=BROTHER,THE 0Y=COFFEE,A 0Z=BOY,PRN
Object 0E= FUTURE,SIMP,AA,XX,YY,ZZ
Dative the brother will send him a coffee.

Morphemes: plural -s, past -ed, third person singular -ss, progressive -ing, past participle -par
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2.2. Generating error signatures

After the model was trained on the input language, it was tested on control and violation items that mirrored the stimuli in human
EEG studies. Each sentence was processed in a word-by-word fashion, activation was spread through each layer and the model
attempted to predict the next word without the message. Therefore, the typical output would be a set of words corresponding to the
most likely continuations of the sentence. Then each model would compute error derivatives for each layer in the same way as during
learning. Most units in the model had logistic activation functions that restricted their values to between 0 and 1, but the NEXTWORD

layer used a soft-max activation function which created a winner-take-all bias for word selection. Since there was only one target
word at each time step, the error derivative for the NEXTWORD layer shown in (1) was simply the difference between predicted output
activation y and target t for each unit j (calculation was depicted in Fig. 2; see Appendix A for details of derivation).

= y t y t, {0, 1}j j j j j (1)

This error was propagated backwards in the network to generate error derivatives at deeper layers. Derivatives for these layers (e.g.,
COMPRESS and HIDDEN) are characterized by Eq. (2) where k indexes the units in these layers and j references the units in the layer that is
sending error backwards.

=
=

y y w(1 ) .k k k
j

n

j kj
1 (2)

The calculation in (2) was depicted earlier in Fig. 6, where the weighted Lexical error corresponds to the wj kj term, which is summed
for each HIDDEN unit (the small summation symbol in Fig. 8) to create the Sequencing Error values k (the y y(1 )k k term modulates
this back-propagated error to emphasize changes where the activation is close to 0.5). This means that the P600 is sensitive to the
weights between words and syntactic representations, while the N400 is more dependent on pure word expectancy. The dependent
measure in our analyses was the sum of the absolute value error at each layer (the big summation symbol in Fig. 8).

For each ERP simulation, linear mixed models were fit to the data (the bobyqa optimizer was used and 50000 evaluations were
performed; Bates, Mächler, Bolker, & Walker, 2015) and effects were sum-coded or centered (unless otherwise specified). Maximal
random effect structures were fitted to each model (Barr, Levy, Scheepers, & Tily, 2013). For each of the following simulations, we
crossed layer (NEXTWORD/HIDDEN) against one or more factors related to the conditions in each study. If there was an interaction of
layer and condition, then that provided evidence that prediction error was differentially sensitive to condition across these levels. If
that interaction was significant, posthoc tests were performed for the critical contrast at the NEXTWORD and HIDDEN layer separately
(Hothorn, Bretz, & Westfall, 2008; Lenth, 2017). In the next sections, we will report statistical tests for simulations of several N400
and P600 studies. All of these tests involved 30 matched test items that corresponded to the linguistic manipulations in these studies.
The same ten model subjects were tested across all of the following simulations (see Appendix A for details about the simulations).

2.3. Cloze probability and N400 amplitude

The most important determiner of N400 amplitude is the cloze probability of words (Kutas & Hillyard, 1984), defined as the
proportion of subjects who complete a sentence fragment with that particular word. The more a word is expected in a sentence
context, the smaller the N400 amplitude it generates (“congruity effect”). To simulate this relation, the model’s input language
contained biases for certain arguments after particular verbs. For example, the word water occurred 60% of the time with the verb
drink (High Cloze), 15% of the time with the verb taste (Medium Cloze), and 4% of the time with the verb take (Low Cloze). Then we
examined whether the model exhibited error profiles that showed a sensitivity to this knowledge by testing items such as those in
Table 4.

Error was collected at the post-verbal noun position (Fig. 10). The maximal model for the data had model subject random slopes
for cloze condition crossed with layer. There was a main effect of cloze, = 0.38, SE=0.07, 2(1)= 8.11, p=0.0044; and a main
effect of layer, = 0.8, SE= 0.097, 2(1)= 33.5, p<0.001. There was also an interaction of cloze and layer, = 0.25, SE= 0.12,

2(1)= 4, p= 0.046, which shows that the effect of cloze was mainly centered in the NEXTWORD layer, and in our framework this
corresponds to the N400 time-window. Thus, the model acquired cloze probabilistic information about words in context and this
information was encoded at the NEXTWORD layer, not the HIDDEN layer.

In humans, the strength of the correlation between target word cloze and the apex of the N400 is very strong (DeLong et al., 2005
report a correlation of −0.79). In the model, NEXTWORD layer output sums to 1.0, so the activation of each unit represents the cloze
probability of the corresponding word in the context. Since the negative correlation in humans is due to the negative direction of the
ERP deflection, we computed a correlation between the model’s cloze probability and the negative Sum Abs. Error. The correlation is

Table 4
Example test sentences for Cloze Probability simulation.

Example sentence Condition

a teacher was drink -ing the water. High Cloze
a teacher was taste -ing the water. Medium Cloze
a teacher was take -ing the water. Low Cloze
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-.999 and this tight relationship is due to Eq. (1), where cloze probability (output activation) is directly related to error (see Appendix
C for more detail on this analysis). In our account, error at the NEXTWORD layer is a source ERP and noise is added when it is recorded
at the scalp. This noise can explain why the correlation between cloze and the N400 at the scalp in humans is smaller than in the
model. These results show that the model replicates the inverse relationship between word expectancy and N400 amplitude in that
higher cloze probabilities lead to a stronger reduction in prediction error.

2.4. Effect of cloze probability and sentential constraint on N400 amplitude

As discussed in Section 1.2, Federmeier et al. (2007) found that effects of sentential constraint and word expectancy (cloze
probability) on the N400 were non-additive. To examine this in the model, we looked at verb-object dependencies. In the training
input, the Strong sentential constraint verb sip occurred with tea 60% of the time and four other drinks 10% of the time. The Weak
sentential constraint verb sniff occurred with wine 40% of the time and with the other four drinks 15% of the time. In the test items
(Table 5), we varied the verbs that were used to manipulate sentential constraints for the final noun. To manipulate word expectancy,
we varied whether the final noun was an Unexpected word like water or Expected words such as tea and wine.

Error was collected at the post-verbal noun position (Fig. 11). The maximal model for the data had all model subject random
slopes for fully crossed expectancy, constraint, and layer, except for the three-way interaction and the constraint/layer interaction.
There was a main effect of expectancy, = 0.45, SE=0.07, 2(1)= 14.78, p<0.001; a main effect of layer, = 0.77, SE=0.066,

2(1)= 21.21, p<0.001; but no effect of constraint (p= 0.602). There was also an interaction of expectancy and layer, = 0.42,
SE=0.1, 2(1)= 10.75, p= 0.001; an interaction of constraint and layer, = 0.27, SE=0.014, 2(1)= 326.97, p<0.001; and a
marginal interaction of expectation and constraint, =−0.31, SE= 0.082, 2(1)= 3.7, p=0.054. Critically, there was a three-way
interaction, =−0.46, SE= 0.027, 2(1)= 268.93, p<0.001. To break down this interaction, we performed separate models
crossing constraint and expectancy at each layer. At the NEXTWORD layer, there was a main effect of expectancy, = 0.66, SE= 0.09,

2(1)= 17.03, p<0.001; a marginal effect of constraint, = 0.14, SE= 0.036, 2(1)= 3.13, p=0.077; and an interaction of
constraint and expectancy =−0.54, SE= 0.088, 2(1)= 16.55, p<0.001. This interaction appears to be due to the effect of
constraint in the Expected condition, but not in the Unexpected condition. At the HIDDEN layer, there was a main effect of expectancy
= 0.24, SE=0.082, 2(1)= 4.54, p= 0.033; a main effect of constraint =−0.13, SE=0.076, 2(1)=4.82, p=0.028; and no

interaction (p= 0.361). This pattern of effects was similar to what has been found in the human data (Federmeier et al., 2007), where
constraint did not influence the N400 for the Unexpected conditions, but did influence it for Expected conditions. They also found a
late positivity in the P600 time window where the Strong Unexpected condition was different from the Weak Unexpected condition.
The model showed a similar pattern, in that there was a main effect of constraint on the HIDDEN layer error, suggesting that the
model’s P600 was sensitive to constraint.

Cloze probabilities are thought to reflect semantic associations between the sentence context and a particular word. For example,
the action of sipping can be done to any drink, but it is more likely for hot drinks like tea than for cold drinks like beer. In our

Fig. 10. Sum Abs. Error for Cloze Probability simulation.

Table 5
Example test sentences for Cloze and Sentential Constraint simulation.

Example sentence Constraint Expectation

the woman will sip the tea. Strong Expected
the woman will sniff the wine. Weak Expected
the woman will sip the water. Strong Unexpected
the woman will sniff the water. Weak Unexpected
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language, we created strong cloze probabilities by manipulating the pairing of verbs and arguments (e.g., sip and tea occur together
60% of the time). We also created semantic categories like drinkable liquids by having words like tea, beer, coffee, water, and wine
occur with verbs like sip and drink. To better understand the balance between predictions for individual words and semantic cate-
gories, we took the Strong and Weak sentential constraint data for the Expected word condition and factored out how much of the
Sum Abs. Error at the NEXTWORD layer (N400) was due to the target word (e.g., tea) as opposed to the other members of the category
(e.g., coffee, beer, water, wine). For the Strong constraint condition, the error was split 50% for the target word tea and the rest of the
category. This was because the soft-max activation function restricted the maximum error to around 0.5. In the Weak constraint
condition, there were a range of error values for both the target and the category, and there was a strong negative correlation of
−0.89 between them. This means that category error was stronger when there was no clear best completion. The negative correlation
demonstrates that the model was predicting semantic categories like drinks and the strength of the prediction for the category
depends on whether the context was semantically biased for a single best completion.

2.5. Sentence position effects on N400 amplitude

As a sentence unfolds and a partial interpretation is being constructed, semantic information builds up and restricts options of
how the sentence can continue. On a prediction-based account of the N400, word expectancy for content words should therefore
increase as a function of sentence position and N400 amplitude should decrease, correspondingly. This hypothesis has been con-
firmed in that N400 amplitude is systematically reduced with increasing word position over the course of congruent sentences (Van
Petten & Kutas, 1990; Van Petten & Kutas, 1991). In these studies, a strong inverse correlation between sentence position and N400
amplitude was observed. Words in late positions elicited smaller N400 amplitudes than earlier words since later words have more
contextual support. In syntactically legal but semantically incoherent sentences, on the other hand, N400 amplitude has been found
to be consistently large and does not vary depending on position (Van Petten, 1993; Van Petten & Kutas, 1991; Van Petten, Weckerly,
McIsaac, & Kutas, 1997).

To test this in the model, we used dative sentences with progressively stronger positional constraints. The subject position could
be filled by both animate and inanimate nouns (e.g., passive subjects). The post-verbal position could be taken by both animate and
inanimate nouns, but this was influenced by verb bias: the dative verbs give and lend were biased towards animate nouns in the post-
verbal slot (double object dative bias 75%), while the other two dative verbs throw and send were biased towards inanimate nouns in
the post-verbal slot (prepositional dative bias 75%). The final noun position in the double object dative was typically inanimate,
while in the prepositional dative, it was typically animate. To test whether constraints are more restrictive as more of the sentence is
processed, we generated 30 dative test sentences (both double object and prepositional dative, which could be in active or passive
voice). These Congruent sentences were paired with matched semantically-incoherent Syntactic sentences where the nouns were
randomly replaced with other nouns that differed in animacy (examples are shown in Table 6). Since noun phrases could vary in
terms of articles, tense, and aspect, nouns occurred in various positions in these test sentences.

Fig. 11. Sum Abs. Error for Cloze and Sentential Constraint Simulation.

Table 6
Example sentences for sentence position simulation.

Example sentence Congruency

a grandma give -ed the clerk a beer Congruent
a pencil give -ed the coffee a friend Syntactic
sister -s are send -ing toy -s to the father. Congruent
coffee -s are send -ing man -s to the steak. Syntactic
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Error was collected at each noun position (Fig. 12). The maximal model for the data had random model subject slopes for
congruency crossed with position. Since we were interested in the slope for the Syntactic condition, we coded congruency as a
dummy coded variable (Congruent = 1) and crossed it with a centered position variable. There was a marginal positive effect of
position, = 0.0027, SE=7e−04, 2(1)= 3.56, p= 0.059; which suggests that there was no reduction of the slope of the Syntactic
condition over sentence position (Syntactic= 0 in our treatment coding). There was a main effect of congruency, =−0.049,
SE=0.0027, 2(1)= 8.86, p=0.0029, as Sum Abs. Error was higher for the Syntactic utterances. Critically, there was an inter-
action of congruency and position, =−0.0096, SE=8e−04, 2(1)= 33.16, p<0.001, and the negative slope indicates that there
was a reduction in error as sentence position increased in the Congruent condition.

Van Petten and Kutas (1991) found no effect of position in the Syntactic condition and the model is able to simulate that effect.
Critically, the model showed a negative effect on error at the NEXTWORD layer as position increased for the Congruent sentences, which
mirrored the reduction in N400 amplitude over position in the human data (as in Fig. 3 in Van Petten & Kutas, 1991). The model
predictions became increasingly constrained as more words were processed and this reduced the prediction error for Congruent
sentences. These constraints were semantic in nature, because syntactically acceptable nouns that differed in animacy did not show
the same reduction in prediction error.

2.6. Noun-verb number agreement and the P600

In addition to the N400, the other major component that we attempted to model is the P600, which is sensitive to a range of
syntactic manipulations. One of the earliest studies to investigate ERPs in response to syntactic violations used Dutch sentences in
which the subject noun mismatched the main verb in number (Hagoort et al., 1993). To simulate this study, we selected Singular and
Plural third person transitive sentences with simple aspect as Control sentences and created Violation items by removing the third-
person singular marker (-ss) for the singular subjects and added this marker for the plural subjects (Table 7).

Error was collected at the postion after the transitive verb where the sentence pairs diverged (Fig. 13). A maximal model was fit
with condition and layer crossed as fixed effects and as random slopes for model subject. There was a main effect of condition,
= 2.3, SE=0.22, 2(1)= 7.88, p=0.005; a main effect of layer, = 1.1, SE= 0.31, 2(1)= 6.75, p=0.0094; and an inter-

action of condition and layer, = 3.4, SE=0.47, 2(1)= 19.51, p<0.001. The interaction was due to the 6.98 times larger dif-
ference between Violation and Control in the HIDDEN layer, diff =4.0225, t(9)= 9.03, p<0.001 than in the NEXTWORD layer, diff
=0.5761, t(9)= 8.2, p<0.001. These results demonstrate that the HIDDEN layer was more sensitive to violations in number agreement
than the NEXTWORD layer and this instantiated a P600 pattern. This difference at the HIDDEN layer was the result of cancelation of
positive and negative weighted lexical error in the Control condition and accumulation of error in the Violation condition when they
were summed at the HIDDEN layer (Sequencing Layer in Fig. 6).

Fig. 12. Sum Abs. Error for Sentence Position simulation.

Table 7
Example test sentences for Noun-verb Number Agreement simulation.

Example sentence Number Condition

the boy take -ss a stick. Singular Control
the boy take a stick. Singular Violation
the boy -s take a stick. Plural Control
the boy -s take -ss a stick. Plural Violation

H. Fitz and F. Chang Cognitive Psychology 111 (2019) 15–52

32



2.7. Tense inflection and the P600

In another study on inflectional morphology, Allen et al. (2003) elicited a P600 in response to violations where finite verb forms
mismatched the preceding future tense auxiliaries (e.g., The man will work… versus *The man will worked…). To examine this effect,
we selected future tense transitive sentences with simple aspect as Control items and created Violation items by adding a past-tense
marker (-ed) (Table 8).

Error was collected at the position after the transitive verb where the test sentences diverged (Fig. 14). The maximal model for the
data had random model subject slopes for condition crossed with layer. There was a main effect of condition, = 3.5, SE=0.31,

2(1)= 9.92, p= 0.0016; no main effect of layer (p=0.746), and an interaction of condition and layer, = 5.5, SE=0.63,
2(1)= 22.53, p<0.001 (Fig. 14). The interaction was due to a greater difference for condition in the HIDDEN layer, diff =6.3104, t

(9)= 10.19, p<0.001; than in the NEXTWORD layer, diff =0.7789, t(9)= 8.98, p<0.001. Since it maintained a memory of the
auxiliary will in the HIDDEN layer activation, the model predicted articles after the verb and a large error was generated for -ed. When
the error was propagated backwards, the difference at the HIDDEN layer was 8.1 times larger than the difference at the NEXTWORD layer,
and this created the overall P600-like pattern. As explained in Section 1.2.2, this difference was enhanced at the HIDDEN layer because
of the cancellation and accumulation of error values during the back-propagation of error to the HIDDEN layer (summation in Eq. (2)).

2.8. Word category mismatch and the P600

Several studies have found a P600 in response to word category violations at different sentence positions (Friederici et al., 1996;
Friederici, Hahne, & von Cramon, 1998; Hagoort, Wassenaar, & Brown, 2003). To simulate this in the model, our language contained
some verbs such as nap that could also occur as nouns as in take a nap. We generated test sentences where these words were used as
plural nouns in post-verbal position in transitives. Violation items were created from these Controls by replacing the plural marker -s
with the past tense marker -ed (Table 9).

Error was collected at sentence-final position, where the test sentences differed in morphology (Fig. 15). The maximal model for
the data had random model subject slopes for condition crossed with layer. There were no main effects (condition, p= 0.988, layer,
p= 0.214), but there was an interaction of condition and layer, = 2.3, SE= 0.56, 2(1)= 10.72, p=0.0011. The interaction was
due to a significant difference in condition in the HIDDEN layer, diff =2.4042, t(9)= 3.73, p=0.0047; but no difference in the
NEXTWORD layer (p=0.7733). One reason for the lack of a difference at the NEXTWORD layer was the fact that the strongest prediction
after the post-verbal noun was the end of sentence marker. Since this prediction generated the same error for both Controls and
Violations, there was no difference at the NEXTWORD layer. However, there was also error for past-tense -ed, which was magnified
when back-propagated to the HIDDEN layer and this created the P600 in the model.

Fig. 13. Sum Abs. Error for Noun-verb Number Agreement simulation.

Table 8
Example test sentences for Tense Inflection simulation.

Example sentence Condition

a father will sip the beer. Control
a father will sip -ed the beer. Violation
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2.9. Verb subcategorization and the P600

Syntactic anomalies can be more subtle than a word category switch. Verb subcategorization violations, for example, are con-
sistent with English word order and phrase structure and have been shown to elicit a robust P600 (Ainsworth-Darnell et al., 1998). In
the study of Osterhout and Holcomb (1992), intransitives with a clausal complement (The woman struggled to prepare the meal) were
compared at the infinitival marker to with transitives that require a direct object (*The woman persuaded to answer the door). To
examine this phenomenon in the model, we selected intransitive sentences with location adjunct phrases (Control) and changed the
verb to a transitive one (Violation) which did not appear adjacent to locational adjunct phrases in the input language (Table 10).

Fig. 14. Sum Abs. Error for Tense Inflection simulation.

Table 9
Example test sentences for Word Category simulation.

Example sentence Condition

the grandma was take -ing the nap -s. Control
the grandma was take -ing the nap -ed. Violation

Fig. 15. Sum Abs. Error for Word Category simulation.

Table 10
Example test sentences for Verb Subcategorization simulation.

Example sentence Condition

a sister is nap -ing near the boy. Control
a sister is push -ing near the boy. Violation
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Error was collected at the preposition (Fig. 16). The maximal model for the data had random model subject slopes for condition
crossed with layer. There was a main effect of condition, = 1.9, SE=0.25, 2(1)= 7.6, p= 0.0058; no effect of layer (p= 0.735),
and an interaction of condition and layer, = 3, SE= 0.53, 2(1)= 14.94, p<0.001. The interaction was due to an 8.92 times larger
effect of condition at the HIDDEN layer, diff =3.3304, t(9)= 6.51, p<0.001; than the NEXTWORD layer, diff =0.3735, t(9)= 4.22,
p=0.0022. Although the model was correctly predicting prepositions after the intransitive verb at the NEXTWORD layer, it was also
strongly predicting the end of sentence marker and this created prediction error for both the Control and Violation items. Since
intransitive verb representations in the HIDDEN layer had positive weights to both the end of sentence marker and prepositions, these
positive and negative weighted error values canceled for the Control condition, creating a P600-like difference at the HIDDEN layer.

2.10. Garden-path sentences and the P600

The syntactic anomalies considered so far involved critical items that were strictly ungrammatical. A P600, however, has also
been elicited by grammatical but dispreferred structures. Osterhout et al. (1994), for example, used garden-path sentences in which
the post-verbal argument was temporarily ambiguous between a direct object and a clausal complement (The lawyer charged the
defendant was lying) before being disambiguated by the auxiliary. Behavioral studies suggested there is a preference for the direct
object interpretation (Ferreira & Henderson, 1990) which is modulated by verb biases (Garnsey, Pearlmutter, Myers, & Lotocky,
1997; Trueswell et al., 1993). The unambiguous form had an overt complementizer (The lawyer charged that the defendant was lying)
and a P600 was found when comparing the EEG signal on the auxiliary in both items. These results showed that the P600 was not
limited to outright syntactic violations but also occurred when a preferred interpretation had to be abandoned.

We created Unambiguous test items by generating grammatical sentences with an intransitive complement clause and the main
clause verbs believe and know (Table 11). Since these verbs also occurred as transitives in the model’s input language (e.g., a father
believe -ed the teacher), removing the complementizer thatmade these sentences temporarily Ambiguous. These verbs occurred equally
often in transitives and sentence complements, so they were equibiased.

Error was collected at the embedded verb position, where the sentence complement structure was disambiguated (Fig. 17). The
maximal model for the data had random model subject slopes for condition crossed with layer. There was a main effect for condition,
= 0.81, SE=0.17, 2(1)= 5.07, p= 0.024; a main effect of layer, =−0.48, SE=0.2, 2(1)= 14.71, p<0.001; and an in-

teraction of condition and layer, = 1.3, SE= 0.36, 2(1)= 8.56, p=0.0034. The interaction was due to a larger effect of condition
at the HIDDEN layer, diff = 1.4331, t(9)= 4.11, p= 0.0026; than the NEXTWORD layer, diff = 0.1809, t(9)= 4.109, p=0.0026. The
magnitude of the difference at the HIDDEN layer was 7.92 times bigger than the difference at the NEXTWORD layer, and this ratio
explains the significant interaction. At the NEXTWORD layer, the model predicted a wide range of verbs and auxiliaries in the Un-
ambiguous condition and the end of sentence marker for the Ambiguous condition, which was in part due to the high frequency of
transitives in the model’s language. This led to a fairly high Sum Abs. Error at the NEXTWORD layer for both conditions with a relatively
small difference between them. When back-propagated to the HIDDEN layer, however, there was a reduction in error in the Un-
ambiguous condition which created the P600 pattern.

Fig. 16. Sum Abs. Error for Verb Subcategorization simulation.

Table 11
Example test sentences for Garden-path simulation.

Example sentence Condition

a father believe -ed that the teacher nap -ss. Unambiguous
a father believe -ed the teacher nap -ss. Ambiguous
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2.11. The semantic P600

Several studies have investigated the processing of sentences where preferred thematic-role assignment conflicts with the ar-
gument structure of verbs (Kolk, Chwilla, van Herten, & Oor, 2003; Kuperberg, Caplan, Sitnikova, & Holcomb, 2003; Hoeks et al.,
2004; Kim & Osterhout, 2005; Van Herten, Kolk, & Chwilla, 2005; Kuperberg, Kreher, Caplan, Sitnikova, & Holcomb, 2007; Nakano,
Saron, & Swaab, 2010). Although the violation is semantic, these studies found a P600 on the critical words. For example, Kim and
Osterhout (2005) observed a P600 effect for semantically anomalous sentences (The hearty meal was devouring…) relative to both
active and passive controls (The hungry boys were devouring… and The hearty meal was devoured…). Since these items were syn-
tactically well-formed, the effect was labelled as a semantic P600. To examine this effect, we randomly generated passive transitives
and their active counterparts (Table 12). The role reversal condition was created from the active utterance by switching the position
of the nouns.

Error was collected at the verb inflection where the sentences diverge (Fig. 18, a small amount of jitter was applied to the figure to
separate the active and passive lines). The maximal model for the data had random slopes for layer for model subject. Condition was
coded with a Helmert contrast where Active and Passive sentences were compared against each other, then Role Reversal was
compared against the combination of Active/Passive conditions. There was a main effect of layer, = 1.3, SE= 0.24, 2(1)= 13.7,
p<0.001. There was no difference between Active and Passive (p=0.572), but there was a difference between the Active/Passive
conditions combined and the Role Reversal condition, = 2.5, SE= 0.026, 2(1)= 2170.95, p<0.001. The interaction of layer and
Active/Passive contrast was not significant (p= 0.567), but there was an interaction of the contrast between the Role Reversal
condition and the other two conditions at the HIDDEN layer, = 2.5, SE=0.052, 2(1)= 1467.25, p<0.001. Since the contrast
between Role Reversal and the other two structures was significant overall and interacted with layer, we performed separate tests for
each layer. The interaction was due to a 2.89 times larger effect of condition at the HIDDEN layer, diff =5.6326, t(1787)= 102.82,
p<0.001; compared to the NEXTWORD layer, diff =1.9456, t(1787)= 35.52, p<0.001.

In contrast to some of the previous P600 simulations, the model predicted only one morpheme in the post-verbal position, namely
the progressive -ing morpheme in the Active Control and the past participle -par morpheme in the Passive Control and Role Reversal
conditions. The strength of these predictions at the NEXTWORD layer suggests that the model was using both the semantic information
from the subject as well as the syntactic information in the auxiliary to make these predictions. As there was no NEXTWORD error in the
Active and Passive Control conditions to pass back to the HIDDEN layer, there was no difference in these conditions. The Role Reversal
condition showed positive NEXTWORD error on the -par morpheme, because it was wrongly predicted, while there was negative error
on the -ingmorpheme, because it was not activated enough. But since these morphemes had different syntactic distributions, they had
strong weights to different HIDDEN layer units. Thus, when error was propagated to the HIDDEN layer, it did not cancel, but instead
accumulated on different units and this increased the Role Reversal Sum Abs. Error at this layer associated with the P600.

The larger effect at the HIDDEN layer suggests that we observe a robust semantic P600 in this simulation. But in addition, the effect
at the NEXTWORD layer was 4.932 times as large as the average NEXTWORD layer error in the five previous P600 studies. This suggests
that a weaker N400 was also present in the model and this is of interest because N400s have been found in several role reversal

Fig. 17. Sum Abs. Error for Garden-path simulation.

Table 12
Example test sentences for Semantic P600 simulation.

Example sentence Condition

the pencil is take -par by the woman. Passive Control
the woman is take -ing the pencil. Active Control
the pencil is take -ing the woman. Role Reversal
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studies (Chow & Phillips, 2013; Chow, Lau, Wang, & Phillips, 2018; Kim & Osterhout, 2005; Van Herten et al., 2005; Hoeks et al.,
2004; Friederici & Frisch, 2000; Kolk et al., 2003). Kuperberg (2007) reviewed this literature and highlighted various factors that may
be relevant such as semantic associations, animacy, plausibility, task, and context. The work of Chow and colleagues (Chow &
Phillips, 2013; Chow et al., 2018) suggested that high predictability and distance between the arguments and the verb were also
important. The model’s input language was much simpler than human languages and this createed conditions of high predictability
that could have enhanced the N400 effect. Future models need to be developed with more realistic inputs to better understand the
relationship between the N400 and semantic P600.

2.12. Developmental changes in ERPs

Several biologically-inspired theories of ERPs have argued for a fixed association between linguistic operations and brain areas
that generate ERPs (Brouwer et al., 2017; Friederici, 2002; Bornkessel & Schlesewsky, 2006). These theories predict that ERPs in
children and adults should be similar and several studies support this finding (Hahne, Eckstein, & Friederici, 2004; Atchley et al.,
2006), but other studies have found changes over development. Foucart and Frenck-Mestre (2012) tested a gender mismatch that
generated a P600 effect in French speakers, but in English L2 learners of French, the same stimuli generated an N400. Lück, Hahne,
and Clahsen (2006) found that German noun morphology errors yielded a P600 in adults and Clahsen, Lück, and Hahne (2007) found
similar effects in 11–12 year olds. However, this study also found that 6–7 year olds exhibited a negativity around the N400 time
window. Stronger evidence for developmental changes in the P600 comes from a study by Schneider, Abel, Ogiela, Middleton, and
Maguire (2016), who presented number agreement errors to English-speaking 10–12 year old children and adults. They found a P600
and no N400 in the adults, and an N400 and no P600 in the children. While most of these studies are between-subject comparisons,
Weber and Lavric (2008) examined within-subject L1 and L2 ERPs for morphosyntactic features that were similar in English (L2) and
German (L1). Although participants showed a P600 in both L1 and L2, which implies that they had grammatical knowledge of both
languages, they found an N400 in their L2, which was not present in their L1 or in a control group of English speakers. Overall, these
studies suggest that stimuli which yield a P600 in adults can sometimes trigger an N400 in children or L2 learners. If the same
linguistic distinction can activate different components over development, then that argues against a fixed association between
linguistic operations and brain areas. In the Dual-path model, on the other hand, the representations that support prediction in
different layers can change and reorganize over development. For example, Fitz and Chang (2017) and Twomey et al. (2014) found
that the Dual-path model produced overgeneralization errors early in development and only later did the models adapt their re-
presentations to match the adult state. Since ERPs reflect the mismatch between the input and the predictions based on changing
representations, the Error Propagation account predicts that it is possible for prediction-error related ERPs to also change sub-
stantially over development.

To test whether the Error Propagation account can exhibit a developmental N400, we examined the NEXTWORD layer in the
previous word category simulation (Section 2.8, Hagoort et al., 2003) at two points in the model’s development (epochs 30,000 and
100,000) to see if there was a change in the N400 (Fig. 19). We did not examine the P600, since the Weber and Lavric (2008) results
suggest that the developmental N400 is not inversely yoked to the development of the P600, because their highly-proficient parti-
cipants showed both an N400 and a P600 in L2 English.

The maximal model for the data had random model subject slopes for condition. There was a main effect of condition, = 0.36,
SE=0.097, 2(1)= 9.26, p= 0.0023; a main effect of epoch, =−0.027, SE= 0.0093, 2(1)= 6.75, p= 0.0094; and a sig-
nificant interaction of condition and epoch, =−0.3, SE=0.019, 2(1)= 230.02, p<0.001. This was due to a significant difference
at the child epoch 30,000, diff = 0.6558, t(9)= 6.64, p<0.001; but no difference at the adult epoch 100,000 (p=0.5415).

These results suggest that a syntactic category violation which elicits a P600 in the adult model can also create an N400 effect in
the child model. Furthermore, there were developmental changes in the N400, such that it eventually disappeared in the adult model.

Fig. 18. Sum Abs. Error for Semantic P600 simulation.
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The adult model strongly predicted the end of sentence marker after the final noun, and since that marker was not part of the Control
or Violation sentence, there was no difference in error at the NEXTWORD layer. At epoch 30,000, the prediction for the sentence final
marker was reduced and the plural marker was increased and this created a difference in NEXTWORD error (N400), since the plural
marker was the final word in the Control item. This simulation exhibited a developmental N400 that eventually disappeared in the
adult model. Future work is needed to understand the factors that control the appearance of the developmental N400 and how it
relates to the P600 for the same stimuli.

The developmental N400 is challenging for models of the N400 which assume that the N400 can only be triggered by semantics.
For example, the Rabovsky et al. (2018) model was trained with sequences without isolated function words or morphemes. Hence,
this model is unable to explain why morphology can trigger a developmental N400. On the other hand, the Error Propagation model
is trained with sentences that contain both function words and content words. The model has to learn lexical-semantic and syntactic
constraints and assign them to particular layers in the model. Since the model does next word prediction, all syntactic knowledge is
first encoded into the weights to the NEXTWORD layer and only later are syntactic categories developed in the COMPRESS and HIDDEN

layers that provide a more abstract encoding of the rules of the language. Janciauskas and Chang (2018) argued that L2 learners make
greater use of their lexical system for syntactic distinctions in the L2, so that might help to explain the persistent L2 N400 in bilingual
adults (Weber & Lavric, 2008). Thus, the model can help to explain developmental N400 effects for syntactic stimuli in children and
L2 speakers.

2.13. Linguistic adaptation of ERPs in adults

Work on linguistic adaptation has argued that language learning does not just take place during development, but also operates in
response to individual linguistic experiences in adults (Dell & Chang, 2014; Dell, Reed, Adams, & Meyer, 2000; Delaney-Busch et al.,
2019; Jaeger & Snider, 2013). In fact, the reason why prediction error is generated in comprehension in the present account is
because of this life-long learning mechanism (Chang et al., 2006). This account predicts that the magnitude of ERPs should change in
response to changes in the distribution of the items experienced in a block of trials. Evidence in support of this prediction comes from
Coulson et al. (1998) who manipulated the probability of ungrammatical items in a block of trials. They tested agreement and
pronoun items and varied whether there were 80% or 20% ungrammatical items in a block (the rest were grammatical). They found
that the ERP amplitude around 600ms for ungrammatical items was larger when these items were improbable (block with 20%
ungrammaticality). They also found a large amplitude for grammatical items when these items were improbable (block with 80%
ungrammaticality).

One way to explain this adaptation to ungrammatical items is in terms of error-based learning. To generate ERP signatures in the
model, we recorded error at the NEXTWORD layer and back-propagated it through the network. If we apply the weight updates that
were computed to change the network weights, then the representations that support performance in each block will adapt to the
frequency of grammatical and ungrammatical items in the block. The same approach was used in Chang et al. (2006) to explain
structural priming, where learning was left ON during prime processing and that led to changes in structural representations that
influenced target production. Since Coulson et al. (1998) tested subject-verb agreement items similar to those in Hagoort et al.
(1993), we used our agreement items to test for adaptation in the model. Since the original study combined agreement items with
pronoun items, we alternated our agreement items with an equal number of grammatical items from other control conditions as fillers
(60 in total). Two matched lists of items were created where singular/plural agreement violations occurred either 80% or 20% of the
time. The adult model was tested in the same way as in the other ERP simulations, but weight changes were applied after each item
(the same learning rate of 0.1 as in training was used) and then these adjusted weights were used for predicting the next test item. To
match Coulson et al. (1998) Fig. 5, we coded probability relative to condition (e.g., the block with 20% ungrammatical item would be

Fig. 19. Sum Abs. Error at NEXTWORD layer for Developmental simulation.
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Probable for Grammatical and Improbable for Ungrammatical) and the results are shown in Fig. 20.
We crossed condition, layer, and probability in a mixed model and the maximal model for the data had random subject slopes for

condition crossed with layer and probability, except for the three-way interaction. There was a main effect of condition, = 0.97,
SE=0.11, 2(1)= 11.25, p<0.001; and no effect of layer (p= 0.631) or probability (p= 1.00). There was also an interaction of
condition and layer, = 0.85, SE= 0.21, 2(1)= 21.1, p<0.001; and an interaction of layer and probability, =−1.2, SE= 0.26,

2(1)= 12.29, p<0.001; but no interaction of condition and probability (p=0.752) and no three-way interaction (p= 0.471). The
interaction of layer and probability was due to a 7.43 times larger effect of probability at the HIDDEN layer, diff = 2.4676, t(9)= 9.23,
p<0.001; than at the NEXTWORD layer, diff =0.3323, t(9)= 1.86, p=0.0954.

The absence of a three-way interaction or an interaction of condition and probability implies that probability had a similar effect
for both Control and Violation conditions. Less probable items yielded more Sum Abs. Error at the HIDDEN layer and this captures the
main finding of Coulson et al. (1998). The reason for the differences due to the probability of ungrammatical items is that the model
was learning the likelihood of grammatical or ungrammatical transitions and that influenced the error that was propagated to the
HIDDEN layer. An important feature of the data from Coulson et al. (1998) study was that the manipulation of probability only
influenced amplitude, but not timing. In models where the timing of ERPs is shaped by learning (Laszlo & Plaut, 2012; Laszlo &
Federmeier, 2011; Laszlo & Armstrong, 2014; Cheyette & Plaut, 2017), it is possible that within-experiment learning would change
the timing of ERPs. On the other hand, the Error Propagation account proposes that timing is determined by the number of layers that
error must be propagated across in the network, so the timing cannot be changed by experience in the same way as amplitude. This
simulation shows that the error that explains ERPs can also be used to explain why ERP amplitudes change with experience.

2.14. Priming of ERPs as error-based learning

Repetition priming ERP studies provide evidence for the role of implicit learning in ERP adaptation (Rugg & Curran, 2007). These
repetition effects can persist over lags of 120 sentences (approximately 45min; Besson, Kutas, & Van Petten, 1992) and can appear in
amnesics (Olichney et al., 2000), which suggests that they are supported by a type of implicit learning. One study that provides strong
evidence for error-based adaptation is Rommers and Federmeier (2018), who examined how the repetition of the final word in paired
prime-target sentences was influenced by the context that the final word was paired with in the earlier prime sentence. They used
target sentences that yielded an N400 due to the fact that the final noun was only weakly predicted by the context (e.g., It had been
several years since they last cleaned the car). The target was preceded by two kinds of primes with the same final word as the target
(e.g., car). In the Previously Predictable prime, context predicted the final word (e.g., Alfonso has started biking to work instead of driving
his car), while the Previously Unpredictable prime did not predict the final word as strongly (e.g., Jason tried to make space for others by
moving his car). There was also an additional Not Previously Seen prime which had a different final word from the target (e.g., The final
score of the game was tied). Compared to this Not Previously Seen prime, the primes with the same final word as the target showed a
reduction in N400 magnitude. But when the prime final word was unpredictable, the N400 was reduced more than in the predictable
condition and this suggests that error on the prime determined how much representations were changed. In addition to the N400,
they found a late positive component around 600ms that was also sensitive to predictability.

To simulate this study, we created Previously Predictable prime sentences using the high cloze probability verb-argument re-
lationships in the language, e.g., drink-water (Table 13). The Previously Unpredictable prime sentences were the same, except that the
verb was changed to the weakly constraining verb sniff, which occurred with water less frequently in the input. We also included a Not
Previously Seen prime, which was an intransitive sentence without the word water. All three prime sentences were paired with the
same Critical Target sentences with a weakly constraining verb taste and the same final noun as the Previously Predictable/Un-
predictable primes (30 Predictable and 30 Unpredictable prime pairs). Learning was left ON during the prime and weights were
updated before the Target was processed (the learning rate was 0.2). To avoid interference across prime-target pairs, weights were

Fig. 20. Sum Abs. Error for simulation with variation in proportion of grammatical and ungrammatical stimuli.
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reset to the same adult weights before each pair as in Chang et al. (2006).
Error was collected at the final noun in the Critical Target item (Fig. 21). The maximal model for the data had random model

subject slopes for layer. Condition was Helmert-coded to contrast Not Previously Seen against the other two conditions (Seen contrast)
and another contrast that compared Previously Predictable against Previously Unpredictable (Predictability contrast). There was a main
effect of layer, =−0.83, SE= 0.084, 2(1)= 24.8, p<0.001; a main effect of the Seen contrast, = 0.063, SE=0.0083,

2(1)= 47.66, p<0.001; and a main effect of the Predictability contrast, = 0.14, SE= 0.014, 2(1)= 78.44, p<0.001. There was an
interaction of Seen contrast and layer, =−0.14, SE= 0.017, 2(1)= 67.33, p<0.001; but no interaction of Predictability with layer
(p=0.231). We ran separate models with Seen and Predictability contrasts for each layer. At the NEXTWORD layer, we found an effect of
Predictability, = 0.15, SE=0.01, 2(1)= 94.25, p<0.001; and an effect of Seen, = 0.13, SE=0.0058, 2(1)= 342.75, p<0.001.
At the HIDDEN layer, there was an effect of Predictability, = 0.12, SE=0.027, 2(1)= 18.85, p<0.001; but no effect of Seen
(p= 0.684).

In this simulation, we found that the error at the Lexical Layer was larger when the prime sentences had the same final word as the
target than when they did not share this repetition. This demonstrated that repetition reduced the N400 in the model. Among the
conditions with this repetition, we also found that the N400 was reduced more when the final word in the prime was unpredictable
compared to when it was predictable. Since the same target sentence was used in both conditions, these effects must be due to
different weights that encoded the expectations for the final word. In the model, there was larger error for the final word in the
Previously Unpredictable prime and hence greater weight changes were made than after the Previously Predictable prime. These weight
changes made the final word more predictable in the target and that explains why the error at the target final word was smaller in the
Previously Unpredictable condition. Thus, the model can explain the N400 adaptation effects found in the human data. In addition,
there was an effect of predictability at the HIDDEN layer, but no effect of repetition. In the human data, there was a late positive
component in the time window of the P600 which showed a difference due to predictability in the prime, but repetition did not create
a difference for both Predictable conditions. This simulation captures the critical link between learning and ERPs in the Error
Propagation account. In the prime, next word prediction generated predictability-sensitive error signals which were used to change
the linguistic representations in the system. Then, on the target, these changes influenced the prediction error that generated the
N400 and that was propagated to yield a late positive component (P600).

The Error Propagation model explains adaptation as learning using a production-based error system. This error-based learning
mechanism can explain production adaptation effects like structural priming (Chang et al., 2006; Jaeger & Snider, 2013; Segaert,
Menenti, Weber, Petersson, & Hagoort, 2012; Tooley & Bock, 2014; Bock et al., 2007) and here we have shown that it can also explain
comprehension adaptation effects in ERPs (Coulson et al., 1998; Rommers & Federmeier, 2018). Several studies have reported
syntactic adaptation in non-ERP comprehension (Fine & Jaeger, 2013; Fine, Jaeger, Farmer, & Qian, 2013; Noppeney & Price, 2004;
Segaert et al., 2012; Tooley & Bock, 2014; Kamide, 2012), but some of these results have not been replicated (Harrington Stack,
James, & Watson, 2018; Liu, Burchill, Tanenhaus, & Jaeger, 2017). The present account suggests some reasons for this variability. In
both comprehension and production tasks, we argue that speakers are generating production-based predictions about the next word

Table 13
Example test sentences for Priming simulation.

Example Condition

she drink -ss the water. . Previously Predictable
she sniff -ss the water. . Previously Unpredictable
a grandma will jump. . Not Previously Seen
he is taste -ing the water. . Critical Target

Fig. 21. Sum Abs. Error for Priming simulation.
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and adjust weights that encode the structure based on prediction error. In production, the task is to generate a sequence of words and
the earlier weight changes transfer directly to this task (Dell & Chang, 2014 argue that “prediction is production”). In the Error
Propagation account, ERPs are caused by prediction error and syntactic adaptation is due to a learning mechanism that attempts to
minimize this error. But in non-ERP comprehension tasks, the dependent measure is reading time or eye movements, and these
measures are not optimized by next word prediction error. Thus, this account predicts that non-ERP comprehension adaptation will
be variable.

3. Comparison of Dual-path architecture with a Simple Recurrent Network

To motivate why lexical prediction error is generated during comprehension, we used a model of sentence production (Dual-path
model). In training, we occasionally included messages, which allow the model to learn to map from messages to English sentences.
But in simulating ERPs, the message was turned off, since participants do not know the message until they comprehend the sentence.
Therefore, when simulating ERPs, only the SRN sequencing system (Elman, 1990) was activated. To test whether the ERP results
require the meaning system in the Dual-path model, we trained a separate set of models with the meaning system deactivated. These
SRN models were trained with the same inputs and tested on the same items, and all of the methods and parameters described earlier
were the same. The P600 results were similar in these SRN simulations, suggesting that the meaning system did not play a large role
in generating these syntactic effects. The N400 results, however, were different in the SRN simulations. This is most clearly illustrated
by the lack of a three-way interaction of expectation, constraint, and layer in the Federmeier et al. (2007) simulation. Even though
N400s tend to elicit more error at the NEXTWORD layer in the Dual-path model simulations, the SRN simulations showed large error at
the HIDDEN layer in the Unexpected Strong Constraint condition. This is because the SRN can only predict words through its syntactic
representations and hence the weights between the NEXTWORD layer and the HIDDEN layer caused weighted error values to accumulate
at the HIDDEN layer. This did not occur as much in the Dual-path model simulations, because word selection was also guided by the
concepts in the message which are particularly useful for producing unexpected words. Although the message was not available
during testing, its presence during training caused the Dual-path model’s NEXTWORD predictions to depend more on weights in the
meaning system and hence the error for unexpected words did not have a disproportionate effect on the weights in the SRN. Gordon
and Dell (2003) demonstrated that these types of models learn weights that divide the labor between syntax and meaning and it is this
division of labor which explains why the meaning pathway influences word activation even when the message is not present.
Although these results suggest that the Dual-path architecture may be important for explaining the N400, the fact that Elman (1990)
SRN can model the P600 as a side effect of learning means that ERP predictions can be derived in the many contexts where this model
has been applied.

4. Discussion

Event-related potentials have played an important role in theories that attempt to link linguistic behavior to the underlying
neurobiology of the brain. Here we propose a new Error Propagation framework for understanding the N400 and P600 components
which explains four crucial features of ERPs; mismatch sensitivity, semantic/syntactic dependency, their specific temporal signatures,
and the adaptation of amplitude to linguistic experience. This framework assumes that the production system is constantly learning
throughout one’s lifetime and this involves a prediction error-based learning algorithm (Dell & Chang, 2014). Normally, the system
experiences mostly grammatical inputs, which it uses to tune its representations appropriately. But occasionally, the system is placed
in an ERP experiment, where it hears structures that violate its expectations and this generates large error signals which appear as
ERPs. This error is propagated backwards in the network (Rumelhart et al., 1986) and since this takes time, error propagation also
explains why there are components with different latencies, such as the N400 and P600. Due to the architecture of the language
system, different layers encode syntax and semantics to different degrees, and the ERP components associated with these layers differ
in their sensitivity to grammar and meaning. Finally, the error signal that is indexed by ERPs is used for learning and causes linguistic
representations to adapt. Adaptation allows speakers/listeners to continue to use language as it changes and ERPs reflect this im-
portant function.

The Error Propagation account was able to simulate three studies on the N400: sensitivity to cloze probability (Kutas & Hillyard,
1984), the non-additive nature of sentential constraint (Federmeier et al., 2007), and amplitude reduction over sentence position
(Van Petten & Kutas, 1991). The N400 was modeled using prediction error at the NEXTWORD Layer in the Dual-path sentence pro-
duction model. Since there were particular semantic associations in the model’s input (e.g., people tend to sip tea), the model encoded
those regularities in its NEXTWORD Layer predictions. This layer has a soft-max activation function, which means that its output
reflected cloze probability. Since the N400 was modeled as the error in its probabilistic predictions about next heard word, this
account can explain why production cloze probability is the best predictor of N400 amplitude in comprehension.

This account was also able to simulate five studies on the P600: noun verb agreement (Hagoort et al., 1993), tense inflection
(Allen et al., 2003), word category mismatch (Hagoort et al., 2003), verb subcategorization (Osterhout & Holcomb, 1992), and
garden-path effects (Osterhout et al., 1994). In most of these studies, the model would predict a syntactically appropriate category of
words or morphemes at the NEXTWORD layer and this would lead to both positive and negative error terms, since only one word/
morpheme could be the target. When the target was within the predicted category, the positive/negative weighted error values
canceled out when summed at the HIDDEN layer. When the target fell outside of the predicted category, the weighted error values
would change sign so that their summed value was larger at the HIDDEN layer. Thus, the P600 was shaped by the weights between the
NEXTWORD and HIDDEN layers as well as by the summation of the weighted error values at each HIDDEN unit.
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Since error-based learning drives the model to learn the representations that allow it to best predict the upcoming input, it
combined syntax and animacy information in its HIDDEN layer and this helped to reproduce the semantic P600 (Kim & Osterhout,
2005; Kuperberg, 2007). This accumulation of information is similar to what happens in the model’s account of N400 cloze effects.
The reason why error is larger at the HIDDEN layer is because the NEXTWORD units that encode verb morphology are strongly connected
to distinct units in the HIDDEN layer; some for progressive active voice, some for passive. The model learns this distinction because it is
useful for future predictions (e.g., by-phrases tend to follow past participles). Since the HIDDEN units are associated with distinct
syntactic choices, there will be positive weights to grammatical continuations and negative weights to ungrammatical continuations,
and this leads to accumulation in the Violation condition which generates the P600.

A key issue in ERP research concerns the question why components differ in their sensitivity to syntax and semantics. Some
models have the nature of their representations set by the training procedure. For example, Rabovsky et al. (2018) model was trained
on sequences without separate function words or morphemes, and therefore it encoded only semantic distinctions. But if it was given
input with function words and morphemes, it would encode both syntax and semantic features in its Sentence Gestalt. The Error
Propagation account does not fix the model’s representations through its training procedure. Instead, the Dual-path network ar-
chitecture was designed to take a sequence of content and function words/morphemes and encode semantic and syntactic in-
formation into different network layers. Since the Dual-path architecture must learn its representations in acquisition, it can learn
developmental representations that differ from the adult state. We found that the model initially encoded syntactic distinctions using
its links to the NEXTWORD layer and this generated a temporary N400 which disappeared later in development. This pattern matched a
range of studies that have found developmental N400 effects in L1 children or L2 learners (Clahsen et al., 2007; Foucart & Frenck-
Mestre, 2012; Lück et al., 2006; Schneider et al., 2016; Weber & Lavric, 2008). Thus, the same error signals that index ERP com-
ponents can also help to explain how syntactic and semantic regularities are encoded separately in the first place, and why these
representations might change over development.

Learning is used to both acquire syntactic and semantic representations, and also to adapt them in response to new input. As a
consequence, ERPs should change as a result of linguistic experience in adults. Support for this prediction comes from linguistic
adaptation studies such as Coulson et al. (1998) who found that P600 amplitude was related to the proportion of ungrammatical test
items in their study. As in models of structural priming (Chang et al., 2006), it was possible to simulate these effects in the Error
Propagation account by turning learning ON as the model processed the test stimuli. Error at the HIDDEN Layer was larger when the
tested structure was improbable within the experiment and this explains adaptation in ERP amplitude in terms of the same prediction
error that was used to learn internal representations. These adaptation effects could be explained by any mechanism that adapts to
the input. But selective evidence in support of an error-based mechanism was provided by Rommers and Federmeier (2018), who
showed that word predictability on a prime influenced how much adaptation appeared in ERPs at a later target item. There are many
cases where linguistic adaptation is similar to language learning in children (e.g., novel word learning in adults Borovsky et al., 2012;
Borovsky et al., 2010; McLaughlin et al., 2004; Mestres-Misse et al., 2007; Perfetti, Wlotko, & Hart, 2005), and approaches like the
Error Propagation account treat these two situations as instances of the same learning procedure.

An important claim in this work is that ERPs are the result of learning processes, rather than the processes that are engaged in the
comprehension of meaning. As mentioned in Section 1.3, existing theories have assumed a tight link in the mechanisms that support
ERPs and non-ERP comprehension results. These theories have difficulty explaining cases where syntactic effects precede semantic
effects (e.g., Clifton et al., 2003; Ferreira & Clifton, 1986; Just & Carpenter, 1992). Another issue is that the absolute timing of first
pass effects of syntax typically occur before 600ms (Frazier & Rayner, 1982; Trueswell et al., 1993, 1994). Finally, ERPs do not
correlate with meaning comprehension (Qian et al., 2017), do not match subject-verb agreement errors (Kaan, 2002), and do not
predict the timing of judgments based on meaning (Fischler et al., 1984). In general, ERPs do not always move in sync with non-ERP
measures of comprehension.

To better understand how the Error Propagation account might explain these differences, we examine a set of studies which are
closely matched in the structures tested (Garnsey et al., 1997; Osterhout et al., 1994). As discussed in the garden-path simulation
(Section 2.10), Osterhout et al. (1994) found a P600 at the disambiguating embedded verb for sentence complements in ambiguous
structures compared to unambiguous controls (e.g., the judge charged (that) the defendant was lying). The disambiguating embedded
verb was is heard at time 0ms (Fig. 22). The Dual-path model assumes that when the word form has been identified, it activates a unit
in the PREVWORD layer. Since the word that is heard at time t is the target for the prediction made at time t 1, the activation in the
PREVWORD layer can be sent to the NEXTWORD layer as a target signal and NEXTWORD Error can be computed (NEXTWORD activation is not
shown). Then this error is back-propagated to the HIDDEN layer to create the HIDDEN Error and we saw in Section 2.10 that the larger
error in the ambiguous compared to the unambiguous condition generated an P600. This sequence represents the backward pass of
error which is used for learning/adaptation of the network weights and which creates ERP effects in the Error Propagation account
(top pathway in Fig. 22).

To see how this account would explain eye-tracking results on the same ambiguity, we examined the findings in Garnsey et al.
(1997), who found a significant difference in first pass reading times at the same disambiguating region for direct-object-biased
matrix verbs (ambiguous structures 365ms, unambiguous ones 332ms). Hence, the same word triggers an eye movement around
300ms, which is much earlier than the ERP occurring at 600ms. In the Error Propagation account, the incoming word was is
activated in the PREVWORD layer and activation spreads forward to the HIDDEN layer (middle pathway in Fig. 22). If we assume that this
forward spread of activation takes place before 600ms, then these layers can help to explain some of the earlier syntactic effects in
first pass parsing. For example, if the decision to make an eye movement is based on the information in the HIDDEN layer, then we
might expect slower first pass times in the ambiguous condition, because the HIDDEN layer contains a representation for a transitive
structure that conflicts with the sentence complement cue from the incoming word in the PREVWORD layer. In the unambiguous
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condition, the HIDDEN layer already contains a representation for a sentence complement based on seeing the complementizer that
earlier, and the structural expectations in the HIDDEN layer might trigger an earlier eye movement.

Another aspect of comprehension is the computation of sentence meaning and the present Dual-path model does not store or
compute this kind of meaning. One way to add this ability would be to create an extra layer of MEANINGCOMP units that would integrate
syntactic material from the HIDDEN layer and lexical semantics from the CCONCEPT layer (bottom pathway of Fig. 22). To allow this
layer to store this information, it would need to have recurrent connections onto itself. This MEANINGCOMP layer could support sentence
judgments, and since it is separate from the NEXTWORD Error system generating the N400, it allows for effects in judgment timings to
differ from N400 effects (Fischler et al., 1984). Furthermore, as it is separate from the HIDDEN Error system that generates the P600,
there would not need to be a strong correlation between P600 effects and correct question answering based on sentence meaning
(Qian et al., 2017). More generally, the MEANINGCOMP layer can help to explain the puzzle that is raised by Good-Enough-Processing
phenomena (Ferreira & Patson, 2007), where comprehenders do not always appear to use syntactic information in computing sen-
tence meaning (e.g., interpreting the dog was bit by the man as the dog bit the man). Why should the language system develop syntactic
representations that can influence first pass parsing only to bypass them when computing sentence meaning? If the MEANINGCOMP layer
computes sentence meaning, and it gets direct inputs from the concepts in the CCONCEPT layer, then sentence meaning can sometimes
ignore syntactic cues. On this account, syntactic representations in the HIDDEN layer get their ultimate motivation from production,
but they are used and shaped by comprehended inputs and that is why eye movements sometimes exhibit early syntactic effects
(MacDonald, 2013). Thus, the Error Propagation account argues for forward and backward streams that operate on heard words in
parallel with online and offline phenomena tapping different layers. While this theory is not a complete account of sentence com-
prehension, it can explain why there are dissociations between ERP and non-ERP studies in syntactic processing and meaning
comprehension.

Compared to other models of ERPs, the Error Propagation account has several unique properties. Most ERP models only explain
the N400 (Cheyette & Plaut, 2017; Frank et al., 2015; Laszlo & Federmeier, 2011; Laszlo & Plaut, 2012; Laszlo & Armstrong, 2014;
Rabovsky & McRae, 2014; Rabovsky et al., 2018). Brouwer et al. (2017) model can also explain one P600 study, but the Error
Propagation account explicitly captures multiple N400 and P600 effects within the same model. In contrast with the view that the
P600 and N400 are independent components, the present account argues that the P600 is the result of error propagation from the
system that generates the N400, so these components should be linked and this might help to explain why many studies have yielded
biphasic patterns (Van Petten & Luka, 2012). Another claim of the Error Propagation account is that ERPs should adapt over trials
within a study and also over development. An error-based learning account would predict, on average, that ungrammatical violation
items should elicit more change than grammatical control items. While some other accounts can model adaptation (Delaney-Busch
et al., 2019; Rabovsky & McRae, 2014; Rabovsky et al., 2018), it is less clear whether they could explain larger changes in ERPs such
as developmental N400s, and a better understanding of the factors that generate those temporary N400s is important. Another
prediction of the Error Propagation account is that production probabilities should predict N400 amplitude. Since production
probabilities are group measures, it might be possible to compare production and ERPs for two groups to determine if within-group

Fig. 22. Outline of extended model with meaning comprehension system.
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correlations are stronger than between-group correlations. The Error Propagation account also predicts dissociations between non-
ERP and ERP comprehension measures. More studies using EEG and eye-tracking for the same stimuli would help to expand our
understanding of the relationship between these phenomena.

Although our account provides an explanation for some of the core findings in the ERP literature, there are several limitations to
this work. One limitation is that it does not explain components that occur earlier than the N400, like the N100, P200 and left
anterior negativity (LAN). It is possible that some early components could be captured with prediction error by extending the model
to predict phonology, but further work is needed to test this. Another limitation is that the model at present only explains a small set
of N400 and P600 studies and there are many other studies that are not covered. We would like to make a distinction between
phenomena which could be explained with the present set of mechanisms and those which would require different mechanisms. For
example, a range of higher-order discourse factors have been found to influence ERPs (Van Berkum, Brown, Zwitserlood, Kooijman, &
Hagoort, 2005; Van Berkum, Hagoort, & Brown, 1999). In sentence production, speakers must learn to use discourse information to
guide lexical choice. Hence, if the message includes this information, the model’s production system will generate predictions during
comprehension and the resulting error will be discourse-sensitive. Thus it should be possible to exhibit discourse-related ERPs using
the same basic mechanisms that we have used in this paper. On the other hand, there are ERP effects of prediction that are more
difficult to explain with the present mechanism. For example, DeLong et al. (2005) presented readers with a context that generated a
stronger expectation for kite than airplane. They found an N400 for the article an before the noun kite or airplane was actually seen
(however, there are some questions about the reliability of this effect, see Nieuwland et al., 2018; Yan, Kuperberg, & Jaeger, 2017; De
Long, Urbach, & Kutas, 2017). In the present model, predictions are made incrementally word-by-word, and therefore it is unlikely
that the model will predict the noun two words ahead and then use that prediction to retrodict the article that precedes it. Our model
is therefore just a first attempt to explain the N400 and P600 within a single account without proposing additional specialized
components. It is clear that future work will be needed to develop and extend this research to provide greater coverage.

At present, many verbal theories try to explain ERPs in terms of various concepts such as prediction, activation, retrieval, repair,
integration, update, and unification. What has been missing from this inventory is the idea that ERPs might reflect learning processes
that are driven by implicit prediction error. In addition, these verbal concepts are often vague and underspecified which makes it
difficult to reach consensus on the interpretation of complex, noisy, time-varying, multi-channel EEG signals for different components
that change over development. Hence, another goal of this work was to provide an explicit computational theory of ERPs, which is
still simple enough to understand and follow (see Section 1.2). The model activates words in the Lexical Layer during prediction from
the context, retrieves the heard word, integrates/unifies it into its representation in the Sequence layer, and repairs these re-
presentations as more information is processed. All of these processes influence prediction error and help to explain the four key
features of ERPs: expectation mismatch, timing, semantic/syntactic sensitivity, and adaptation to linguistic experience. On this
account, ERPs are not just some summary signal to describe processing, but rather they reflect functional signals that the brain uses
itself for learning.

The Error Propagation account argues that ERP comprehension results can be explained within a model that accounts for a broad
range of other sentence production and language acquisition results in various languages. As such, it suggests a way to unify different
components of the language system. In addition, the learning mechanisms that were used are domain-general (Chang, Janciauskas, &
Fitz, 2012), and similar sequence-learning accounts might explain ERPs occurring outside of natural language processing (e.g., in
vision, Sitnikova, Holcomb, Kiyonaga, & Kuperberg, 2008; gesture, Özyürek, Willems, Kita, & Hagoort, 2007; artificial grammar
learning, Christiansen, Conway, & Onnis, 2012; music, Patel, Gibson, Ratner, Besson, & Holcomb, 1998; and mathematics, Martín-
Loeches, Casado, Gonzalo, de Heras, & Fernández-Frías, 2006). In both language and non-language domains, prediction error is a
useful way to learn appropriate internal representations and adaptation can explain why prediction error is generated during input
processing.

When back-propagation of error was first described (Rumelhart et al., 1986), it provided a linking theory which could explain
some of the mental states that generated human behavior out of the processing of simple units that were roughly modeled on the
behavior of biological neurons. The optimism around this linking of the mind and brain was quickly dashed by critiques such as Crick
(1989), who argued that there was little neurobiological evidence for back-propagation of error in the brain. However, the notion of
error propagation is now a part of many influential theories such as predictive coding (Rao & Ballard, 1999; Friston, 2005) and
neuroimaging support for these theories is growing (Kok, Rahnev, Jehee, Lau, & de Lange, 2011; Wacongne et al., 2011). Although
Error Propagation is not a complete account of the large literature on ERPs, if its central claims are correct, then, by inference to the
best explanation, it argues that ERPs are electrical evidence that the brain implements error-based learning algorithms that are
functionally equivalent to back-propagation of error (Marblestone, Wayne, & Kording, 2016; Whittington & Bogacz, 2019). In this
way, learning by error propagation may be a key part of explaining how the electrochemical brain implements the predictive mind.
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Appendix A. Simulation details

Simulations were run in the LENS connectionist software package (Rohde et al., 1999) ported to OSX-1.0a (Brouwer, de Kok, &
Fitz, 2013). Unless otherwise stated, default parameters of the simulator were used. The code for the simulations is available at:
https://sites.google.com/site/sentenceproductionmodel/Home/erpmodel.

The model’s sequencing system mapped from the PREVWORD layer (88 units) to the HIDDEN layer (50 units). There was a
PREVWORDHISTORY layer (88 units), which received copy connections from itself and the PREVWORD layer. This means its activation was
a running summary of the PREVWORD activation with the most recent words being more activated than earlier words. The HIDDEN layer
was connected to the NEXTWORD layer (88 units) through a COMPRESS layer (30 units). A CONTEXT layer (50 units) held a copy of the
HIDDEN layer activation at the previous time step and was fully connected to the HIDDEN layer. At the start of each utterance, all CONTEXT

units were reset to 0.5. The NEXTWORD layer used the soft-max activation function to create a continuous winner-take-all bias for that
layer. The PREVWORD layer received one-to-one inputs from all of the NEXTWORD layer units and from the previous target outputs, and a
winner-take-all filter was applied. Thus, during learning from the speech of others, the PREVWORD was set to the sum of the overheard
target word and the model’s own internal word predictions.

Messages were stored in the weights between the ROLE-CONCEPT bindings (Fig. 9, top panel, left), which consisted of the Role layer
(6 units) and the CONCEPT layer (62 units). The HIDDEN layer connected to the ROLE layer, which connected to the CONCEPT layer. The
CONCEPT layer, in turn, connected to the NEXTWORD layer. The weights between the ROLE and CONCEPT layers were initially cleared, then
for a particular message these ROLE-CONCEPT bindings between appropriate units (e.g., AGENT=DOG) were set to a weight of 6 and
these weights did not change with learning. To allow the model to recognize the role of previously produced words, the model
employed a comprehension message (Fig. 9, top panel, left). This was identical to the production message, except the direction was
reversed, mapping from concepts to roles, via weights between the CCONCEPT (62 units) and CROLE (6 units) layers. It is assumed that
non-linguistic meaning is used to set the CROLE-CCONCEPT and ROLE-CONCEPT bindings simultaneously.

The PREVWORD layer connected to the CCONCEPT layer, which connected to the CROLE layer, which in turn connected to the HIDDEN

layer (Fig. 9, top panel, left). To ensure the model could avoid producing roles that had already been produced, there was also a
CROLEHISTORY layer (Fig. 9, top panel, center) which averaged a copy of its own activation with the previous activation of the CROLE

layer. To learn the links between the previous word and its appropriate concept (i.e., the weights between the PREVWORD and CCONCEPT

layers, Fig. 1, top panel, left), the previous activation of the CONCEPT layer was used as a training signal for the CCONCEPT layer (light
grey line, Fig. 9). Finally, the meaning system also included an EVENTSEMANTICS layer (22 units) connected to the HIDDEN layer. The
ROLE-CONCEPT links in the production message, the CCONCEPT-CROLE links in the comprehension message, and EVENTSEMANTICS activations
were all set before a training or test sentence was processed. Unless specified otherwise, units in all layers used the logistic activation
function, with activation values running between 0 and 1. Weights were initially set to values uniformly sampled between −1 and 1.
Units were unbiased in order to make layers more dependent on their inputs for their behavior. However, CONCEPT and CCONCEPT units
were biased to −3 to ensure that they had a low default activation level.

Steepest descent back-propagation was used. Weights were updated after each message-sentence pair had been trained; the term
epoch therefore refers to the time taken to train one message-sentence pair. The learning rate was 0.1 throughout training. Training
ended after 100,000 sentences had been processed.

Prediction error is a central concept in the proposed account of sentence-level ERP components. Here we explain how it was
calculated for different layers in the Dual-path model. Let oj with …j n{1, , } be the NEXTWORD layer output units. For these units, the
soft-max transfer function was used
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where zj is the net input to unit oj and yj its activation output. The exponential magnifies differences in the net inputs and the result is
normalized. This continuous winner-take-all function is appropriate for multinomial classification because outputs can be interpreted
as a probability distribution over words. A natural match for soft-max is the divergence error function
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where t {0, 1}i is the binary target output value of unit oi. For each NEXTWORD unit oj, prediction error is measured as the derivative
of E with respect to the unit’s net input zj which equals
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by the chain rule. We now determine the two partial derivatives on the right hand side in (A.3). Clearly,
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To obtain the soft-max derivative, two cases need to be distinguished.
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Case 2: i j
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Consequently,
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where = 1ij if =i j and 0 otherwise. Substituting (A.4) and (A.7) in (A.3) yields
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Because == t 1i
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i1 and = 1ij for =i j only, we obtain
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Thus at the NEXTWORD layer, prediction error of unit oj is simply the difference between the unit’s activation and the target value. A
positive derivative indicates that a non-target word was predicted whereas a negative derivative indicates that a target word was not
fully predicted.

Now, let ok with …k m{1, , } be the m COMPRESS layer units, then
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where the sum runs over all NEXTWORD layer units oj. Since every unit oj receives input from each COMPRESS unit ok, we have
= =z y wj k

m
k kj1 where wkj is the weight from unit k to unit j. Hence
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For the logistic activation function = +yk e
1

1 zk that was used for all internal network units we have

=
+ +

=( )
y
z e

e
e

y y1
1 1

(1 ).k

k
z

z

z k k

2

2k

k

k (A.12)

Let j
E
zj
and substitute together with (A.11) and (A.12) in (A.10) to obtain the partial derivative of the error for COMPRESS unit k

with respect to its net input
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Error derivatives for deeper layers in the network such as the HIDDEN layer were determined in the same way. In the back-propagation
algorithm these derivatives are used to adjust the weights between layers (Rumelhart et al., 1986). We used them instead to obtain an
aggregate measure of prediction error by taking the sum of the absolute value of these deltas for each layer.

Training began by randomizing all weights and the same seed was used for all runs. Model subjects differed in terms of the set of
training items they were exposed to. At the start of each utterance, the message was set and did not change throughout production.
After the sentence was generated, the sequence of NEXTWORD activations was processed by a decoder program that yielded the
produced sentence. Sentences were then processed by a syntactic coder program that added the syntactic and message tags. The
model’s output was compared with the target sentence and an utterance was considered accurate if all the words and inflectional
morphemes were correctly produced.

Appendix B. Grammar that generated model input

The model was trained on message-sentence pairs that were generated by a symbolic grammar. The symbolic grammar had
various action categories for verbs: UNACCUSATIVE (4), UNERGATIVE (4), TRANSITIVE (7), BELIEVE (2), DATIVE (4). There were
18 LIVING concepts and 15 NONLIVING concepts (ENTITY included both LIVING and NONLIVING concepts). The category of
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NUMber was set so that SINGular was three times more likely than PLURal. DETerminer category was set so that DEFinite was twice
as likely as INDEFinite and PROnomial occurred the remaining 14% of the time. There were three TENSE concepts with PRESent and
PAST equally frequent and FUTURE occurred the remaining 14% of the time. SIMPle ASPECT was twice as common as PROGressive.
Table B.1 is similar to Table 3, except that for each construction its input proportion is shown, as well as the categories in the
symbolic grammar. For example to generate the phrase the toy -s from 0Y=NONLIVING,DET,NUM, the system would randomly
select one of the 15 non-living concepts (e.g., toy). Then it would select one of the determiner categories (e.g., DEF) and one of the
number categories (e.g., PLUR). Then English rules of syntax would order these elements.

To create dependencies that were tested in the ERP studies, there were some restrictions on the distribution of arguments with
transitive verbs. There were nine transitive verbs: push, take, drink, eat, sip, sniff, taste, believe, and know. The verb drink, sip, sniff, and
taste could occur only with the five drinks water, coffee, wine, beer, and tea. With the verb drink, water was the patient 60% of the time
and the remaining 40% was split across the other four drinks. The verb sip was likewise paired with tea 60% of the time. The verb sniff
and taste were paired with wine 40% of the time. To allow verbs to be used as nouns (e.g., take a nap), the verb take occurred with the
intransitive verbs nap, walk, run, and jump 36% of the time (the remaining arguments were inanimate nouns). The verbs believe and
know occurred in transitive and sentence complement frames equally often.

Ten sets of 50,000 randomly generated training message-sentence pairs were created using a different random seed. These sets
were used to train ten model subjects. Each model subject was tested on stimuli that simulated the results from the twelve different
ERP studies. Each study had 30 items that were generated from the language and these were in the control condition. Then an
additional 30 violation items were created by changing the control items in a way that matched the manipulation in the study (see
main text for details). Thus, there were 30 matched control and violation items for each study. As the model was tested, training was
turned on so that steepest descent error back-propagation was performed in the same way as in training. Except for the adaptation
simulations, the model’s weights at the end of training were reloaded before each test item, so that the starting point was the same for
each test item. As each word was processed, the model’s target, output activation, and input derivatives were recorded for each layer.
The absolute value of the input derivatives was computed and summed, which provides the layer Sum Abs. Error for each word in
each sentence within each model subject. For each ERP study, we extracted the items corresponding to the critical point where the
stimuli diverged and aggregated the data by condition and layer.

Appendix C. Examination of Input-derivatives

In Section 2.2, we argued that mechanism behind the N400 and the P600 in the model had different properties. These differences
stem from the differences in Eq. (1) for derivative at the NEXTWORD layer and (2) for the derivative at the HIDDEN layer. It is useful to
confirm that our simulations in fact conform to the behavior expected from these equations. To do this, we plotted the unit activation
values against the absolute value error derivatives for each unit in the NEXTWORD layer for values from the Cloze study in Section 2.3
(Fig. C.1). Since there are 88 NEXTWORD units, we cannot show all of the items, so we show four items for each of the three conditions,

Table B.1
Grammar for generating message-sentence pairs.

Type Prop. Example Message-Sentence Pair

Unaccusative .31 0A=UNACCUSATIVE 0Y=NONLIVING,DET,NUM 0E=TENSE,ASPECT,AA,YY
Intransitive the toy -s were bounce -ing.
Unergative .04 0A=UNERGATIVE 0Y= LIVING,DET,NUM 0E=TENSE,ASPECT,AA,YY
Intransitive the grandma -s walk -ed.
Unergative .04 0A=UNERGATIVE 0Y= LIVING,THE 1Y=ENTITY,DET,NUM,PREP
Locative 0E=TENSE,ASPECT,AA,YY

the sister jump -ed near a husband.
Active 0.42 0A=TRANSITIVE 0X=LIVING,DET,NUM 0Y=NONLIVING,DET,NUM
Transitive 0E=TENSE,ASPECT,AA,XX,YY

the teacher will sniff the wine -s.
Passive .04 0A=TRANSITIVE 0X=LIVING,DET,NUM 0Y=NONLIVING,DET,NUM
Transitive 0E=TENSE,ASPECT,AA,-3,XX,-10,YY

it will be push -par by the girl.
Believe .04 0A=BELIEVE 0X= LIVING,DET,NUM 0Y=LIVING,DET,NUM
Transitive 0E=TENSE,ASPECT,AA,XX,YY

she will believe the father.
Believe 0A=BELIEVE 0X= LIVING,DET,NUM 0E=TENSE,ASPECT,AA,XX,YY
Sentence .04 1A=UNERGATIVE 1Y= LIVING,DET,NUM 1E=TENSE,ASPECT
Complement the man -s will believe that he walk -ed.
Prepositional .04 0A=DATIVE 0X=LIVING,DET,NUM 0Y=NONLIVING,DET,NUM 0Z=LIVING,DET,NUM
Dative 0E=TENSE,ASPECT,AA,XX,ZZ,YY

a father will send the beer -s to them.
Double .04 0A=DATIVE 0X=LIVING,DET,NUM 0Y=NONLIVING,DET,NUM 0Z=LIVING,DET,NUM
Object 0E=TENSE,ASPECT,AA,XX,-3,YY,-10,ZZ
Dative the brother will send him a coffee.
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which allows us to see of some of the variation in the Cloze values. The target pattern has a 1 for actual next word and 0 for all other
words. For the actual next word unit, the derivatives are between 0.5 and 1. The Low Cloze data are not expected in this context and
have a low activation, so when they are the targets, there is a large absolute value error near 1. As the activation becomes bigger with
the High Cloze items, the absolute value error is reduced, because the error is simply the activation of the unit minus the target value
of 1 (Eq. 1). In the bottom half of the figure are data points for the many non-target words units. These points have a low activation,
because they are often not expected in this context. Since the Cloze manipulation does not influence these points, there is no clear
separation in the points as with the target words in the top half of the figure. For words other than the actual next word, the target is 0
and hence the error is just the same as their activation. Since the next NEXTWORD layer activation is constrained by the soft-max
activation function to sum to 1, the activation of that layer encodes cloze probability. Since the non-absolute value error is directly
related to activation, there is a correlation of −0.999 between error and the cloze probability of that word and hence it is unlikely
that another factor will be a better predictor of N400 than production cloze probability in this model. In humans, DeLong et al. (2005)
report a correlation between target word cloze and the vertex of the N400 of −0.79. The model’s correlation is stronger than the
human correlation, because the human N400 includes noise between the source and the scalp that is not included in the model.

To better understand the P600, we create a similar derivative by activation figure for all of the units in the HIDDEN layer for four
items in both condition in the Tense Inflection study in Section 2.7. In this Fig. C.2, there is no correlation between predicted
activation and absolute value error derivatives. Instead we see that across a range of difference activation values, control items show
smaller error derivatives and violation items show higher error derivatives. This confirms the pattern in the middle panel of Fig. 6,

Fig. C.1. Input derivative by activation for NEXTWORD layer in Cloze study.

Fig. C.2. Input derivative by activation for HIDDEN Layer in Tense Inflection study.
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where S1 and S2 both have lower magnitude weighted error values in the Grammatical/Control condition and larger magnitude
weighted error values in the Ungrammatical/Violation condition. S1 approximates one of the highly activated HIDDEN units in Fig. C.2,
and S2 approximates one of the less activated units. So regardless of the activation of the HIDDEN units, the weighted error is larger in
the ungrammatical than grammatical condition and this creates the P600 in the model.

Inspection of these images shows that the derivatives that support the N400 and P600 have different relationships to predicted
activation that is consistent with the different Eqs. (1) and (2) for NEXTWORD and HIDDEN layers within back-propagation of error.
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