日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks

MPS-Authors

Valero,  Julian
Max Planck Fellow Chemical Biology, Center of Advanced European Studies and Research (caesar), Max Planck Society;

/persons/resource/persons182727

Famulok,  Michael
Max Planck Fellow Chemical Biology, Center of Advanced European Studies and Research (caesar), Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

emss-76455.pdf
(出版社版), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Valero, J., Pal, N., Dhakal, S., Walter, N. G., & Famulok, M. (2018). A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks. Nature Nanotechnology, 13(6), 496-503. doi:10.1038/s41565-018-0109-z.


引用: https://hdl.handle.net/21.11116/0000-0003-53B6-2
要旨
Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.