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Abstract

The purpose of this note is to prove the existence of a conformal scattering operator
for the cubic defocusing wave equation on a non-stationary background. The proof
essentially relies on solving the characteristic initial value problem by the method
developed by Hormander. This method consists in slowing down the propagation
speed of the waves to transform a characteristic initial value problem into a standard
Cauchy problem.
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1 Introduction
1.1 The result

Consider a globally hyperbolic smooth manifold (M, g), whose metric g satisfies the
vacuum Einstein equations. Let ¥ be a Cauchy hypersurface in M and T be a future-
oriented timelike vector normal to . Consider the Cauchy problem for the defocusing
cubic equation
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where V is the Levi-Civita connection associated with g. Since (M, g) is globally
hyperbolic, there exists a time foliation on the manifold, and the global existence of
solutions and the existence of scattering operator can be discussed for this problem.
Nonetheless, since the metric is a priori not static, the standard approach to prove the
global existence, for instance, through Strichartz estimates, and the existence of the
scattering operator, which would require a proof of the local energy decay, might fail.
The cubic wave equation (1) enjoys nonetheless good properties regarding conformal
transformations. Indeed, if one considers a metric g conformal to the original metric g

g =%,
one obtains the following identity
308 Ga i 23y w12y o L —12y _ co—1443
Q7 (Ve Vi —¢7) = Vo V(R ¢)+6scalg(9 ¢) — (27 9)°,

where V,, is the Levi—Civita connection associated with g. Hence, if qAb is a solution
to the problem (1), then Q‘lqg is a solution to the corresponding geometric equation
arising from the conformal metric g. This property can be exploited to prove the global
existence of solutions to the problem (1) by considering the local existence for the
conformal problem, and construct a scattering operator by relying on that operation.

Penrose introduced in the 1960s a class of space-times admitting a conformal com-
pactification. These space-times, known as asymptotically simple space-times, model
isolated bodies. The compactification is obtained by completing the manifold with
two disconnected hypersurfaces, null for the conformal metric when the cosmological
constant vanishes, which represent the extremities of future and past null geodesics.
These hypersurfaces are denoted by .# ™+ and .# ~, respectively. The strategy for the
construction of the scattering operator exploiting the existence of the conformal com-
pactification is the following. For convenience, the construction is done for smooth
data with compact support.

Consider smooth compactly supported initial data (¢A>0, q§1) on X for the Cauchy
problem (1). These data are appropriately transformed into data (¢, ¢1) for the con-
formal cubic wave equation:

oaro—12 1 -1 —1533
Vo V¥ (Q ¢)+gscalg(S2 P)— (R ¢)” =0

@, T((#))]i=0 = (do, ¢1) € CC(2) x CF ().

@)

Since the problem is now set on a space compact in time, the global existence problem
for the Cauchy problem (1) turns into a much easier local existence problem (2) for
the rescaled equation. The existence result of Cagnac—Choquet-Bruhat [3] can be used
to address the existence in this context. The radiation profile of the function ¢ can be
obtained by considering the trace of Q~'$. We define the mapping, generalising the
inverse wave operators:

T (o, 91) € C(X) x CF(B) > Q1P| g+ 3)
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Hormander’s method for the characteristic Cauchy problem...

Energy estimates can be proven for the cubic wave operator and we prove in fact
T+ (Cg"(i) x cg%ﬁ)) c H'(7%).

The existence of the wave operators defined on H' (.#*), inverses of the trace operators
(‘Ii)_l, is obtained by solving the characteristic Cauchy problem for the conformal
cubic wave equation with data on .#*. The generalisation of the standard scattering
operator is defined as the operator

G=T"o(T7)".

In this paper, we prove the existence of a bi-Lipschitz conformal scattering operator,
which extends the notion of scattering operator to space-times which are non-static:

Theorem There exists a locally bi-Lipschitz operator & : H'(#~) — H(7™1),
which associates with past radiation profiles of solutions to the problem (1) the cor-
responding future radiation profiles.

1.2 Conformal techniques, scattering, asymptotic behaviour

The well-posedness of the Cauchy problem for this equation, and in this geometric
setting, has been addressed in [3]. The existence of a scattering operator on Minkowski
space-time has been considered, on flat space-times in [15], for general semi-linear
wave equations, and by conformal methods on flat space-time in [2]. The existence
of a scattering operator, under more constraining assumptions, has been considered
by the author in [14], and this work extends this previous work to the generic cubic
wave equation. In particular, we remove an artificial assumption on the decay of the
coefficient of the nonlinearity. The purpose of this assumption was to compensate for
the blow-up of the Sobolev constant associated with the Sobolev embeddings of H'!
into L% in dimension 3.

Since the metric is not stationary, this geometrical setting is a priori not amenable to
standard analytic techniques to prove the existence of a scattering operator. To construct
this operator, we exploit the conformal invariance of the equation, in conjunction with
the conformal compactification of the space-time. The rescaled solution Q_IQAS =9¢
can be extended up to M by means of Eq. (2). The trace of Q_lqg on the boundaries is
the radiation profiles, in this conformal setting, discussed by Friedlander [9]. Hence,
the trace operators T+, associating with initial data for the Cauchy problem for the
conformal wave equation (2) to the traces of the corresponding solutions to (2) on
the boundaries .#*, generalise the standard inverse wave operators of the classical
scattering theory, see [18]. The actual existence of the scattering operator is performed
by inverting the trace operators, that is to say, within the appropriate function spaces,
solving the characteristic Cauchy problem with data on the boundaries of M.

Conformal methods to study global problems for partial differential equations in
relativity go back to Penrose and Sachs and the peeling of higher spin fields. It was
further studied in the context of the Cauchy problem in the mid-80s, early "90s (see,
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for instance, [3]). Friedlander [9] pioneered scattering theory in relativity. The reader
who wishes to have a more exhaustive bibliography should refer to [13,21,27]. In
the past years, this approach by conformal techniques to understand the asymptotic
behaviour of solutions of field equations in general relativity has been studied in
various contexts: Mason and Nicolas [18] obtained the first analytic result for linear
fields, followed by a peeling result on the Schwarzschild background, for scalar wave
[19], spin 1/2 and spin 1 fields [20]. This has been later extended to nonlinear waves
on Kerr black holes [25]. As mentioned before, the conformal scattering construction
was extended to a nonlinear wave equation [14]. Similar constructions based on local
energy estimates [23] were obtained on Reissner—Nordstrom black holes [22] for the
Maxwell equations. More recently, the existence of a conformal scattering operator
has been proven for Yang-Mills fields on the de Sitter background [30].

1.3 Description of the work

We now review the key points of the result. As already mentioned, this work is an
extension of previous work [14]. We are in particular building on the estimates per-
formed in the asymptotic spatial region i°.

The main improvement of this paper is the possibility to handle a more general non-
linearity. In the previous paper, we assumed that the nonlinearity was multiplied by a
decaying function b. This restriction has its origin in the treatment of the characteristic
initial value problem on .#% to construct the inverse of the trace operators T*. The
technique relies on a fixed point argument in the energy space obtained by foliating the
interior of the light cones at infinity .#*. Because of the power nonlinearity, Sobolev
embeddings are required. Nonetheless, the volume of the leaves goes to zero, and a
well-known consequence is the blow-up of the related Sobolev constant, associated
with the Sobolev embedding from H! into L. The nonlinearity is multiplied by a func-
tion decaying sufficiently fast to compensate for this blow-up of the Sobolev constant.

To circumvent that issue, the strategy to approach the characteristic initial value
problem is changed. In particular, this strategy avoids the use of the Sobolev embed-
dings on a shrinking foliation and relies on the work by Hormander [12] for the wave
equation. The principle is the following. One assumes the existence of a solution for
the Cauchy problem for the considered geometric equation.! One considers an initial
characteristic surface C. A time function being chosen to split the metric

g =—N2%dr* + hy,,

where &y, is the Riemannian metric on the leaves of the foliation induced by the time
function (%;), the propagation speed of the metric is slowed down

.= —AN%di® + hy,, for ik € [1/2,1).

1 By geometric equation, we would like to insist that the operator defining the equation is depending on
the metric.
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Hormander’s method for the characteristic Cauchy problem...

The initial characteristic hypersurface C becomes spacelike for g;, and solutions to
the Cauchy problem for the geometric equation associated with g, can be solved. In
the case of the cubic wave equation, this result has been obtained by Choquet-Bruhat—
Cagnac [3]. Given initial data, a family of solutions is then obtained, depending on
M. Standard compactness arguments can then be used to prove the existence of an
accumulation point as A goes to one which satisfies the characteristic initial value
problem. This method by Hérmander has been extended to metrics of weak regularity
in [24] for the linear wave equation. This paper clarifies some points of [24]; in
particular, in the way some energy estimates are performed and in the use of trace
theorems for intermediate derivatives.

This technique by Hormander can only be used in a neighbourhood of timelike
infinity, where the Penrose compactification leads indeed to a compact space. Near
spacelike infinity i®, the metric coincides with the Schwarzschild metric, and the
chosen conformal factor does not lead to a compactification in the neighbourhood of
i9. There, the existence of solutions to the characteristic initial value problem can be
proven by relying on an explicit foliation. Global solutions to the Cauchy problem
in the past of .# 7 (resp. the future of .# ~) are obtained by appropriately gluing the
different solutions to the characteristic initial value problem in the neighbourhood of
i* and the neighbourhood of i°.

1.4 Organisation of the paper

Section 2 contains the precise geometric framework, in Sect. 2.2, and reminders on
the cubic wave equation, in Sect. 2.3, in particular, the global existence of solutions
to the defocusing wave equations, see Proposition 2.2 and some estimates for the
characteristic initial value problem, see Proposition 2.4. Section 3 solves the charac-
teristic initial value problem for the cubic wave equation, by Hormander’s method,
see Theorem 3.2. Section 4 addresses the proof of the uniqueness of solutions to the
Cauchy problem, see Proposition 4.5. The next section, Sect. 5, addresses the problem
of solving the characteristic initial value problem, see Proposition 5.4. The global
characteristic initial value problem is solved in Sect. 6. Finally, the trace operators,
as well as the scattering operators, are obtained in Sect. 7, see Theorem 7.1, and its
corollary, Corollary 7.2. “Appendix A” contains reminders on a trace theorem, see in
particular Theorem A.1, and its use when energy estimates can be proven.

2 Geometrical and analytical preliminaries

2.1 Conventions, notations

All along the paper, the metrics have signature (— + ++), and we use the Einstein
summation conventions. The expression a < b, where a and b are two functions

defined on M means that there exists a constant C > 0 depending on the geometry
such that
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a<Cb onM.
Ifa < band b < a, then one writes a ~ b.

2.2 Regular asymptotically simple space-time

Penrose introduced the concept of asymptotically simple space-times [26, Chapter 9.6]
as idealised space-times modelling a spatially localised gravitational source. These
space-times do not need to satisfy Einstein equation. Nonetheless, they can be con-
ceived as resulting from a small perturbation of Minkowski space-time (when the
cosmological constant vanishes), in which case they are a strong form of asymptoti-
cally flat space-times (see [8, Chapter 2.3] for further discussion). They can be obtained
by combining the result of gluing by Corvino—Schoen and Chrusciel-Delay [5-7], and
the result by Andersson—Chrusciel [1] on the existence of space-time with smooth .7+
arising from regular enough data on a hyperboloid. Nonetheless, in the context of sta-
bility theorems of Minkowski space-times, the conformal boundary exists but it not
smooth [4]. More importantly, smoothness at conformal infinity has been discarded
as physically relevant for standard physical systems (see [4]). One important point of
Hormander’s method is precisely that the regularity of the initial characteristic surface
could be low, see [24], though we are not working in this frame. Though it is not
necessary, we assume that the Einstein equations in vacuum with vanishing cosmo-
logical constant are satisfied. In particular, the scalar curvature of the physical metric
vanishes.

Definition 2.1 (Regular asymptotically simple space-times) A space-time M, g)isa
regular asymptotically simple space-time if there exists a manifold with boundary M,
with boundary dM = .#, a Lorentzian metric g on M and a C*°-conformal factor €2
such that:

(1) The interior of Mis M.

(2) M is embedded in M and, on M, g = Q%%

(3) g and 2 are C* over M;

(4) Qs positive on M and d<2 # 0;

(5) Any inextensible null geodesic admits a future (resp. past) endpoint on .# T (resp.

F7).

The framework of this paper imposes the use of energy estimates to prove the
existence of a solution of the Cauchy problem set up on the characteristic cones at
infinity. These energy estimates usually rely on the use of Stokes’ theorem, requiring
that the metric is regular enough at the tip of the cone. This is why an extra regularity
assumption is made at tips of the boundary of the manifold.

Assumption 1 Let (M, &) be regular asymptotically simple space-time whose con-
formal compactification is denoted by (M, g = Q2§). We assume that there exist a
neighbourhood U; of i%in M anda system of coordinates (¢, 7, 6, ¢) on U1 N M such
that, in U; N M , the metric is the Schwarzschild metric
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Hormander’s method for the characteristic Cauchy problem...

2 2m\ ™!
g=— (1 _ _m) dr? + (1 — _m) dr? + 72 <d92 + sin? ) d¢2> .

r r

Another important assumption which is made on the structure of the asymptotically
simple space-time and which is the most important restriction on the geometry:

Assumption 2 Assume that th_ere exists a neighbourhood U of i*in M, and an embed-
d_ing of U, into a manifold M, such that the metric g extends to a C°°-metric onto
M.

2.3 Some reminders on the cubic wave equation
2.3.1 Conformal changes for the cubic wave equation

Consider the conformally related metrics g and § = ~2g. Then, itis a straightforward
calculation that ¢ is a solution to the cubic wave equation on the manifold M

if, and only if, on M , the function ¢ = Q_léﬁ satisfies the equation
Vo V9% + Lscal,p = ¢
WV + cscalgp = 9.

2.3.2 Estimates for the defocusing wave equation

It should be noticed that we are working here with the defocusing wave equation.
Given a time foliation (X;) on M, with unit future-oriented normal T, we define the
energy E(¢) at time ¢

4 2 2 2
”¢”H1(2t) + ”D¢”L2(Et) + ||T(¢)||L2(2t) S ||D¢||L2(2t)
HIT@ o5, + 101745, = E@,

where D is the induced connection on X;. E(¢) is approximately conserved along the
evolution, in the sense that

E(t) < E(0).

Hence, for the defocusing wave equation, it is possible to prove global existence for
large data in H'(Z0) x L*(Zp).

The key tool is a Sobolev embedding from H 1(%,) into LG(Z,) in dimension 3.
As long as these embeddings can be performed uniformly (for instance, when all the
leaves are diffeomorphic to R, or the 3-sphere), then the global existence for all data
is ensured.

The strategy to perform the estimates is the following:
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e whenever we are working with a finite time interval, we use the standard energy
estimates for the linear wave equations, similar to [28, Chapter 1, §3], where, for
the local existence, H*-norms are propagated;

e we otherwise use the conservation of the energy with the nonlinear term.

2.3.3 The Cauchy problem for the cubic wave equation

The section contains some preliminary known results about the global existence of
solutions to the Cauchy problem for the cubic wave equation

where [1 = V, VY is the wave operator associated with the metric g. The well-
posedness result of Cagnac and Choquet-Bruhat [3, Théoréme 2] is recalled:

Proposition 2.2 Let X be a compact manifold. Consider the Lorentzian manifold (X x
R, g) so that X x {t} is a family of uniformly spacelike hypersurfaces. Assume that
the deformation tensor of the vector 0; is bounded as well as a sufficient number of
derivatives of the metric.

The Cauchy problem

O¢ = ¢°
Blx = ¢o € H'(X)
dolx = ¢1 € LA2(X)

admits a global solution in CLR, L2(X)NCOUR, HY(X)). Furthermore, the a priori
estimate holds, forallt € R:

Eg({t} x X) < Eg({0} x X),
Remark 2.3 We could add a function b in the equation as follows:
O¢ = bg?,
Cagnac and Choquet-Bruhat in [3] addressed the local well-posedness for this equation
under the following assumptions on the function b: the function b is bounded on M,
once differentiable function on M, admits a C!-extension to M and, for a given future-

oriented unit timelike vector field 7% on the unphysical space-time M, there exists a
constant ¢ such that

|T“Vyb| < b.
The conformal scattering operator could be constructed in that situation in a similar

fashion. This extension has very little meaning in the context of that work, and its
purpose, and is therefore ignored.
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2.3.4 A priori estimates for the characteristic initial value problem

In previous work, we have proven various a priori estimates. Since these estimates are
the basis of Hormander’s method for solving the characteristic Cauchy problem, we
recall in this section the various energy estimates which were previously proved. It
is important to note that, in this previous work, as noted in [14], the a priori energy
estimates are proved without the decay assumptions at the tip of the vertex on the
function b, as considered in Remark 2.3.

The first result is a local a priori energy estimate in the neighbourhood of the tip of
the vertex. The geometric and analytic settings are the following: let p be a point in
M and U an open neighbourhood of p in M, with compact closure. Assume that one
can define the past light cone C~(p) globally in U. Let ¢ be a time function defining
a foliation {X;},=¢...; of the past of C~(p). The unit future-oriented normal to %, is
denoted by 7% .On C~ (p), let] be a generator of future-oriented null geodesics ending
up at p. Let n be anull vector field transverse to C ™ (p) (see Fig. 1 for a representation
with respect to a given past light cone) such that

1
T=3(+n.

The family (I, n) is completed into a family (/, n, ey, e3) so that the family (I, ey, e2)
is tangent to the cone C~ (p) and (eq, e3) is orthogonal to (/, n) . The derivatives with
respect to the vectors ey, e2 are denoted by V.

We consider the standard Sobolev spaces on ¥;, H!(X,) and L>(Z,). The set of
smooth functions on the cone C™ (p) in the future of 3 with compact support away
from the tip p is endowed with the norm:

2 _ 2 2 2 A
"¢"H1(C*ﬂ>)_/c (196 + Va6 + 1612 ndul 2]

where n.du[g] is the contraction of the ambient four-dimensional volume form du[g]
with the null vector n transverse to the light cone C~(p). The completion for this
norm of the set of smooth functions with compact support away from p is denoted by
H'(C~(p)). Using standard energy estimates, one gets the following proposition:

—(p)

Proposition 2.4 Let ¢ be a solution of the equation
1 3
O¢ + gScalg¢> =¢°.
The following inequalities hold:

2 4 < 2 a 2 4
||¢”H1(C7(p)) + ||¢”L4(C7([7)) ~ <||¢”H1(EQ) + ”T Va¢||L2(20) + ||¢”L4(20)>
and

2 a 2 4 < 2 4
”¢”H1(Eo) + ”T Vad)”Lz(Eo) + ||¢||L4(20) ~ <||¢||H1(C7(p)) + ||¢||L4(C7([7))> .
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Furthermore, for all t, one has

2 a 2 4
”¢”H1(E,) + T V‘1¢"L2(E,) + ||¢||L4(E,)

S (191215 + 1T Vad 225 + 181 ,))

Remark 2.5 Using Sobolev embedding from H 1(Zp) into L*(Zp) and from
H'(C~(p)) into L*(C~(p)), one immediately gets the same inequality without the
L* norms.

3 Characteristic Cauchy problem a la Hormander

The purpose of this section is to establish an a priori well-posedness result of the
characteristic Cauchy problem for the wave equation on a curved space-time based
on the result by Hormander [12], extended in [24] and partially used in [14] to prove
the existence and uniqueness of a weak solution to the characteristic Cauchy problem
in H'(M). More regularity is required when establishing the Lipschitz continuity
of the wave operator. The method used by Hormander is based on a reduction of
the propagation speed of the considered wave equation so that one can resort to the
standard existence result of the wave. In the following, one restricts oneself to a light
cone, but the result can be extended in the same way to arbitrary weakly lightlike
hypersurfaces.

The geometric setting is the following: consider a point p in M. One denotes by
C™ (p) the past light cone from p. Consider a time function defined in the interior
of C™(p). The induced foliation is denoted by ;. The part of C~(p) between X
and X7 is denoted Cr. One assumes that the slice X is in the past of p and the slice
containing p is denoted by X7. The unit future-oriented normal vector to the time
slices is denoted by 7“. One considers a 3+1 splitting of the metric in the following
form:

g =—N%d® + hy,
where Ay, is a Riemannian metric on X; and the lapse N is given by:
N? = g(V1, Vi).

The functional setting is given by:

e on the time slice X, one defines the energy of a function ¢:
Ep(Z0) = 91515, + 1T Vadl a5,

e on the light cone C~(p), the following H' norm is considered:

160G - = [ (5187 + 920 +¢2) 1

—(p)
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where / is a non-vanishing generator of the null directions of C~ (p) and 7% ,du[g]
is the contraction of the space-time volume form with the vector field 7. The space
H'(C~(p)) is defined as being the completion of the space of smooth functions
whose compact support does not contain p. One also define in similar way H' (C7).

Remark 3.1 One could have defined, like Hérmander, H'!(C~(p)) by transporting the
H ! structure of a timelike slice on C~(p). It happens that the two definitions coincide
[14].

Consider the characteristic Cauchy problem

O¢ = ¢°
{¢|CT =¢o € H(Cy). 2.1)

Note that, for the discussion of this section, the scalar curvature term is excluded
from the discussion, but can be treated similarly, exploiting the fact the curvature is
bounded.

The purpose of this section is to prove that there exists a strong solution to the
characteristic Cauchy problem up to the hypersurface ¥ in the past of p.

Using Proposition 2.2, one can then prove the following theorem:

Theorem 3.2 The characteristic Cauchy problem (2.1) admits a global strong solution
down to o in COR, H (2,)) N CY(R, L2(X,)). The following a priori estimates
furthermore hold:

VT e[0,T], Eg(2:) = Ey(C7).

Proof Assuming that there exists a solution in C OR, H(Z)), the a priori estimates
are a consequence of in [14, Proposition 4.15].

The proof of the theorem will require at a point the use of Sobolev embeddings.
This requires to work with an extension of the foliation (X;) to a cylinder. One then
considers a smooth isometric embedding of (J~(p) N JT(Zg), g) into a compact
cylinder (U, g), see Fig. 1. The foliation (X;) is extended on the cylinder U in a
spacelike foliation of U for the extension of the metric g. We denote by (3-) this
extension; all the leaves of this foliation are now topological 3-spheres endowed with
aRiemannian metric, and as a consequence, all the Sobolev spaces H k (flr) considered
on the leaf f], are equivalent since the leaf is compact. Furthermore, the cone C7 is
extended as a weakly spacelike hypersurface C, which by construction is a Cauchy
surface. The spacelike foliation (X, ) is extended in the past of C, for values of T in a
compact interval [ = [a, b], with T < b.

We consider the initial datum 6 on Cr in H' (C7). This function 6 is extended as a
function § in H' (C‘ ) (see, for instance, [29, Chapter V, Theorems 5 and 5’]) such that

1¢oll 1y < Clidoll ey (2.2)

where the constant C depends solely on the geometry of the boundary of Cr. In
particular, this constant blows up as 7' goes to 0.
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Fig. 1 Extended foliation in the cylinder

The proof of the well-posedness relies on the method introduced by Hérmander
[12] which consists in slowing down the propagation speed of the waves. A detailed
proof of Hérmander’s paper is given in [24] when the metric is only Lipschitz. The
following proof follows step by step this paper (and especially the scheme given in
the proof of Theorem 4.3), modifying it when necessary.

The reduction of the propagation speed is realised by introducing a parameter X in
[%, 1) and a family of metrics g;.:

gy = —A2N2dr? + hi,

so that the hypersurface C becomes spacelike for the metric g;.
According to Proposition 2.2, for any A in [% 1), the Cauchy problem

D=0
$le=doec H'(C)
TVuplz=0e L*(C)

admits a solution ¢, in C'(I, L%(£;)) N C°(I, H'(2,)) such that:
Eg, < c2Eg, (Cr) = ol 1y S Clollaicpy-

where ¢, is a constant which depends continuously on the scalar curvature of g;.
Since the interval under consideration is compact and since, as a consequence of the
previous remark, ¢, depends continuously on A, one can replace c; by its supremum
over [%, 1). Furthermore, Cis compact and, as consequence, all the Sobolev spaces
associated with a smooth metric are equivalent. This includes H'(C). The family
(¢>,\))Le[%’l> is then uniformly bounded in L*°(/, H! (f]r)):
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Consider now a sequence (A,) converging to 1 and one denotes by (¢,) the asso-
ciated sequence. One denotes by U the volume delimited by X and C™ (p).

Remark 3.3 Before studying the convergence process, let us remind the reader that,
using a priori estimates of Proposition 2.4, the energy on the initial time slice £ con-
trols all the energies on the time slices ¥, for 7 € I. As a consequence, a convergence
stated for H'!(X) actually holds in L (I, H'(£,)).

One now proceeds by extracting successively sequences of (1) as follows:

(1) Since (¢y) is bounded in C1(I, L2(=,)) N C°(I, H'(=,)), (¢,) is bounded in
H'(U). Hence, using Kakutani’s theorem, there exists a sub-sequence of (¢,)
converging weakly in H'(U) towards a function ¢ in H'(U). Furthermore, using
Rellich—-Kondrachov’s theorem, since H!(U) is compactly embedded in H° (U)
for o < 1, a diagonal extraction process gives:

w—H'(U)
On ¢ (2.3)
H° (U)

®n ¢. (2.4)

(2) Since (¢,,) is bounded in L®(I, H' (), accordingly to Remark 3.3, up to an
extraction, using Kakutani’s theorem, one has :

w—L®,H (Z,))

én ¢ (2.5)

(3) Furthermore, since (¢,) converges strongly in H 7 (U), by continuity of the trace
operator from H > (U) into L2(%¢) and using Remark 3.3, one gets that

CO(I,L2 ()

On 0. (2.6)

We have also used that ¢, lies for all n in C°(Z, L%(Z;)) which is closed in
L=, L*(Z0)).

(4) Furthermore, (¢x) and (9; ¢ ) are both bounded, respectively, in L°° (I, H 1 (f),))
and LI, L%(%,)). Using Banach—Alaoglu—Bourbaki theorem, up to extrac-
tions, one has

x—w—L®(I,H (;))
On ¢ 2.7
*—w—L®(I,L*(Z;))

O ¢. (2.8)

(5) Since the foliation { £ } has the volume of its leaves bounded away from 0, Sobolev
embeddings can be realised uniformly over the foliation. Using these Sobolev
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embeddings, Remark 3.3 and the convergence (2.5), the following convergence
holds

w—L%®(I,L2NLO(Z,))

bn ¢ 2.9

and, as a consequence,

3 w—L%®(1,L%(S;)) 3
0, ¢ (2.10)

(6) Furthermore, since g, is smooth, [, ¢, also converges in the sense of distributions
towards [¢. Using the convergence (2.10), (q§,3l) converges towards ¢ in the
sense of distributions. This means that the function ¢ satisfies, in the sense of
distributions,

(7) It remains to prove that ¢ satisfies the initial conditions. This is a direct conse-
quence of Eq. (2.6):

¢|CT = ¢0~

The next step of the proof consists in proving that the solution is in fact a strong
solution of the equation:

(1) Since we are working on a compact space, the trace operator is in fact compact
from H'(U)in L2(C). Up to an extraction, (¢, ) converges then strongly in L%(C).
As a consequence, ¢|c, is equal to ¢ in L2(C_(p)).

(2) One already has, as a consequence of the a priori estimates,

¢ e L>,H' (Z,))
¢ € COUI, LA(2y)
dcp € LI, L*(Zy)).

(3) One then considers the operator
15
L()=|:|)L—ma.r =ot8, X L] +L2

where o is a smooth function on U, L; is a first-order purely spatial operator,
and L, is a second-order purely spatial operator. It is clear from this decomposi-
tion that if ¢ lies in L (I, H'(2;)) and 8:¢ in LI, L%(3;)), then Lo lies
L®(I, H-'(,)) since H'(£;) and L?(E;) embed themselves continuously
and uniformly over the foliation in H -1 (i),).
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(4) One finally gets, using the principle of intermediate derivatives of Lions [17], as
described in “Appendix A.1”, since

¢ € L, H' (E,))
dp € L, L*(%,))
3¢ e LU, H '(2y)),

and since the energy is continuous, one gets

¢ eC'I, L*(Z))
3.0 € COI, L*(Z,)) (2.11)
that is to say that ¢ € C'([, LA(E,)).

(5) It remains to prove that the function ¢ belongs to CcO1, H'(Z,)). This is done
as follows:

(a) The weak convergence (2.5) of (¢,,) in L*°(I, H 1(f),)) and the strong con-
vergence (2.6) of (¢,,) in CO(I, L*>(Z-)) imply that

Vi eI, gu(t, %) € H (Z,).
(b) The a priori estimates and Eq. (2.11) give:

¢ e L®U,H ()
dp e CO, L*(E,))

As a consequence (this fact is proved in [24, p. 535]), we have:
¢ e COll,w—H'(Z)).

In this context, on can prove the a priori estimates over the foliation %,

Es(50) — Eg(S,0] < € </[

E¢(flr)dr)
Tl

The energy is then locally Lipschitz continuous. As a consequence, since ¢ is
inCo(1,w — H'(,)), ¢ isalsoin CO(1, H'(,)).

4 Estimates for the characteristic Cauchy problem
In the previous section, it has been proved that the Cauchy problem admits a local

solution to the characteristic Cauchy problem, relying only on the existence of a priori
estimates for the solutions. The uniqueness has, so far, not be proved yet, as well
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as the continuity in the initial data. This can be achieved in various ways. The path
we chose to follow is based on the work of Baez—Segal-Zhou [2] and relies on an a
priori existence result of solutions to the Cauchy problem, which has been handled
in a specific way separately in Sect. 3. The estimates are established by relying on a
reduction to the Cauchy problem.

The setting is both the framework introduced by Héormander and Baez—Segal-Zhou.
The geometric setting and notations are the same as in the previous section, see Fig. 1,
and the proof of Theorem 3.2.

Remark 4.1 The setting introduced by Hormander considers only space-times of the
form X x R, where X is a compact manifold, a priori without boundary. The result can
nonetheless be immediately extended to the case when the manifold X has a boundary.
This can be seen using the following remark: the energy space remains H'(X) (and
not H'(X)). Assume that the manifold with boundary X is embedded in a bigger
compact manifold without boundary (which can always be done). If the boundary of
Xisatleast C!, the space H 1(X) extends continuously into H 1(X).Asa consequence,
all energy estimates involving X can be brought back onto X. In this specific case,
the boundary of X7 is the intersection of X7 with J~(p) and is, as a consequence,
smooth.

One introduces first the following operator:
T H'(Z0) x L*(%) — H'(Cr)

which associates with initial data (¢, ) the trace over Cr of the solution of the linear
wave equation with initial data (¢, ¥) on X 7. Following Hérmander [12], this operator
has the following properties:

Theorem 4.2 (Hormander) The linear operator X is one-one, onto and bi-continuous,
that is to say that there exists a constant C depending only on the geometry of the
manifold such that, for all (¢, V) in H' (Z¢) x L*(Zo):

1T(p, 1ﬂ)HHl(cT) 5 (¢, I/f)||1r1r1():0)><L2():0)
and
(@, W)”Hl():T)xLZ():O) § %o, l/f)”Hl(cTy

We introduce the extension operator E¢ and E’,, as considered in [29, Chapter V,
Theorems 5 and 5°]:

Ec:H'(Cr) — H'(C) 3.1)
Es, : H'(Z0) x L*(Z9) — H'(Z¢) x L*(Z0). (3.2)
These operators are continuous, and their norms depend solely on the curvature of the

boundaries of C and £ in C, and £, respectively.
We consider the remark of Baez et al. [2, Proof of Theorems 13 and 16]:

@ Springer



Hormander’s method for the characteristic Cauchy problem...

Lemma 4.3 Let 8y be an initial data set in H' (Cr). Let H be a function defined over
the foliation (), in C'([0, T1, L>(2,)) N C°([0, T1, H'(Z,)). Then, the solution §
of the Cauchy problem

08 4+ H?8 = 0 with 8|c, =6 € H' (Cr)

can be extended to the past of 1 by solving the Cauchy problem on Yo with initial
data Ex, (T‘l (80)) for the equation:

08 +1;-cpH*S =0

where the function H is extended by 0 outside J~ (CT).

For such an equation, the energy estimates are simple to obtain, since the foliation
of reference to establish them have non-vanishing volume. For the sake of consistency,
these estimates are nonetheless proved here. To that end, we introduce the stress-energy
tensor

1 82
Tap = VabVpS + gup (—EVCSVC(S + ?) .

The energy of a function ¢ on any weakly spacelike hypersurface S is defined as

Es(S) = / *(T%Tyg)
s
where * is the Hodge dual with respect to the metric g. In particular, one checks that

181l g1y S Es(C) and Es(20) ~ Es(Zo).

Lemma4.4 Let § be as in Lemma 4.3. There exists an increasing function C : Rt —
R™* such that:

Es(C) < c<s111p E#(£0)Es(20)
and

Es(%0) < C(sup E3(£))Es(C).
1

Proof Since the techniques under considerations are standard, the proof is only
sketched. The error term associated with the considered stress-energy tensor is

VYT Tap) = VOTO Ty, — (TV,8) - H? -8+ 8 - TOV,8.
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Applying Stokes theorem between X and X;, one gets immediately the following
inequality:

Es(20) — Es(Zy)

s N
5] Eg(i,)dr+/ / H*$?dps dr,
0 0 Js, ‘

One deals with the nonlinear term using Sobolev embeddings over the compact foli-
ation X;, whose volume of leaves does not go to 0:

s s 2/3 1/3
f H*$*dps dr < / ( HOpus ) ( / 80dus ) dr
0 JE, i 0 \J/%, ’ 5, ’

S
gsupE%,(fJT)/ Es(Z.)dt
0

tel

One finally gets

|Es(E0) = Es(E)

S <SuP E3L(S0) + 1) fs Es(E,)dt
0

tel
and using Gronwall’s inequality closes the estimates. O

Let now be 6 and & be two functions in H L(Cy) and consider the two characteristic
Cauchy problems:

{ O¢ + ¢scalygp = ¢° and { Oy + ¢scalgy = y°
¢|CT =0 w|CT = 5

The function § defined as being the difference between u and v satisfies the wave
equation

1
006 + Zscalyd = H*S
where
2 2, 2 v\, 3,
H2 = (2497 +9v) = (0+5 ) + v
Using Lemma 4.3, we extend § to the whole cylinder by considering ¢ to the problem

08 + H*$ = 0 with §|c, =6 € H'(Cr)

with initial data E'x (S’l o —£ )). Using the continuity of trace operator, the conti-
nuity of the extension operator, and Lemma 4.4, one proves:

@ Springer



Hormander’s method for the characteristic Cauchy problem...

Proposition 4.5 There exists an increasing function C such that the following inequal-
ities hold:

16— V31 gy + ITVa(® = W)y, = € (10131, + W 131ccyy)
2
: ||9 - %-”HI(CT)
16 = €121 ey = € (1001 cp) + 110, )

16 = V1 gy + 1T Va@ = D) a )

Proof The proof of these energy inequalities is a direct consequence of Proposition 4.4.
It suffices to notice that, for H> = ¢ + ¢y + 12, using the triangular inequality,

sup EH(flt)2 < (sup E¢(fl,)2 + sup E,/,(fit)z) .
I I I

Using a priori estimates such as the one proved in [14, Proposition 6.2], the later terms
can be bounded by either

Ep(20)> 4 Ey(20)? or E4(Cr)* + Ey (C1)>.

]

Finally, an important consequence of the energy estimate (4.5) and Theorem 3.2 is
the following proposition:

Proposition 4.6 The characteristic Cauchy problem:

{ O¢ + sScaly¢ = ¢°
dlc, =0 € HY(Cr)

admits at most one solution up to time T in C°([0, T1, H'(Z,))NC'([0, T1, L*(%))).

5 Soolving the characteristic Cauchy problem in the neighbourhood of
i

5.1 Preliminary result

The purpose of this section is to explain how the characteristic Cauchy problem can be
solved in the neighbourhood of the spacelike infinity i of the asymptotically simple
manifold. The neighbourhood of i¥ is assumed to be isometric to the Schwarzschild
space-time to agree with the work of the Corvino—Schoen and Chrusciel-Delay.

The Schwarzschild metric is given, in the standard spherical coordinates

2 2m\ !
s =— (1 - —m) dr + (1 - —m> dr? + rldwg.

r r
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Performing the change of coordinates
« 2m 1 "
r*=r+2mlog| ——-1),R=—-andu=1t—r",
r r
the metric takes the form

R 2 1
gs = —(1 —2mR)du’ + ~7dudR + 5 dog.

A conformal rescaling with a conformal factor Q2 = % is finally performed to define
the unphysical metric:

gs = —R*(1 — 2mR)du?® + 2dudR + dw.

Consider the domain Q,fo = {u < ug}, for some ug to be chosen later. It has been
proved [14,18] that the following lemma holds:

Lemma 5.1 Lete > 0. There exists ug < 0, |ug| large enough, such that the following
decay estimates in the coordinate (u,r, 0, y) hold:

r<r*<({+er,1 <Rrf <1+¢0<Rlul <1+e,
|ul

l—-e<1-2mR<1,0<s=— < 1.
r*

Furthermore, the vector field
T =ud, —2(1 + uR)dg

is uniformly timelike in the region Qjo.

The parameter € will be chosen later when we perform the energy estimates. We
define, in Q;O = {t > 0,u < up}, the following hypersurfaces, for ug given in R
(Fig. 2):

Suo = {u = uo}, a null hypersurface transverse to .% +.

20" = %o N{up > u}, the part of the initial data surface % in the past of Sy,;
fu‘g = Qu+0 N .7, the part of # beyond S,,;

Hs = Q;”o N{u = —sr*}, for s in [0, 1], a foliation of Q;O by spacelike hypersur-
faces accumulating on ..

The volume form associated with g in the coordinates (R, u, wg2) is then:
ulgl =du AdR A dza)gz. “4.1)

If ¢ is function defined on Q;O, one defines the following energies, in the domain
Q-
0
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j-i—

\—Eg°>0 ={t=0,u <up}

Fig.2 Neighbourhood of i0

Proposition 5.2 ([14, Proposition A.2]) There exists ug, such that the following energy
estimates holds on Hy in QT , for all s in [0, 1]:

ugp’

Es(Hy) = /H iz, (+7Tu )

2 >, R 2 , ¢ ¢t
~ / <u (0uP)” + — (Or®)” + |Vg2o|” + — + —) du A dog.
H,s |ul 2 4

Furthermore, if one introduces the parameter

.- [0,1] — [0, 2]

s —2(J5 — 1), (4.2)

the following energy estimates holds:
e Energy decay:

Eg(Hs) S E¢(Z(°7)

e A priori estimates:

E(I}) +/ ordu g+ + E(Suy) +/ P*dus, ~ E(2(°7) +/u _utdgio-
Tt Sug P 0

0
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5.2 Local existence for the Characteristic Cauchy problem on .7+

The purpose of this section is to prove that the Cauchy problem:

Co + %Sca1g¢> = ¢3
¢|j+ = 9+ e Hl(‘]ut) and ¢|S“O = 90 € Hl(Suo)

“o

(4.3)

where H'! (Su) is defined as being the completion of the space of traces of smooth
functions on S, for the norm

/ i3, (+7Tinas)
Su

0

Tiinap being the stress-energy tensor associated with the linear wave equation. In a
previous work [14], the following result has been proved:

e using the fact that the leaves of the foliation H; endowed with its induced metric
are uniformly equivalent to a cylinder, it is possible to establish energy estimates
for the difference of solutions of the nonlinear equation;

e itis possible to establish an existence result for solutions of the nonlinear equation
for small data, using either a Picard iteration (as in [13]) or Hormander slowing
down process.

Proposition 5.3 Let ¢ and  be two solutions of the characteristic Cauchy problem
and denote by 6 = ¢ —  their difference. One denotes the energy of § by

Es(Hy) = /H i3, (+7“Tinan

R 82
~ / (u2(3u5)2 + l—(aR5)2 + |V |> + ?> du A dwg
H,

ul

where Tjin qp is the stress-energy tensor for § associated with the linear wave equation.
Then, § satisfies the following energy estimates on the foliation H;

Es(H) S sup (1191151 g0, + 1011310, ) Es ).

o€ls;t]

In particular, the Cauchy problem (4.3) admits at most one solution in

([0, €], H' (Hs)) N C1([0, €], L?(H,)) and the energy
§ = ES(HS)

is continuous.
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Proof Let ¢ and v be two global solutions of (4.3). Their difference § = ¢ — ¢
satisfies the equation:

1
0 + Zscalgd = (¢2 oY+ ¢2) 5.

Using the Stokes theorem between f;g, Sy, and H, one gets, since § vanishes on
Suo and Ff:
& S R R R R
Es(Hs) S f Es(Hy)do + / / 1T9Ve8 - 8| + (9% + Y| TV,8 - §|duy, do
0 0 JHo
+ E(S (Suo)-

As already said, Sobolev estimates can be performed uniformly on the foliation (H).
As a consequence, using Holder’s inequality, one gets:

&

// (¢2+w2>|f“%8-8|dumsc/ Es(Hy)do
0 JH-H 0

+& sup (E¢(Ho-)2+E1//(HO')2)

oel0,€]
where T is the approximate Morawetz vector field
T = ud, + vd,.

The constant depends only on the L°°-bound of the scalar curvature. Finally, using
Gronwall lemma, one gets that

Es(Ho) S e sup (Es(Ho)® + Ey(Ho)?) Es(Ho) X Es(Suy).

oel0,€]
As a consequence, the mapping

B(0,r) C H'(Z5) x H'(Sy,) — L*([0, €], H'(Hy))

u

@+, 00 s ¢

is continuous. Furthermore, the Cauchy problem (4.3) admits at most one unique
solution in CO([0, €], H' (H)) N C'([0, €], L*>(Hy)). o

Proposition 5.4 Let ¢ be a positive real number. Then, for ¢ small enough depend-
ing on 0, the characteristic Cauchy problem (4.3) admits a unique solution in the
neighbourhood of .7,

U Ho={uz=a+er}.

s€[0,¢e]
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Proof The proof relies on a fixed point argument. Consider v in C° ([0, €l, H' (Hs)).
Let ¢ be the solution of the Cauchy problem

U¢ + scaly¢p = Y3

4.4
Ol =0 € H (T, @4
This defines a mapping
¥ e C(10.€l H'(Hy) = ¢.
One proves, using standard energy estimates that, for s < e,
3
sup Eg(Ho) — Eg(F,5) S e ( sup Ey (HJ)) . 4.5)
o€l0,¢€] 0 €[0,¢€]

In particular, ¢ belongs to cY ([0, €], Hl(HS)).
Let R be a positive real number. Assume that

R
+
Ee(ﬂuo) < E

Then, there exists an € small enough, depending on R, such that, for all ¥ such that

sup Ey(Hs) < R,

o€l0,¢e]
then,

sup Ey(Hs) < R.

o€l0,¢]

Furthermore, let i, 1Z be two functions in C9 ([O, €l, H! (HS)), and consider ¢, (f)
the corresponding solution to the problem (4.6). Their difference ¢ — ¢ satisfies

D(¢—4~5>+sca1g<¢—<5>=1/f3—@3
(6=9) 15 =0.

)

(4.6)

One easily proves, as in Proposition 5.3, that

sup Ed)fq;(Hs)SeC(R) sup E¢,¢(Hs),

oel0,€] 0 €l0,¢€]

where C is an increasing function of R. Hence, R fixed, for € small enough, the
mapping ¢ +— V¥ is a contraction of the ball of radius R in C° ([O, €], HI(HS))
endowed with the L°H !(H,)-norm. The standard fixed point theorem provides the
result. O
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j-i—

Schwarschildean part

/

X

Fig.3 Choosing £

6 Global Cauchy problem on .7 *

The existence of global solutions to the Cauchy problem is proved using a gluing
process: the Cauchy problem with data in H'(.#7) is constructed up to a spacelike
hypersurface and, then, considering the traces of the solution on two given hypersur-
faces in the neighbourhood of i® solved up to the initial time slice (. The main issue
arising in this process is that the constants arising in the energy estimates depend on the
L*-bounds of the metric and its inverse on the bounded neighbourhood of i°. Since
the compactification we are working with has the particularity to have an asymptotic
end at i9, these constants are not bounded on the whole future of %o. This problem is
avoided as follows (see Fig. 3):

e Let ugp be in R such as in Proposition 5.2.
e Let X be a given spacelike hypersurface such that:

— X is transverse to . T;

— X is in the past of S, and in the future of X; in particular, X coincides with
0

Yo far from i”.
These choices of ug and X are made once for all.

Proposition 6.1 The characteristic Cauchy problem

O¢ + ¢Scalgp = ¢
¢ly+=0¢€ H (I).

admits a unique global solution in C°([0, 11, H'(Z,)) N C'([0, 11, L*(Zy)) where
(Z5)s=0 is a smooth spacelike foliation extending the definition of the foliation (Hy)
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in the neighbourhood of iy. Furthermore, if $ is another solution with initial data 6,
the following energy estimates holds: there exists a increasing function f such that

Ey 5(S0) < CF(A)-116 =031y,

where A= sup (11915 54,) + 1161510, -
]

o€l0,

Proof The proof of the theorem relies on the consecutive use of Theorem 3.2, Propo-
sition 4.6 and of Proposition 5.4.

Let # be in H'(.#7). Using Theorem 3.2, one proves that the Cauchy problem
admits a solution ¢ up to X, as defined earlier. Then, using Proposition 5.4, there
exists a € > 0 such that the Cauchy problem given by

O¢ + ¢Scalgp = ¢* o
¢|‘]‘$ =0¢€ Hl(j;g) and ¢|Suo = ¢Su0 e Hl(Suo) .

exists in

U Hy = {u>(1+er}.

s€[0,¢]

Consider the time slice H,. This time slice can be extended into M into a spacelike
Cauchy slice denoted by H. The timelike vector field T is extended as a timelike vector
to H. One now considers the functions (¥, ¥1) defined piecewise by:

Volr, = € H'(He)
VolHns+(5,) = ¢ € H' (N T (S0))

and

Vil =TVed
VilHns+s,) = TVad € L2(H NI (Sy))

By construction, since H is a spacelike Cauchy surface on the unphysical space-
time, the result from Cagnac—Choquet-Bruhat [3] can be applied immediately
to prove the existence of a unique solution to the Cauchy problem with data
(Yo, ¥1) on H up to the Cauchy surface (. Furthermore, this solution belongs to
CO([0. 11, H'(£)) N €' ([0, 11, L*(%y)).

Consequently, there exists a global solution of the Cauchy problem:

O¢ + £Scalgp = ¢*
b+ =60 H (I,

obtained by gluing the solutions of the Cauchy problems obtained in Theorem 3.2 and
Proposition 5.4. O
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7 Existence and regularity of the scattering operator

The purpose of this section is to prove the regularity and the existence of conformal
scattering operator for the nonlinear wave equation

~

O¢ = ¢°

In the context of asymptotically simple space-times with regular i, such as the one
considered in [14,18], it has been proved by Mason and Nicolas, for the scalar wave
equation, that the trace operators

TE 1 (¢, T(@)) =0 € H' (Z0) x L*(Zo) —> ¢| s+ € H' (FT)

can be obtained from the inverse wave operators Q¥ as follows: let F be the null
geodesic flows identifying the hypersurface %o with .#; then, T+ are given by

+ * At

where F* is the pullback by the null geodesic flows Fy. The same result will hold in
the context of the nonlinear equation. The conformal scattering result which is stated
here should consequently be considered as a standard scattering result for a non-
stationary metric for a nonlinear wave equation. The existence of scattering operators
was obtained on the flat background for sub-critical wave equations by [10,11,15,32,
33].

One considers the operators

TE:H (D) x L3(Z0) — H'(7%)
defined by

T (o, ¢1) = Pl s+

where u is the unique solution of the Cauchy problem on the conformally compactified
space-time

{ O¢ + ¢Scalgp = ¢°
Pli=0 = ¢0, T*Vuli=0 = ¢1.

One finally introduces the conformal scattering operator defined as
S=T"o(z)"

Theorem 7.1 The operators T+ : H'(Zg) x L*(Zo) — H'(I*) are well-defined,
invertible and locally bi-Lipschitz, that is to say that T* and (T¥)~" are Lipschitz on
any ball in H' (o) x L*(Zo) and H'(F%), respectively.
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Proof The existence and continuity of the operators guarantee the existence of solution
to the Cauchy problem for the conformal wave equation, see Proposition 2.2. The
existence of their inverses and their continuity are obtained thanks to the Lipschitzness
guaranteed by the energy estimate of Proposition 6.1. O

The final product of this paper, the existence of a scattering operator, is achieved
by composing the operator (7)~! with T+:

Corollary 7.2 There exists a locally bi-Lipschitz invertible operator & : H'(Z) x
LZ(E) — HY.I%). This operator generalises the notion of classical scattering
operators (defined when the metric is static) to non-stationary metrics.

Proof As mentioned before, the construction of & is a straightforward consequence of
Theorem 7.1. The fact that the operator coincides with the classical notion of scattering
operator is stated in [18]. O
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Appendix A: A trace theorem

One of the critical points of the proof of the existence theorem 2.2 is a trace theorem,
which has already been used in [24, p. 19, proof of Theorem 4.3]. Most of the material
presented here can be found in [31, Section 4.3, p. 281 sqq.] for the interpolation
and in [16, Theorems 2.3 and 3.1] for the continuity of trace operators. Finally, it is
important to note that the essential ideas and proofs of this appendix are contained
in [16, Chapter 3, Section 8.2]. The purpose of this appendix is also to give further
understanding and details on the work of Hérmander on the Cauchy problem [12] and
clarify some points contained in [24].
Let X and Y be two Hilbert spaces such that

e X is continuously embedded in Y;
e Xisdensein?Y.

The interpolation spaces between X and Y are denoted by

[X,Y]p for 0 € [0, 1].
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Let a, b be two elements in R U {00} and m be an positive integer. One considers
the following space:

C)
arm

W(a, b) = {¢|¢ e L*([a, b], X), e L*([a, b], Y)} )

The following trace theorem then holds, see [16, theorems 2.3 and 3.1, chapter 1,]:

Theorem A.1 (Lions—Magenes) Let ¢ be in W (a, b). Then, forall j in{0, ..., m—1},
the derivatives of ¢ satisfy:

o D% isin L2(la, b); [X, Y1,);

o L isin CY(la. b [X, Y] p12).

Remark A.2 The theory developed by Lions and Magenes applies to general Hilbert
spaces, independently of the geometric context (in particular, if one works on a space
with boundary or on a compact manifold).

One applies this result to the following situation: let M be a compact manifold and
consider

o X = H'\(M);
o Y =H '(M).

The interpolation spaces between both are given by [31, Section 4.3, Proposition 3.1]:
[H' (M), H~'(M))g = H'~ (M) for 6 < [0, 11.

Leta, b be in R and m = 2. Applying Theorem A.1 then gives: if u satisfies:

2
¢ € L*([a, b], H'(M)) and % € L%([a, b], H" ' (M))

then:

o % isin L%([a, b], L2(M)) (0 = 1);
e ¢ € C'a,b], L*(M));
o %isin CO(la, b], H™2(M)) (6 = 2).

Remark A.3 Obtaining that the derivative is actually in CY%(a, b1, H(M)) would
require

2 1 32¢ 2 -1
¢ € L“([a,b], H (M)) and 57 € L=([a, b], H"*(M))
To improve this result, one notices the following:
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Lemma A4 Let I = [a, b] be a time interval and s < o be two real numbers and
consider a function ¢ such that

¢ € L>®(,H(M))N CO(I, H?(M)).
Then, ¢ belongs to CO(1, H* (M) — w).
Remark A.5 This is a particular case of [16, Chapter 3, Lemma 8.1].

Proof Let ¢ be in H*(M) such as in the proposition and consider w in H° (M). One
considers the function

F0) =< ¢, w >ps .
Let g be in /. The purpose is to prove that f is continuous in .

Let (wy) be a sequence of smooth function converging towards w in H*. Let € be
a positive real and consider:

J@) = fto) = < ¢(1) —¢(to), w >ps

<) =), w — wi >ps + < P(t) — (o), wi >ps .

Since, using Cauchy—Schwarz inequality,

| < @) = ¢(t0), w — wi >ps | < [lw — willgsl|@ @) — P (t0)l| s

and since (wy) converges towards w in H®, and since ¢ is in L>°(1, H*(M)), there
exists a K such that:

<¢@) —¢@), w—wk >ps| <

ST

One now considers the interpolation operators between L2(M) and H*(M) (for
arbitrary s):

s = L*(M) — H*(M).
This is a family of unbounded, self-adjoint operators for which:
I35 @2 < Cliglms.

Since wg is smooth, it admits a pre-image by Ss‘l o §. As a consequence, one has:

| <p(t) —d(t0), w >ms | =] < Ty (9(t) — d(t0), F Hwk) > 2 |
= <F, oF (@) — D (t0)), To 0Ty (wr) > 42 |.
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Cauchy—Schwarz inequality implies then:

| <o) — ¢t0), we >ps | < 6(6) — o)l ue IS, (@)l 1o -

Since ¢ is in CO(I, H? (M), there exists an open neighbourhood U of #y in I such
that, forallr in U C I:

| <@@) —P(t0), wp >ps | <

NSRNO)

As a consequence, for all ¢ in U,

Lf (@) — fo)| <€
that is to say that f is continuous in #y. O

One now considers a model case fitting the context of the wave equation. Let
(I x M,—N 2982 + g:) be a Lorentzian manifold, / being a compact interval. One
defines the energy of the function as being the function of 7 and ¢ in H'(M) and v
in L2(M) by:

E@t, ¢ %) = 19151 quysary + 1V 1022 ey

The final lemma required to achieve the wanted regularity for the solution of the
characteristic Cauchy problem for the wave equation is the following:

Lemma A.6 One assumes that, for all (¢, V) in H'(M) x L*(M), the function:

t— E(t,¢,¥)

is continuously differentiable in I. Let ¢ be a function such that:

e ¢isin CO(I, HI(M) — w); as a consequence, ¢ lies in L°(I, HI(M))
e 3,¢isin COI, L>(M) — w); as a consequence, ¢ lies in LI, L>(M)).

The function:

t— E(t, ¢(t), 0:4 (1))

is furthermore assumed to be continuous in t.
Then, ¢ and 3,¢ are in fact in CO(I, H'(M)) and C°(I, L>(M)).

Proof The proof of this fact can be found in [16, Chapter 3, Section 8.4, p. 279]. For
the sake of self-consistency, the proof is quoted here, with some adaptations to our
framework.

Let ¢ be in I and consider (¢,), a sequence of elements of / converging towards ¢
and define the quantity:
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& =19 — )14y + 100 @) = 3D @171y,
= E(tn. ¢(ta), % (tn)) + E(1. ¢ (1), d0(1))
—2 <), p(tn) >y —2 < P (@), AP (tn) >12n1)

Since ¢ isin CO(I, H' (M) — w) and 3;¢ is in CO(1, L>(M) — w), the last two terms
converge towards —2E (¢, ¢(t), 9;¢ (¢)). Since the energy is assumed to be continuous,
the first tow terms converge towards 2E (¢, ¢ (1), 0;¢(2)).

The sequence (£,) converges then towards O when n grows. As a consequence, ¢

and 9;¢ are in CO(1, H'(M)) and C°(I, L*>(M)), respectively. o
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