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Abstract

Two-dimensional driven granular matter exhibits a number of nonequilibrium steady

states such as “undulations”, “Leidenfrost effect” and “convection rolls” that have been

found both in experiments and molecular dynamics simulations. We study this system

by solving the granular Navier-Stokes equations and employing direct numerical simu-

lations. The Leidenfrost effect is reproduced and for the first time, convection rolls are

observed in a hydrodynamic model of granular matter. Classifiers are developed for dis-

tinguishing the nonequilibrium steady states in the continuum representation of fields.

The data is arranged according to two dimensionless control parameters and combined

into a phase diagram. Lastly, the comparison to previous work on the subject is drawn.
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1 Introduction

Granular matter is a term used to describe materials made of macroscopic particles, for

which thermal motion is not important. The grain can be from microns to kilometers

in size. The most important physical feature that determines granular dynamics is the

dissipation of energy into smaller length scales. Many comparisons can be drawn to

regular fluids, as they share some behavioral patterns. Granular matter can develop

convection rolls resembling Rayleigh-Bénard convection rolls [1], undulations resembling

Faraday waves [2], the granular counterpart of the Leidenfrost effect [3], and a wealth

of other phenomena corresponding to fluid behavior. This motivates a key question in

current granular matter research. To what extent can granular dynamics be described

by a hydrodynamic-like model?

This Bachelor’s thesis investigates the above question by employing direct numerical

simulations (DNS) to explicitly solve the granular Navier-Stokes equations. Our goal

is to see if the known phenomena can be reproduced and to map the phase space. We

simulate vertically shaken granular matter in a container and develop a framework in

Matlab that automatically extracts information from the output data. We combine

this information with observation to extract descriptors for the nonequilibrium steady

states and develop a phase space diagram.

2 Model

2.1 Coefficient of Restitution

Microscopically, granular matter is made up of inelastically colliding particles. In the

present work we assume that they are monodisperse spheres. If the particles deform

very little during collision, which is the case for most materials, the collision time is very

short and, consequently, the number of triple- and higher order collisions is vanishingly

small. Thus, the dynamics of the system are exhaustively described by a sequence of

pairwise collisions.

The elastic collision of two identical particles with initial velocities v1 and v2 results

in the final velocities v′
1 and v′

2 (in the following the final state will always be denoted

by a prime), which are easily found from conservation of momentum

v′
1 = v1 − (v12 · e) e, v′

2 = v2 + (v12 · e) e, (1)

where e ≡ (r1 − r2) / |r1 − r2| is the unit vector joining the two centers of mass. For

dissipatively colliding particles we define the coefficient of restitution ε = v′
12 ·e/v12 ·e as

the ratio of the relative velocity before v12 ≡ v1−v2 and after the collision. Conservation

of momentum leads to

v′
1 = v1 −

1

2
(1 + ε) (v12 · e) e, v′

2 = v2 +
1

2
(1 + ε) (v12 · e) e. (2)

The coefficient of restitution ε characterizes the dissipative properties of the collision,
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as during each collision the involved particles lose a fraction 1
4mp(1 − ε2)(v12 · e)2 of

their kinetic energy [4]. The coefficient of restitution may be obtained from the elastic

and dissipative interaction forces and, experimentally, turns out to be a function of the

impact velocity [5]

ε = 1− C1 |v12 · e|1/5 + C2 |v12 · e|2/5 ∓ ....

In the remainder of this thesis we take the simplifying assumption for it to be a constant

material property.

2.2 Granular Temperature

The kinetic energy of a granular medium can be decomposed into directed movement

and fluctuation. The former results in a convective flux and mass transport. The

latter is called “thermal” (granular) velocity u and is studied in terms of the granular

temperature

T =
1

2
(
〈
u21

〉
+
〈
u22

〉
) (3)

where 〈 〉 denotes the ensemble average and ui is the fluctuating velocity in direction i

which has a time average of 〈ui〉t = 0.

2.3 Continuum Description

In this thesis we deal with driven granular matter contained in a rectangular box. In-

stead of considering the position and velocity of individual particles, one may examine

hydrodynamic fields. Namely, the velocity v(r, t), the pressure p(r, t), the granular tem-

perature T (r, t) and the density ρ(r, t) (all particles are defined to have material density

1). To obtain the time evolution of these fields we solve the hydrodynamic equations for

granular matter.

The dominance of hydrodynamics in molecular fluids relies on the fact that the

asymptotic state is uniform and stationary. In undriven granular systems stationarity

is not achieved due to the energy dissipation. Still, Brey et al. show that a universal

solution is approached asymptotically for a wide class of spatially homogeneous initial

conditions, which is only indirectly time dependent through the temperature field [6].

As a generalization of the Chapman-Enskog method for deriving hydrodynamics from

the Boltzmann equation, granular hydrodynamics can be constructed by perturbative

expansion of this state in powers of the gradients of the hydrodynamic fields [6, 7]. The

reference state can be far from the Maxwellian and may change on time scales of similar

to the relaxation time of small density perturbations, in the case of strong dissipation.

The long term domination of hydrodynamics is still assured by the spatial uniformity

of the anymptotic state [6, 8]. Additional assumptions of this model are rapid granular

flows, i.e. binary particle collisions [9], molecular chaos [8, 10, 11] and scale separation.

The latter implies that the characteristic length scale is much larger than the mean free
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path and the characteristic time scale is much larger than the time between collisions.

The final condition breaks down in systems with high dissipation (1 − ε2), even at low

densities [12]. At high densities the molecular chaos assumption breaks down. It follows

that the constitutive relations, which are required for the closure of hydrodynamics,

can no longer be derived from first principle. Nonetheless, Meerson et al. showed that

this domain can still be described by the granular Navier-Stokes equations [10]. They

propose that this is because they consider driven systems, similar to those in this thesis,

which have a vanishing mean flow and as a consequence, the viscosity terms are zero. In

2D with external forces a the Navier-Stokes granular hydrodynamics equations take on

the form

∂tρ+∇ · (ρv) = 0 (4)

D

Dt
v + 1

ρmp
∇ ·

{
p1− η

[
∇v + (∇v)T − (∇ · v)1

]}
= a (5)

D

Dt
T − 1

ρη
{[
∇v + (∇v)T − (∇ · v)1

]
: ∇v

}
+

1
ρp∇ · v + 1

ρ∇ · q = −ξT (6)

where mp is the mass of a particle, ξ is the cooling rate, η is the viscosity, D/Dt ≡
∂t + (v · ∇) is the material derivative and 1 is the unit tensor. The hydrostatic pressure

p and the heat flux q are given by

p = ρT [1 + (1 + ε)φg2(ρ)] , (7)

q = −κ∇T − µ∇ρ. (8)

g2(ρ) is the Carnahan-Starling pair correlation function [13]

g2(ρ) =
1− 7

16ρ

(1− ρ2)
. (9)

Equation 4 is the continuity equation of mass, Eq. 5 expresses the conservation of

momentum and Eq. 6 gives the energy balance. Compared to the Navier-Stokes equations

for molecular fluids there are differences in the transport coefficients, corrections to the

pressure p and an additional term in the expression of the heat flux depending on the

density gradient −µ∇ρ, which we term “pycusthermal”. The most important way in

which the granular hydrodynamic equations differ from the Navier-Stokes equations is

the cooling rate 0 ≤ ξ ≤ 1 which is factored into the temperature on the right hand side

of Eq. 6. It makes the system dissipative.

2.4 Knudsen Number

The Knudsen number K = `/R is the ratio of a particle’s mean free path ` and a

representative macroscopic length scale R. It is critical to evaluating our results, because

it indicates the validity of the continuum approach. Hydrodynamics are applicable for

K < Kc = 0.1 [14]. In some conditions this constraint holds for granular systems.
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2.5 Driving

Generally, a granular fluid constantly loses energy due to dissipative collisions. According

to Haff’s law, the temperature follows the decrease [15]

T (t) =
T0

(1 + tτ−1)5/3
, (10)

where the characteristic cooling time τ can be calculated from the material properties

of the system.

Because we are interested in steady states, we need to supply a source of energy

injection into the system to balance the continuous energy loss. A very common and

practical way to achieve this is by driving the system via moving external walls. In this

way the dissipation of energy is counteracted by an external force field that behaves

according to

a = eyΓ · sin(2πft), (11)

with constant frequency f , thereby shaking the container.

From a computational point of view it is wise to gradually introduce the driving force

into the system, so as to avoid numerical instabilities. At all times before a predetermined

transient time ttrans all external forces are multiplied by

γ(t ≤ ttrans) = 3

(
t

ttrans

)2

− 2

(
t

ttrans

)3

(12)

which is the lowest order strictly increasing polynomial with vanishing derivatives at

start and end point.

2.6 Model Parameters

The core microscopic parameters of granular matter are the particle diameter σ and the

coefficient of restitution ε. The particle diameter cancels out in the nondimensionaliza-

tion of most parameters. For the purposes of our simulation it is in fact only meaningful

for the scaling of time and for the shaking strength S (see below). We consider a two-

dimensional system with the y-direction conventionally chosen as the vertical direction

along which gravity and driving take place. The nondimensionalized width and height

of the container are Lx and Ly, measured in units of σ.

Driven granular matter may adopt a number of different phases. They are deter-

mined by the shaking of the container and the number of particle layers inside. The

filling fraction φ is a primary input parameter to our simulation. We obtain the more

meaningful number of particle layers F in the following way:

F =
φLy

ηh
(13)

where ηh is the maximum packing density in 2D, i.e., hexagonal packing with ηh =
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π/
√
12 ≈ 0.907. This definition is not universal. Eshuis et al. left out the correction

factor η−1
h [1]. Using these parameters, the Knudsen number simplifies to [16]

K =
`

R
=

π

8φ

1

Ly
=

π

8ηhF
. (14)

Along with F and φ, the presence of particles in the container may also be described

by the aspect ratio Lx/F . Theoretical results can most easily be obtained by assuming

an infinite aspect ratio [17].

The container is shaken with frequency f and amplitude a. As they increase the

behavior of the granular medium changes from that of a crystalline solid to a fluid-like

motion. The universal shaking parameter is the shaking strength [2]

Sgeneral =
(a2πf)2

gl
(15)

where l is the typical displacement of the particles and g is the gravitational acceleration

9.81m/s2. At low fluidization the particles stay ordered so that l = a. Thus, the shaking

parameter reduces to

Γ =
a(2πf)2

g
, (16)

called the shaking acceleration.

At high fluidization the displacement of particles is on the scale l = σ and we obtain

S =
(a2πf)2

gσ
. (17)

For intermediate fluidization there is a competition of length scales and the choice of

appropriate shaking parameter is not clear. The transition has been described in terms

of a critical fluidization threshold [18] or as a gradual change [2]. With the way our DNS

is set up we can adjust Γ, but not the amplitude a directly. As Eshuis et al. [2] did, we

therefore assume Γ to be the primary shaking parameter.

2.7 Computational Model

Our goal is to solve equations (4)–(8) numerically for the density ρ, the momentum

ρv and the energy density ρE. Therefore, we discretize our system into finite volumes

∆x∆y with a resolution of Nx ×Ny. Integrating the granular hydrodynamic equations

and applying them to these cells is very advantageous in our case. Unlike in a differential

implementation, conservation laws are strictly maintained and stability of the solver is

increased. Crucially, between time steps, we don’t save the progression of every field and

variable across space, but only the cell-averages. As per Gauss’ theorem, the volume

integrals are substituted by surface integrals over the cell’s boundaries. These integrals

are then calculated via Gaussian quadrature with 2 nodes in each dimension. This

requires a higher resolution of the variables. The more precise values are interpolated
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with a seventh order WENO method [19, 20]. The flux is approximated with the

assistance of a multi-stage numerical scheme (MUSTA) [21]. At this stage we have

reduced the time evolution to a Riemann problem. Figure 1 shows a flow chart of

the iterative multi-stage scheme we use to solve it. Details can be found in Hummel’s

doctoral thesis [16]. The simulation uses a dynamic time step

∆t = CCFL
∆x

wmax
(18)

that adapts to the maximum propagation speed of a convective wave wmax (Courant-

Friedrichs-Lewy condition) [22]. We typically use an initial CFL-number of CCFL =

0.2. When our simulations become unstable (specifically, when high density gradients

develop), this number is halved, iteratively, but typically it is then necessary to decrease

it by multiple orders of magnitude, making further simulation unfeasible.

To aid stability and validity of our solutions we have additional solvers available.

They are, however, computationally expensive. In section 6.2 we examine their practi-

cality. Briefly, time integration can be carried out explicitly with a second order arbitrary

high order derivative (ADER) scheme [23] and for the diffusive flux we may use the ex-

plicit dGRP-flux. In addition, an implicit solver is available. Explicit methods work

locally and calculate the next time step as a function of the current one. Their solutions

only fulfill the underlying equations approximately. In contrast, implicit methods work

backwards in that they adjust solutions that necessarily satisfy the governing equations

to the previous time step. Implicit schemes have a much higher accuracy for a given time

step ∆t, but they take more time because they couple the entire calculation domain.

The difference an implicit solver makes is demonstrated in section 6.2.

The principal parameters that our DNS allows us to adjust are shown in table 1.

The length multiplier, number and size of the finite volumes produce the container

volume Lx×Ly = LNx∆x×LNy∆y. The filling fraction φ is a rescaling of F according

to equation 13 and the initial convective velocities of the finite volumes are normally

distributed in random directions with expected absolute value vinit.

Number of finite volumes NxNy

Size of finite volumes ∆x∆y
Length multiplier L
Filling fraction φ
Shaking acceleration Γ
Gravity g
Shaking frequency f
Coefficient of restitution ε
Friction coefficient M
Initial velocity vinit
Transient time t0

Table 1: Principal input parameters to our DNS

The boundaries of the container are treated in the same way as the rest of the
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calculate sources  and
corrections (from 
convective flux interactions)
(ADER approach)

Initialize

Finalize

L
calculate

compute

L
calculate

MHM

calculate leading terms 
of flux  (MUSTA)

calculate corrections of flux
(interaction with 
source term using MUSTA) 
        (ADER approach)

L
calculate

set ghost cells
(Boundary conditions)

update

update

set ghost cells
(Boundary conditions)

calculate ,
at Gaussian points

set ghost cells
(Boundary conditions)

update

(dGRP)

(ADER)

(ADER)

(WENO)

calculate ,
at Gaussian points (WENO)

calculate ,
at Gaussian points (WENO)

Figure 1: Flow chart of the structure of the algorithm for the direct numerical simulations
[16].
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Figure 2: Friction at the walls

system. This is achieved by adding 4 ghost cells in every dimension, on each side. This

number is needed because the WENO method requires 4 cells to perform interpolation.

Analogously to image charges in electrodynamics, image fields are assigned to the ghost

cells that solve the specified boundary conditions, e.g. mirrored fields for hard walls.

If friction is activated, the ghost cell’s velocity parallel to the wall gets multiplied by

the friction coefficient M , as illustrated in figure 2. As u is transformed into v, the

perpendicular component (green) remains the same (changing sign), but the parallel

component (red) changes in magnitude depending on M .

2.8 Physical Interpretation

All length scales are measured in terms of the particle diameter σ. A change of length

scale requires a rescaling of time with

tref =
Lσ

vref
. (19)

In our simulations the length multiplier is L = 2, the reference velocity is vref = vinit =

0.1m/s and the particle diameter is σ = 1.9× 10−4m.

3 Nonequilibrium Steady States

Driven granular matter has been shown to exhibit many nonequilibrium steady states.

Faraday heaping, oscillations, surface waves and different standing wave patterns in

experiments and numerics have been documented [24, 25]. These require 3-dimensional

systems and high shaking amplitudes, but some of the phases extend to 2D or quasi-2D

setups. Namely, undulations, convection rolls and the granular Leidenfrost effect which

may all develop from a bouncing bed.
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3.1 Bouncing Bed

At Γ ≤ 1 the granular system remains solid. There is almost no difference from the

undriven state as the particle bed rests on the moving bottom of the container. If the

box acceleration Γ is greater than both gravity and friction with walls and particle bed

combined, a bouncing bed develops. The critical value ΓBB depends on the materials

used for the particles and the walls, but it is bounded by ΓBB < 2 [2]. Figure 3 shows

snapshots of a bouncing bed in an experiment, at different times.

Figure 3: Bouncing bed for F = 8.1 layers of σ = 1mm glass beads at amplitude
a = 4mm and frequency f = 12Hz (Γ = 2.3). A snapshot is shown for three different
phases within one shaking period T [2].

Starting from the bouncing bed and increasing Γ results in different phases, depend-

ing on the number of particle layers. Eshuis et al. observed a granular gas for F ≤ 3 ,

convection rolls at 3 < F ≤ 6 and undulations at F > 6 [2].

3.2 Undulations

Undulations, as seen in Figure 4, are transversal standing waves that form at mild

fluidization. The standing wave property implies Lx = nλ/2 where n is an integer

number. λ is connected to the elastic properties of the particles and n depends on the

shaking (Γ and f).

As Γ increases, the first undulation mode n = 1 is formed from a bouncing bed

in the following way: Whenever the bottom layer of the particle bed collides with the

container, it dilates. A larger number of particle layers F leads to a higher pressure,

resulting in increased dilation. Increasing the shaking acceleration Γ and consequently

the kinetic energy in the system has the same effect. Once a certain threshold is reached,

the horizontal expansion makes the particle bed buckle into a waveform.

From a different point of view, each collision with the bottom of the container causes

compaction waves in the particle bed at velocity v, which can be assumed constant.
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Figure 4: Undulation modes n = 1, ..., 6 for F = 9.4 layers, σ = 1mm and a = 2mm, at
shaking frequencies f = 29.0, 32.6, 38.2, 39.3, 46.1, 50.2Hz [2].

They follow the arches and meet at the crests, causing them to fall down. In turn,

the previously lower parts rise above the rest. Since this process repeats and becomes

periodic after the next shaking period, undulations are also known as “f/2-waves”.

Experiments have shown that there is either a minimum or a maximum at the walls

[2, 26].

Sano’s model predicts the angle between particle bed and x-axis θ(s) at position s

to follow the pendulum equation [26] with

d2θ

ds2
= −α sin θ. (20)

Although it can be solved analytically, the small angle approximation, i.e. the har-

monic oscillator, is a valid approximation for most purposes. The previously mentioned

boundary conditions θ(0) = θ(Lx) = 0 result in

θ(s) = θmax sin
(nπs
L

)
. (21)

In the small angle approximation, the measured length along the particle bed s simplifies

to the Cartesian coordinate x. Integrating over Lx yields the shape of the undulations

y(x) = θmax
L

nπ

[
1− cos

(nπx
L

)]
. (22)

To get a better understanding of the different undulation modes, we take a more thorough

look at shock waves. As previously discussed, they are essential to the formation of

undulations. We can relate their velocity v to the geometry, mode and shaking Γ by

considering the distance λ/2 traveled (across an arch) per shaking period. Consequently,

v =
λ/2

T
=
L/n

1/f
=
Lf

n
(23)
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and the frequency required for a particular mode is

fn =
nv(n)

L
. (24)

We see that n increases as Γ rises. The indicated n-dependence of v has experimentally

been shown to decrease according to v(n) = av − bv(n − 1) with coefficients av, bv > 0,

at least for n = 1, ..., 6 [2]. In the setup of Eshuis et al. measurements suggested

v(n) = 2m/s− (n− 1) · 0.2m/s [2].

3.3 Granular Leidenfrost Effect

Originally, the Leidenfrost effect was observed in liquids that are laid on a hot surface.

The liquid directly above the surface is vaporized and serves as a cushion for droplets

that bounce on top of them. This marks a density inversion and the coexistence of

the liquid- and the gas-state. Analogously, in a granular system a crystalline cluster of

particles may float or bounce on top of a dilute (gaseous) layer as shown in figure 5. The

gaseous cushion greatly diminishes the heat contact of the cluster, allowing it to remain

in a solid- or liquid-like state. The cluster is stationary in time while the dilute layer

oscillates along with the bottom of the container [3].

(a) Experimental density pro-
file.

(b) High-speed camera snap-
shot of the experiment.

(c) Theoretical profile for S =
80.

Figure 5: Glass beads, vertically vibrated above a critical shaking acceleration, form a
crystalline cluster that is elevated and supported by a vapor-like layer of fast particles
underneath. Density profiles in experiment and theory at F = 16, Γ = 51.5, f = 80Hz
by Eshuis et al. [3]. The height-origin is set at the maximal positive displacement of the
bottom. The theoretical profile was determined by equations 25–27.

The granular Leidenfrost state arises at a shaking acceleration larger than that for

undulations, provided that the number of particle layers satisfies F & 8 [3]. Due to

the aforementioned conflict of length scales, the crucial parameter for the onset of the

granular Leidenfrost effect is not yet clear. Eshuis et al. have found conflicting results.

In 2005 [3] they found the governing shaking parameter to be S. They worked with

a particle diameter of σ = 4mm, an aspect ratio on the order of Lx/F ≈ 1 and a

quasi 2D container, as z ≈ σ. In a different paper in 2007 their experiments were in

better agreement with Γ as the shaking parameter [2]. They attribute the difference to

the change in setup. They increased Γ gradually, passing through undulations. Their

experiments had a high aspect ratio Lx/F ≈ 10 and a container-depth in z-direction of
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z = 5σ. The particle diameter σ = 1mm was smaller by a factor of four.

Interestingly, the granular Leidenfrost effect may occur at shaking accelerations be-

low the critical point, if the undulations become unstable. Especially the modes with

odd n are energetically less favorable and result in intermediate Leidenfrost regions. A

description of these regimes requires the parameters f and a rather than the usual Γ or

S, as they only appear at specific frequencies and their total area in F -Γ-phase space

depends on the amplitude. They occupy a smaller region as a increases and for a ≥ 4σ

they disappear completely.

The granular Leidenfrost effect has been successfully modeled by a 1D hydrodynamic

continuum description [3, 10]. This model solves the standard force balance of pressure

p, particle mass mp and number density n

dp

dy
= −mpgn (25)

and an approximation of the energy balance between the heat flux through the vibrated

bed and the dissipation due to the inelastic particle collisions

d

dy

{
κ
dT

dy

}
=

µ

ψ`
n(1− ε2)T (3/2) (26)

with (granular) thermal conductivity κ ∝ T (1/2) and constants µ, ψ. This is done using

the equation of state

p = nT
ηh + n

ηh − n
(27)

and three boundary conditions. Constant granular temperature Tbot = const. at the

bottom of the container, zero energy flux at the top of the system limy→∞ [κ(y)dT/dy] =

0 and the conservation of particles
∫∞
0 n(y)dy = Fηhσ.

3.4 Convection Rolls

At intermediate-to-strong fluidization granular matter develops circular convective fluxes

called convection rolls. Figure 6 shows convection rolls in experiment, molecular dynam-

ics (MD) simulation and theory.

Different types of convection rolls have been described. They can form from a bounc-

ing bed and continue the bouncing motion, but in case of a large number of layers F the

convection rolls develop from a Leidenfrost state. These convection roll clusters maintain

the stationary position of their predecessors.

The greatest distinction is made between boundary driven convection at low fluidiza-

tion and nearly homogeneous density, and buoyancy driven convection in the presence

of large density gradients. At high shaking acceleration Γ and great enough aspect ratio

Lx/F the Leidenfrost state’s inverted density profile becomes unstable due to buoyancy

and convection rolls develop [1]. This has been modeled numerically by Paolotti et al.

[28] and there is agreement that S best describes this regime [2, 28]. Boundary driven
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Figure 6: Convection patterns in experiment, MD simulation, and theory for F = 6.2
particle layers in a container of length L/σ = 101 at three consecutive shaking strengths:
S = 58, S = 130, and S = 202 [27].

convection rolls develop at Γ ≈ 15 [2] and will be our main focus. The convection rolls

that form from a bouncing bed or from the Leidenfrost state develop in a similar way:

Due to statistical fluctuations some parts of the cluster will develop a higher granular

temperature, causing them to move upwards. The hole they leave will be filled by neigh-

boring particles. This motion initiates the convection rolls [1]. The downward motion is

most likely to be performed by cluster regions with low granular temperature. Therefore

the first convection rolls develop near the dissipative walls. The onset of convection can

be seen in figure 7.

The larger the number of layers F , the stronger the shaking needs to be in order to

cause convection rolls. This is because the dissipation rate, which increases with F , must

be compensated by the shaking-energy input. Eshuis et al. found the critical shaking

strength for convection Sc to grow roughly exponentially as Sc ∝ exp(0.2F ) [1].

The number of rolls that form depends on the number of layers F and the shaking

strength S. As F grows, the increasing energy dissipation makes the clusters, i.e. con-

vection rolls bigger. Conversely, as S grows, the increasing energy input reduces the

convection rolls in size. Depending on their size, a different number of convection rolls

will fit into the container. However, due to the downward motion at the sidewalls the

number will always be even. The change happens stepwise in increments of two rolls.
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Figure 7: Onset of convection from the steady Leidenfrost state in experiment and
in MD simulations for F = 11.1 layers of 1mm steel beads in a container of length
L/d = 101 shaken at an amplitude of a = 3mm. The frequency was linearly increased
from f = 42Hz to f = 48Hz and convection took place at f = 45Hz. The light particles
are moving upward and the dark ones downward [1].

4 Results

In our hydrodynamic DNS we were able to reproduce the Leidenfrost effect as well as

convection rolls, but not undulations. We created an automated script that is able to

analyze the data provided by our simulation output. We developed classifiers to assign

data sets and their corresponding (Γ, F )-points in phase space to the the bouncing bed,

Leidenfrost effect and convection rolls. This gives rise to a phase space diagram.

The observations detailed in this chapter can be followed via the attached videos.

Included are both a representative example of the Leidenfrost effect and convection rolls.

4.1 Phase Space

We found that the occurrence of the granular Leidenfrost effect and convection rolls

does not exclusively depend on the primary parameters F and Γ. We always maintained

ε = 0.95, but many configurations of f , ttrans, L, Nx,y and ∆(x, y) did not produce any

effects in the later developed F -Γ-range. The parameter configuration we settled on can

be seen in table 2 and is very close to the phase space region where we first discovered

the effects. The influence of the secondary parameters is briefly dealt with in section 4.4.

4.2 Granular Leidenfrost Effect

Each of our simulations starts in a homogeneous state at t = 0. The particles have

initial velocities vinit = 0.1 with randomized direction. As time passes and the exterior

forces (gravity and driving) are turned on, the density ρ condenses into a cluster near
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Filling fraction φ 6 to 16
Shaking acceleration Γ 6 to 36

Number of finite volumes Nx ×Ny 256× 64
Size of finite volumes ∆x×∆y 0.9× 0.9
Length multiplier L 2
Gravity g 1
Shaking frequency f 50Hz
Coefficient of restitution ε 0.95
Friction coefficient M 0.9
Initial velocity vinit 0.1
Transient time ttrans 0.25 s

Table 2: Principal input parameters to our DNS and their respective values

the bottom. By around t = 0.14 s the cluster reaches its final mass, leaving the top half

of the container with less than 5% density. Depending on Γ and F the system is now

receptive to the Leidenfrost phase.

During the transient time each system moves on a trajectory (F, γ(t)Γ) through

F -Γ-phase space. We find that, as a critical point is crossed, the granular Leidenfrost

effect develops. It takes only around 1–2 periods to stabilize, even if t < ttrans and the

exterior forces still change.

Barring convection rolls, the system becomes stationary at around t = 0.38 s. Nonethe-

less, simulation instability required measurements to be taken earlier than that (detailed

in section 6.4). Figure 8 shows the stationary state of two systems with the same number

of particles, but different shaking accelerations.

(a) Γ = 6 (b) Γ = 28

Figure 8: Density (black) ρ(x, y, t) for F = 17.8 at t = 0.60 s. 21% into a period. This
and the following density distributions have been interpolated cubically.

There is a discernible visual difference between Fig. 8a and Fig. 8b, and given these

extreme cases of Γ = 6 and Γ = 28 one may use the positions of the clusters at this

point in time as a classifier for the Leidenfrost phase (figure 8b) and for the bouncing

bed (figure 8a). This approach, however, breaks down just as quickly as the concepts of

“clusters” and corresponding “positions”.

The main issue in classifying the Leidenfrost effect is the smooth phase transition we

encounter in F -Γ-phase space. Still, a time-inclusive investigation did gives us a clear

distinction to the bouncing bed.

For a detailed analysis it is important to exclude the area around the side walls. As

we worked with significant friction, the outer parts of the container exhibit boundary

effects and behave very differently from the inner parts, i.e. faster, chaotic movement
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and very low density (gas-like). In the numeric analysis of the Leidenfrost effect we

chose to cut off 73 of the 256 cells on each side in the x-direction. Averaging over the

remaining length in x we obtain ρ̄(y, t). Figure 9 shows examples of ρ̄ for 5 periods,

starting at t = 0.3 s. In our measurements and calculations the time before t = 0.3 s is

also cut off, but later times are maintained if possible (see sections 6.1 and 6.2).

(a) Γ = 10 (b) Γ = 14

(c) Γ = 18 (d) Γ = 22

Figure 9: ρ̄(y, t) in the reference frame of the container for F = 14.0 and 0.3 s ≤ t < 0.4 s.
The density is color coded with red representing high density.

The graphs in figure 9 show two overlapping modes (most clearly visible in figures 9c

and d). During the first quarter of a period some fraction of the particles rises from

the bottom and some fraction falls from the crest. We may call these the bouncing bed

mode and the Leidenfrost mode. Thus, we have reduced the classification problem to

the identification of the dominant mode. Defining the quotient of the modes’ densities

κ ≡
〈maxy ρ̄(y > ymax, t)〉t
〈maxy ρ̄(y < ymax, t)〉t

(28)

where the density maximum in y-direction (measured from the bottom) ymax is deter-

mined by

〈ρ̄(y = ymax, t)〉t = max
y

〈ρ̄(y, t)〉t (29)
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we are left with the condition κ > 0.5 for the Leidenfrost phase. It produces the phase

diagram in figure 10. Evidently it has deficiencies at low shaking acceleration. They

are easily explained when looking at the corresponding ρ̄(y, t)-diagrams in figure 11. In

these cases ymax is so low that no part of the cluster will drop below it and only one mode

emerges. The other breakdown of the classifier occurs when a system needs an unusually

long time to become stationary and the simulations cut off too early (see section 6.4).

Figure 10: Leidenfrost effect (blue) according to κ > 0.5 in the F -Γ-phase diagram.

(a) Γ = 6 (b) Γ = 8

Figure 11: ρ̄(y, t) of a bouncing bed for F = 17.8 and 0.3 s ≤ t < 0.4 s.

Both deficiencies are remedied by one adjustment. Figures 9 and 11 show that the

two modes only form as the densest part of the cluster peels away from the bottom with

18



increasing Γ. We may quantify this with βymax where

β ≡
〈ρ̄(y = ymax, t)〉t
〈ρ̄(y = 0, t)〉t

. (30)

In Leidenfrost states the cluster is always centered around y = 34. The condition

κβymax > 34 (31)

(in units of particle diameter σ) for the Leidenfrost phase is in very good agreement with

our observations. The resulting phase space diagram can be seen in figure 12.

Figure 12: Leidenfrost effect (blue) in the F -Γ-phase diagram.

4.3 Convection Rolls

In many dilute systems (small F ) we observe arches that form within the first 0.5 s. The

field map for momentum ρu(x, y, t) reveals that they are caused by convection rolls.

Figure 13 shows a density map as well as the rolls and their sense of rotation.

In general, the convection rolls that we observe can be categorized into two different

phases. Rolls that form from a bouncing bed and move up and down and rolls that form

within the Leidenfrost regime. The latter continue to exhibit the characteristic traits of

a cluster floating atop a gaseous layer.

Convection rolls take much more time to develop than the granular Leidenfrost effect.

The process starts near the walls. At low shaking acceleration Γ two arches form next

to the left and right boundaries (figure 14) within the first 0.25 seconds. The higher Γ,

the more space separates them from the walls. Subsequently, new arches form next to
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Figure 13: Convection rolls at t = 0.50 s (F = 11.43, Γ = 24). Density ρ(x, y) in black
and momentum ρu in green/red.

Figure 14: Onset of convection rolls at t = 0.26 s (F = 12.7, Γ = 18). Only the outer
arches have formed by this time.

the existing ones. That procedure continues inward until the whole cluster is buckled.

At every meeting point of two arches there is an area with high density in which two

convection rolls with opposing senses of rotation are located. This state is shown for

different parameter configurations in figure 15. The pictures cover the whole range

of convection roll patterns we observed. In most cases they are axially symmetrical,

ρ(Lx/2 + x, y, t) = ρ(Lx/2 − x, y, t). With increasing shaking acceleration Γ the walls’

area of influence expands, leading to a contraction of the cluster. Therefore, figure 15b

and 15d show identical cluster lengths. Figure 15a and similar configurations show that

in some extreme cases there is only enough space left for one pair of convection rolls in

the center. Starting at t ≈ 0.5 s we see the convection rolls slowly moving away from the

(a) F = 8.9, Γ = 36 (b) F = 12.7, Γ = 26

(c) F = 15.2, Γ = 14 (d) F = 15.2, Γ = 26

Figure 15: Density at t = 0.50 s showing the developed convection roll phase.
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center with a convective velocity of about vrolls = (86± 5)σ/s. The movement continues

until the rolls are around twice their initial distance apart, at which point the arches

becomes unstable and collapse. Like in the onset of convection rolls, a new pair of rolls

forms at the crests of the arches. They descend until they are in-line with the rest. Rolls

that move beyond the ends of the cluster, as dictated by Γ, simply dissolve.

This whole process is not, yet, periodic. It takes around one pair of rolls to dissipate

until a stationary state is reached (see section 6.4). The filigree delicateness of the

convection roll pattern makes for high computational costs. Consequently, the long

term observation of its behavior is limited. In exceptional cases of prolonged simulation

time (≈ 5 s) there seems to be a turning point at around 3.3 s where the roll movement

reverses inward. Presumably, it will reverse periodically thereafter.

To describe the convection of this phase state we need to look at the mass transport

(momentum ρu) in addition to the density. The circular nature of the convection rolls

suggests looking at the curl of the momentum

ω ≡ (∇× ρu)z (32)

where u is the convective velocity in the laboratory frame of reference. We call this the

momentum vorticity in analogy to the vorticity Ω ≡ ∇× u in fluid dynamics.

(a) F = 8.9, Γ = 36 (b) F = 12.7, Γ = 26

(c) F = 15.2, Γ = 14 (d) F = 15.2, Γ = 26

Figure 16: Momentum vorticity distributions corresponding to figure 15 at t = 0.50 s.
ω is normalized for each image individually. Negative vorticity is represented in blue,
positive values are red and green equates to vanishing vorticity.

Figure 16 shows the momentum vorticity distributions corresponding to the frames

shown in figure 15. The convection rolls come in pairs and are distinctly visible. The

momentum vorticity in the rest of the container vanishes for the most part. Still, strong

vortexes do occur near the boundaries during most parts of each period. Examples are

shown in figures 16a and 17.

To extract a classifier for the convection rolls, we therefore cut off the area near

the top (10 of the 64 cells) and side (40 of the 256 cells) walls. Starting at t = 0.50 s,

21% into each period we count the number of rolls. This is accomplished by finding

the y-coordinate of the global momentum vorticity maximum at this point in time and

examining the vorticity along this line for local extremal values. Each extremum that

has an absolute value exceeding the predetermined critical value ωcrit = 0.8 counts as a
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Figure 17: Normalized momentum vorticity ω at t = 0.50 s for F = 15.2 and Γ = 26,
exhibiting significant boundary effects.

Figure 18: Phase space diagram for the number of convection rolls, counted automati-
cally. The size of the red dots represents the count, small beige dots signal the absence
of convection rolls.

convection roll. We found this to be the best classifier for identifying the convection roll

phase algorithmically. Figure 18 shows the count across the F -Γ-phase diagram.

4.4 Additional Parameters

We mainly explored the F -Γ-phase diagram. Still, it is interesting to form an idea of

how the observed phenomena change with regards to other parameters. As previously

mentioned, there are a plethora of additional parameters available. The possible combi-

nations of parameters scaling exponentially with their number makes a naive mapping of

the higher dimensional phase space a very laborious task. Therefore, we merely looked at

a few examples of easy-to-categorize variations. Specifically, we varied the friction, the

length of the container in x-direction Lx and its associated aspect ratio Lx/F . The fol-

lowing simulations were performed at F = 11.43 and Γ = 24 where, in the normal setup,

we both observed the Leidenfrost effect and convection rolls. Figure 19 was produced

using the standard setup and serves as a reference.
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Figure 19: Density at t = 0.61 s in the standard setup (F = 11.43, Γ = 24).

Deactivating the friction made the density ρ(x, y, t) one-dimensional ρ(y, t). Natu-

rally, no convection rolls occurred, confirming that they are caused by the friction of the

walls. Figure 20a gives a visual representation. The momentum vorticity did not homog-

enize completely, but it diminished by three orders of magnitude. Increasing the friction

also had a visible impact on the convection rolls. In a comparable way to increasing

the shaking acceleration Γ, it resulted in a larger gap between the cluster and the walls

and higher local densities. The example in figure 20b shows that, as a consequence, the

number of arches changed from 4 to 3. In summary, varying the friction produced similar

result to varying the shaking acceleration Γ with regards to convection rolls (above a

necessary threshold), but did not influence the occurrence of the Leidenfrost effect.

(a) No friction (b) High friction

Figure 20: Density at t = 0.61 s in simulations with varied friction (F = 11.43, Γ = 24).

Variation of the container length Lx has a significant impact on the formation as well

as the final state of convection rolls. Since convection rolls are formed at the boundaries

and develop inward, the time required for full formation scales with Lx. After the

same amount of time a simulation with doubled container length Lx = 922 (figure 21,

Nx = 512) shows much less progress than its Lx = 461 counterpart (figure 19).

Depending on Lx the cluster also has varying area available. Figure 22a shows the
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Figure 21: Density at t = 0.61 s. Lx increased by a factor of 2 (F = 11.43, Γ = 24).

effect scaling Lx by a factor of 1.25 has (Lx = 576, Nx = 320). With the increased

space, the cluster developed an additional convection roll pair, maintaining the same

arch-length as in the normal setup of about 70. Thus, increasing the container length by

1/4 increases the number of arches by the same amount. This is not exact, because the

idle space near the boundaries needs to be subtracted, but it affirms the point. Inferring

from the obvious analogy to a standing wave, we expect there to be certain container

lengths (multiples of the wavelength) that lead to the most stable convection rolls. This

is supported by our observations. Using ∆x = 1 instead of ∆x = 0.9 and, thus, scaling

Lx by 10/9 we get a more aberrant shape (Figure 22b) that gets even more irregular with

time (Figure 23b). The stretched systems in figures 23c and d also show very different

development to the reference arrangement in 23a. They maintain axial symmetry, but

the number of convection roll pairs is changed in both directions. Stretching by 1.25 led

to a reduction from 3 to 2 pairs and stretching by 2 led to an increase to 8. We may only

hypothesize about the reasons. While friction at the wall is necessary for the formation

of convection rolls, it seems to inhibit their development near the boundaries. Thus,

mainly wide systems lend themselves to the study of unperturbed convection rolls. The

aspect ratio must, however, be maintained, as for even larger Lx we did not observe any

convection rolls.

5 Analysis

To place this thesis in relation to previously published works we need to consider which

parameters are relevant. The coefficient of restitution ε plays an important role in every

model of the Leidenfrost effect [2, 3, 10] and convection rolls [1, 2, 29]. In all studies that
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(a) 1.25 (b) 10/9

Figure 22: Density at t = 0.61 s for varying container lengths Lx. The respective scaling
factors are noted.

(a) 1 (reference) (b) 10/9 (∆x = 1)

(c) 1.25 (d) 2

Figure 23: Density at t = 1.44 s (a,b,c) or t = 1.44 s (d) for varying container lengths
Lx.

we are aware of it is within the range 0.9–0.95. For comparison glass has a coefficient

of εglass = 0.905 and the value for steel is εsteel = 0.957. The temperature dependency

is always neglected, as even the difference between the extremes 0.9 and 0.95 is a factor
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of less than 2 in the energy dissipation rate (1 − ε2). For our DNS we chose a fixed

ε = 0.95. Apart from F , Γ and S, Eshuis et al. concluded that that the aspect ratio

Lx/F may play an important role in the emergence of nonequilibrium steady states [2].

We use a high aspect ratio of 23–60. This is an order of magnitude larger than early

work (Lx/F≈1) [3, 10] and four times more than in newer research [2].

As mentioned in section 3.3, there is disagreement on the fundamental shaking pa-

rameter. This has been investigated by performing experiments with varying ampli-

tudes and looking if the phase transition points coincide better in the F -Γ-space or the

F -S-space [1, 2, 30]. In spite of simple hydrodynamic models such as the one presented

in equations 25–27 being controlled by S, the experimental evidence suggest Γ as the

better choice for control parameter [2]. Still, the data shows an amplitude-dependence

(figure 24a), but in F -S-space there is even less alignment (figure 24b). This is an impor-

tant consideration for the comparison since we used an amplitude higher by one order

of magnitude than Eshuis et al. [1–3] and Wildman et al. [29]. We did not, however,

control a independently1. The shortcomings of the model in equations 25–27 might be

due to the much smaller respect it pays to the particle character of granular matter

compared to ours.

(a) Γ-F plane (b) S-F plane

Figure 24: The transition from undulations to the granular Leidenfrost effect for increas-
ing frequency f and fixed amplitude a = 2.0, 3.0, 4.0mm. In Eshuis et al.’s experiments
the Leidenfrost state always originates from the undulation phase [2].

Figure 25 shows the phase diagram that Eshuis et al. mapped in their studies. Com-

paring to our phase diagram in Fig. 12 we see a qualitative agreement in the Leidenfrost

regime forming the upper half of the phase-diagram area. The onset value in our exper-

iments does however show much less F -dependence. This can be explained by the much

higher amplitude. With the increase of a in figure 25a to 25c the Leidenfrost regime

extends further down replacing the undulation phase and possibly tending toward the

same F -independent phase transition we encounter.

Eshuis et al. report a minimum number of particle layers F & 8 to be required for

the Leidenfrost phase to form [2, 3]. We observe the same property in our simulations.

1The adjustment of Γ and F leaves one degree of freedom between a/σ and g/σ.
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The critical value cannot be determined exactly. This relates to the smoothness of the

phase transitions. In experiments and MD simulations the transitions are already fairly

gradual. In the past, the particle nature of the system had to be used explicitly to

separate the gaseous phase (bottom layer) and the crystalline phase (top layer), for

example using a pair correlation function to identify the periodicity of a crystalline layer

[3]. In our hydrodynamic model all phase transitions are even smoother and such tools

are not available. As Γ increases and the phase changes gradually from a bouncing bed

to the Leidenfrost state, we have to introduce a classifier to distinguish the two because

none have been necessary, previously. Quantitatively, the critical shaking acceleration of

Γcrit ≈ 19 we found is in good agreement with the diagrams in Fig 25. Our findings also

reinforce the dependency of the Leidenfrost effect on Γ rather than S, which is more in

accord with Eshuis et al.’s later work which used smaller particles σ and higher aspect

ratio Lx/F [2] compared to [3]. A trend which we continued.

(a) a = 2mm (b) a = 3mm

(c) a = 4mm

Figure 25: Diagram of the phases Eshuis et al. explore in [2] at three fixed values of the
shaking amplitude a.

The density profiles our systems show in the Leidenfrost phase look similar to ones

produced in MD simulations by Meerson et al. [10], as illustrated in figure 26. The

main difference is in the density decline at the top of the cluster. We observe a gradual

slope rather than an abrupt drop in density. The same steep transition is seen in the

theoretical density profile by Eshuis et al. (figure 5c) [3]. Another notable disparity
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between the images in figure 26 is the inflection in the density profile below the cluster

in 26b. It appears neither in our simulations nor in those by Eshuis et al. [3]. Judging

from these pictures, our density profile is in the better agreement with the experiment in

figure 5a/b than both the theoretical model of equations 25 to 27 and the MD simulations

by [10].

(a) Density average over time in the whole sys-
tem at F = 17.8, Γ = 20.

(b) Two density profiles of MD simulations by
Meerson et al. in the Leidenfrost regime [10].

Figure 26: Leidenfrost density profile comparison. The graphs on the right are cropped,
ensuring that the height-axis intercept is at the highest point that the container reaches.
The upper container volume is also cut off.

We have not yet discussed where the Leidenfrost phase gives way to convection rolls.

Figure 27 combines our two phase space diagrams. The convective regime has moved to

the lower right compared to the diagram by Eshuis et al., extending below the Leidenfrost

phase and allowing bouncing convection rolls to form (red). Up to now this has only been

observed in systems below the supposed critical number of layers F < 8. Additionally,

the convection rolls appear at Γ ≥ 12 which is lower than what has been previously

found. Looking at the diagrams in figure 25, the onset of convection rolls happens for

lower Γ as a increases. We conclude that the reason for the different observations is the

high driving amplitude used in our simulations.

The blue marked area at low F in our phase diagram is not found in figure 25.

In actuality, though, it is convective. The patterns we see (figure 28) are simply not

expressed strongly enough to be captured by our classifying algorithm.

Extensive research has been done on the convection of granular matter experimen-

tally, numerically and theoretically [2]. These studies almost exclusively deal with mild

fluidization (Γ ≤ 10) and consequently nearly constant density in the system. Their

convection is accepted to be boundary driven [2].

The convection roll pattern we observe closely resembles the ones produced by Eshuis

and Paolotti [2, 28], which they classify as buoyancy driven. They show the same density

gradients and arches (compare figure 13 to 6 or 7).

Paolotti et al. obtained their results numerically with elastic (dissipation-less) walls.

Therefore, the convection rolls in their systems cannot be boundary driven. As detailed

in section 4.4, in our systems dissipative walls are required for convection rolls to form.
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Figure 27: Complete phase space diagram. The bouncing bed is colored beige, the
Leidenfrost phase is blue and convection rolls are marked green when they emerge from
the Leidenfrost phase. Convection rolls that develop from a bouncing bed are shown
in red. Black outlines mark points with insufficient data for automatic detection of
convection rolls. Their affiliation was determined visually from ρ(x, y, t).

(a) Density ρ(x, y, t) for F = 8.9. (b) Density ρ(x, y, t) for F = 10.2.

(c) Momentum vorticity ω(x, y, t) for F = 8.9. (d) Momentum vorticity ω(x, y, t) for F = 10.2.

Figure 28: Fringe cases of convection at Γ = 20.

Since our high amplitude is less likely to induce small scale motion than a low amplitude

and our shaking acceleration Γ did not exceed 36, we may classify our systems as mildly

fluidized and the convection rolls to be boundary driven. The former point is further

facilitated by the fact that we did not find granular gas phases in the systems that we

explored with Γ < 8.

Normally, convection rolls hug the walls of the container [2, 28]. In our simulations

this is not the case because of the relatively high friction the walls exhibit. Still, like
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Eshuis et al., and unlike Paolotti et al., we always encounter downward motion at the

walls, confirming that this is a consequence of dissipative walls. In section 4.4 we demon-

strated that the dissipative properties of the wall play a significant role in the formation

of nonequilibrium steady states. This is to be expected, but has not been addressed in

previous research. We saw that, while friction at the wall is necessary for the forma-

tion of our convection rolls, it seems to inhibit their development near the boundaries.

Thus, mainly systems with a high aspect ratio lend themselves to the study of unper-

turbed convection rolls. We therefore agree with Eshuis et al. that the aspect ratio is

an important control parameter [2], at least regarding convection rolls.

Eshuis et al. report that more dissipation, i.e. more particle layers F or higher shak-

ing acceleration Γ, leads to bigger clusters, i.e. rolls. The result is that less convection

rolls fit inside the system [2]. In our results we do see the number of convection rolls

decreasing as Γ grows. But increasing the number of particle layers F as the opposite

effect. Figure 29 shows this with some examples of convection roll patterns we observe

in our simulations.

(a) Γ = 18 (b) Γ = 26

Figure 29: Increasing number of layers F at fixed shaking acceleration Γ.

We observe the Leidenfrost phase arising from a bouncing bed. This is contrary to

some findings by Sano and Eshuis [2, 26]. Typically granular matter passes through an

intermediate state of undulations. Its absence in our phase diagram may have to do
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with the high aspect ratio we employ. But since a standing wave pattern is generally

not expected to become unstable through a mere quadrupling of its available length,

we deem this possibility unlikely. Eshuis et al. only found undulations experimentally

in their 3D setup with Lz = 5σ [2] not in their Lz ≈ 1σ-systems [3] and conjectured

that 3 dimensions may be necessary for undulations to form. In their MD simulations

Sano did, however, find undulation patterns [26]. The most likely reason for the lack

of undulations in our systems is the hydrodynamic approach. The corrections we use

for the Navier-Stokes equations to capture the particle nature of granular matter seem

to break down at this point. The key step in the development of undulations appears

to be that whenever the bottom layer of the particle bed collides with the container, it

dilates [26]. This dilation seems not to be captured by our formulation. An adjustment

of equation of state (Eq. 7), possibly in the form of a different pair correlation function

might lead to undulations, but that investigation is beyond the scope of this thesis.

Lastly, the bouncing bed we observe is not exactly the same that is observed in

experiments and MD simulations, i.e. one single cluster moving uniformly [2]. In our

simulations the cluster does not fully bounce up and down. Some of the energy trans-

ferred by the bottom is absorbed by the inner collisions of the cluster. This leaves a

fraction of the density remaining on the container floor.

6 Discussion and Conclusions

6.1 Data Gathering

As the discovery of convection rolls and the Leidenfrost effect within our model took a

lot of time, terabytes of data with varying usability were accumulated. Variation of the

secondary parameters such as frequency, box dimensions and transient time were not in-

cluded in this work barring the ones discussed in section 4.4. For the most part they did

not lead to interesting observations. In parallel to our understanding of the phase space

the method of data storage improved. Initially, every N -th step the state of the three

main fields was saved, because the DNS was originally built for observing the cooling

process of granular matter which happens on an exponential time scale (equation 10).

This constant lapse N led to inhomogeneous time steps in the output data, contain-

ing unnecessary, but lacking important information. In the updated method a constant

number of steps per period was extracted. Although this number evolved between sim-

ulations it provided a much more consistent picture. Still, a lot of the produced data

has the former structure. A secondary Matlab script (analyzeEXP.m) had to be cre-

ated replicating the capabilities of the main one (analyze1.m) to accommodate the old

structure and extract most of the relevant information. This may lead to discrepancies

between data sets and the simulations they represent.

We did not track the initial CFL number (equation 18). Since it regulates the time

steps, it might affect early development and ultimately have longer lasting effects. It

likely does not have any notable effect, but the influence is hard to assess.
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6.2 Issues of Computational Complexity

The simulations are computationally very expensive. The best way to cut down on the

complexity is to decrease the resolution. We did this repeatedly to end up with the

current compromise. The used resolution appears to very much suffice in the case of

the Leidenfrost phase. As discussed in section 4.4, the same results could probably be

reproduced in a 1D system. In contrast, the structures formed by convection are very

delicate. One convection roll takes up about 0.5% of the container. With a resolution

of 256 × 64 this leaves a roll diameter of about 10 computational cells, even lower in

extreme cases. The simulations still produce adequate results, but for smaller, more

densely distributed rolls, such as in figure 29a, the resolution limits the simulation.

The simulations lose stability as F and Γ grow. Thus, for many parameters the

simulations become unfeasibly slow as the forces get turned on or even crash after some

time. It typically starts to happen around F > 12 or Γ > 32. This is most problematic

in the long term observation of convection rolls. Figure 30 illustrates the issue. The

histogram shows that many simulations could not be run for the desired duration of

more than 2 seconds. To make the analysis more balanced we decided to cut off all data

after 2.5 s.

Figure 30: Histogram of the final time reached in each of our simulations.

After trying multiple solving schemes, such as ADER, dGRP-flux and an implicit

solver it became apparent that they increased the time required for computation, but

had little influence on the results. Figure 31 shows the the schemes and a reference in

the top left (31a) for comparison.

Using the ADER-scheme led to slightly earlier development of the convection rolls.

The implicit solver did the same and, additionally, produced more refined structures. We

observed no change from applying the dGRP-flux. Each of the solving schemes about

doubles the computation time per time step. Ultimately, we deemed the trade-off not

worthwhile and decided against the employment of any of the three.
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(a) Standard solver (b) ADER scheme

(c) dGRP-flux (d) Implicit solver

Figure 31: Snapshots of four simulations with the same parameters using different
solvers. The pictures were all taken at t = 0.27 s (the transient time is 0.25 s).

6.3 Hydrodynamic Model

Our model proved adequate in reproducing the Leidenfrost effect and convection rolls.

This is reflected in the Knudsen number which stayed in the range from 0.021 (F = 20.32)

to 0.057 (F = 7.62) and satisfied the imposed condition K < 0.1.

Our simulations are two-dimensional, do not account for air and cannot handle high

local densities or shock waves. Therefore, many phenomena that have previously been

observed in experiments, such as oscillations, stripes, spirals [25], Faraday heaping and

surface waves [24], could not be reproduced.

Possible adjustments include the implementation of a tangential coefficient of resti-

tution. This may increase computational effort substantially. Its importance wholly

depends on the granular material that is studied. The effects of such an adjustment

are likely better studied within discrete systems. Another potential adjustment was dis-

cussed in section 5 and pertains to the pressure term in equation 7. Corrections that

lead to a dilation of particle layers being launched against the boundaries might allow

for the reproduction of the undulation phase within our model.
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6.4 Stationarity

In our observations the Leidenfrost phase becomes stationary at around 0.38 s, but for

some parameter configurations the simulation time diverged quickly. Thus some data

sets did not have much time depth. Since usually the systems are very close to the

stationary state from 0.28 s to 0.38 s, we start taking measurements at 0.30 s, treating

all systems equally. Figure 32 shows how little change happens during this time.

Figure 32: ρ̄(y, t) (F =, Γ = 16).

This approach only became problematic in dealing with very high Γ and low F .

Systems in this area of phase space took more time before arriving in a stationary state.

Specifically, the configurations shown in figure 33 became an issue because they did not

conform to the phase separating condition κ > 0.5 for the Leidenfrost effect. As figure 33

alludes to, this is explicitly due to the deficient data and not to a failure of the classifying

condition.

The issue of stationarity is more prominent in the consideration of convection rolls.

The temperature curves show quick convergence toward a periodic state. An example is

presented in figure 34. The observations in 4.3, however, prove this to be an inadequate

basis for judgment. The convection rolls develop an outward movement, forming new

ones as the available space allows for. The process starts after the 0.5 s that the energy

trajectories suggest.

Taking the volume average of the squared momentum vorticity
〈
ω2

〉
x,y

(excluding

the boundary area as previously), one arrives at a usable measure of stationarity. It

indicates that most systems reach a steady state between t = 0.6 s and 1 s, which agrees

with our visual observations. Figure 35 shows some examplesof the temporal evolution

of
〈
ω2

〉
x,y

. As pointed out in section 6.2 (figure 30), not all data sets extended far

enough into this time interval. This derogates the accuracy of our results pertaining to

convection rolls in part.

6.5 Conclusions

We have reproduced convection rolls and the granular Leidenfrost effect in a hydrody-

namic DNS. In this continuum model the phase transitions are less clear than in the
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(a) F = 10.2, Γ = 30 (b) F = 8.9, Γ = 32

(c) F = 11.41 :, Γ = 34

Figure 33: All systems that did not reach stationary states within simulated time. The
data stops before t = 0.42 s. The plots show ρ̄(y, t) for all fully recorded periods starting
at t = 0.30 s.

study of particles. Therefore, it was necessary to determine classifiers. We automated

the analysis of the DNS-output in Matlab, assigning phase states and extracting addi-

tional information such as density profiles. This gave rise to a phase diagram. Taking

into account the high amplitude we deal with, it is in good agreement with previous

research. The most remarkable discrepancies are the lack of undulations and the in-

crease in convection rolls with with the number of particle layers F in our simulations.

All changes and transitions becoming more gradual is also of note. We confirmed that

driven granular systems are not exhaustively described by the coefficient of restitution

ε, the shaking acceleration Γ and the number of particle layers F . The aspect ratio

Lx/F and the amplitude a are independently important. The detailed descriptions we

achieved for the Leidenfrost effect and convection rolls match experiments very well and

we contributed to the quantitative understanding of the nonequilibrium phase states.

7 Outlook

The process is now automated, so an extension of the phase diagram is just a matter of

computational time. Tracking only the Leidenfrost phase is especially easy since we now
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Figure 34: Average temperature, average energy per particle and average kinetic energy
per particle as a function of time (F = 11.43, Γ = 24).

know that we may turn off friction and reduce Lx which significantly boosts performance.

The most extensively studied part of phase space, corresponding to the transitions be-

tween, bouncing bed, Leidenfrost effect and convection rolls has been mapped in this

thesis, but the amplitude-dependence that became apparent inspires a mapping in this

third phase space direction. In its current setup the DNS is mainly bounded in F . High

densities are hard to compute and will eventually lead to a breakdown of the hydrody-

namic model. On the other hand, an increase in Γ beyond what is shown in the phase

diagram of Fig. 27 is less problematic.

The impact that the aspect ratio Lx/F has on convection roll patterns has also not

been studied rigorously in current research. This DNS provides a possible platform.

Our results also raise the question: What does the spatial transition in the Leidenfrost

phase look like, exactly? In what way does the top layer exhibit crystalline characteristics

and the bottom one gaseous properties? These questions have been addressed for particle

systems [3], but not in a hydrodynamic context.

In sections 4.3 and 5 we noted that mainly systems with a high aspect ratio lend

themselves to the study of unperturbed convection rolls. In case of additional computa-

tional investigation, a good compromise needs to be found, since observed systems with

doubled Nx = 512 all crashed before t = 1.2 s.

Further, the transition to a granular gas has not been discussed in this thesis. Mathias

Hummel’s work [16] focuses on this, but mostly considers systems without exterior forces.

An exploration in this direction is certainly easy for the DNS to deal with.
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(a) F = 16.5, Γ = 8 (b) F = 11.4, Γ = 15

(c) F = 8.9, Γ = 18 (d) F = 11.4, Γ = 24

Figure 35: Volume-averaged squared momentum vorticity over time. Typically, between
0.7 and 1 s a stable value is reached. The top and sides of the container are excluded
from the average and the graph is coarse grained to use the maximal value each shaking
period.

A Matlab Code

The accompanying CD contains theMatlab code (including analyzeEXP.m) and videos

of the Leidenfrost effect and convection rolls from our simulations.

analyze1.m:

1 addpath ( ’ /home/ j t ab e t / p l o t s /mfunct ions ’ ) ;

2

3 doCR = 1 ;

4 doL = 1 ;

5 doQ = 1 ;

6 doCount = 1 ;

7 doNro l l s = 1 ;

8 p i c s = 1 ;

9

10 cu to f f t ime = 2 . 5 ;

11

12 c s t a r t i n g t ime = 0 . 5 ;

13 l s t a r t i n g t ime = 0 . 3 ;

14 c s t ep = 1 ;%0 =ˆ= spp
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15 l s t e p = 1 ;

16

17 %ana l y s i s boundar ies VORTICITY

18 sbw = 40/256;%cut on each s i d e

19 tbw = 10/64 ;%cut top

20 %ana l y s i s boundar ies DENSITY

21 sbd = 73/256;%cut on each s i d e

22

23 t ic

24

25 da t a a l l o c a t o r ;

26

27

28 for f l d = 1 : length ( l i s t d a t a )

29

30 folderName = char ( l i s t d a t a ( f l d ) ) ;

31

32 inc lude params ;

33

34 i n i t i a l i z a t i o n ;

35

36 %Convection r o l l s :

37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

38 i f doCR==1 && dC( f l d )==1

39 step = c s t a r t ;

40 time ( s tep ) = 0 ;

41 while ( s tep <= length ( l i s t i n g ) )

42

43 l o adg r i d s ;

44

45 %Vor t i c i t y : bottom at l i n e 1

46

47 momentumY plane = den s i t y p l ane ( : , : , 1 ) . ∗ ( momentumY plane . /

den s i t y p l ane ( : , : , 1 ) ) . . .

48 + FORCEMULTIPLAYER∗cos (2∗3.14159∗50∗ time ( s tep ) ) /(2∗3 .14159∗50) ;
49

50 cau = cu r l (momentumX plane ’ , momentumY plane ’ ) ;

51

52 va l =0;

53 s i z =0;

54 for i = 1 : round(Ny−tbw∗Ny)
55 for k = round( sbw∗Nx) : round((1−sbw) ∗Nx)
56 va l = va l + cau ( i , k ) ˆ2 ;

57 s i z = s i z + 1 ;

58 end

59 end

60 wsq = [ wsq va l / s i z ] ;

61

62 [FX, FY] = gradient ( cau ( 1 :Ny−tbw∗Ny, round( sbw∗Nx) : round((1−sbw) ∗Nx)
) ) ;

63 gw = [ gw mean(FX.ˆ2+FY.ˆ2 ) ] ;

64
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65 i f mod( step , spp )==coun t r o l l t ime r && doCount==1

66 %idex : y−coord o f max in column

67 [wmax, idex ] = max( cau ( 1 :Ny/2 , : ) ) ;

68 %idex2 : x−coord o f g l oba l max ; idex ( idex2 ) : y−coord o f g l oba l

max

69 [max2 , idex2 ] = max(wmax) ;

70 i f (max2>=maxvort )

71 maxvort=max2 ;

72 end

73

74 n r o l l s =0;

75 dw=0;

76 for i = round( sbw∗Nx) : round(Nx∗(1−sbw) )

77 i f ( abs ( cau ( idex ( idex2 ) , i ) ) >= abs ( cau ( idex ( idex2 ) , i −1) ) )

78 dw=1;

79 e l s e i f ( dw==1 && ( abs ( cau ( idex ( idex2 ) , i −1) ) >= 0.8 ) )

80 n r o l l s=n r o l l s +1;

81 dw=−1;

82 else

83 dw=−1;

84 end

85 end

86 a r o l l s = [ a r o l l s n r o l l s ] ;

87 end

88

89 step = step + cs tep ;

90 end

91 ylabel ( ’ $\omegaˆ2$ ’ , ’ Fonts i z e ’ ,20) ;

92 xlabel ( ’ $t$ [ s ] ’ , ’ Font s i z e ’ , 20) ;

93 end

94 %Le id en f r o s t :

95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

96 i f doL==1 && dL( f l d )==1

97 step = l s t a r t ;

98 time ( s tep ) = 0 ;

99 while ( s tep <= length ( l i s t i n g ) )

100

101 l o adg r i d s ;

102

103 %Density : bottom at l i n e 1

104

105 i f (Ny==64)

106 %old o r i e n t a t i o n :

107 curdenp = FILLING FRACTION∗mean( d en s i t y p l ane (round( sbd∗Nx) :
round((1− sbd ) ∗Nx) , : , 1 ) ) ;

108 else

109 curdenp=NaN(1 , 64 ) ;%f l i p f o r o ld o r i e n t a t i o n

110 k=1;

111 for i = 1 :64

112 while (k<i /64∗Ny)
113 k=k+1;

114 end
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115 %old o r i e n t a t i o n :

116 curdenp ( i )=FILLING FRACTION∗mean( d en s i t y p l ane (round( sbd∗Nx
) : round((1− sbd ) ∗Nx) ,k , 1 ) ) ;

117 end

118 end

119

120 denp ( ( step− l s t a r t ) / l s t e p +1 , : ) = curdenp ;

121

122 [ ymax ( ( step− l s t a r t ) / l s t e p +1) , ind ( ( step− l s t a r t ) / l s t e p +1) ] = max(

curdenp ) ;

123

124 step = step + l s t e p ;

125 end

126 end

127 %Quiver image output :

128 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

129 i f doQ==1

130 i f ( ( length ( l i s t i n g ) )>spp ∗25)
131 step = spp ∗25 ;
132 else

133 step = f loor ( ( length ( l i s t i n g )−1)/spp ) ∗ spp ;

134 end

135

136 l o adg r i d s ;

137

138 momentumY plane = dens i t y p l ane ( : , : , 1 ) . ∗ ( momentumY plane . / den s i t y p l ane

( : , : , 1 ) ) + FORCEMULTIPLAYER∗cos (2∗3.14159∗50∗ time ( s tep ) )

/(2∗3 .14159∗50) ;
139

140 f i l eName quiv = sprintf ( ’%2.0 f−%2.0 fq . png ’ , FILLING FRACTION∗100 ,
FORCEMULTIPLAYER) ;

141

142 [ ixqu , iyqu ] = meshgrid ( i x ( 1 :Nx/16 :Nx) , i y ( 1 : round(Ny/11) :Ny) ) ;%32x13

143

144 f igure (1 ) ;

145 set (1 , ’ Color ’ , [ 1 1 1 ] ) ;

146

147 u = interp2 ( ixm , iym , momentumX plane ’ , ixqu , iyqu , ’ s p l i n e ’ ) ;

148 v = interp2 ( ixm , iym , momentumY plane ’ , ixqu , iyqu , ’ s p l i n e ’ ) ;

149

150 colormap ( ’ d e f au l t ’ ) ;

151 cbar = colorbar ( ’ e a s t ’ ) ;

152

153 %u=u/ sq r t (mean(mean(u . ˆ 2 ) ) ) ∗ s q r t (mean(mean(v . ˆ 2 ) ) ) ;

154

155 quiver ( ixqu , iyqu , u , v , 0 . 6 , ’ Color ’ , ’ b lack ’ ) ;

156 t i t l e ( sprintf ( ’ t = %3.2 f s e c ’ , time ( s tep ) ) , ’ FontSize ’ , 20) ;

157 axis equal ;

158 axis o f f ;

159 print ( s t r c a t ( ’ /home/ j t ab e t / p l o t s / autop i c s / ’ , f i l eName quiv ) , ’−dpng ’ )

160 end

161 %count r o l l s :
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162 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

163 i f doNro l l s && dC( f l d )==1

164 i f ( ( length ( l i s t i n g ) )>spp ∗35)%.21

165 step = spp ∗35 ;%+round (0 . 21∗ spp ) ;

166 else

167 step = f loor ( ( length ( l i s t i n g )−1)/spp−0.22)∗ spp+round (0 . 21∗ spp ) ;

168 end

169

170 l o adg r i d s ;

171

172 %Vor t i c i t y : bottom at l i n e 1

173

174 momentumY plane = dens i t y p l ane ( : , : , 1 ) . ∗ ( momentumY plane . / den s i t y p l ane

( : , : , 1 ) ) + FORCEMULTIPLAYER∗cos (2∗3.14159∗50∗ time ( s tep ) )

/(2∗3 .14159∗50) ;
175

176 cau = cu r l (momentumX plane ’ , momentumY plane ’ ) ;

177

178 cau = cau ( 1 :Ny/2 ,round( sbw∗Nx)−1:round(Nx∗(1−sbw) ) ) ;

179 [wmax, idex ] = max( cau ( : , : ) ) ;%idex : y−coord o f max in column

180 [max2 , idex2 ] = max(wmax) ;%idex2 : x−coord o f g l oba l max ; idex ( idex2 ) : y

−coord o f g l oba l max

181 n r o l l s =0;

182 dw=0;

183 r o l l c o o r d s = [ ] ;

184 for i = 2 : length ( cau )

185 i f ( abs ( cau ( idex ( idex2 ) , i ) ) >= abs ( cau ( idex ( idex2 ) , i −1) ) )

186 dw=1;

187 e l s e i f ( dw==1 && ( abs ( cau ( idex ( idex2 ) , i −1) ) >= 0.8 ) )%max2/2 .7

188 n r o l l s=n r o l l s +1;

189 r o l l c o o r d s =[ r o l l c o o r d s i ] ;%x−coords ; y−coord=idex ( idex2 ) ;

190 dw=−1;

191 else

192 dw=−1;

193 end

194 end

195 i f (Nx˜=256)

196 r o l l c o o r d s = r o l l c o o r d s ∗256/Nx ;
197 end

198 r o l l d i f f = d i f f ( r o l l c o o r d s ) ;

199 end

200 %Output :

201 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

202 i f doCR==1 && dC( f l d )==1 && p i c s==1

203 %wsq :

204 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

205 fi leName wsq = sprintf ( ’%02.0 f−%02.0 fwsq . png ’ , FILLING FRACTION∗100 ,
FORCEMULTIPLAYER) ;

206 f igure (5 ) ;

207 per iodend = f ix ( length ( l i s t i n g ) /spp ) ∗ spp ;

208 goback = min ( [ f ix ( ( periodend−c s t a r t ) /spp ) , 4 ] ) ;

209 plot ( time ( periodend−goback∗ spp : per iodend ) , wsq ( periodend−goback∗spp−
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c s t a r t : periodend−c s t a r t ) )

210 %t i t l e ( s p r i n t f ( ’ t = %3.2 f . . .%3 . 2 f sec ’ , f i n a l t ime −0.1 , f i n a l t ime ) , ’

FontSize ’ , 2 0 ) ;

211 set (5 , ’ Color ’ , [ 1 1 1 ] ) ;

212 ylabel ( ’ $\omegaˆ{2}$ [ s$ˆ{−2}$ ] ’ , ’ Fonts i z e ’ , 28) ;

213 xlabel ( ’ $t$ [ s ] ’ , ’ Font s i z e ’ , 28) ;

214 %pr in t ( s t r c a t ( ’ /home/ j t ab e t / p l o t s /wsqpics / ’ , f i leName wsq ) , ’−dpng ’ )

215 set (gca , ’ FontSize ’ , 20)

216 prnt = getframe ( gcf ) ;

217 imwrite ( prnt . cdata , s t r c a t ( ’ /home/ j t ab e t / p l o t s /wsqpics / ’ , f i leName wsq ) )

218 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

219 fi leName gw = sprintf ( ’%02.0 f−%02.0fgw . png ’ , FILLING FRACTION∗100 ,
FORCEMULTIPLAYER) ;

220 f igure (5 ) ;

221 per iodend = f ix ( length ( l i s t i n g ) /spp ) ∗ spp ;

222 goback = min ( [ f ix ( ( periodend−c s t a r t ) /spp ) , 4 ] ) ;

223 plot ( time ( periodend−goback∗ spp : per iodend ) , gw( periodend−goback∗spp−
c s t a r t : periodend−c s t a r t ) )

224 set (5 , ’ Color ’ , [ 1 1 1 ] ) ;

225 ylabel ( ’ $\omegaˆ{2}$ [ s$ˆ{−2}$ ] ’ , ’ Fonts i z e ’ , 28) ;

226 xlabel ( ’ $t$ [ s ] ’ , ’ Font s i z e ’ , 28) ;

227 set (gca , ’ FontSize ’ , 20)

228 prnt = getframe ( gcf ) ;

229 imwrite ( prnt . cdata , s t r c a t ( ’ /home/ j t ab e t / p l o t s /wsqpics / ’ , f i leName gw ) )

230 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

231 f igure (6 ) ;

232 fileName wm = sprintf ( ’%02.0 f−%02.0fwm. png ’ , FILLING FRACTION∗100 ,
FORCEMULTIPLAYER) ;

233 wm = NaN(1 , length (wsq )−spp ) ;

234 for i = 1 : length (wsq )−spp

235 wm( i ) = max(wsq ( i : i+spp ) ) ;

236 end

237 plot ( time ( c s t a r t : c s t ep : ( c s t a r t+(length (wm)−1)∗ c s t ep ) ) , wm )

238 set (6 , ’ Color ’ , [ 1 1 1 ] ) ;

239 ylabel ( ’ $\omegaˆ{2}$ [ s$ˆ{−2}$ ] ’ , ’ Fonts i z e ’ , 28) ;

240 xlabel ( ’ $t$ [ s ] ’ , ’ Font s i z e ’ , 28) ;

241 set (gca , ’ FontSize ’ , 20)

242 prnt = getframe ( gcf ) ;

243 imwrite ( prnt . cdata , s t r c a t ( ’ /home/ j t ab e t / p l o t s /wsqpics / ’ , fileName wm ) )

244 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

245

246 end

247

248 r e su l t ou tpu t ;

249

250 fc lose ( ’ a l l ’ ) ;

251 end

252 timeneeded = toc ;

253 toc

254 %Doublings :

255 for i = 1 : length ( l i s t d a t a )

256 for k = 1 : i
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257 i f i ˜=k && p phi ( i )==p phi ( k ) && p Gamma( i )==p Gamma(k )

258 fpr intf (1 , ’ Doubling at %4.2 f , %2.0 f \ t%.0 f and %.0 f \n ’ , . . .

259 p phi ( i ) , p Gamma( i ) , k , i ) ;

260 end

261 end

262 end

263 %Durations :

264 i f s ize ( f i n a l t v (˜ isnan ( f i n a l t v ) ) )==s ize ( f i n a l t v )

265 f igure (4 ) ;

266 set (4 , ’ Color ’ , [ 1 1 1 ] ) ;

267 hist ( f i n a l t v , 1 5 ) ;

268 f i l eName t = sprintf ( ’ DurationsHistogram . png ’ ) ;

269 print ( s t r c a t ( ’ /home/ j t ab e t / p l o t s / ’ , f i l eName t ) , ’−dpng ’ )

270 end

271

272 %ExpData :

273 i f (strcmp ( folderName , char ( l i s t d a t a (end) ) ) && timeneeded > 50 )

274 analyzeEXP ;

275 end

result output.m:

1 %dens i ty p r o f i l e s :

2 i f doL==1 && dL( f l d )==1

3 ind = ind (˜ isnan ( ind ) ) ;%y l o c a t i o n o f max

4 ymax = ymax(˜ isnan (ymax) ) ;%magnitude o f max

5 i f spp ˜= 0

6 den0avg ( f ld , : ) = mean( denp((1+ f loor ( spp /4) ) : spp : end , : ) ) ;

7 else

8 den0avg ( f ld , : ) = mean( denp ( s t epp i c k e r / l s t ep− l s t a r t +1 , : ) ) ;

9 end

10 i f spp ˜= 0

11 denp = denp ( 1 : f ix ( length ( denp ) /spp ) ∗ spp/ l s t ep , : ) ;

12 ymax = ymax ( 1 : f ix ( length ( denp ) /spp ) ∗ spp/ l s t e p ) ;

13 ymdot = d i f f ( ind ) . / d i f f ( time ( l s t a r t : l s t e p : ( l s t a r t −1+l s t e p ∗ length (

ind ) ) ) ) ;

14 else

15 [ ˜ , f i n a l s t e p ] = min(abs ( time−( f ix ( f i n a l t ime /T) ∗T) ) ) ;

16 denp = denp ( 1 : ( f i n a l s t e p− l s t a r t ) / l s t ep , : ) ;

17 ymax = ymax ( 1 : ( f i n a l s t e p− l s t a r t ) / l s t e p ) ;

18 ymdot = d i f f ( ind ) . / d i f f ( time ( l s t a r t : l s t e p : ( l s t a r t −1+l s t e p ∗ length (

ind ) ) ) ) ;

19 end

20 denavg ( f ld , : ) = mean( denp ) ;

21

22

23 i f spp ˜=0

24 dentemp = zeros ( spp , 6 4 ) ;

25 labdenp = zeros (1 , 64 ) ;

26 labdenpex = zeros (1 , 64 ) ;

27 dentempex = zeros ( spp , 6 4 ) ;

28 amp = round(FORCEMULTIPLAYER/1 . 8∗0 . 785 ) ;
29 for i = 1 : spp
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30 dentemppre = [ zeros (1 , 50 ) mean( denp ( i : spp : end , : ) ) zeros (1 , 50 ) ] ;

31 for k = 2:64

32 dentemp ( i , k ) = dentemppre (k+50+amp−round(amp∗ sin (2∗pi∗ i / spp

) ) ) ;

33 dentempex ( i , k ) = dentemppre (k+1+50+amp−round(amp∗ sin (2∗pi∗ i

/ spp ) ) ) ;

34 end

35 dentemp ( i , 1 ) = dentemppre(1+50+amp−round(amp∗ sin (2∗pi∗ i / spp ) ) ) ;

36 dentempex ( i , 1 ) = sum( dentemppre (1:1+50+amp−round(amp∗ sin (2∗pi∗ i

/ spp ) ) ) ) ;

37

38 labdenp = labdenp + dentemp ( i , : ) ;

39 labdenpex = labdenpex + dentemp ( i , : ) ;

40 end

41 labdenp = labdenp/max( labdenp ) ;

42 den0avg ( f ld , : ) = labdenp ;

43 end

44

45 %c l a s s i f i e r s

46 pofx = NaN(1 , ce i l (max(ymdot ) )−f loor (min(ymdot ) )+1) ;

47 for i = 1 : length ( pofx )

48 pofx ( i ) = length (ymdot ( (ymdot>i−1+f loor (min(ymdot ) ) ) & (ymdot<i+

f loor (min(ymdot ) ) ) ) ) ;

49 end

50 l mom3 = −sum ( ( [ f loor (min(ymdot ) ) : ce i l (max(ymdot ) ) ] . ˆ 3 ) .∗ pofx / length (

ymdot ) ) /var (ymdot ) ;%−3rd moment

51 %2

52 l 1 p e r s i s t e n c e = length ( ind ( ind==1)) / length ( ind ) ;%BB f o r sure > 0 .05

maybe 0 .01

53 %3

54 l 1prominence = denavg ( f ld , 1 ) /max( denavg ( f ld , : ) ) ;%BB > 0 .5

55 l hov e r = max( denavg ( f ld , : ) ) /denavg ( f ld , 1 ) ;

56 %4

57 l l o c o un t e r = length (ymdot (ymdot<−7000) ) / length (ymdot ) ;%BB >0.04

58 %5

59 l l o c o 2 = length (ymdot (ymdot<−1.2∗max(ymdot ) ) ) / length (ymdot ) ;%BB > 0 .1?

60 %6

61 l l o s q u a r e r = sum( ( ymdot (ymdot<−max(ymdot ) ) /max(ymdot ) ) . ˆ 2 ) / length (

ymdot ) ;

62 %7

63 l l omeaner = max(−mean(ymdot (ymdot<−max(ymdot ) ) ) /max(ymdot ) ,0 ) ;

64 %8

65 [ ˜ , locofmax ]=max( denavg ( f ld , : ) ) ;

66 %9

67 l belowmax = length ( ind ( ind<locofmax ) ) / length ( ind ) ;

68 %10 11

69 i f locofmax <= 3 %complete BB

70 l botprom = 1 ;

71 l botprom2 = 1 ;

72 l topprom = 0 ;

73 e l s e i f l belowmax <= 0.05 %complete Leid

74 l botprom = 0 ;
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75 l botprom2 = 0 ;

76 l topprom = 1 ;

77 else

78 tymax = NaN(1 , s ize ( denp , 1 ) ) ;

79 t ind = NaN(1 , s ize ( denp , 1 ) ) ;

80 bymax = NaN(1 , s ize ( denp , 1 ) ) ;

81 bind = NaN(1 , s ize ( denp , 1 ) ) ;

82 for i = 1 : s ize ( denp , 1 )

83 [ tymax ( i ) , t ind ( i ) ] = max( denp ( i , locofmax : 6 4 ) ) ;

84 [ bymax( i ) , bind ( i ) ] = max( denp ( i , 1 : locofmax ) ) ;

85 end

86 l botprom = mean(bymax( t ind˜=bind ) . / ( tymax ( t ind˜=bind )+bymax( t ind˜=

bind ) ) ) ;

87 l botprom2 = mean(bymax( t ind˜=bind ) ) /(mean( tymax ( t ind˜=bind ) )+mean(

bymax( t ind˜=bind ) ) ) ;

88 l topprom = mean( tymax ( t ind˜=bind ) . / ( tymax ( t ind˜=bind )+bymax( t ind˜=

bind ) ) ) ;

89 end

90

91 end

92 %Output :

93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

94 cd ( ’ /home/ j t ab e t / p l o t s / au toana l y s i s / ’ ) ;

95 i f doL+doCR>=1

96 [ ixnew , iynew ] = meshgrid ( 1 : 0 . 2 5 :Nx , 1 : 0 . 2 5 :Ny) ;

97 end

98

99 %%%%%%% main output

100 i f doL==1 && dL( f l d )==1

101 i f doCR==0 | | dC( f l d )==0

102 mean wsq=−1;

103 mean gw=−1;

104 else

105 mean wsq=mean(wsq ) ;

106 mean gw=mean(gw) ;

107 end

108

109 %F phi ; Gamma; l e i d f a c t o r s . . . .

110 l f F i l e = fopen ( ’ l e i d . dat ’ , ’ a ’ ) ;% 1 2 3 4 5 6

7 8 9 10 11 wsq gw

111 fpr intf ( l f F i l e , ’%4.2 f \ t%3.2 f \ t%2.0 f \ t%6.0 f \ t%.3 f \ t%.3 f \ t%.3 f \ t%.3 f \ t
%4.3 f \ t%4.3 f \ t%.0 f \ t%.3 f \ t%.3 f \ t%.3 f \ t%.3 f \ t%5f \n ’ , . . .

112 F,FILLING FRACTION,FORCEMULTIPLAYER, l mom3 , l 1 p e r s i s t e n c e ,

l 1prominence , l l o c oun t e r , l l o c o 2 , l l o s qu a r e r , . . .

113 l lomeaner , locofmax , l belowmax , l botprom , l botprom2 , mean wsq ,

mean gw) ;

114 fc lose ( l f F i l e ) ;

115 dens i ty = interp2 ( ixm , iym , den s i t y p l ane ( : , : , 1 ) ’ , ixnew , iynew , ’ s p l i n e ’ ) ;

116 end

117 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

118

119 %%%%%%% cr output
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120 i f doCR==1 && dC( f l d )==1

121 i f ( f i n a l t ime<=cs t a r t i n g t ime )

122 n r o l l s = −1;

123 end

124 i f mean(wsq ) >= 0.0055

125 c1 = 1 ;

126 else

127 c1 = 0 ;

128 end

129 i f doCount==0

130 maxvort = 0 ;

131 end

132 %F phi Gamma S mean(wsq ) var (wsq ) wmaxˆ2 n r o l l s r o l l d i f f f i n a l t im e

133 c rF i l e = fopen ( ’ c r . dat ’ , ’ a ’ ) ;%Gamma S MWsqVWsqMaxW 1 #rl@6

r o l d i f i n a l t

134 fpr intf ( c rF i l e , ’%4.2 f \ t%3.2 f \ t%2.0 f \ t%4.1 f \ t%f \ t%f \ t%.2 f \ t%1.0 f \ t%.0 f \ t
%.2 f \ t%.3 f \n ’ ,F ,FILLING FRACTION,FORCEMULTIPLAYER, S , . . .

135 mean(wsq (˜ isnan (wsq ) ) ) , var (wsq (˜ isnan (wsq ) ) ) ,maxvort∗maxvort , c1 ,

n r o l l s ,max(mean( r o l l d i f f ) , 0 ) , f i n a l t ime ) ;

136 fc lose ( c r F i l e ) ;

137 %phi Gamma #r o l l s (#T) . . .

138 i f doCount==1

139 a rF i l e = fopen ( ’ cr−a r o l l s . dat ’ , ’ a ’ ) ;

140 fpr intf ( a rF i l e , ’ \n%.2 f \ t%2.0 f ’ ,FILLING FRACTION,FORCEMULTIPLAYER) ;

141 fpr intf ( a rF i l e , ’ \ t%.0 f ’ , a r o l l s ) ;

142 fc lose ( a rF i l e ) ;

143 end

144 end

145

146 %%%%%%% PD output

147 i f doCR==1 && doL==1

148 i f ( f i n a l t ime<=cs t a r t i n g t ime )

149 n r o l l s = −1;

150 end

151 i f dC( f l d )==0

152 n r o l l s = −1;

153 end

154 i f dL( f l d )==0

155 l hov e r = −1;

156 l topprom = −1;

157 locofmax = −1;

158 end

159 c rF i l e = fopen ( ’ pd . dat ’ , ’ a ’ ) ;%Gamma hov top l o c n r o l l s

160 fpr intf ( c rF i l e , ’%4.2 f \ t%3.2 f \ t%2.0 f \ t%.3 f \ t%.3 f \ t%.0 f \ t%.0 f \n ’ ,F ,

FILLING FRACTION,FORCEMULTIPLAYER, . . .

161 l hover , l topprom , locofmax , n r o l l s ) ;

162 fc lose ( c r F i l e ) ;

163 end

164

165

166 %%%%%%% image output

167 cd ( ’ /home/ j t ab e t / p l o t s / autop i c s / ’ ) ;
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168 i f doCR==1 && dC( f l d )==1 && p i c s==1

169 cau = DX∗LENGTH MULTIPLIER∗ cu r l (momentumX plane ’ , momentumY plane ’ ) ;

170 cau = interp2 ( ixm , iym , cau , ixnew , iynew , ’ s p l i n e ’ ) ;

171 f i l eName vor t = sprintf ( ’%02.0 f−%02.0fw . png ’ , FILLING FRACTION∗100 ,
FORCEMULTIPLAYER) ;

172 imwrite ( ( flipud ( cau )−min(min( cau ) ) ) /max(max( ( flipud ( cau )−min(min( cau ) ) )

) ) ∗64 , def , f i l eName vor t ) ;

173 end

174 i f doL==1 && dL( f l d )==1 && p i c s==1

175 %Density :

176 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

177 f i l eName dens = sprintf ( ’%02.0 f−%02.0 f r . png ’ , FILLING FRACTION∗100 ,
FORCEMULTIPLAYER) ;

178 imwrite ( flipud ( dens i ty ) /max(max( dens i ty ) ) ∗64 , invbone , f i l eName dens ) ;%

make l i k e r e s t

179 %avgp r o f i l e :

180 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

181 f igure (7 ) ;

182 f i l eName pro = sprintf ( ’%02.0 f−%02.0 fp . png ’ , FILLING FRACTION∗100 ,
FORCEMULTIPLAYER) ;

183 plot ( denavg ( f ld , : ) , ’ Color ’ , [ 0 . 1 0 . 4 0 . 8 ] , ’ LineWidth ’ , 2 )

184 view(90 ,−90)

185 axis ( [ 1 64 0 1 .1∗max( denavg ( f ld , : ) ) −1 1 ] )

186 xlabel ( ’ $y$ [ $L \Delta y$ ] ’ , ’ Fonts i z e ’ , 28) ;

187 ylabel ( ’ $\ rho$ ’ , ’ Fonts i z e ’ ,28) ;

188 set (7 , ’ Color ’ , [ 1 1 1 ] ) ;

189 set (gca , ’ FontSize ’ , 20)

190 prnt = getframe ( gcf ) ;

191 imwrite ( prnt . cdata , s t r c a t ( ’ /home/ j t ab e t / p l o t s / l e i d p i c s / ’ , f i l eName pro )

)

192 %0 av gp r o f i l e :

193 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

194 f igure (9 ) ;

195 f i l eName 0pro = sprintf ( ’%02.0 f−%02.0 fp0 . png ’ , FILLING FRACTION∗100 ,
FORCEMULTIPLAYER) ;

196 plot ( labdenp ( 1 : 3 2 ) , ’ Color ’ , [ 0 0 0 ] , ’ LineWidth ’ , 2 )

197 axis ( [ 1 32 0 1 . 0 5 ] )

198 xlabel ( ’ he ight $y$ [ $L \Delta y$ ] ’ , ’ Fonts i z e ’ , 28) ;

199 ylabel ( ’ dens i ty $\ rho$ ’ , ’ Fonts i z e ’ ,28) ;

200 set (gca , ’ FontSize ’ , 20)

201 set (9 , ’ Color ’ , [ 1 1 1 ] ) ;

202 prnt = getframe ( gcf ) ;

203 imwrite ( prnt . cdata , s t r c a t ( ’ /home/ j t ab e t / p l o t s / l e i d p i c s / ’ , f i l eName 0pro

) )

204 %0 avg exp r o f i l e :

205 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

206 f igure (10) ;

207 f i l eName 0proex = sprintf ( ’%02.0 f−%02.0 fp0ex . png ’ , FILLING FRACTION

∗100 , FORCEMULTIPLAYER) ;

208 plot ( labdenpex ( : ) , ’ Color ’ , [ 0 . 1 0 . 4 0 . 8 ] , ’ LineWidth ’ , 2 )

209 view(90 ,−90)

210 axis ( [ 1 64 0 1 .2∗max( den0avg ( f ld , : ) ) −1 1 ] )
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211 xlabel ( ’ $y$ [ $L \Delta y$ ] ’ , ’ Fonts i z e ’ , 28) ;

212 ylabel ( ’ $\ rho$ ’ , ’ Fonts i z e ’ ,28) ;

213 set (gca , ’ FontSize ’ , 20)

214 set (10 , ’ Color ’ , [ 1 1 1 ] ) ;

215 prnt = getframe ( gcf ) ;

216 imwrite ( prnt . cdata , s t r c a t ( ’ /home/ j t ab e t / p l o t s / l e i d p i c s / ’ ,

f i l eName 0proex ) )

217 %denp ( t ) :

218 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

219 f i l eName l e i d = sprintf ( ’%02.0 f−%02.0 f l . png ’ , FILLING FRACTION∗100 ,
FORCEMULTIPLAYER) ;

220 f igure (2 ) ;

221 i f spp == 0

222 [ ˜ , enddenp ] = min(abs ( time−( l s t a r t i n g t ime + 5 ∗ T) ) ) ;

223 spp = ( enddenp − l s t a r t ) /5 ;

224 end

225 i f length ( l i s t i n g )>=l s t a r t +5∗spp
226 imagesc ( time ( [ l s t a r t l s t a r t −1+l s t e p ∗(round(5∗ spp ) ) ] ) , [ 1 64 ] ,

flipud ( denp ( 1 : ( round(5∗ spp ) ) , : ) ’ ) )

227 else

228 imagesc ( time ( [ l s t a r t l s t a r t −1+l s t e p ∗( f ix ( ( length ( l i s t i n g )− l s t a r t )

/spp ) ∗round( spp ) ) ] ) , [ 1 64 ] , flipud ( denp ( 1 : ( f ix ( ( length (

l i s t i n g )− l s t a r t ) /spp ) ∗round( spp ) ) , : ) ’ ) )

229 end

230 set (2 , ’ Color ’ , [ 1 1 1 ] ) ;

231 set (gca , ’ FontSize ’ , 20)

232 ylabel ( ’ $y$ [ $L \Delta y$ ] ’ , ’ Fonts i z e ’ , 28) ;

233 xlabel ( ’ $t$ [ s ] ’ , ’ Font s i z e ’ , 28) ;

234 prnt = getframe ( gcf ) ;

235 imwrite ( prnt . cdata , s t r c a t ( ’ /home/ j t ab e t / p l o t s / l e i d p i c s / ’ , f i l eName l e i d

) )

236 %Histogram :

237 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

238 f i l eName j = sprintf ( ’%02.0 f−%02.0 f l j . png ’ , FILLING FRACTION∗100 ,
FORCEMULTIPLAYER) ;

239 f igure (3 ) ;

240 [ h is , cen ] = hist (ymdot , 3 0 ) ;

241 bar ( cen , h i s /trapz ( cen , h i s ) )

242 set (3 , ’ Color ’ , [ 1 1 1 ] ) ;

243 ylabel ( ’ count ’ , ’ Fonts i z e ’ , 28) ;

244 xlabel ( ’ $v {max}$ [ $\ sigma / $s ] ’ , ’ Font s i z e ’ , 28) ;

245 set (gca , ’ FontSize ’ , 20)

246 print ( s t r c a t ( ’ /home/ j t ab e t / p l o t s / l e i d p i c s / ’ , f i l eName j ) , ’−dpng ’ )

247

248 end

249 cd ( ’ /home/ j t ab e t / p l o t s / ’ ) ;

initialization.m:

1 MAXIMALPACKING = 0 . 9069 ;

2

3 bonecm = colormap ( ’ bone ’ ) ;

4 invbone = flipud ( bonecm) ;
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5 de f = colormap ( ’ j e t ’ ) ;

6

7 F = FILLING FRACTION ∗ LENGTH MULTIPLIER ∗ (N Y−8) ∗ DY / MAXIMALPACKING;

8 Gamma = FORCEMULTIPLAYER;

9 S = FORCEMULTIPLAYER ∗ FORCEMULTIPLAYER ∗ 9 .81/(4 ∗ PIˆ2 ∗
DIAMETER PARTICLE ∗ SHACKING FREQUENZ Yˆ2) ;

10 T = 1/SHACKING FREQUENZ Y;

11

12 fpr intf (1 , ’%4.2 f , %2.0 f \ tda ta s e t %2.0 f /%2.0 f \ t ’ , FILLING FRACTION, Gamma,

f ld , length ( l i s t d a t a ) ) ;

13

14 l i s t i n g = dir ( s t r c a t ( ( folderName ) , ’ / d en s i t y t ∗ . dat ’ ) ) ;
15 l i s t ingName = [{ l i s t i n g ( : ) . name} ;{ l i s t i n g ( : ) . date } ] ;
16 [ d1 , d2 ] = sort ( datenum( l i s t ingName ( 2 , : ) ’ ) ) ;

17 l i s t i n g = l i s t ingName ( : , d2 ) ;

18

19 t t = NaN(11 ,1 ) ;

20 t t (1 ) = 0 ;

21 schr = 1 ;

22

23 foo = char ( l i s t i n g (1 , 1 ) ) ;

24 strnum = ( foo ( s t r f i n d ( foo , ’ t ’ )+2 : 1 : s t r f i n d ( foo , ’ . dat ’ )−1) ) ;

25 t i = eval ( strnum ) ∗TREF;

26 i f ( t i ˜=0)

27 l i s t i n g = [ [ c e l l s t r ( ’ d en s i t y t 0 .0000000 e+00. dat ’ ) ; c e l l s t r ( ’01−Aug−2015

00 : 00 : 10 ’ ) ] l i s t i n g ] ;

28 t i = 0 ;

29 end

30

31 for loopn = 1:10

32 while ( t i < loopn ∗ 0 .02 && schr<=length ( l i s t i n g ) )

33 foo = char ( l i s t i n g (1 , schr ) ) ;

34 strnum = ( foo ( s t r f i n d ( foo , ’ t ’ )+2 : 1 : s t r f i n d ( foo , ’ . dat ’ )

−1) ) ;

35 t i = eval ( strnum ) ∗TREF;%r e a l time

36 schr = schr + 1 ;

37 end

38 t t ( loopn+1) = schr − 2 ; %s t ep s ( schr ) in cur rent ( loopn+1) per iod

39 end

40 spp = round(sum( t t ) /55) ;%s t ep s per per iod

41 d i f f v e c = d i f f ( t t ) ;

42 accuracy = 0 ;

43 for loopn = 1:10

44 i f abs ( d i f f v e c ( loopn )−spp ) < 2

45 accuracy = accuracy + 0 . 1 ;

46 end

47 end

48

49 f i n a l s t r i n g = char ( l i s t i n g (1 , length ( l i s t i n g ) ) ) ;

50 f ina l s t rnum = ( f i n a l s t r i n g ( s t r f i n d ( f i n a l s t r i n g , ’ t ’ )+2 : 1 : s t r f i n d (

f i n a l s t r i n g , ’ . dat ’ )−1) ) ;

51 f i n a l t ime = eval ( f i na l s t rnum ) ∗TREF;
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52 f i n a l t v ( f l d ) = f i n a l t ime ;

53

54

55 p phi ( f l d ) = FILLING FRACTION;

56 p Gamma( f l d ) = Gamma;

57 p Data ( f l d ) = f i n a l t ime ;

58

59 i f ( ( sum( d i f f v e c ( 1 : 5 ) ) <= sum( d i f f v e c ( 6 :end) ) && abs ( accuracy−1)>=0.01 &&

d i f f v e c (1 ) ˜= d i f f v e c (end) ) | | spp < 8 )

60 fpr intf (1 , ’ exp−−−−−\tt max = %3.2 f \n ’ , f i n a l t ime ) ;

61 p cspp ( f l d ) = 0 ;

62 exF i l e = fopen ( ’ /home/ j t ab e t / p l o t s / au toana l y s i s / exponent ia l−data . dat ’ , ’

a ’ ) ;

63 fpr intf ( exFi l e , ’%s \n ’ , folderName ) ;

64 fc lose ( exF i l e ) ;

65 cont inue

66 else

67 p cspp ( f l d ) = 1 ;

68 end

69

70 fpr intf (1 , ’ spp = %.0 f \ t ’ , spp ) ;

71

72 i f ( f i n a l t ime >= cuto f f t ime +0.2/ spp )

73 step = ce i l ( cu t o f f t ime / f i n a l t ime ∗ length ( l i s t i n g )−spp ) ;

74 cu r t = 0 ;

75 while ( cu r t < cu to f f t ime +0.2/ spp )

76 step = step + 1 ;

77 foo = char ( l i s t i n g (1 , s tep ) ) ;

78 strnum = ( foo ( s t r f i n d ( foo , ’ t ’ )+2 : 1 : s t r f i n d ( foo , ’ . dat ’ )−1) ) ;

79 cu r t = eval ( strnum ) ∗TREF;

80 end

81 l i s t i n g = l i s t i n g ( : , 1 : step −1) ;

82 end

83

84 time = NaN(1 , length ( l i s t i n g ) ) ;

85 avgEnergyPerPart ic le = NaN(1 , length ( l i s t i n g ) ) ;

86 avgKinEnergyPerPart ic le = NaN(1 , length ( l i s t i n g ) ) ;

87 minDensity = NaN(1 , length ( l i s t i n g ) ) ;

88 avgDensity = NaN(1 , length ( l i s t i n g ) ) ;

89 maxDensity = NaN(1 , length ( l i s t i n g ) ) ;

90 maxTemperature = NaN(1 , length ( l i s t i n g ) ) ;

91 avgTemperature = NaN(1 , length ( l i s t i n g ) ) ;

92 minTemperature = NaN(1 , length ( l i s t i n g ) ) ;

93 energy = NaN(1 , length ( l i s t i n g ) ) ;

94

95 rounds=1;

96 maxvort=0;

97 i f spp == 10

98 coun t r o l l t ime r = 2 ;

99 end

100 i f spp == 12

101 coun t r o l l t ime r = 2 ;
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102 end

103 i f spp == 22

104 coun t r o l l t ime r = 5 ;

105 end

106 i f spp == 30

107 coun t r o l l t ime r = 7 ;

108 end

109

110 Nx = N X−8;

111 Ny = N Y−8;

112 ix = 1 : 1 :Nx ;

113 iy = 1 : 1 :Ny ;

114 %%%%

115 c s t a r t = round(1 + c s t a r t i n g t ime ∗50∗ spp ) ;

116 l s t a r t = round(1 + l s t a r t i n g t ime ∗50∗ spp ) ;

117 i f c s t ep==0

118 cs tep=spp ;

119 end

120 i f l s t e p==0

121 l s t e p=spp ;

122 end

123 i f doCount == 1

124 a r o l l s = [ ] ;

125 end

126 wsq = [ ] ;

127 gw= [ ] ;

128 ymax = NaN(1 , length ( l i s t i n g )− l s t a r t ) ;

129 ind = NaN( 1 , ( length ( l i s t i n g )− l s t a r t ) / l s t e p ) ;

130 [ ixm , iym ] = meshgrid ( ix , i y ) ;

131 denp = NaN( ( length ( l i s t i n g )− l s t a r t ) / l s t ep , 6 4 ) ;

132

133 i f min ( [ c s t ep l s t e p ] )==1

134 step = 1 ;

135 while ( s tep <= length ( l i s t i n g ) )

136 foo = char ( l i s t i n g (1 , s tep ) ) ;

137 strnum = ( foo ( s t r f i n d ( foo , ’ t ’ )+2 : 1 : s t r f i n d ( foo , ’ . dat ’ )−1) ) ;

138 time ( s tep ) = eval ( strnum ) ∗TREF;

139 step = step + 1 ;

140 end

141 end

142

143 i f (min ( [ c s t a r t l s t a r t ] ) +3∗spp > length ( l i s t i n g ) )

144 fpr intf (1 , ’ t max = %.2 f NOT ENOUGH DATA\n ’ , f i n a l t ime ) ;

145 i n s F i l e = fopen ( ’ /home/ j t ab e t / p l o t s / au toana l y s i s / i n s u f f i c i e n t −data . dat ’

, ’ a ’ ) ;

146 fpr intf ( i n sF i l e , ’%s \n ’ , folderName ) ;

147 fc lose ( i n s F i l e ) ;

148 cont inue

149 else

150 fpr intf (1 , ’ t max = %.2 f , %4.0 f s t ep s \n ’ , f i na l t ime , length ( l i s t i n g ) ) ;

151 end

152
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153 i f f i n a l t ime<l s t a r t i n g t ime+3∗T
154 dL( f l d )=0;

155 end

156 i f f i n a l t ime<c s t a r t i n g t ime+3∗T
157 dC( f l d )=0;

158 end

loadgrids.m:

1 foo = char ( l i s t i n g (1 , s tep ) ) ;

2 strnum = ( foo ( s t r f i n d ( foo , ’ t ’ )+2 : 1 : s t r f i n d ( foo , ’ . dat ’ )−1) ) ;

3

4 f i l eName dens i ty = sprintf ( ’%s / d en s i t y t%s . dat ’ , folderName , strnum ) ;

5 f i l eName dens i tyEnergy = sprintf ( ’%s / dens i tyEnergy t%s . dat ’ , folderName ,

strnum ) ;

6 fileName momentumX = sprintf ( ’%s /momentumX t%s . dat ’ , folderName , strnum ) ;

7 fileName momentumY = sprintf ( ’%s /momentumY t%s . dat ’ , folderName , strnum ) ;

8 fileName momentumZ = sprintf ( ’%s /momentumZ t%s . dat ’ , folderName , strnum ) ;

9

10 f h d en s i t y = fopen ( f i l eName dens i ty , ’ rb ’ ) ;

11

12 i f ( f h d en s i t y==−1)

13 cont inue ;

14 end

15

16 fh dens i tyEnergy = fopen ( f i l eName dens i tyEnergy , ’ rb ’ ) ;

17 i f ( fh dens i tyEnergy == −1)

18 fc lose ( f h d en s i t y ) ;

19 cont inue ;

20 end

21

22 fh momentumX = fopen ( fileName momentumX , ’ rb ’ ) ;

23 i f ( fh momentumX == −1)

24 fc lose ( f h d en s i t y ) ;

25 fc lose ( fh dens i tyEnergy ) ;

26 cont inue ;

27 end

28

29 fh momentumY = fopen ( fileName momentumY , ’ rb ’ ) ;

30 i f ( fh momentumY == −1)

31 fc lose ( f h d en s i t y ) ;

32 fc lose ( fh dens i tyEnergy ) ;

33 fc lose ( fh momentumX) ;

34 cont inue ;

35 end

36

37 fh momentumZ = fopen ( fileName momentumZ , ’ rb ’ ) ;

38

39 i f ( fh momentumZ == −1)

40 fc lose ( f h d en s i t y ) ;

41 fc lose ( fh dens i tyEnergy ) ;

42 fc lose ( fh momentumX) ;

43 fc lose ( fh momentumY) ;
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44 cont inue ;

45 end

46

47 i f ( isnan ( time ( s tep ) ) | | time ( s tep )==0)

48 time ( s tep ) = eval ( strnum ) ∗TREF;

49 end

50

51 a ry den s i t y = fread ( f h dens i t y , N X ∗ N Y ∗ N Z , FLOATTYPE) ;

52 fc lose ( f h d en s i t y ) ;

53

54 ary momentumX = fread ( fh momentumX , N X ∗ N Y ∗ N Z , FLOATTYPE) ;

55 fc lose ( fh momentumX) ;

56

57 ary momentumY = fread ( fh momentumY , N X ∗ N Y ∗ N Z , FLOATTYPE) ;

58 fc lose ( fh momentumY) ;

59

60 ary momentumZ = fread ( fh momentumZ , N X ∗ N Y ∗ N Z , FLOATTYPE) ;

61 fc lose ( fh momentumZ) ;

62

63 ary dens i tyEnergy = fread ( fh dens i tyEnergy , N X ∗ N Y ∗ N Z , FLOATTYPE) ;

64 fc lose ( fh dens i tyEnergy ) ;

65

66 a r y v e l o c i t y 2 = (ary momentumX .∗ ary momentumX + ary momentumY .∗
ary momentumY + ary momentumZ .∗ ary momentumZ) . / ( a ry den s i t y .∗
a ry den s i t y ) ;

67

68 ary Temperature = 1.0/DIMENSION∗ ( 2 . 0 ∗ ary dens i tyEnergy . / a ry den s i t y −
a r y v e l o c i t y 2 ) ;

69

70 i f ( length ( a ry den s i t y ) ˜= ( length (ary momentumX) + length (ary momentumY) +

length ( ary momentumZ) + length ( ary dens i tyEnergy ) ) /4 ) ;

71 cont inue ;

72 end

73

74 i f (˜ isempty ( ary Temperature ( isnan ( ary Temperature ( : ) ) ) ) )

75 cont inue ;

76 end

77

78 energy ( s tep ) = mean( ary dens i tyEnergy . / a ry den s i t y ) ;%not used

79 %

80 p r e s su r e p l an e = NaN(N X,N Y) ;

81

82 den s i t y p l ane = reshape ( a ry dens i ty , [ N X,N Y,N Z ] ) ;

83

84 momentumX plane = reshape (ary momentumX , [ N X,N Y,N Z ] ) ;

85

86 ve lX plane = momentumX plane . / den s i t y p l ane ;

87

88 momentumY plane = reshape (ary momentumY , [ N X,N Y,N Z ] ) ;

89

90 ve lY plane = momentumY plane . / den s i t y p l ane ;

91
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92 momentumZ plane = reshape ( ary momentumZ , [ N X,N Y,N Z ] ) ;

93

94 ve lZ p lane = momentumZ plane . / den s i t y p l ane ;

95

96 dens i tyEnergy p lane = reshape ( ary dens i tyEnergy , [ N X,N Y,N Z ] ) ;

97

98 temperature p lane = reshape ( ary Temperature , [ N X,N Y,N Z ] ) ;

99 %

100 den s i t y p l ane = den s i t y p l ane ( 5 : 1 :N X−4 ,5 :1 :N Y−4 ,1) ;%bottom at l i n e 1

101

102 momentumX plane = momentumX plane ( 5 : 1 :N X−4 ,5 :1 :N Y−4 ,1) ;

103 ve lX plane = ve lX plane ( 5 : 1 :N X−4 ,5 :1 :N Y−4 ,1) ;

104 globMomX = mean(momentumX plane ( : ) ) ;

105

106 momentumY plane = momentumY plane ( 5 : 1 :N X−4 ,5 :1 :N Y−4 ,1) ;

107 ve lY plane = ve lY plane ( 5 : 1 :N X−4 ,5 :1 :N Y−4 ,1) ;

108 globMomY = mean(momentumY plane ( : ) ) ;

109

110 momentumZ plane = momentumZ plane ( 5 : 1 :N X−4 ,5 :1 :N Y−4 ,1) ;

111 globMomZ = mean(momentumZ plane ( : ) ) ;

112

113 dens i tyEnergy p lane = dens i tyEnergy p lane ( 5 : 1 :N X−4 ,5 :1 :N Y−4 ,1) ;

114

115 temperature p lane = temperature p lane ( 5 : 1 :N X−4 ,5 :1 :N Y−4 ,1) ;

116 %

117 avgEnergyPerPart ic le ( s tep ) = mean( dens i tyEnergy p lane ( : ) . / d en s i t y p l ane ( : )

) ;

118 avgKinEnergyPerPart ic le ( s tep ) = mean( ( 2 . 0∗ dens i tyEnergy p lane ( : ) . /

d en s i t y p l ane ( : ) ) − DIMENSION ∗ temperature p lane ( : ) ) ;

119 minDensity ( s tep ) = min( d en s i t y p l ane ( : ) ) ;

120 avgDensity ( s tep ) = mean( d en s i t y p l ane ( : ) ) ;

121 maxDensity ( s tep ) = max( d en s i t y p l ane ( : ) ) ;

122 maxTemperature ( s tep ) = max( temperature p lane ( : ) ) ;

123 avgTemperature ( s tep ) = mean( temperature p lane ( : ) ) ;

124 minTemperature ( s tep ) = min( temperature p lane ( : ) ) ;

dataallocator.m:

1 addpath ( ’ /home/ j t ab e t / p l o t s /mfunct ions ’ ) ;

2 mas t e r f o ld e r = ’ / s c ra t ch . l o c a l /data/ j o s cha t abe t /ClusterData / ’ ;

3 cd ( mas t e r f o ld e r ) ;

4 a=subdi r ;

5 b= [ ] ;

6 l i s t d a t a = [ ] ;

7 for i = 1 : length ( a )

8 c=char ( a ( i ) ) ;

9 c=c ( 4 6 :end) ;

10 i f ( c (1 )==’M’ )

11 b = [ b s t r c a t ( maste r fo lde r , ( c e l l s t r ( c ) ) ) ] ;

12 end

13 end

14

15 for i = 1 : length (b)
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16 subd=subd i r ( char (b( i ) ) ) ;

17 for k = 1 : length ( subd )

18 subsub=char ( subd (k ) ) ;

19 subsub=subsub ( 52 :end) ;

20 l i s t d a t a =[ l i s t d a t a s t r c a t (b( i ) , ’ / ’ , subsub ) ] ;

21 end

22 end

23

24 f i n a l t v = NaN(1 , length ( l i s t d a t a ) ) ;

25

26 cd ( ’ /home/ j t ab e t / p l o t s / ’ ) ;

27

28 p phi = NaN(1 , length ( l i s t d a t a ) ) ;

29 p Gamma = NaN(1 , length ( l i s t d a t a ) ) ;

30 P Data = NaN(1 , length ( l i s t d a t a ) ) ;

31

32 dC = ones (1 , length ( l i s t d a t a ) ) ;

33 dL = ones (1 , length ( l i s t d a t a ) ) ;

34

35 denavg = NaN( length ( l i s t d a t a ) ,64) ;

36 den0avg = NaN( length ( l i s t d a t a ) ,64) ;

37

38 set (0 , ’ d e f a u l t t e x t i n t e r p r e t e r ’ , ’ l a t e x ’ )
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