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Abstract

In this paper, we investigate a time-limited H2-model order reduction method
for linear dynamical systems. For this, we propose a time-limited H2-norm and
show its connection with the time-limited Gramians. We then derive first-order
conditions for optimality of reduced-order systems with respect to the time-limited
H2-norm. Based on these optimality conditions, we propose an iterative correction
scheme to construct reduced-order systems, which, upon convergence, nearly sat-
isfy these conditions. Furthermore, a diagnostic measure is proposed for how close
the obtained reduced-order system is to optimality. We test the efficiency of the
proposed iterative scheme using various numerical examples and illustrate that the
newly proposed iterative method can lead to a better reduced-order models com-
pared to the unrestricted iterative rational Krylov subspace algorithm in a finite time
interval of interest.

Keywords: Model order reduction, linear systems, H2-optimality, Gramians, Sylvester
equations.
MSC classification: 15A16, 15A24, 93A15, 93C05.

1 Introduction

We consider a continuous linear time-invariant (LTI) system as follows:

Σ :

{
ẋ(t) = Ax(t) +Bu(t), x(0) = 0,

y(t) = Cx(t), t ≥ 0,
(1)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are constant matrices. Generally, x(t) ∈ Rn,
u(t) ∈ Rm and y(t) ∈ Rp denote the state, control input and the quantity of interest
(output vector) at time t, respectively, and in the most cases, the dimension of the state
vector is much larger than the number of control inputs and outputs, i.e., n � m, p.
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We also assume that the matrix A is Hurwitz, meaning that Λ(A) ⊂ C− = {z ∈ C :
<(z) < 0}, where Λ(·) denotes the spectrum of a matrix and <(·) represents the real
part of a complex number. Due to the large dimension of system (1), it is numerically
very expensive to simulate the system for various control inputs and perform engineering
studies such as optimal control and optimization. One approach to overcome such an
issue is model order reduction (MOR), where we aim at constructing a reduced-order
system as follows:

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t), x̂(0) = 0,

ŷ(t) = Ĉx̂(t), t ≥ 0,
(2)

where Â ∈ Rr×r, B̂ ∈ Rr×m, and Ĉ ∈ Rp×r with r � n such that y ≈ ŷ in an
appropriate norm for all admissible control inputs u. In the literature, there is a huge
collection of available methods, allowing us to construct such reduced-order systems,
e.g., see [1, 4, 15].

Most of the methods for linear systems such as balanced truncation, e.g., see [1, 11]
and the iterative rational Krylov subspace algorithm [8] aim at constructing a reduced-
order system, which is good for an infinite time horizon. In other words, the output of
system (1) is very well approximated by the output of (2) on the time interval [0,∞).
However, there are several practical applications, for example, a finite-time optimal
control problem, where one is interested in approximating the output y on a finite time
interval, e.g., [0, T̄ ], meaning that

y ≈ ŷ on [0, T̄ ]. (3)

Due to the relation (3), we can expect a better reduced-order system in the time interval
[0, T̄ ] as compared to unconstrained MOR approaches for a given order of the reduced
system. A MOR technique for such a problem, called balanced truncation, was first
proposed in [7] and further studies were carried out in [9, 14]. In this work, we consider
a similar time-limited problem, aiming to extend the Wilson conditions [17] and first-
order optimality conditions [8, 10, 17].

For this, we first propose the time-limited H2-norm for linear systems in Section 2
and provide different representations of the metric induced by this norm, which are based
on time-limited Gramians. Then, we define the problem setting for time-limited MOR as
an optimization problem. Subsequently, in Section 3, we extend the Wilson conditions to
time-limited linear systems and derive first-order optimality conditions, which minimize
the time-limited H2-norm of the error system. Based on these conditions, we propose
an iterative scheme, which, upon convergence, aims at constructing a reduced-order
system that nearly satisfies the optimality conditions. Later on, we derive expressions,
revealing how close the obtained reduced systems via the proposed iterative scheme are
to optimality. In Section 4, we illustrate the efficiency of the proposed iterative scheme
by three benchmark numerical examples for linear systems. Finally, we conclude the
paper with a short summary and an outlook for future work.

2



2 Time-Limited H2-Norm and Problem Setting

In this section, we first define the time-limited H2-norm for linear systems and show
its relation to the output error. Furthermore, we provide different representations for
the time-limited H2-norm using time-limited Gramians and then define the time-limited
H2-model reduction problem for linear systems. Before we proceed further, we note
important relations between the Kronecker product, the vectorization and the trace of
a matrix. These are:

vec(XY Z) = (Z∗ ⊗X) vec(Y ), (4a)

tr(XY Z) = (vec (X∗))∗ (I ⊗ Y ) vec(Z), (4b)

where X,Y and Z are matrices of suitable dimensions; vec(·) and tr(·) denote, respec-
tively, the vectorization and the trace of a matrix; ⊗ represents the Kronecker product
of two matrices, and ∗ denotes the transpose of a matrix or a vector.

We investigate a MOR problem for the large-scale system (1) and seek to construct
a reduced-order system (2). Since our goal is to construct a good approximation of the
system (1) on a finite time interval [0, T̄ ], where T̄ > 0 is the terminal time, we first
investigate a worst case error between the output of the system (2) and the output of
(1) on [0, T̄ ]. In order to find a bound for the error between the output y of the original
model and the output ŷ of the reduced system, the arguments from the case of having
an infinite time horizon are used, see, e.g., [1, 8]. Similar estimates can also be found,
e.g., in [5, 6, 13], where H2-error bounds for more general stochastic systems are derived.
There, reduced-order systems are obtained by applying balanced truncation.

Next, we make use of the explicit representations for the outputs as follows:

y(t) = C

∫ t

0
eA(t−s)Bu(s)ds and ŷ(t) = Ĉ

∫ t

0
eÂ(t−s) B̂u(s)ds,

thus yielding

‖y(t)− ŷ(t)‖2 =

∥∥∥∥C ∫ t

0
eA(t−s)Bu(s)ds− Ĉ

∫ t

0
eÂ(t−s) B̂u(s)ds

∥∥∥∥
2

≤
∫ t

0

∥∥∥(C eA(t−s)B − Ĉ eÂ(t−s) B̂
)
u(s)

∥∥∥
2
ds

≤
∫ t

0

∥∥∥C eA(t−s)B − Ĉ eÂ(t−s) B̂
∥∥∥
F
‖u(s)‖2 ds.
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By the Cauchy-Schwarz inequality, we have

‖y(t)− ŷ(t)‖2 ≤
(∫ t

0

∥∥∥C eA(t−s)B − Ĉ eÂ(t−s) B̂
∥∥∥2

F
ds

) 1
2
(∫ t

0
‖u(s)‖22 ds

) 1
2

≤
(∫ t

0

∥∥∥C eAsB − Ĉ eÂs B̂
∥∥∥2

F
ds

) 1
2
(∫ t

0
‖u(s)‖22 ds

) 1
2

≤

(∫ T̄

0

∥∥∥C eAsB − Ĉ eÂs B̂
∥∥∥2

F
ds

) 1
2

‖u‖L2
T̄

for t ∈ [0, T̄ ]. Hence,

max
t∈[0,T̄ ]

‖y(t)− ŷ(t)‖2 ≤
∥∥∥Σ− Σ̂

∥∥∥
H2,T̄

‖u‖L2
T̄
, (5)

where
∥∥∥Σ− Σ̂

∥∥∥
H2,T̄

:=

(∫ T̄
0

∥∥∥C eAsB − Ĉ eÂs B̂
∥∥∥2

F
ds

) 1
2

. We call ‖·‖H2,T̄
the time-

limited H2-norm, since
∥∥∥Σ− Σ̂

∥∥∥
H2,T̄

provides the time-domain representation of the

metric induced by the H2-norm if T̄ → ∞. We can see from (5) that the time-limited
H2-norm is an upper bound for the induced norm from L2

T̄
to L∞

T̄
of the input-output

operator. Whether the time-limited H2-norm coincides with this induced operator norm,
e.g., for single-input-multiple-output or multiple-input-single-output systems, is unlike
the regular H2-case still an open question.

The time-limited H2-error can also be expressed with the help of the time-limited
reachability and observability Gramians. We refer, e.g., to [7] for a further discussion of
these Gramians. In order to show the Gramian based representations of the time-limited
H2-norm of the error system, we first provide the following lemma.

Lemma 2.1. Let A1 ∈ Rd1×d1 , A2 ∈ Rd2×d2 with Λ(A1) ∩ Λ(−A2) = ∅, K1 ∈ Rd1×d3

and K2 ∈ Rd2×d3. Then,

X =

∫ T̄

0
eA1sK1K

∗
2 eA

∗
2s ds,

where X ∈ Rd1×d2, uniquely solves the Sylvester equation

A1X +XA∗2 = −K1K
∗
2 + eA1T̄ K1K

∗
2 eA

∗
2T̄ . (6)

Proof. This result is a consequence of the product rule. Setting g1(t) := eA1tK1 and
g2(t) := K∗2 eA

∗
2t, it holds that

g1(T̄ )g2(T̄ )− g1(0)g2(0) =

∫ T̄

0
dg1(s)g2(s) +

∫ T̄

0
g1(s)dg2(s)

= A1

∫ T̄

0
g1(s)g2(s)ds+

∫ T̄

0
g1(s)g2(s)ds A∗2 = A1X +XA∗2,
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since dg2(s) = g2(s)A∗2ds and dg1(s) = A1g1(s)ds. Furthermore, using (4a), we can
equivalently write (6) as follows:

(Id2 ⊗A1 +A2 ⊗ Id1)︸ ︷︷ ︸
=:A⊗

vec(X) = vec(R12), (7)

where R12 is the right-hand side of (6), and Iq denotes the identity matrix of size q × q.
Note that, the eigenvalues of A⊗ are given by µ

(i)
1 +µ

(j)
2 , where µ

(i)
1 is the ith eigenvalue

of A1 and µ
(j)
2 the jth eigenvalue of A2. Due the assumption on the spectra of A1 and

A2, the matrix A⊗ is invertible, hence a unique solution to (7).

The next proposition shows that the time-limited error can be expressed with the
help of time-limited Gramians. This result is used later on in order to derive first-order
necessary conditions for a minimal error in the time-limited H2-norm.

Proposition 2.2. Let Σ and Σ̂ be the original and reduced-order systems as defined in
(1) and (2), respectively. Then, the time-limited H2-norm of the error system Σ− Σ̂ is
given by ∥∥∥Σ− Σ̂

∥∥∥2

H2,T̄

= tr(CPT̄C
∗) + tr(ĈP̂T̄ Ĉ

∗)− 2 tr(CP2,T̄ Ĉ
∗), (8)

where PT̄ , P2,T̄ and P̂T̄ , respectively, satisfy

APT̄ + PT̄A
∗ = −BB∗ + eAT̄ BB∗ eA

∗T̄ , (9a)

AP2,T̄ + P2,T̄ Â
∗ = −BB̂∗ + eAT̄ BB̂∗ eÂ

∗T̄ , and (9b)

ÂP̂T̄ + P̂T̄ Â
∗ = −B̂B̂∗ + eÂT̄ B̂B̂∗ eÂ

∗T̄ . (9c)

Proof. The definition of the Frobenius norm and the linearity of the integral yield

∥∥∥Σ− Σ̂
∥∥∥2

H2,T̄

=

∫ T̄

0

∥∥∥C eAsB − Ĉ eÂs B̂
∥∥∥2

F
ds

=

∫ T̄

0
tr
(
C eAsBB∗ eA

∗sC∗
)
ds+

∫ T̄

0
tr
(
Ĉ eÂs B̂B̂∗ eÂ

∗s Ĉ∗
)
ds

− 2

∫ T̄

0
tr
(
C eAsBB̂∗ eÂ

∗s Ĉ∗
)
ds

= tr (CPT̄C
∗) + tr

(
ĈP̂T̄ Ĉ

∗
)
− 2 tr

(
CP2,T̄ Ĉ

∗
)

with PT̄ :=
∫ T̄

0 eAsBB∗ eA
∗s ds, P2,T̄ :=

∫ T̄
0 eAsBB̂∗ eÂ

∗s ds, P̂T̄ :=
∫ T̄

0 eÂs B̂B̂∗ eÂ
∗s ds.

Due to Lemma 2.1, it can easily be shown that PT̄ , P2,T̄ and P̂T̄ are the solutions to (9a),
(9b) and (9c), respectively.
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The result of Proposition 2.2 has the same structure as the error expression in [14],
where the case of time-limited balanced truncation has been investigated. Moreover, if
we take the limit T̄ → ∞ in (8), we obtain a representation for the full H2-error that
is derived e.g., in [1]. The next proposition shows that the time-limited H2-norm of the
error system as in Proposition 2.2 can be rewritten using the time-limited observability
Gramians.

Proposition 2.3. Let Σ and Σ̂ be the original and reduced-order systems as defined in
(1) and (2), respectively. Moreover, let PT̄ , P2,T̄ and P̂T̄ be the solutions to (9a), (9b)
and (9c), respectively. Then, the following holds:

tr(CPT̄C
∗) = tr(B∗QT̄B),

tr(ĈP̂T̄ Ĉ
∗) = tr(B̂∗Q̂T̄ B̂),

tr(CP2,T̄ Ĉ
∗) = tr(B̂∗Q2,T̄B),

where the matrices QT̄ , Q2,T̄ and Q̂T̄ , respectively, satisfy

A∗QT̄ +QT̄A = −C∗C + eA
∗T̄ C∗C eAT̄ , (10a)

Â∗Q2,T̄ +Q2,T̄A = −Ĉ∗C + eÂ
∗T̄ Ĉ∗C eAT̄ , and (10b)

Â∗Q̂T̄ + Q̂T̄ Â = −Ĉ∗Ĉ + eÂ
∗T̄ Ĉ∗Ĉ eÂT̄ . (10c)

Proof. We insert the integral representations of PT̄ , P2,T̄ and P̂T̄ and use basic properties
of the trace operator. Thus,

tr(CPT̄C
∗) =

∫ T̄

0
tr(C eAsBB∗ eA

∗sC∗)ds =

∫ T̄

0
tr(B∗ eA

∗sC∗C eAsB)ds,

tr(ĈP̂T̄ Ĉ
∗) =

∫ T̄

0
tr(Ĉ eÂs B̂B̂∗ eÂ

∗s Ĉ∗)ds =

∫ T̄

0
tr(B̂∗ eÂ

∗s Ĉ∗Ĉ eÂs B̂)ds,

tr(CP2,T̄ Ĉ
∗) =

∫ T̄

0
tr(C eAsBB̂∗ eÂ

∗s Ĉ∗)ds =

∫ T̄

0
tr(B̂∗ eÂ

∗s Ĉ∗C eAsB)ds.

Let us defineQT̄ :=
∫ T̄

0 eA
∗sC∗C eAs ds, Q2,T̄ :=

∫ T̄
0 eÂ

∗s Ĉ∗C eAs ds and Q̂T̄ :=
∫ T̄

0 eÂ
∗s Ĉ∗Ĉ eÂs ds.

Furthermore, by using Lemma 2.1, we can show that the QT̄ , Q2,T̄ and Q̂T̄ satisfy the
equations given in (10).

From inequality (5), it can be seen that it makes sense to minimize
∥∥∥Σ− Σ̂

∥∥∥2

H2,T̄

with

respect to the reduced-order matrices Â, B̂ and Ĉ since a small H2,T̄ -error ensures a

small output error. Due to the fact that
∥∥∥Σ− Σ̂

∥∥∥
H2,T̄

is increasing in T̄ , the time-limited

error is less or equal to the error in the full H2-norm ‖·‖H2,∞
. Thus, ‖·‖H2,T̄

provides a

more accurate bound than ‖·‖H2,∞
for the output error in (5). By minimizing ‖·‖H2,T̄

,

we can expect to find a better reduce-order system in the time-interval [0, T̄ ] than the
case of a locally optimal reduced-order system with respect to ‖·‖H2,∞

.
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3 First-Order Necessary Conditions forH2,T Optimal Model
Order Reduction

In this section, we begin by deriving first-order necessary conditions for time-limited
H2-optimal reduced-order systems. In other words, our aim is to construct a reduced-
order system Σ̂ of order r as in (2), such that it minimizes ‖Σ − Σ̂‖2H2,T̄

=: E, where

Σ is the original system as in (1). An expression for E is given in (8). Since the term
tr(CPT̄C

∗) in (8) does not depend on the reduced-order matrices, we focus on minimizing
the expression

Er := tr(ĈP̂T̄ Ĉ
∗)− 2 tr(CP2,T̄ Ĉ

∗). (11)

Before proceeding further, we assume that the matrix Â in (2) is diagonalizable, i.e., there
exists an invertible matrix S such that Â = S−1DS, where D = diag(λ1, . . . , λr). Using
the matrix S as a state-space transformation of (2), the term (11) can be equivalently
rewritten as

Er = tr(ĈS−1SP̂T̄S
∗S−∗Ĉ∗)− 2 tr(CP2,T̄S

∗S−∗Ĉ∗)

= tr(C̃P̃T̄ C̃
∗)− 2 tr(CP̃2,T̄ C̃

∗), (12)

where C̃ = ĈS−1, P̃T̄ = SP̂T̄S
∗, P̃2,T̄ = P2,T̄S

∗, and (·)−∗ denotes the inverse of a

matrices transposed, i.e,
(
(·)−1

)∗
. Furthermore, it can be shown that the matrices P̃T̄

and P̃2,T̄ are the solutions to

AP̃2,T̄ + P̃2,T̄D = −BB̃∗ + eAT̄ BB̃∗ eDT̄ , (13a)

DP̃T̄ + P̃T̄D = −B̃B̃∗ + eDT̄ B̃B̃∗ eDT̄ , (13b)

respectively, where B̃ = SB̂. More precisely, equation (13a) is obtained by multiplying
(9b) with S∗ from the right-hand side, and (13b) is derived by multiplying (9c) with S
and S∗ from the left-hand and right-hand sides, respectively, and by using the relation

eÂT̄ = S−1 eDT̄ S.

In order to find first-order necessary conditions that minimize error expression (12),
we compute the partial derivatives of the form ∂x tr(C̃P̃T̄ C̃

∗) and ∂x tr(CP̃2,T̄ C̃
∗) and

then set

∂x tr(C̃P̃T̄ C̃
∗) = 2∂x tr(CP̃2,T̄ C̃

∗),

where x ∈ {λi, c̃ki, b̃ij}, i ∈ {1, . . . , r}, j ∈ {1, . . . ,m}, k ∈ {1, . . . , p} and c̃ki, b̃ij being
ki-th and ij-th elements of the matrices C̃ and B̃, respectively.

Before proceeding further, we note that with ei, we denote the i-th column of the
identity matrix of suitable dimension which is clear from the context. Next, we aim at
deriving optimality conditions with respect to c̃ki. Towards this, we first note that

∂c̃ki tr(C̃P̃T̄ C̃
∗) = ∂c̃ki tr(C̃∗C̃P̃T̄ )

= tr((∂c̃kiC̃
∗)C̃P̃T̄ + C̃∗(∂c̃kiC̃)P̃T̄ ) = tr(eie

∗
kC̃P̃T̄ + C̃∗eke

∗
i P̃T̄ )

= 2e∗kC̃P̃T̄ ei,
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where we have used the linearity of the trace, the product rule and the fact that P̃T̄ does
not depend on C̃. Since

∂c̃ki tr(CP̃2,T̄ C̃
∗) = tr(CP̃2,T̄ eie

∗
k) = e∗kCP̃2,T̄ ei,

the optimality condition with respect to c̃ki is e∗kC̃P̃T̄ ei = e∗kCP̃2,T̄ ei for all i ∈ {1, . . . , r},
k ∈ {1, . . . , p}. Hence, we obtain

C̃P̃T̄ = CP̃2,T̄ . (14)

We now derive the partial derivatives of the error expression (12) with respect to b̃ij . To
simplify this procedure, we first rewrite (12) by making use of Proposition 2.3 as follows:

Er = tr(C̃P̃T̄ C̃
∗)− 2 tr(CP̃2,T̄ C̃

∗) = tr(B̂∗Q̂T̄ B̂)− 2 tr(B̂∗Q2,T̄B)

= tr(B̃∗Q̃T̄ B̃)− 2 tr(B̃∗Q̃2,T̄B),

where Q̃T̄ = S−∗Q̂T̄S
−1 and Q̃2,T̄ = S−∗Q̂2,T̄ , and the matrices Q̃T̄ and Q̃2,T̄ satisfy

DQ̃2,T̄ + Q̃2,T̄A = −C̃∗C + eDT̄ C̃∗C eDT̄ , (15a)

DQ̃T̄ + Q̃T̄D = −C̃∗C̃ + eDT̄ C̃∗C̃ eDT̄ , (15b)

respectively. Again, (15a) is obtained by multiplying (10b) with S−∗ from the left-hand
side, and we find (15b) by multiplying (10c) with S−∗ from the left-hand side and with
S−1 from the right-hand side. Thus, we have

∂b̃ij tr(B̃B̃∗Q̃T̄ ) = tr((∂b̃ij B̃)B̃∗Q̃T̄ + B̃(∂b̃ij B̃
∗)Q̃T̄ ) = tr(eie

∗
j B̃
∗Q̃T̄ + B̃eje

∗
i Q̃T̄ )

= 2e∗i Q̃T̄ B̃ej

using that Q̃T̄ does not depend on B̃ or b̃ij . Since

∂b̃ij tr(B̃∗Q̃2,T̄B) = tr(eje
∗
i Q̃2,T̄B) = e∗i Q̃2,T̄Bej ,

it is necessary that e∗i Q̃T̄ B̃ej = e∗i Q̃2,T̄Bej for i ∈ {1, . . . , r}, j ∈ {1, . . . ,m}, which can
be equivalently written as

Q̃T̄ B̃ = Q̃2,T̄B. (16)

Next, we first introduce the following lemma in order to derive an optimality condition
with respect to the eigenvalues λi of Â.

Lemma 3.1. The partial derivatives X(i) := ∂λiP̃T̄ and X
(i)
2 := ∂λiP̃2,T̄ solve

DX(i) +X(i)D = −eie∗i P̃T̄ − P̃T̄ eie∗i + T̄ eie
∗
i eDT̄ B̃B̃∗ eDT̄ +T̄ eDT̄ B̃B̃∗ eDT̄ eie

∗
i , (17)

AX
(i)
2 +X

(i)
2 D = −P̃2,T̄ eie

∗
i + T̄ eAT̄ BB̃∗ eDT̄ eie

∗
i , (18)

respectively.
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Proof. The derivative of the left-hand side of (13a) is

AX
(i)
2 +X

(i)
2 D + P̃2,T̄ eie

∗
i ,

which is obtained by applying the product rule. The derivative of the corresponding
right-hand side is

eAT̄ BB̃∗∂λi eDT̄ = eAT̄ BB̃∗ eDT̄ eie
∗
i T̄ ,

because ∂λi eDT̄ = ∂λi diag(eλ1T̄ , . . . , eλiT̄ , . . . , eλrT̄ ) = diag(0, . . . , T̄ eλiT̄ , . . . , 0). This
yields (18). Applying ∂λi to the left-hand side of (13b) provides

eie
∗
i P̃T̄ +DX(i) +X(i)D + P̃T̄ eie

∗
i

again using the product rule. Doing the same with the corresponding right-hand side,
we have

∂λi(e
DT̄ B̃B̃∗ eDT̄ ) = (∂λi eDT̄ )B̃B̃∗ eDT̄ + eDT̄ B̃B̃∗(∂λi eDT̄ )

= T̄ eie
∗
i eDT̄ B̃B̃∗ eDT̄ + eDT̄ B̃B̃∗ eDT̄ eie

∗
i T̄ .

This proves (17).

Before we proceed further, let us introduce the infinite Gramian Q̃∞, which we define
as the solution to

DQ̃∞ + Q̃∞D = −C̃∗C̃. (19)

It is unique if and only if D and −D have no common eigenvalues. Using (19) , we
obtain

∂λi tr(C̃P̃T̄ C̃
∗) = tr(C̃∗C̃X(i)) = − tr([DQ̃∞ + Q̃∞D]X(i)) = − tr(Q̃∞[X(i)D +DX(i)]).

Using Lemma 3.1, we get

∂λi tr(C̃P̃T̄ C̃
∗) = tr(Q̃∞[eie

∗
i P̃T̄ + P̃T̄ eie

∗
i − T̄ eie∗i eDT̄ B̃B̃∗ eDT̄ −T̄ eDT̄ B̃B̃∗ eDT̄ eie

∗
i ])

= 2e∗i Q̃∞[P̃T̄ − T̄ eDT̄ B̃B̃∗ eDT̄ ]ei.

Assuming that D and −A have no common eigenvalues, we define the infinite cross
Gramian, Q̃2,∞ which satisfies

DQ̃2,∞ + Q̃2,∞A
∗ = −C̃∗C. (20)

Hence, it holds that

∂λi tr(CP̃2,T̄ C̃
∗) = tr(C̃∗CX

(i)
2 ) = − tr([DQ̃2,∞ + Q̃2,∞A]X

(i)
2 )

= − tr(Q̃2,∞[X
(i)
2 D +AX

(i)
2 ]) = tr(Q̃2,∞[P̃2,T̄ − T̄ eAT̄ BB̃∗ eDT̄ ]eie

∗
i )

= e∗i Q̃2,∞[P̃2,T̄ − T̄ eAT̄ BB̃∗ eDT̄ ]ei

9



applying Lemma 3.1 again. This leads to the third optimality condition, which is

e∗i Q̃2,∞[P̃2,T̄ − T̄ eAT̄ BB̃∗ eDT̄ ]ei = e∗i Q̃∞[P̃T̄ − T̄ eDT̄ B̃B̃∗ eDT̄ ]ei (21)

for all i ∈ {1, . . . , r}.
Below, the generalized optimality conditions are summarized that have been derived

above. Additionally, we provide an equivalent Kronecker formulation in the next theorem
that is useful for the error analysis in the optimality conditions.

Theorem 3.2. Let the reduced-order system (2) be a locally optimal approximation to
the original system (1) with respect to ‖·‖H2,T̄

. Then, according to (14), (16) and (21),

it holds that

C̃P̃T̄ = CP̃2,T̄ , (22)

Q̃T̄ B̃ = Q̃2,T̄B, (23)

e∗i Q̃2,∞[P̃2,T̄ − T̄ eAT̄ BB̃∗ eDT̄ ]ei = e∗i Q̃∞[P̃T̄ − T̄ eDT̄ B̃B̃∗ eDT̄ ]ei (24)

for all i ∈ {1, . . . , r}, where ei is the ith unit vector and the matrices P̃2,T̄ , P̃T̄ , Q̃2,T̄ , Q̃T̄ ,

Q̃∞ and Q̃2,∞ are the solutions to (13a), (13b), (15a), (15b), (19) and (20), respectively.

Equivalent to (22), (23) and (24), we have

(I ⊗ Ĉ)
[
(I ⊗ Â) + (D ⊗ I)

]−1
(eDT̄ B̃ ⊗ eÂT̄ B̂ − B̃ ⊗ B̂) vec(I)

= (I ⊗ C) [(I ⊗A) + (D ⊗ I)]−1 (eDT̄ B̃ ⊗ eAT̄ B − B̃ ⊗B) vec(I),
(25)

(B̂∗ ⊗ I)
[
(I ⊗D) + (Â∗ ⊗ I)

]−1
(eÂ

∗T̄ Ĉ∗ ⊗ eDT̄ C̃∗ − Ĉ∗ ⊗ C̃∗) vec(I)

= (B∗ ⊗ I) [(I ⊗D) + (A∗ ⊗ I)]−1 (eA
∗T̄ C∗ ⊗ eDT̄ C̃∗ − C∗ ⊗ C̃∗) vec(I)

(26)

and for all i ∈ {1, . . . , r}

vec∗(I)(Ĉ ⊗ C̃)
[
(I ⊗D) + (Â⊗ I)

]−1
(I ⊗ eie∗i )

×
([

(I ⊗D) + (Â⊗ I)
]−1

(eÂT̄ B̂ ⊗ eDT̄ B̃ − B̂ ⊗ B̃)− (T̄ eÂT̄ B̂ ⊗ eDT̄ B̃)

)
vec(I)

= vec∗(I)(C ⊗ C̃) [(I ⊗D) + (A⊗ I)]−1 (I ⊗ eie∗i )

×
(

[(I ⊗D) + (A⊗ I)]−1 (eAT̄ B ⊗ eDT̄ B̃ −B ⊗ B̃)− (T̄ eAT̄ B ⊗ eDT̄ B̃)
)

vec(I).

(27)

Proof. Applying the vec operator to (14) leads to the following equivalent formulation:

vec(C̃P̃T̄ ) = vec(CP̃2,T̄ ).

10



Now, using the vectorization of (13b) and the relation in (4a), we obtain

vec(C̃P̃T̄ ) = (I ⊗ C̃) vec(P̃T̄ ) = (I ⊗ C̃) [(I ⊗D) + (D ⊗ I)]−1 vec(eDT̄ B̃B̃∗ eDT̄ −B̃B̃∗)

= (I ⊗ C̃) [(I ⊗D) + (D ⊗ I)]−1 (eDT̄ B̃ ⊗ eDT̄ B̃ − B̃ ⊗ B̃) vec(I).

Since (I ⊗ C̃) = (I ⊗ Ĉ)(I ⊗S)−1 and (eDT̄ B̃⊗ eDT̄ B̃− B̃⊗ B̃) = (I ⊗S−1)−1(eDT̄ B̃⊗
eÂT̄ B̂ − B̃ ⊗ B̂), we get

vec(C̃P̃T̄ ) = (I ⊗ Ĉ)
[
(I ⊗ Â) + (D ⊗ I)

]−1
(eDT̄ B̃ ⊗ eÂT̄ B̂ − B̃ ⊗ B̂) vec(I).

With the help of (13a), the vectorization of CP̃2,T̄ is given by

vec(CP̃2,T̄ ) = (I ⊗ C) vec(P̃2,T̄ ) = (I ⊗ C) [(I ⊗A) + (D ⊗ I)]−1 vec(eAT̄ BB̃∗ eDT̄ −BB̃∗)

= (I ⊗ C) [(I ⊗A) + (D ⊗ I)]−1 (eDT̄ B̃ ⊗ eAT̄ B − B̃ ⊗B) vec(I)

applying (4a) again, thus (25) follows. Condition (16) is equivalent to

vec(Q̃T̄ B̃) = vec(Q̃2,T̄B),

and with property (4a), it holds that

vec(Q̃T̄ B̃) = (B̃∗ ⊗ I) vec(Q̃T̄ )

= (B̃∗ ⊗ I) [(I ⊗D) + (D ⊗ I)]−1 (eDT̄ C̃∗ ⊗ eDT̄ C̃∗ − C̃∗ ⊗ C̃∗) vec(I)

inserting the vectorized representation of (15b). Using the identities (B̃∗ ⊗ I) = (B̂∗ ⊗
I)(S−∗⊗I)−1 and (eDT̄ C̃∗⊗eDT̄ C̃∗−C̃∗⊗C̃∗) = (S∗⊗I)−1(eÂ

∗T̄ Ĉ∗⊗eDT̄ C̃∗−Ĉ∗⊗C̃∗)
yields

vec(Q̃T̄ B̃) = (B̂∗ ⊗ I)
[
(I ⊗D) + (Â∗ ⊗ I)

]−1
(eÂ

∗T̄ Ĉ∗ ⊗ eDT̄ C̃∗ − Ĉ∗ ⊗ C̃∗) vec(I).

Vectorizing (15a) leads to

vec(Q̃2,T̄ B̃) = (B∗ ⊗ I) [(I ⊗D) + (A∗ ⊗ I)]−1 (eA
∗T̄ C∗ ⊗ eDT̄ C̃∗ − C∗ ⊗ C̃∗) vec(I),

leading to (26). Condition (21) is equivalent to

tr([P̃2,T̄ − T̄ eAT̄ BB̃∗ eDT̄ ]eie
∗
i Q̃2,∞) = tr([P̃T̄ − T̄ eDT̄ B̃B̃∗ eDT̄ ]eie

∗
i Q̃∞)

for every i ∈ {1, . . . , r}. Taking (4b) into account, we can express the trace using the
vec operator as follows:

tr([P̃T̄ − T̄ eDT̄ B̃B̃∗ eDT̄ ]eie
∗
i Q̃∞) = vec∗(P̃T̄ − T̄ eDT̄ B̃B̃∗ eDT̄ )(I ⊗ eie∗i ) vec(Q̃∞).

(28)

11



With the above arguments, we see that the vectorization of (19) yields

vec(Q̃∞) = −(S−∗ ⊗ I)
[
(I ⊗D) + (Â∗ ⊗ I)

]−1
(Ĉ∗ ⊗ C̃∗) vec(I). (29)

Before we proceed further, we need the following two relations:

(S−1 ⊗ I) vec(T̄ eDT̄ B̃B̃∗ eDT̄ ) = (T̄ eÂT̄ B̂ ⊗ eDT̄ B̃) vec(I), (30)

(S−1 ⊗ I) vec(P̃T̄ ) =
[
(I ⊗D) + (Â⊗ I)

]−1
(eÂT̄ B̂ ⊗ eDT̄ B̃ − B̂ ⊗ B̃) vec(I). (31)

We insert (29) into (28) and obtain

tr([P̃T̄ − T̄ eDT̄ B̃B̃∗ eDT̄ ]eie
∗
i Q̃∞)

= vec∗(P̃T̄ − T̄ eDT̄ B̃B̃∗ eDT̄ )(S−∗ ⊗ I)(I ⊗ eie∗i )
[
−(I ⊗D)− (Â∗ ⊗ I)

]−1

× (Ĉ∗ ⊗ C̃∗) vec(I).

We apply (30) and (31) to the above identity. This leads to the following:

tr([P̃T̄ − T̄ eDT̄ B̃B̃∗ eDT̄ ]eie
∗
i Q̃∞)

= vec∗(I)

[
(B̂∗ eÂ

∗T̄ ⊗B̃∗ eDT̄ −B̂∗ ⊗ B̃∗)
[
(I ⊗D) + (Â∗ ⊗ I)

]−1
− (T̄ B̂∗ eÂ

∗T̄ ⊗B̃∗ eDT̄ )

]
× (I ⊗ eie∗i )

[
−(I ⊗D)− (Â∗ ⊗ I)

]−1
(Ĉ∗ ⊗ C̃∗) vec(I)

Using (4b) and evaluating the expression

tr([P̃2,T̄ − T̄ eAT̄ BB̃∗ eDT̄ ]eie
∗
i Q̃2,∞) = vec∗(P̃ ∗2,T̄ − T̄ eDT̄ B̃B∗ eA

∗T̄ )(I ⊗ eie∗i ) vec(Q̃2,∞),

further by inserting the vectorized form of the matrices yields (27).

Remark. The Wilson conditions (22), (23) and (24) are based on the finite time Grami-
ans. Alternatively, we refer [16], where interpolation-based first-order necessary H2,T

optimality conditions are derived.

Furthermore, we would like to mention that there are several other extensions of the
Wilson conditions of first-order ODEs, e.g., to bilinear systems [2, 18], to quadratic-
bilinear systems [3], to delay systems [12].

Having derived optimality conditions, in the following, we propose an iterative al-
gorithm, see Algorithm 1, which we refer to as time-limited IRKA-type algorithm. Like
IRKA for linear systems in [8], this algorithm is based on Sylvester equations. To be
more precise, the projection matrices V and W that are used to determine the reduced
system (2) in Algorithm 1 are computed from (13a) and (15a). In comparison to the
classical IRKA, the time-limited scheme is characterized by an additional term in the
right-hand side of the Sylvester equations.

12



Algorithm 1 Time-limited IRKA-type Algorithm

Input: The system matrices: A,B,C.
Output: The reduced matrices: Â, B̂, Ĉ.

1: Make an initial guess for the reduced matrices Â, B̂, Ĉ.
2: while not converged do
3: Perform the spectral decomposition of Â and define:

D = SÂS−1, B̃ = SB̂, C̃ = ĈS−1.
4: Solve for V and W :

−V D −AV = BB̃∗ − eAT̄BB̃∗eDT̄ ,
−WD −A∗W = C∗C̃ − eA∗T̄C∗C̃eDT̄ .

5: V = orth (V ) and W = orth (W ), where orth (·) returns an orthonormal basis for
the range of a matrix.

6: Determine the reduced matrices:
Â = (W ∗V )−1W ∗AV, B̂ = (W ∗V )−1W ∗B, Ĉ = CV .

7: end while

As for IRKA, the connection between Algorithm 1 and the error measure that is
aimed to be minimized is through the solutions of the underlying Sylvester equations
which also enter in a Gramian based representation of the respective error measure. In
the time-limited framework, the error measure is the H2,T -metric, for which the Gramian
based representation is given in (8) or alternatively through Proposition 2.3.

With this choice of the Sylvester equations, the first-order H2,T optimality condi-
tions as presented in Theorem 3.2 are aimed to be satisfied which is true for classical
IRKA (T̄ → ∞). However, we would like to point out that the proposed algorithm in
general does not construct reduced-order systems which satisfy the first-order necessary
conditions for optimality. Thus, our next goal is to derive expressions, which allow us to
estimate how close the obtained reduced-order systems, corresponding to Algorithm 1,
are to optimality.

Theorem 3.3. Let Â, B̂ and Ĉ be the reduced-order matrices computed by Algorithm 1.
Let Ec be the difference between the left-hand and the right-hand sides of (25). Then,

Ec = (I ⊗ Ĉ)
[
(I ⊗ Â) + (D ⊗ I)

]−1
(eDT̄ B̃ ⊗ (W ∗V )−1W ∗(eAΠ T̄ − eAT̄ )B) vec(I),

where the projection matrix Π is defined as Π := V (W ∗V )−1W ∗. Moreover, the deviation
Eb between both sides of (26) is given by

Eb = (B̂∗ ⊗ I)
[
(I ⊗D) + (Â∗ ⊗ I)

]−1
(V ∗(eA

∗ Π∗ T̄ − eA
∗T̄ )C∗ ⊗ eDT̄ C̃∗) vec(I).

13



For all i = 1, . . . , r the error Eiλ in (27) is Eiλ = Eiλ,1 + Eiλ,2, where

Eiλ,1 = vec∗(I)(Ĉ ⊗ C̃)
[
(I ⊗D) + (Â⊗ I)

]−1
(I ⊗ eie∗i )

×
([

(I ⊗D) + (Â⊗ I)
]−1

((W ∗V )−1W ∗(eAΠ T̄ − eAT̄ )B ⊗ eDT̄ B̃)

−(T̄ (W ∗V )−1W ∗(eAΠ T̄ − eAT̄ )B ⊗ eDT̄ B̃)
)

vec(I)

and the second term is given by

Eiλ,2 = vec∗(I)(C eAT̄ ⊗C̃ eDT̄ )

×
[
(V ⊗ I)

[
(I ⊗D) + (Â⊗ I)

]−1
((W ∗V )−1W ∗ ⊗ I)− [(I ⊗D) + (A⊗ I)]−1

]
× (I ⊗ eie∗i )

[
[(I ⊗D) + (A⊗ I)]−1 (eAT̄ B ⊗ eDT̄ B̃ −B ⊗ B̃)− (T̄ eAT̄ B ⊗ eDT̄ B̃)

]
× vec(I).

Proof. The result is proved in the Appendix.

Theorem 3.3 allows us to point out the cases in which Algorithm 1 works well. The
method is expected to perform well whenever the error expressions Eb, Ec and Eiλ are
small. By Theorem 3.3, the error in the optimality condition (25) is bounded as follows:

‖Ec‖2 ≤
√
mkc

∥∥∥eDT̄ B̃
∥∥∥

2

∥∥∥(W ∗V )−1W ∗(eAΠ T̄ − eAT̄ )B
∥∥∥

2
,

where kc =

∥∥∥∥(I ⊗ Ĉ)
[
(I ⊗ Â) + (D ⊗ I)

]−1
∥∥∥∥

2

. Thus, the norm of the error ‖Ec‖2 is

small if
∥∥∥(W ∗V )−1W ∗(eAΠ T̄ − eAT̄ )B

∥∥∥
2

is small. This is, e.g., given if the columns of

(eAΠ T̄ − eAT̄ )B are close to the kernel of W ∗. At the same time∥∥∥eDT̄ B̃
∥∥∥

2
≤ eλmaxT̄

∥∥∥B̃∥∥∥
2

should not be too large which is given if the largest eigenvalue λmax of Â is small enough
or ideally negative (asymptotic stability of the reduced system).

Similar conclusions can be made by looking at Eb. It is bounded by

‖Eb‖2 ≤
√
pkb

∥∥∥C̃ eDT̄
∥∥∥

2

∥∥∥C(eΠAT̄ − eAT̄ )V
∥∥∥

2

with kb =

∥∥∥∥(B̂∗ ⊗ I)
[
(I ⊗D) + (Â∗ ⊗ I)

]−1
∥∥∥∥

2

. Hence, if
∥∥∥C(eΠAT̄ − eAT̄ )V

∥∥∥
2

is small,

then condition (26) is approximately satisfied. This is true if (eA
∗ Π∗ T̄ − eA

∗T̄ )C∗ is close
to the kernel of V ∗.
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Now, let us finally discuss when the deviation in (27) is close to zero. The term∣∣∣Eiλ,1∣∣∣ can be bounded in a similar way as ‖Ec‖2 such that it is also small if again∥∥∥(W ∗V )−1W ∗(eAΠ T̄ − eAT̄ )B
∥∥∥

2
is neglectable, whereas for

∣∣∣Eiλ,2∣∣∣ it is required to have

the product∥∥∥C eAT̄
∥∥∥

2

∥∥∥C̃ eDT̄
∥∥∥

2

×
∥∥∥∥(V ⊗ I)

[
(I ⊗D) + (Â⊗ I)

]−1
((W ∗V )−1W ∗ ⊗ I)− [(I ⊗D) + (A⊗ I)]−1

∥∥∥∥
2

small. This is ensured for sufficiently large T̄ if A is an asymptotically stable matrix.
Of course, there can be cases, in which eAT̄ is still large notwithstanding asymptotic

stability (e.g. T̄ is relatively small). Consequently, a larger error
∣∣∣Eiλ,2∣∣∣ is possible.

Remark. One of main bottleneck in order to apply Algorithm 1 is the product of the
matrix exponential to vectors. In the literature, several methods have been proposed to
tackle such a problem in a numerically efficient way. For a brief discussion on it, we
refer the readers to [9] and references therein. However, we would like to point out here
that in our numerical experiments, we compute products such as eAb exactly (given a
matrix A and a matrix/vector b), rather than inexactly as proposed, e.g., in [9] since the
considered problems are of moderate sizes.

4 Numerical Experiments

In this section, we investigate the efficiency of the time-limited IRKA inspired algo-
rithm, see Algorithm 1, and compare it with conventional IRKA (unbounded time),
see [8]. All the experiments are done in MATLAB R© 8.0.0.783 (R2012b) on a machine
Intel R©Xeon R©CPU X5650 @ 2.67GHz with 48 GB RAM. We run both iterative algo-
rithms until the relative change in the eigenvalues of Â becomes less a tolerance of 10−8.
We initialize conventional IRKA randomly, and we use the reduced-order system ob-
tained by conventional IRKA as an initial guess for Algorithm 1. In Table 1, we list the
examples used in order to compare the algorithms. For all examples, we compare the
impulse responses of the systems, which is simulated using the impulse command from
MATLAB. To quantify the quality of reduced-order systems, we determine either the
absolute or the relative error, depending on weather the impulse response crosses zero
or not. We define the absolute E(a)(t) and relative errors E(r)(t), respectively, as follows:

E(a)(t) := ‖y(δ)(t)− y(δ)
r (t)‖ and E(r)(t) :=

‖y(δ)(t)− y(δ)
r (t)‖

‖y(t)‖
, (32)

where y(δ) and y
(δ)
r are the impulses responses of original and reduced-order systems,

respectively. In addition to this, we numerically examine how far away the reduced-
order systems due to IRKA and Algorithm 1 are from satisfying the optimality conditions
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Example n m p

Heat equation 200 1 1

Clamped beam model 348 1 1

Component 1r of the International Space Station 270 3 3

Table 1: A list of examples with their dimensions (n), the number of inputs (m)
and outputs (p). These examples are taken from http://slicot.org/20-site/

126-benchmark-examples-for-model-reduction.

Method Ec Eb Eλ
IRKA 2.7× 10−3 2.7× 10−3 9.10× 10−3

TL-IRKA 1.39× 10−4 1.39× 10−4 1.58× 10−1

Table 2: Heat example: relative errors in satisfying the optimality conditions.

(25)–(27). To measure this, we first define the following quantities:

Ec = ‖R(c)
l − R(c)

r ‖/‖R
(c)
l ‖, (33a)

Eb = ‖R(b)
l − R(b)

r ‖/‖R
(b)
l ‖, (33b)

Eλ = max
i

(Rλi), Rλi =
∣∣∣R(λi)

l − R(λi)
r

∣∣∣ / ∣∣∣R(λi)
l

∣∣∣ , (33c)

where R
(c)
l and R

(c)
r are the left and right-hand sides of (25); R

(b)
l and R

(b)
r are the left

and right-hand sides of (26); R
(λi)
l and R

(λi)
r are the left and right-hand sides of (27);

max(·) denotes the maximum.

In the following, we discuss each of these examples in detail. Beginning with the
heat example, we compute the reduced-order systems by employing conventional IRKA
and Algorithm 1 of order r = 5. We consider the terminal time T̄ = 1. In Figure 1, we
compare the impulse responses, which shows that Algorithm 1 yields a reduced-order
system, replicating the systems dynamics better in the time interval [0, T̄ ]. We observe
that Algorithm 1 takes 23 iterations to converge. Furthermore, as it has been noted in
Section 3, Algorithm 1 does not yield a reduced-order system, satisfying the optimality
conditions. Thus, in Table 2 we measure the error of the reduced-order systems obtained
via IRKA and Algorithm 1 in the optimality conditions as described in (33). The
table shows that for the heat example, Algorithm 1 does a better job in satisfying the
two optimality conditions, and in contrast the third condition is satisfied better by the
reduced-order system due to conventional IRKA. However, when we compare the time
limited H2-norm of the error by using the reduced-order systems obtained by IRKA and
Algorithm 1, then we observe, see Table 3, that Algorithm 1 yields a better reduced-order
system with respect to H2,T̄ .

As a second example, we have taken a beam model which is reduced to the order
r = 10 using IRKA and Algorithm 1. For this, we set the terminal time to T̄ = 2.
Here, we notice that Algorithm 1 takes 28 iterations to converge. Next, we compare the
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Figure 1: Heat example: a comparison of the impulse response of the original system
and reduced-order system obtained via IRKA and Algorithm 1.

Method Relative H2,T̄ − error

IRKA 4.65× 10−3

TL-IRKA 8.77× 10−5

Table 3: Heat example: relative H2,T̄ -error comparison.

Method Ec Eb Eλ
IRKA 5.96× 10−2 5.96× 10−2 9.47× 10−2

TL-IRKA 3.94× 10−4 3.94× 10−4 1.26× 10−1

Table 4: Beam example: relative error in satisfying the optimality conditions.

Method Relative H2,T̄ − error

IRKA 6.98× 10−3

TL-IRKA 6.05× 10−4

Table 5: Beam example: relative H2,T̄ -error comparison.

impulse responses of the original and reduced-order systems in Figure 2. Clearly, we
observe that Algorithm 1 produces a better reduced-order system as compared to IRKA
at least within the time interval of interest. Furthermore, in Table 4, we measure the
error of the obtained reduced-order systems in the optimality conditions, where we make
a similar observation as in the heat example. We also compare the time limited H2-norm
of the error by using the reduced-order systems obtained by IRKA and Algorithm 1 in
Table 5, and observe that Algorithm 1 yields a better reduced-order system with respect
to H2,T̄ .

Lastly, we present the results for the model of a space station. We first set the
terminal time to T̄ = 1. For this example, we construct reduced systems of order r = 20
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Figure 2: Beam example: a comparison of the impulse response of the original system
and reduced-order system obtained via IRKA and Algorithm 1.
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Figure 3: ISS example: a comparison of the impulse response of the original system and
reduced-order system obtained via IRKA and Algorithm 1.

via IRKA and Algorithm 1 and compare the quality of them using the impulse response.
Firstly, we note that Algorithm 1 takes 11 iterations to converge. Since the example has
3 inputs and 3 outputs, for brevity we refrain from plotting the impulse response, but
we rather plot the norm absolute error which is shown in Figure 3. We observe that
Algorithm 1 constructs a reduced-order system which replicates the dynamics better
within the time interval of interest. For this example, we again compute how far away the
reduced-order systems are from satisfying the optimality conditions exactly in Table 6.
For this example as well, Algorithm 1 does a better job than IRKA in satisfying the
first two conditions, but fails to perform better for the third conditions. However,
importantly, Algorithm 1 yields a better reduced-order system. Like the previous two
example, we observe that the time limited H2-norm of the error system for Algorithm 1
is better compared to IRKA.
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Method Ec Eb Eλ
IRKA 2.61× 10−1 1.62× 10−1 1.08× 10−1

TL-IRKA 6.00× 10−2 5.43× 10−3 4.46× 10−1

Table 6: ISS example: relative error in satisfying the optimality conditions.

Method Relative H2,T̄ − error

IRKA 2.29× 10−2

TL-IRKA 6.87× 10−5

Table 7: ISS example: relative H2,T̄ -error comparison.

5 Conclusions

In this work, we have studied model order reduction of large-scale linear time-invariant
systems. We have showed that the error between the original and reduced-order system
on a finite time interval can be bounded using the time-limited H2-norm. Next, we have
derived first-order optimality conditions, which are necessary for the time-limited H2-
norm of the error system to be minimal. Based on these optimality conditions, we have
proposed an iterative scheme which is inspired by the iterative rational Krylov algorithm
[8]. Moreover, we have proposed a disgnostic measure, showing how close the resulted
reduced-order systems are to optimality. We have concluded this paper by comparing
conventional IRKA, an algorithm leading to a good reduced system on an infinite time
horizon, with the proposed iterative scheme in several numerical experiments. The
simulations have showed that time-limited IRKA can outperform IRKA on the finite
time interval of interest.

As we have seen, the proposed iterative-type algorithm for the time-limited problem
does not satisfy the optimality conditions exactly. Therefore, it would be worthwhile to
come up with an improved algorithm, allowing us to construct a reduced-order system
which satisfy the derived optimality conditions exactly
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A Proof of Theorem 3.3

The left side of (25) can be expressed as

(I ⊗ Ĉ)
[
(I ⊗ Â) + (D ⊗ I)

]−1
(eDT̄ B̃ ⊗ (W ∗V )−1W ∗ eAT̄ B − B̃ ⊗ B̂) vec(I) + Ec,
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where we apply the identity eÂT̄ B̂ = (W ∗V )−1W ∗ eAΠ T̄ B which is obtained by using

the series representation of the matrix exponential eÂT̄ , the definitions of Â, B̂ in Al-

gorithm 1 and
[
(W ∗V )−1W ∗AV

]k
(W ∗V )−1W ∗ = (W ∗V )−1W ∗

[
AV (W ∗V )−1W ∗

]k
for

k ∈ N. We set K̂ := (I ⊗ Â) + (D ⊗ I) and K := (I ⊗A) + (D ⊗ I) and obtain

(I ⊗ Ĉ)K̂−1(eDT̄ B̃ ⊗ (W ∗V )−1W ∗ eAT̄ B − B̃ ⊗ B̂) vec(I)

= (I ⊗ Ĉ)K̂−1(I ⊗ (W ∗V )−1W ∗)(eDT̄ B̃ ⊗ eAT̄ B − B̃ ⊗B) vec(I)

= (I ⊗ Ĉ)K̂−1(I ⊗ (W ∗V )−1W ∗)K vec(V )

= (I ⊗ Ĉ)K̂−1(I ⊗ (W ∗V )−1W ∗)K vec(V (W ∗V )−1W ∗V )

= (I ⊗ Ĉ)K̂−1(I ⊗ (W ∗V )−1W ∗)K(I ⊗ V (W ∗V )−1W ∗) vec(V )

= (I ⊗ Ĉ)K̂−1K̂(I ⊗ (W ∗V )−1W ∗) vec(V )

= (I ⊗ C)(I ⊗ V )(I ⊗ (W ∗V )−1W ∗) vec(V ) = (I ⊗ C) vec(V )

= (I ⊗ C)K−1(eDT̄ B̃ ⊗ eAT̄ B − B̃ ⊗B) vec(I),

where the last term above is the right side of (25). The left-hand side of (26) is given
by

(B̂∗ ⊗ I)
[
(I ⊗D) + (Â∗ ⊗ I)

]−1
(V ∗ eA

∗T̄ C∗ ⊗ eDT̄ C̃∗ − Ĉ∗ ⊗ C̃∗) vec(I) + Eb,

taking the identity eÂ
∗T̄ Ĉ∗ = V ∗ eA

∗ Π∗ T̄ C∗ into account. So, by setting K̂2 := (I ⊗
D) + (Â⊗ I) and K2 := (I ⊗D) + (A⊗ I), we have

(B̂∗ ⊗ I)K̂−∗2 (V ∗ eA
∗T̄ C∗ ⊗ eDT̄ C̃∗ − Ĉ∗ ⊗ C̃∗) vec(I)

= (B̂∗ ⊗ I)K̂−∗2 (V ∗ ⊗ I)(eA
∗T̄ C∗ ⊗ eDT̄ C̃∗ − C∗ ⊗ C̃∗) vec(I)

= (B̂∗ ⊗ I)K̂−∗2 (V ∗ ⊗ I)K∗2 vec(W ∗)

= (B̂∗ ⊗ I)K̂−∗2 (V ∗ ⊗ I)K∗2 vec(W ∗V (W ∗V )−1W ∗)

= (B̂∗ ⊗ I)K̂−∗2 (V ∗ ⊗ I)K∗2 (W (W ∗V )−∗V ∗ ⊗ I) vec(W ∗)

= (B̂∗ ⊗ I)K̂−∗2 K̂∗2 (V ∗ ⊗ I) vec(W ∗)

= (B∗ ⊗ I)(W (W ∗V )−∗ ⊗ I)(V ∗ ⊗ I) vec(W ∗) = (B∗ ⊗ I) vec(W ∗)

= (B∗ ⊗ I)K−∗2 (eA
∗T̄ C∗ ⊗ eDT̄ C̃∗ − C∗ ⊗ C̃∗) vec(I)

(34)

which is the right-hand side of (26). The left-hand side of (27) is given by

Eiλ,1+ vec∗(I)(Ĉ ⊗ C̃)K̂−1
2 (I ⊗ eie∗i )

(
K̂−1

2 ((W ∗V )−1W ∗ eAT̄ B ⊗ eDT̄ B̃ − B̂ ⊗ B̃)

−(T̄ (W ∗V )−1W ∗ eAT̄ B̂ ⊗ eDT̄ B̃)
)

vec(I).

For the term right of (I ⊗ eie∗i ) it holds that[
K̂−1

2 ((W ∗V )−1W ∗ eAT̄ B ⊗ eDT̄ B̃ − B̂ ⊗ B̃)
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−(T̄ (W ∗V )−1W ∗ eAT̄ B̂ ⊗ eDT̄ B̃)
]

vec(I)

= K̂−1
2 ((W ∗V )−1W ∗ ⊗ I)(eAT̄ B ⊗ eDT̄ B̃ −B ⊗ B̃) vec(I)

− (T̄ (W ∗V )−1W ∗ eAT̄ B ⊗ eDT̄ B̃) vec(I)

= K̂−1
2 ((W ∗V )−1W ∗ ⊗ I)K2 vec(V ∗)− (T̄ (W ∗V )−1W ∗ eAT̄ B ⊗ eDT̄ B̃) vec(I)

= K̂−1
2 ((W ∗V )−1W ∗ ⊗ I)K2 vec(V ∗W (W ∗V )−∗V ∗)

− (T̄ (W ∗V )−1W ∗ eAT̄ B ⊗ eDT̄ B̃) vec(I)

= K̂−1
2 ((W ∗V )−1W ∗ ⊗ I)K2(V (W ∗V )−1W ∗ ⊗ I) vec(V ∗)

− (T̄ (W ∗V )−1W ∗ eAT̄ B ⊗ eDT̄ B̃) vec(I)

= ((W ∗V )−1W ∗ ⊗ I) vec(V ∗)− (T̄ (W ∗V )−1W ∗ eAT̄ B ⊗ eDT̄ B̃) vec(I)

= (W ∗V )−1W ∗ ⊗ I)
[
K−1

2 (eAT̄ B ⊗ eDT̄ B̃ −B ⊗ B̃)− (T̄ eAT̄ B ⊗ eDT̄ B̃)
]

vec(I).

Since ((W ∗V )−1W ∗ ⊗ I) and (I ⊗ eie∗i ) commute, it remains to analyze the following
term

vec∗(I)(Ĉ ⊗ C̃)K̂−1
2 ((W ∗V )−1W ∗ ⊗ I) =

[
(W (W ∗V )−∗ ⊗ I)K̂−∗2 (Ĉ∗ ⊗ C̃∗) vec(I)

]∗
.

We add a zero such that

(W (W ∗V )−∗ ⊗ I)K̂−∗2 (Ĉ∗ ⊗ C̃∗) vec(I)

= (W (W ∗V )−∗ ⊗ I)K̂−∗2 (V ∗ ⊗ I))[(C∗ ⊗ C̃∗)− (eA
∗T̄ C∗ ⊗ eDT̄ C̃∗)] vec(I)

+ (W (W ∗V )−∗ ⊗ I)K̂−∗2 (V ∗ ⊗ I))(eA
∗T̄ C∗ ⊗ eDT̄ C̃∗) vec(I).

Using the same steps as in (34), we find

(W (W ∗V )−∗ ⊗ I)K̂−∗2 (V ∗ ⊗ I))[(C∗ ⊗ C̃∗)− (eA
∗T̄ C∗ ⊗ eDT̄ C̃∗)] vec(I)

= K−∗2 [(C∗ ⊗ C̃∗)− (eA
∗T̄ C∗ ⊗ eDT̄ C̃∗)] vec(I).

Consequently, we have

vec∗(I)(Ĉ ⊗ C̃)K̂−1
2 ((W ∗V )−1W ∗ ⊗ I) = vec∗(I)(C ⊗ C̃)K−1

2

+ vec∗(I)(C eAT̄ ⊗C̃ eDT̄ )
[
(V ⊗ I)K̂−1

2 ((W ∗V )−1W ∗ ⊗ I)−K−1
2

]
. (35)

The term in (35) provides Eiλ,2 which concludes the proof. �
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[9] P. Kürschner. Balanced truncation model order reduction in limited time intervals
for large systems. Adv. Comput. Math., pages 1–24, 2018.

[10] L. Meier and D. Luenberger. Approximation of linear constant systems. IEEE
Trans. Autom. Control, 12(5):585–588, 1967.

[11] B. C. Moore. Principal component analysis in linear systems: controllability, ob-
servability, and model reduction. IEEE Trans. Autom. Control, AC-26(1):17–32,
1981.

[12] I. P. D. Pereira, S. Gugercin, C. Beattie, C. Poussot-Vassal, and C. Seren. H2-
optimality conditions for reduced time-delay systems of dimension one. In 13th
IFAC Workshop on Time Delay Systems TDS 2016, volume 49, pages 7–12, 2016.

[13] M. Redmann and P. Benner. An H2-Type Error Bound for Balancing-Related
Model Order Reduction of Linear Systems with Lévy Noise. Systems Control Lett.,
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