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Abstract. We investigate the macroscopic dynamics of gels with tetrahedral/octupolar symmetry, which
possess in addition a spontaneous permanent magnetization. We derive the corresponding static and dy-
namic macroscopic equations for a phase, where the magnetization is parallel to one of the improper
fourfold tetrahedral symmetry axes. Apart from elastic strains, we take into account relative rotations
between the magnetization and the elastic network. The influence of tetrahedral order on these degrees of
freedom is investigated and some experiments are proposed that are specific for such a material and allow
to indirectly detect tetrahedral order. We also consider the case of a transient network and predict that
stationary elastic shear stresses arise when a temperature gradient is applied.

1 Introduction

Ferrofluids are a well-established subfield of complex flu-
ids [1,2] showing a strong response to small external mag-
netic fields since they contain magnetic monodomain par-
ticles in a solvent. They have numerous applications in-
cluding seals, dampers, loud speakers etc. They are strictly
speaking super-paramagnetic and have no spontaneous
magnetization in contrast to, for example, ferromagnetic
solids. Their description on many length and time scales
is well established [3-8]. Truly ferromagnetic fluids have
not yet been reported for room temperature and ambient
conditions.

More recently isotropic magnetic gels have been in-
vestigated for a number of polymeric systems containing
magnetic particles and combining the properties of a fer-
rofluid with those of a polymeric gel [9-13]. Also their
macroscopic and mesoscopic properties have been ana-
lyzed in some detail [14-16]. Synthesizing ferrogels in the
presence of an external magnetic field has led to uniax-
ial magnetic gels [10,17] with a finite magnetization My
in the absence of a magnetic field, which is implemented
during the cross-linking process. This property is of high
physical significance, since such systems show a linear re-
sponse in a magnetic field [17], in addition to the usual
quadratic field response. For both, isotropic ferrogels [14]
and uniaxial [18] ferromagnetic gels, dynamic macroscopic
descriptions are available.

We derive the hydrodynamics of tetrahedral ferromag-
netic gels. They can be viewed as (uniaxial) magnetic gels

# e-mail: tilen.potisk@uni-bayreuth.de

b e-mail: pleiner@mpip-mainz.mpg.de

with an additional tetrahedral order. Uniaxial magnetic
gels have been described theoretically in ref. [18] and are
investigated experimentally in ref. [17]. Here we are in-
terested in finding new effects that would hallmark the
presence of an additional tetrahedral order. We consider
predominantly the case of permanent gels, where elastic
strains do not relax. As before, we will assume that the
magnetic preferred direction is along one of the 4 axes of
the tetrahedral order and that this coupling is rigid.

Here we investigate macroscopically the influence of
octupolar /tetrahedral order on the physical properties of
ferromagnetic gels. This issue is important, because the
presence of octupolar order is associated with sponta-
neously broken inversion (parity) symmetry and can thus
lead to static and dynamic cross-coupling effects absent
otherwise. For gelled magnetic systems we are not aware
of any previous study in this direction.

The major part of the investigations on the influence
of octupolar order for fluid and gel-like systems has been
in the field of liquid crystals [19-33] starting with the
pioneering papers of Fel [19,20]. From an experimental
point of view the systems of interest have been liquid-
crystalline phases derived from bent-core or ferrocene-type
molecules [34-48]. For a recent review of the field of tetra-
hedral order in liquid crystals we refer to ref. [49]. Quite
recently, the hydrodynamics of tetrahedral ferromagnetic
nematic fluids has been discussed [50]. Only rather re-
cently the presence of octupolar order has been suggested
as an explanation [51] for the observation of macroscopic
chiral domains of either hand in some optically isotropic
phases [52-54]. In ref. [51] it has been shown in the
framework of macroscopic dynamics that the simultane-
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ous presence of octupolar order and a transient network is
sufficient to produce ambidextrous helicity and thus to the
possibility to obtain macroscopic chiral domains of either
hand in compounds composed of non-chiral molecules.
The present paper is organized as follows. In sect. 2
we discuss the macroscopic dynamic description of ferro-
magnetic gel phases with octupolar order. This is followed
in sect. 3 by suggestions of possible static and dynamic
experiments that are specific for such phases including
elasticity, tetrahedral and magnetic order. In sect. 4 we
consider the case of a transient network and propose an
experiment to study its influence. A summary and per-
spective, sect. 5, concludes the main text. In appendix A
we list the full expressions for the thermodynamic con-
jugate forces and in appendix B we present the explicit
expressions for the dissipative parts of the currents.

2 Ferromagnetic gel phases with tetrahedral
order

2.1 Macroscopic variables

To derive the macroscopic equations of a particular macro-
scopic system one must first identify the relevant macro-
scopic variables. In addition to the conserved variables
characteristic of an isotropic fluid, the mass density p, the
energy density &, the density of linear momentum g, and
the concentration ¢, related to an additional mass con-
servation law in binary mixtures, tetrahedral phases are
described by a fully symmetric third rank tensor Tj;, =

To 22:1 nfnfnf [19], where the vectors n® (8 = 1,2,3,4)
span a tetrahedron and the order parameter Ty (or rather
To = 4Ty/3v/3) describes the strength of the tetrahe-
dral order, which we take as constant. Tetrahedral or-
der breaks spatial inversion symmetry, but does not imply
polar order, nor chirality. It fully breaks (spontaneously)
rotational symmetry of isotropic space and its three in-
dependent rotations are the symmetry or Goldstone vari-
ables [49].

In ferromagnetic systems the spontaneous magnetiza-
tion, M, describes the strength of magnetic order by the
order parameter M = |M]|, and its orientation by the unit
vector m = M/M. The former is neither connected to a
Goldstone mode, nor to a conservation law, and therefore
does not give rise to a genuine hydrodynamic variable.
Nevertheless, its relaxation time can be large enough to
be relevant in the hydrodynamic regime, and we will keep
OM = M — My, with My the equilibrium magnetization,
as a macroscopic variable.

The orientation of the magnetization breaks rotational
symmetry of isotropic space partially twice, but is ar-
bitrary in the absence of any orienting external field or
boundary, constituting two Goldstone or symmetry vari-
ables dm with m - dm = 0. In this respect they are
equivalent to director rotations in uniaxial nematic lig-
uid crystals. However, in the present system, where rota-
tional symmetry is already broken by the tetrahedral or-
der, magnetic orientation does not give rise to additional
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independent Goldstone modes, and only the (three) com-
bined (rigid) rotations of tetrahedral and magnetic orien-
tations give rise to hydrodynamic degrees of freedom. Ob-
viously, there must be an energetic penalty for rotations of
the magnetization relative to the tetrahedral orientation.

Indeed, a simple Landau free energy argument shows
that there are two energetic minima (stable thermody-
namic phases), either with the magnetization pointing
along one of the tetrahedral vectors, or along one of the
improper 4 axes of the tetrahedron. The former is a phase
of (3, symmetry, which we will not consider here. The
latter is a Doy symmetric phase, similar to the tetrahe-
dral nematic liquid crystal phase Doy [49]. Nevertheless,
the hydrodynamics of the ferromagnetic tetrahedral gel
phase (called D7 in the following) is quite different from
that of a Dyy phase, since the magnetization is a variable
that changes sign under time reversal (in contrast to the
nematic director) and since the Dyy phase is fluid. The
static and the dynamic behavior of the Dy’ phase is also
quite different from that of a tetrahedral ferromagnetic
nematic phase [50], where the magnetization and the di-
rector field point both along one of the improper 4 axes.
This phase includes as an example a dynamic interaction
of the magnetization and the director field, which is differ-
ent from the interplay of the magnetization and the strain
field (defined at the end of this subsection). Furthermore,
in a D} phase one can induce an inhomogeneous rotation
of the magnetization by application of an external strain,
which, of course, has no effect in a tetrahedral ferromag-
netic nematic phase, since the latter is fluid.

As hydrodynamic variables one can use the (three)
combined rigid rotations of the tetrahedral structure to-
gether with the magnetization. An alternative possibility,
more appropriate to the magnetic nature of the phase (and
the application of external magnetic fields) is the use of the
two magnetization rotations dm (implying an appropriate
co-rotation of the tetrahedral structure to preserve rigidly
the combined structure) and a rotation of the tetrahedral
structure about the magnetization, 0{2. The latter is not
just a scalar variable, but has rather unusual rotational
properties [32,49].

We describe the elastic properties of a gel by the lin-
earized version of the strain field ;; = %(Vin + V,u;)
with u; the displacement field of the network. Note that
€;; is invariant under time reversal and spatial inver-
sion. For a hydrodynamic implementation of nonlinear
elasticity, see refs. [55,56]. We also consider as macro-
scopic variables the relative rotations between the pre-
ferred direction m; and the polymer network, defined lin-
early as O; = 0m; — %mj(vZ‘Uj —V,u;). The relative rota-
tions are transverse to the magnetization by construction
(m;O; = 0), invariant under spatial inversion, but change
sign under time reversal. For a nonlinear description of
relative rotations we refer the reader to ref. [57]. From
uniaxial nematic gels (with the director as preferred di-
rection) it is well known that those relative rotations play
a crucial role in the static and dynamic behavior of ne-
matic gels [58,59], and we expect similar importance for
the magnetic case.
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2.2 Thermodynamics and statics

In this section we deal with static deviations from the equi-
librium state. Changes of the variables introduced above
are related to changes of the total energy density f by the
Gibbs relation, which is the local formulation of the first
law of thermodynamics

df = T'do + pdp + v;dg; + pede + RMAM
R dmy + UAV ym + W A0 + wPAV,0
—|—!pijd€ij + Wdel, (1)

where we have explicitly considered gradients of the rota-
tional degrees of freedom, since they are symmetry vari-
ables and, in the absence of any orienting fields or bound-
aries, changes of their orientations must not change the
energy (hg”/ =0= hQ/). In the statics only the combina-
tions

WM =n -

VoM and A% =h? -

J¥ij Viwin (2)
do occur.

The thermodynamic conjugates are the prefactors of
the differentials in eq. (1), i.e. temperature T', chemical
potential u, velocity v;, osmotic pressure (divided by the
pressure) fi., so-called molecular fields of the magnetic
order hM | of the magnetization rotations hi*, of rotations
about the magnetization h*? and the elastic stress, ¥;; and
the molecular field corresponding to the relative rotations,
W;. They (or their gradients) act as thermodynamic forces
in the dynamics (depending whether they are zero or finite
in equilibrium).

The energy has to be rotationally invariant. This re-
quires for eq. (1) the condition

0 = €k (h;"/mj + Wlijml +
+Wigji + Wer; + Wi0;)

TN m + V0
- thlw (3)

which will later be used to symmetrize the stress tensor.
The last term in this condition is due the fact that §2 is not
a scalar, but a component of a vector that is not invariant
under rotation. To find its rotational behaviour one can
use the fact that 077 transforms under rotations like an
ordinary vector in each of its indices [32].

Since the energy of the total volume, F = [ fdV, has
to be a first order Eulerian form of the extensive vari-
ables, the thermodynamic pressure, p = —0F/9V, can be
written as a bilinear expression of the extensive variables
and their thermodynamic conjugates with the final result
(Gibbs-Duhem equation)

dp = o dT + pdp + gidv; + cdp. + M dh™M
—hy dm; — WAV jm; — b dQ — wPAv, 0
—Eijdwij — OldWI (4)

The thermodynamic conjugates are defined as partial
derivatives of the total energy density with respect to the
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appropriate variable. Thus they follow from a total energy
functional that can be written as

f:fO+frotcl+f]%+flin+fc1+frr, (5)

where fj is the total energy of an isotropic liquid, fiotel
contains the rotational-elastic energy, fa; is the magnetic
energy including external magnetic fields, and f.; contains
the elastic energy and all cross-couplings of the strain ten-
sor with the other variables (except relative rotations) and
finally, f.;, shows all contributions of the relative rota-
tions.

When constructing the explicit forms of the various
energy contributions one can make use of the Levi-Civita
tensor €;;1, the tetrahedral structure Tj;; and the mag-
netic direction m;, where the latter two are not really in-
dependent. One has to note that T;;; is odd under spatial
inversion and m; is odd under time reversal. In particular
we find [60]

fo = 5600 + (00 + J(06 + ——(60)(60)

2
+04(06)(39) + B, (66) (3p) + 51 (6)
containing the standard thermodynamic susceptibilities,
like specific heat, compressibility, thermal expansion etc.
Rotations of the magnetization must not increase the
total energy of the system, since m; is a symmetry vari-
able. Therefore, only inhomogeneous rotations enter fioel

1
frotel zgkl(v mz)(vlmk) + iKg(VZQ)(VJQ)

ka (Vis2)(Vim;) + 15, (Vic) (Vim;)
I (Vio) (Viemy) + 1 (Vip) (Vim;)

(Vi) (CC”VJC +C5OV 0 + CL0V, p) (7)
with the rotational stiffness (or rotational elastic) tensors

Kijkl K15 5k:l + Kgmpmqupﬁqu

—|—K3mjmg&k + KampmgTigpTjig,

(
KQ 5l +K” mlmj, (9

C? = CL(€kpmi + €jipmu)myp,
113, = TN (M6, + my6;5), (11

,

A2 A
Cij = Clkakps(ei'r‘sij'r' + ejrsTipr)v

where A € {0, p,c}. The structure of f. is isomorphic to
the gradient energy in the Dyy; phase and contains 4 co-
efficients related to bending distortions of the magnetiza-
tion, 2 related to inhomogeneous rotations about the mag-
netization and 1 mixed one. In addition there are cross-
couplings of those inhomogeneous rotations with gradients
of the scalar conserved variables. We note that the contri-
bution ~ (' is associated with V x m; while this quantity
typically vanishes statically, this need not be the case dy-
namically’.

! The appropriate term ~ K7 in refs. [49] and [32] should
have the form of eq. (11)
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The magnetic part of the free energy in eq. (5) reads

1 1
far = —M;H; + —aM? + 15M4 + fous (13)

2
where fgas contains gradients of the magnetic order pa-
rameter M, which are often neglected, but come here in
parallel to gradients of the magnetic direction m;. The
homogeneous part of fy; is derived in sect. 2.4 taking
into account the static magnetic Maxwell equations. fys is
the Legendre transformed magnetic energy containing the
magnetic field H. The ferromagnetic coupling in fj; leads
to the parallel equilibrium orientation of the magnetiza-
tion along an external magnetic field. As a result a homo-
geneous external field is compatible with a homogeneous
combined magnetization/tetrahedral structure in the DI},
phase. However, the degeneracy of the (combined) orien-
tation of the magnetization and the tetrahedral structure
is partially lifted and only the orientation of the struc-
ture perpendicular to the field (and m) is still arbitrary.
A discussion on how the degeneracy can completely be
eliminated by additional (e.g., electric fields) is discussed
below.

For the magnetic gradient energy we find

ot = 3K (VM) ;M) + CH(VM)(,)
+ KM (Vi M)(V my)

+(ViM) (I e+ 5V jo + 1119 p)

(14)

with
15
16
17
18

M Mgl M
K3 = K165 + K" mimy,
M2
Cij = OHkakps(eirsrfjpr + ejrsTipr)v

AM AM gL AM

(15)
(16)
(17)
(18)

where A € {o,p,c}. There are two stiffness coefficients
(K1, K|") related to distortions of M. Cross-couplings
between distortions of M and inhomogeneous rotations
of, and about the magnetization, are described by one co-
efficient each (K™ and C|, respectively), while there are
in total six coefficients (II}"() connected to the coupling
of gradients of M with gradients of the scalar conserved
variables.

The next energy contribution we are discussing here is
the linear gradient energy

fiin = ETiems (Vymy). (19)

This expression is identical to the linear gradient term in
the Doy phase [32], when m; is replaced by the director n;.
This linear gradient term is allowed due to the presence of
tetrahedral order, which breaks parity. As a consequence,
the ground state might not be homogeneous, resembling
the case of added chirality to nematic liquid crystals. How-
ever, here is no chirality involved and helices of both ro-
tation sense are equally well possible (ambidextrous chi-
rality) [49]. This is further investigated in appendix A.
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The elastic part of the energy reads

1
fo1 = S CidkICijER — Vij€ij Mo M
+ (X%(SO‘ + X7;0p + ijéc) €ij
+ (rgkvka + Tfjkvkc + rgkvkp + Ti%VkM> €ij

+XZ’I€ Eijvkﬁ +X;?k}l €i; Vimy. (20)
The first two lines of fo are known from uniaxial mag-
netic gels [18]. The elastic tensor c¢;jx; is of the form of
the viscosity tensor, eq. (46), and has six elastic moduli,
c1,....6, one more than in uniaxial magnetic gels due to the
tetrahedral order. The rank-2 tensors are of the standard
uniaxial form, eq. (15), and describe magnetostriction as
well as elastic deformations due to changes in temperature,
density or concentration. The third line describes static
couplings between gradients of temperature, density, con-
centration or magnitude of the magnetization with elastic
deformations with the tensors

Ti)\jk = (Tiéli_l + T‘l)‘mkml) T%jl (21)
containing two coefficients for each A € {o,p,c, M}. In
ref. [51] such a coupling is also present, but shows only one
coeflicient for each A\ due to the optically isotropic nature
of the T,; phase. The fourth line contains couplings genuine
for the Dy phase between elastic deformations and in-
homogeneous rotations of the tetrahedral/magnetization
structure with the material tensors

(9] (9] (9]
Xijk = X1 (€ipr Tjkp + €jprTikp) My + X3 €kpr Tijpmir,

Xt = 5,€Lp O [Tipimy + Tipimi] + x5 Tigpmu) -

Finally, the energy containing relative rotations

1 ~ o~ -
for = iDlOiOi + Dz(m]@i + mkéﬁj)Oié‘jk
+ (V5 Vic + 98 Vip + ¢ Vio + ) Vi M) O; (24)

contains the stiffness of relative rotations, D;, and the
standard uniaxial coupling between elasticity and relative
rotations, Dy, well known from nematic and magnetic gels.
The second line describes the genuine couplings of gradi-
ents of temperature, density, concentration, and magni-
tude of the magnetization with relative rotations in the
Dy'¥ phase by
ey = P my Ty (25)
The expressions for the thermodynamic conjugates
that follow from the energy contributions introduced
above are listed in appendix A.

2.3 Dynamic equations
The hydrodynamic variables can be put into two different

classes. There are conserved variables, like the mass den-
sity, energy density and momentum density g, which are
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governed by conservation laws. The second class of vari-
ables corresponds to the variables associated with spon-
taneously broken continuous symmetries. Their dynamics
is governed by balance laws. In our case we have from
this class the magnetization and the rotation around the
magnetization (2. There are some variables, that relax on
a finite but very long time scale and it is therefore sen-
sible to include them into the macroscopic description,
ref. [60]. In our case we will consider the relative rota-
tions OZ-, which are important, if the magnetization and
the strain are weakly coupled.
The dynamic equations read

0 .
§f+vi([f+p]w+.7if) =0, (26)
0
atp+vlgl — 7 (27)
0
FriZig V;(giv; +poij + o} +0ij) =0, (28)
) . 2R
§U+V(avi+3i)—T, (29)
0
(at+vjvj>c+vijf=0, (30)
0 M
a +’UjVj M+ X" = 0, (31)
8 m
8t + ’U]V mg; — €W Mk + )(7 = 0, (32)
0
at+u]v 2 —mjw, +7Z =0, (33)
D Vi) ey + Y Y =0 (34)
ot Ve Vi | Eij ij iy — Y
9 ~ ~ 16)
& + ’UjVj Ol + eijkojwk + Y; =0 (35)

with the vorticity w; = (1/2)e;;xVjvi. The vorticity con-
tributions are due to the fact that m; and O; transform
under spatial rotations as vectors, and {2 as a special com-
ponent of a vector [49]. These terms ensures that only
those rotations enter hydrodynamics that go beyond the
global rotation (e.g., of the coordinate system). In eq. (33)
the m;w; term shows again that (2 is not a scalar quantity.

In eq. (34) we have introduced the non-
phenomenological current of the strain as
Yéh = 7Aij + Ekjvi’uk + EkiVj’Uk (36)

containing A;; = (1/2)(V,v; + V;v;) due to the transla-
tional nature of the displacement field, as well as the co-
rotational part of the time derivative of the strain tensor.

In eq. (28) we have explicitly written down the non-
phenomenological part of the stress tensor V.p, the pres-
sure gradient given by eq. (4), and a ! given by

20;&}; _ mv iy + gp]’&lv my, + ![/QV 2+ !I/QV 02

+Vi(m W — mi¥y) — 2Wi5 + Yikek; + Yiker,
(37)
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which has been brought, using eq. (3), into the form [61]
that guarantees angular momentum conservation [62].
The three last terms describe linear and nonlinear elas-
tic stresses.

The source term in the dynamic evolution equation
for the entropy density, eq. (29), is proportional to the
dissipation function R representing (half of) the rate at
which the heat is transferred to the microscopic degrees
of freedom. The second law of thermodynamics requires
R > 0 for dissipative processes, while R = 0 holds for
the reversible parts of the currents, in which case eq. (29)
is a conservation law. Splitting the phenomenological cur-
rents (jz L0, 37,36, XM XM, Z,Y;;,Y,0) into the dissipa-
tive part (superscript D) and the reversible one (super-
script R) the Gibbs relation eq. (1) then leads to the con-
dition

2R = —V,j/7 — j7PV,T - jPVipe — oD Ay + XP R
+XMPRM 4 ZP0? 4 VR0 + YOPWi >0 (38)

for dissipative processes, where only the symmetrized ve-
locity gradient A;; enters, in order to prevent solid body
rotations to produce entropy.

For reversible currents, the condition

—Vigl® = JTRVIT — Ve — ol Ay + XMERM
+XZ”Rh§" + 2807 Y+ YORW (39)

applies. Possible pure divergence contributions (surface
terms) are put into jl-f , but are not needed in the following.
The various transport contributions in the time deriva-
tives of egs. (26)—(35) are all reversible. Their zero entropy
production is ensured by the non-phenomenological parts
of the stress tensor ath and by the pressure p. Similarly,

Y. jh compensates the hnear and nonlinear elastic stresses

in O’ hto give R = 0.

A current is reversible, if it transforms under time re-
versal in the same way as the time derivative of the appro-
priate variable, while the dissipative part of a current has
the opposite time reversal behavior. In the following we
will discuss the dissipative and reversible dynamics sepa-
rately.

To derive the dissipative parts of the phenomenological
currents one first writes the dissipation function as a pos-
itive quadratic form in the thermodynamic forces taking
into account that R has to be a time reversal symmetric,
scalar quantity. By taking the variational derivative of this
function with respect to the chosen thermodynamic force
one gets the corresponding dissipative current. The dissi-
pation function reads

1 1
R = ki (ViT)(V;T) + 5Dij(Vipe) (Vjpe)

F( Aljva + F( Azjvk,uc

+D;,I_;(V7/T)(v]:u(,) ijk ijk

1
+2VljklAlekl+CljkA1jhk +CMA hM

+7_iinjh + Tk (1/1 Dy,.T + q/)CDVku) h"
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+ thmhm+ thMhM+ b”h”h”

i7"

1
+ §Dij(vk%k)(vl%l) + *7' WL w;

+ (E5ViT + & Vipe + §MV WM (V)
+ f{;"kAz'jWk + Tijemu (™ Wi + p™ ")V 1),
+ Tijemi (p7 V3T + p°V e + p™ VM) Wi

+ DAY Wy + VTS SWRT (40)
Note that we have used the divergence of the elastic
stress, V;¥;;, as the thermodynamic force, rather than
the elastic stress tensor itself, ¥;;. Using the latter there
are additional contributions to the dissipation function,
which will be discussed in detail in sect. 4 on transient
networks. Since we assume in this section that the network
of the gel is permanent, elastic strains can only diffuse, but
not relax. Therefore we discard the part of the dissipation
function associated with transient networks, eq. (87), and
write in the following the elastic currents in the form

YR = —% (ViEP T+ viEP ), (41)
which reflects the definition of the linear strain tensor. in
terms of the displacement vector. The dissipative expres-
sion FP follows from eq. (40) by FP = 0R/(0V¥;1.).
The dissipative currents for permanent networks will
be given explicitly in appendix B.
The dissipative material tensors x5, D; DL o Tis DY

¥R W5
55 y &6 and fg‘f are of the standard uniaxial form

Ci? = C1D5$ + ¢mym; (42)
with a perpendicular and a parallel component, while the

others read

) = Rewp Tijpm,
+T3 (€ipr Thojpmir + €jpr Thipmi), (43)

) = rRewpe Tijpm,
+ T (€ipr Thjpmr + €jpr Thipmr ), (44)

i?k = fiDkarTijpmr
+fy (€ipr Tjpmr + €jpr Tripmy), (45)

Zj?kl V1655 5kz+l/2(5 S + 05 5 2)
Frgmgmmemg + V4(5 mmy + dGmim;)
+vs(Sipmymy + 87 My + Sirmymy, + 67 lmzmk)
F6mpmgTijpThig, (46)
Cgk = ¢ (€ikpmj + €jrpms)myp, (47)
f{?’k = fA(Gikpmj + €jkpMi) My, (48)
el = ¢ (€irsTypr + €jrsTipr )Mk Tips.- (49)

The reversible parts of the currents do not follow from
any potential, but can be derived by requiring that the
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entropy production R in eq. (38) is zero. Replacing there
Y i; by F Vi¥;;, one gets

G = =k T = DRV e + 50T + T Aji

dTW fr €5k V¥, (50)
jiCR - —D.»lelc —|—D,, VT + 5RT + T A

—di; Wy — [Ceijem; Vi, (51)

off = v A — o bt — cihM — 78Re

+dA(mi5ij +m;6i) Wi + f,;“jivlgpkl
~TVAT — Ty Vipe. (52)

X = bghin ijkAjk + ¢jiVjT + 05V e

+d"™ €;5m i Wy, (53)

XMR = —ClI-;Aij, (54)

ZR = *T-RAij + f{fv iVilik, (55)
d Wk + f €z]km]va + f €l]km]kaC
+ 17 €ijim; Vi + [ V;h? + fijkAjkv (56)

= d?}VjT + d5; Ve + dfjvk%k +dW e;jpm; Wy
—|—dm€ijkmjh;;n + dA(mk(SlJl‘ + ml(SiJ];)Akl, (57)

where the tensors and c . are of the standard uniaxial
form, eq. (15) with two coeﬁiments fJ_ | and ¢! ||» Tespec-
tively. The antisymmetric tensors Hﬁ, DgR, Dg', and bR
have only one coefficients and are of the form

/igf = /sReijkmk, (58)

while for the other tensors we find
c,T _ cT
wij = 7/) Eiprijkmkmm
T,c, W __ T,c,V
dij =d eiprijkmkmr,
R _ R 1 1 1 1
l/l]kl = (Gikpéjl + Ejkp§il + eilp(sjk + Gjlp(sik) mp

R
5" (€iepmymy + €j1pMMy + €M,

+e€jkpmimy)my, + V:?Ejkalr, €prsMs, (61)

ciie = ot (mid5 +midis) | (62)
Ti? = 7% (€irsTjpr + €jrs Tipr) 11 Thps, (63)
Lyji = quk( I o+ 1 mqmi), (64)
fiik = Tugn (fftsji +fj mqmi> ) (65)

The dissipative coupling between flow and gradients of
temperature and concentration, described by I', 'R, ']
and I'E in egs. (43) and (44), is genuine for magnetic tetra-
hedral fluids, while their reversible counterparts, I’ I’c and
FHT’C and in egs. (50) and (51), are already known from
the nematic tetrahedral Doy phase, refs. [32,49], and for
Ff’c = FHTC from the isotropic T, phase, refs. [27,49].
Similarly, for the reversible cross-coupling between ro-
tations of the magnetization and gradients of tempera-

ture and concentration, w” , eq. (59), are already found
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in Dog. Their dissipative counterparts, 7P and 3°P,
egs. (B.1), (B.2) and (B.4), are genuine for a tetrahedral
ferromagnetic (fluid) phase. This is also true for the dissi-
pative coupling between flow and changes of M, provided
by cﬁ\]/-[ , eq. (49), and the reversible coupling between flow

. (63). Cou-
plings provided by f, fP pW, p™, pT, p¢ are genuine for
the D7 phase and require the simultaneous presence of
tetrahedral and magnetic order and of elasticity.

and rotations about the magnetization, 75, eq

2.4 External fields

In the case that we have not only an external magnetic,
but also an electric field, there are many competing ori-
enting energy contributions

faielas = —M;H; + aTyy Tjpp M; My M; M,
QT Ei BBy — QT B Hj Hy,
—G3T5ji By M Hy, — CoTy 1 2 M M, (66)

which we discuss in the spirit of a Landau description. The
first term, the ferromagnetic coupling between the magne-
tization and the external magnetic field, aligns the mag-
netization along the field and the second one governs the
relative orientation of the magnetization with the tetra-
hedron, which for a > 0, leads to the Dy structure. The
terms ~ (2 are the typical couplings of external fields
with the tetrahedral orientation, present in any tetrahe-
dral phase. The last two terms ~ (34 are specific for the
magnetic tetrahedral phase.

A full minimization of fgelqs is beyond the scope of
this work. We look for some special cases. First, we as-
sume that the energy contribution ~ a, which defines the
structure of the Dy’ phase, is the dominant one (@ — o).
In that case the energy contribution ~ (4 is identically
zero for all orientations of the fields. The ferromagnetic
energy is minimal for the magnetization (and thus the 4
axis of the tetrahedron) to be parallel with the magnetic
field (z-axis), while the cubic electric field contribution
is minimal, if the electric field is parallel (for ¢; > 0) or
antiparallel (for ¢; < 0) to one of the tetrahedral axes.
However, the tetrahedral vectors make a finite angle 61 /2
(with cos(f7/2) = +1/4/3) with the 4 axes, leading to
frustration (except for the very special case that the two
external fields make an angle of 67/2). Since the magnetic
field does not fix the transverse structure, the energy ~ (3
can be minimized independently with regard to this trans-
verse direction. As a result, the directions €,+¢€, are given
by (the tilt direction of) the electric field (the (2 3 energies
do not change that statement).

The frustration of the orientation of the magnetization
(or 4 axis) with respect to the orientation of the external
fields, can be discussed along the lines of the liquid crystal
case [32]. For strong magnetic and weak electric fields the
ferromagnetic energy will win, while for weak magnetic
and strong electric fields the magnetization will approach
the orientation of the electric field. The transition process
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is governed by the parameters 3 2 3, indicating the bal-
ance of ferromagnetic energy to those including electric
fields, ~ (12,3, respectively

MyH,

ﬂl = ma (67)

br = GToEHy ' (68)
1

bs = GToEy (69)

Qualitatively, a large (5, leads to an orientation of the
magnetization close to that of the magnetic field, while a
small 31 results in an orientation close to the electric field.
The parameters (33 3 come into play only for orientations
in-between, neither very close to the magnetic, nor very
close to the electric field.

If there is only an electric, but no magnetic field, the
former fixes the orientation of the tetrahedron according
to the (1 energy. In the case of the D]’ phase, where the
magnetization is along one of the 4 axes, however, the (i
energy vanishes and the electric field does not orient the
tetrahedron. But the electric field induces elastic deforma-
tions according to the energy

festrict - _CaTijkEif‘:jk: (70)
that leads to elastic stresses
Wy = CTE),
(Wg2)? + (¥2)? = (. ToEL (71)

for the field parallel to the magnetization () and per-
pendicular to it (F,), respectively. The elastic stresses
are compensated by appropriate deformations in the equi-
librium state. This constitutes linear electrostriction in a
magnetic phase that does not possess a permanent electric
polarization.

On the other hand, there is a permanent magnetization
and therefore magnetostriction

1
Srstrict = —§%jkleMlEij (72)

leading to elastic strains of a completely different form

ms __ ,yms __ 2
WS — WS =y M,

WIS = —y Mg (73)
In equilibrium they are compensated by appropriate de-
formations, and hydrodynamic deviations are described
by the energy ~ 7;; in eq. (20), with v;; = 74j... In the
case of an additional external magnetic field (but without
an electric one) My is replaced by My + Hy. In the pres-
ence of both external fields the strictive deformations are
extremely complicated due to the complicated orientation
of the tetrahedron.

From egs. (71) and (73) we read off immediately that
external electric and magnetic fields lead to an anisotropy
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of the stresses and thus also of the associated strains. This
anisotropy, which is probably very small, is neglected. We
note that the coefficient « in eq. (13) is also modified
by external fields due to the effects of the equilibrium
strains 5%-. The corresponding anisotropy will be neglected
as well.

3 Suggestions for experiments involving
elasticity

In this section we discuss experiments that are specific
for the ferromagnetic tetrahedral gel phases. In partic-
ular, we consider experiments in the homogeneous state
with a constant orientation of the preferred direction. We
propose experiments that probe static couplings specific
for the presence of tetrahedral order in sect. 3.1. In par-
ticular, we consider static external strains applied to the
gel that affect the magnitude and the orientation of the
magnetization and the relative rotations. In addition, we
show, how relative rotations can induce gradients of den-
sity, concentration, or temperature perpendicular to the
magnetization. In sect. 3.2 we discuss strains induced dy-
namically by temperature gradients, as well as reversible
and irreversible heat or concentration currents induced by
relative rotations.

3.1 Static experiments

There is a static coupling between elastic stresses and
the orientation of the magnetization in eq. (20) provided
by the material tensor x;7, with two coefficients X'y in
eq. (23). Together with the rotational stiffness energy of
the magnetization in eq. (7), given by the Frank-type ten-
sor Kk, eq. (8), and neglecting other cross-couplings, the
stationarity condition, ¥/ = 0, leads, for linear deviations
from m = e, to

V.my = Aegz and V,m, = Aegz (74)
with A = (x7* 4+ x5")To/K3. This describes an inhomoge-
neous rotation of the magnetization out of the shear plane
of the external strain €9, or 522. This effect only occurs
when tetrahedral order is present.

Similarly, a uniaxial compression along the preferred
axis leads to linear deviations of the magnetization in the
transverse plane given by

m
X1 0

—E_.. 75
e, )

Vemy = Vym, =
This solution describes a spatial pattern, where the in-
duced transverse magnetization is of constant magnitude
(m2 + m? = const) on circles around the z-axis, but
changes its direction by 27, when moving along the circle.
This pattern has no splay, bend or twist character, but is
quite special for tetrahedral order.
External strains (9, €)_, and ), — e ) create spatial
patterns of relative rotations, due to the sz coupling in
eq. (22), which, however, might be difficult to observe.
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A well-known effect of external strains applied to ferro-
magnetic gels is magnetostriction, the change of the mag-
nitude of the magnetization. Using the magnetostrictive
coupling, described by «;; in eq. (20), the homogeneous
changes induced by compressional strains have the uniax-
ial form

@ @
MoSM = T ed, — o~ (2. +£5,) (76)
where « is the magnetic stiffness coefficient.

In ferromagnetic gels with tetrahedral structure, in ad-
dition, external shear strains change the magnitude of the
magnetization

adM = =27 Ty V€%, — 211 T (Vyeb, + Vaey,)  (77)
although the inhomogeneous external shear strains are
probably not easy to apply.

Another possibility to probe magnetic and tetrahe-
dral order is the application of a static relative rota-
tion, O;. Due to the coupling provided by 7/%)} in eq. (24)
or (A.11), this results in gradients of the scalar variables
A € {0, p,c, M} perpendicular to m; and O;

D ~
VA= —=0,, (78)
T
VA = wf’%éy (79)
0

with ¢ defined in eq. (25).

3.2 Dynamic experiments

As an example for a dynamic coupling, we discuss induced
stresses due to an external temperature gradient perpen-
dicular to the direction of the magnetization. Such cou-
plings are specific for tetrahedral order. Already in the

fluid case, there is a dissipative, I} ne and reversible, I'; ko

coupling according to egs. (B.3) and (52), respectively,

oij = TV, T — IV, T. (80)

ijk
With the explicit form of the material tensors, eqs. (43)
and (64), one gets for the temperature gradient applied
along the z-axis, V,T = [y (and the magnetization along
the z-axis) the induced stresses

Uwz:Uzw:ﬁOTO (F2[1)+F2%>7

2 T
Oyz = Ozy = BOTOFJ_7

where the in-plane shear stresses are due to the dissipa-
tive coupling, while the shear stresses perpendicular to the
temperature gradient result from the reversible coupling.

If the temperature gradient is along the y-axis, equiv-
alent expressions for the appropriate induced stresses are
found, with the same prefactor for the reversible coupling
and opposite sign in the dissipative case. This reflects the
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breaking of transverse isotropy by the tetrahedral order.
A temperature gradient along the magnetic field does not
induce any stresses.

In a fluid phase such constant stresses only act as pos-
sible boundary conditions for flow and are difficult to mea-
sure. In a gel phase the stress tensor also comprises the
elastic stresses, which are easier measurable by mechani-
cal means. However, in the gel case there are additional
couplings that effectively add to the response of stresses
on external temperature gradients. In particular, temper-
ature gradients induce non-zero values of W;, the molec-
ular field of relative rotations, due to the stationary con-
dition Y,¥ = 0. The couplings described by p” and d" in
egs. (B.8) and (57) are provided by the tetrahedral order.
On the other hand, those induced non-zero values of W;
act as forces that give rise to additional stresses via &4
and d* in egs. (B.3) and (52). As a result, induced elas-
tic stresses ¥, = ¥,, and ¥,, = ¥,, are obtained that

are proportional to ByTh. The proportionality factors are
lengthy expressions containing static susceptibilities and
(in both cases) reversible and irreversible transport coef-
ficients, which we will not show in detail here.

Applying a thermodynamic force W;, by means of a
relative rotation W; = D;10;, eq. (A.11), heat and con-
centration currents, both reversibly, egs. (50) and (51), as
well as irreversibly, egs. (B.1) and (B.2) are triggered of
the form

jloot = AT W, (83)

JioOR = —dTOT, W, (84)
and

j&OP = p AT W, (85)

3P = pTITW,, (86)

where d(7:¢) is defined in eq. (60).

4 On the influence of transient elasticity

If the elastic network is not permanent, but transient,
strains are relaxing (rather than diffusing). This means
that elastic stresses ¥;; act as thermodynamic forces
(rather than V,;¥;;) and the dissipation function acquires
additional contributions

1
Riclax = ETgleij‘pkl + T W Ve T

HE T W3 Ve + EM Ty Vih™. o (87)

The strain relaxation tensor Tigkl has the same form as

the viscosity tensor v;jx; in eq. (46) containing six relax-
ation times 77—7¢. There are dissipative cross-couplings
between the elastic stresses and temperature, concentra-
tion gradients and gradients of M. The form of the dissi-
pative currents is given in appendix B.

The reversible currents have to fulfil the proper time-

reversal symmetry requirements and must not increase the
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entropy, i.e. they must fulfil eq. (39). Under that proviso
we find

§7 = € Ty e, (88)
G = BT pmeimmu¥ir, (89)

XME = ¢MBe Vi (miTiji%ij), (90)
Vi =7 + €T jrepmmu Vo T

+€B e 1mm Ve + EMET jperimmi Vi M (91)

where the tensor Ti?kl has the same form as ngl in eq. (61)

with three parameters 7%, 752, 74*. All the cross-couplings
are possible due to the simultaneous presence of magnetic
and tetrahedral order.

As far as static deformations are concerned, there is
no difference between permanent and relaxing elasticity,
and sect. 2.2 applies here as well.

If the elasticity is transient, one can induce elastic
shear stresses directly using a temperature gradient. From
egs. (B.12) and (91) we get

Yij= (ngkl +T1?kl)ﬂpkz + ("R jpentmmuAET Tijm ) Vin T
(92)
A stationary solution for the elastic stress is then obtained
by setting all components Y;; = 0. These induced stresses
are constant, and so are the additions to the heat current,
eq. (B.9), preserving the stationarity of such solutions.
For a temperature gradient in the direction of the mag-
netization, shear stresses in the perpendicular plane are
induced

ToeT?'v, T
2ry + T3d) + 8(7f)2 /7

(93)

W, =

involving dissipative as well as reversible transport pa-
rameters. The reversible couplings have also the effect of
creating compressive stresses

Vs = —Wyy = Upy, W..=0.

2TlR
e 94
5 (94)

2

The result given in eq. (94) demonstrates the significant
difference between reversible dynamic effects studied here
and static magnetostriction presented in eq. (73).

If the external temperature gradient is perpendicular
to the magnetization, it defines a preferred direction in
this plane, which we will take without loss of generality as
the z-axis, V,T = A. Then, of course, the y-direction is
fixed by m x VT. The orientation of the tetrahedron in
the z/y-plane is arbitrary and the x, y, z components of
the four tetrahedral vectors can be written as

c+8S -C-SC-8 -C+58

T -C+S5 C-85 C+85 -C-S

Tijk =
\/g 1 1 -1 —1

(95)

with C' = cos ¢ and S = sin . For ¢ = 0 the projections
of the four tetrahedral vectors are along the bisections
(1/v/2)(é, + &,), while for ¢ = /4 they are along the z-
and y-axis, cf. fig. 1.
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Fig. 1. The red circle in the middle indicates the magnetiza-
tion perpendicular to the drawing plane, while the temperature
gradient (green arrow) is along the z-axis. The blue lines show
the projections of the tetrahedral vectors (where circles and
the crosses represent vectors pointing out or into the plane,
respectively).

Disregarding the reversible contributions in eq. (92)
for the moment, we get the induced stresses

gTLDTOA .

v, = —W sin(2¢), (96)
TWT A

v, = 57; cos(2¢). (97)
275

As a result, the shear stresses are perpendicular to the
temperature gradient for ¢ = 0, while for ¢ = /4 the in-
duced shear stress is in the z/z plane given by the magne-
tization and the temperature gradient. In the general case,
both types of stresses are present. By measuring ¥, /¥%,.
one can determine the angle ¢ and therefore the orienta-
tion of the tetrahedron. Alternatively, one could change
the orientation of the temperature gradient to find one of
the two special cases discussed above.

Taking into account also the reversible couplings, the
results get more complicated, but the general features are
similar

Aa — Bb -
rz — mTOAa (98)
Ba + Ab -

with
A= =T 5in(2p) + 78 cos(2¢),
B = 1% cos(2¢) + €T R sin(2¢),
a =217,

b=2rl — 2751?.

Eur. Phys. J. E (2019) 42: 35

The orientation of the tetrahedral vectors, for which the
resulting shear stress is perpendicular to the temperature
gradient, i.e. ¥,, = 0, is now given by

bETW _ CLfTR

tan(QQD) = m .

(104)

The other special case, ¥,, = 0, is still obtained by ¢ —
o+ /4.

5 Summary and perspective

The macroscopic dynamics of ferromagnetic gels with
tetrahedral order is rather peculiar due to two aspects.
First, the permanent magnetization that spontaneously
breaks part of rotational symmetry, is a variable that
changes sign under time reversal. Second, the tetrahedral
order, not only lifts the transverse isotropy perpendicular
to the magnetization, but also breaks inversion symmetry
already of the ground state. For the D) phase, where
the orientation of the magnetization is rigidly coupled to
one of the tetrahedral 4 directions, we have discussed in
detail, in the statics as well as in the reversible and ir-
reversible dynamics, the possible cross-couplings among
the three rotational symmetry variables, the strain ten-
sor, relative rotations between the elastic network and the
magnetization, and the usual fluid degrees of freedom.
We describe experimentally accessible effects that are
specific for the D} phase. In particular, we show that
static external deformations lead to spatial patterns in
the orientation of the magnetization. Shear deformations
with the preferred direction in the shear plane trigger rota-
tions of the magnetization direction out of the shear plane,
while longitudinal compressions along the preferred direc-
tion result in a complicated, characteristic spatial pattern
of the magnetization in the transverse plane. Both effects
are only possible due to the tetrahedral order. In addition
to the standard linear magnetostriction effects in ferro-
magnetic gels, the Dy phase also shows a kind of linear
electrostriction, where the application of an electric field
results in elastic shear stresses. Although there is no polar-
ization present in the ground state of this phase, the nec-
essary breaking of inversion symmetry is provided by the
tetrahedral order. Another consequence of the tetrahedral
order is a change of the magnitude of the magnetization
due to external distortional deformation. Finally, relative
rotations lead to gradients in the temperature, density,
concentration, and the magnitude of the magnetization.
From the dynamics of tetrahedral fluids it is well
known that, e.g. temperature gradients give rise to con-
stant shear stresses. In a gel phase the stress tensor com-
prises also elastic stresses, which are easier measurable by
mechanical means. In addition, in D there are addi-
tional couplings, mediated by relative rotations, that ef-
fectively add to the response of elastic stresses on exter-
nal temperature gradients. Conversely, relative rotations
trigger heat (and concentration) currents in the plane per-
pendicular to the magnetization. In the case of transient
elasticity the elasticity is not permanent, but can relax
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either simply in the course of time (like polymers) or due
to external (generalized) forces (eventually above a cer-
tain threshold value like in magneto-rheological systems).
Here, the relaxation of strains can be compensated by e.g.
external temperature gradients, such that stationary elas-
tic stresses result. For gradients along the magnetization,
elastic shear stresses, but also compressional ones (due to a
specific reversible dynamic coupling), occur in the perpen-
dicular plane. If the temperature gradient is perpendicular
to the magnetization the resulting elastic shear stresses
(in a plane that contains the magnetization direction) al-
low the identification of the transverse orientation of the
tetrahedron relative to the gradient direction. This find-
ing opens the door for the experiments investigating the
orientation of the tetrahedron without the need of both
magnetic and electric fields.

As a perspective it would be interesting to investi-
gate the effects of dynamic (e.g., oscillatory) shear ex-
periments on the orientation of the tetrahedral structure.
Since several variables couple to the velocity field, both re-
versibly and dissipatively, one might expect a rich behav-
ior depending on the amplitude as well as the frequency
of the oscillations. Of special interest are also the rota-
tions around the magnetization, which couple dynamically
(neglecting the inhomogeneous stress forces) only to flow.
It would also be important to investigate how the addi-
tional elastic network will influence the recently investi-
gated tetrahedral ferromagnetic nematic liquid crystals.
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Appendix A. Conjugate quantities

For convenience we give the explicit form of the conjugate
quantities that follow from the energy functional f, eq. (5),
by partial derivation

af 1
_of 1 Al
0g; Pg A
of T 1 -
5T = Jo 0750 + pQg 6p + Bobe — V(117 Viem;

+HITMV ;M + CTPV302) + xGiei5 — 51 Ve

—7.V,0;, (A.2)
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af 1 1
_ _ 5
dp  p3ks - pos
—¢7 V0, (A.3)

0
Opte = FJCC = y0c+ Bybo + B,0p — Vi1,V im;

6o + ﬁpéc — Vl(H”

zjkvkmj

HIIEMN ;M + CEPV302) + x5 805 — Tk ViEis

N fjviéja (A4)
po= OF —m;H; + aM + BM® — ~;; Moz
T oM iL1q Vij Mo&ij
—7Vkeij — 1/’{‘;[Viéj
~Vi(K VM + CJ V0 + K5V my,
+H;’jMVjo+HijVjp+HijVjC), (A5)
r 0
h;n = 877{ — _MHZ,, (A6)
m_  Of ma Mm
Vil = o = Kian Vi + Cgi Vil? + K" VM
g
+XZlLij€kl + H;:ijvka + ngijvkp + ngijvkc’ (A'7)
r 0
g = 9f _ K{Vi2+ ChEVym; + CHOV ;M
i _aviQ— ij Vi ijk Y kT ij J
FXEieks + CF V0 + OV + Ci Ve, (A9)
of o
U = Besy = cijiert — VigModM + X7;00 + X7;6p

+ij6c+7'{‘jkvka+Tfjkvkc+rfjkvkp+ri%VkM
XV + X Vimy + Da(midi; + m;og;)Or,
(A.10)
— 8f _ A L 1 c
Wi = 80 = DlOz + Dg(mjéik + mkdij)sjk + Tﬁjiv]'c

3

+UP NV ip + 05V 0 + 3 VM. (A.11)
Since the §’s in egs. (A.2)—(A.4) describe deviations from
the constant equilibrium values of the appropriate vari-
able, all expressions on the left-hand side of the above
equations are zero in equilibrium and can act as thermo-
dynamic forces that drive the dynamics of the system.
On the other hand, the right-hand sides of all these equa-
tions have to be zero in equilibrium (Euler-Lagrange con-
ditions). Note that the energy fi, does not enter any
Euler-Lagrange condition (except for V;T;;i # 0), since
it is linear in gradients of m;.

Appendix B. Dissipative currents

For permanent elasticity the dissipative parts of the cur-
rents follow from the dissipation function R, eq. (40),
joD = OR
o ovT

= 7IiijVjT — D;I;VJ,U,(.
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~0T P Tgihi? — T3] Ay — " Tigemi W

kji
&5V, (B.1)
OR
.cD __ _ T
Ji = —m = —Dijvj,uc - DJZVJT
—°Pm Thih = T Agy = pTigemi IV
=& Vi¥ik, (B.2)
OR
% = T4 Vi Aw = ephil — el BM = 7iih?
_ff;ka - Fi(f;zva - Fff’,gvkuc - fi?kvlwkla
(B.3)
xpp = OB _ypsipm o (67O T
i = Ihm 1 Yi5thy m; Uk(w k
PV ipe) + chiAjr + 0" Tijemie Vil
+05;EN W, (B.4)
OR
XMP = SHM =uMpM 4 C%Aij + ff‘fvivk%k
—pMV i (TijemiW5), (B.5)
OR
ZP = 9h7 b?hY +7ij Aij, (B.6)
OR .
FP = N Di VW, + & ViT + Vg,
+f;£iAjk + Ty (p"Y Wy + p™hi™)
+&M VM, (B.7)
op _ OR W A W
YT = w7 Wi+ &k + 1" Tijemi V¥,
+EVTS SR + Tjrmi (p” VT + pV e
+pMV;nM), (B.8)

where FP is related to the dissipative strain current by
Y = —L(V;FP + ViFP).

In case of a relaxing elasticity there are additional con-
tributions in the dissipation function Ryelax, €q. (87), giv-
ing rise to the following additional dissipative currents

i7P = _aa%j?“x =~V Ty W5, (B.9)
i’ = _%Jérjjj = —EVTiW;, (B.10)
XMD = —nggﬁ = MY (Tylyy),  (B.11)
vP = aggjax = T;ﬁkl@gz + M T VT
+£Cq'JTijkvkc + M VM (B.12)

that come in addition to those of egs. (B.1)—(B.8) shown
above.
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