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Abstract

Societies often rely on human experts to take a wide variety of decisions affecting their
members, from jail-or-release decisions taken by judges and stop-and-frisk decisions taken
by police officers to accept-or-reject decisions taken by academics. In this context, each
decision is taken by an expert who is typically chosen uniformly at random from a pool
of experts. However, these decisions may be imperfect due to limited experience, implicit
biases, or faulty probabilistic reasoning. Can we improve the accuracy and fairness of the
overall decision making process by optimizing the assignment between experts and decisions?

In this paper, we address the above problem from the perspective of sequential decision
making and show that, for different fairness notions from the literature, it reduces to a se-
quence of (constrained) weighted bipartite matchings, which can be solved efficiently using
algorithms with approximation guarantees. Moreover, these algorithms also benefit from
posterior sampling to actively trade off exploitation—selecting expert assignments which
lead to accurate and fair decisions—and exploration—selecting expert assignments to learn
about the experts’ preferences and biases. We demonstrate the effectiveness of our algo-
rithms on both synthetic and real-world data and show that they can significantly improve
both the accuracy and fairness of the decisions taken by pools of experts.

1 Introduction

In recent years, there have been increasing concerns about the potential for unfairness of al-
gorithmic decision making. Moreover, these concerns have been often supported by empirical
studies, which have provided, e.g., evidence of racial discrimination [8, 10]. As a consequence,
there have been a flurry of work on developing computational mechanisms to make sure that the
machine learning methods that fuel algorithmic decision making are fair [3, 4, 5, 6, 13, 14, 15].
In contrast, to the best of our knowledge, there is a lack of machine learning methods to ensure
fairness in human decision making, which is still prevalent in a wide range of critical applica-
tions such as, e.g., jail-or-release decisions by judges, stop-and-frisk decisions by police officers
or accept-or-reject decisions by academics. In this work, we take a first step towards filling this
gap.

More specifically, we focus on a problem setting that fits a variety of real-world applications,
including the ones mentioned above: binary decisions come sequentially over time and each
decision need to be taken by a human decision maker, typically an expert, who is chosen from
a pool of experts. For example, in jail-or-release decisions, the expert is a judge who needs
to decide whether she grants bail to a defendant; in stop-and-frisk decisions, the expert is a
police officer who needs to decide whether she stop (and potentially frisk) a pedestrian; or, in
accept-or-reject decisions, the expert is an academic who needs to decide whether a paper is
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accepted in a conference (or a journal). In this context, our goal is then to find the optimal
assignments between human decision makers and decisions which maximizes the accuracy of
the overall decision making process while satisfying several popular notions of fairness studied
in the literature.

In this paper, we represent (biased) human decision making using threshold decisions rules [3]
and then show that, if the thresholds used by each judge are known, the above problem can be
reduced to a sequence of matching problems, which can be solved efficiently with approximation
guarantees. More specifically:

I. Under no fairness constraints, the problem can be cast as a sequence of maximum weighted
bipartite matching problems, which can be solved exactly in polynomial (quadratic) time [12].

II. Under (some of the most popular) fairness constraints, the problem can be cast as a
sequence of bounded color matching problems, which can be solved using a bi-criteria al-
gorithm based on linear programming techniques with a 1/2 approximation guarantee [9].

Moreover, if the thresholds used by each judge are unknown, we also show that, if we estimate
the value of each threshold using posterior sampling, we can effectively trade off exploitation—
taking accurate and fair decisions—and exploration—learning about the experts’ preferences
and biases. More formally, we can show that posterior samples achieve a sublinear regret in
contrast to point estimates, which suffer from linear regret.

Finally, we experiment on synthetic data and real jail-or-release decisions by judges [8]. The
results show that: (i) our algorithms improve the accuracy and fairness of the overall human
decision making process with respect to random assignment; (ii) our algorithms are able to
ensure fairness more effectively if the pool of experts is diverse, e.g., there exist harsh judges,
lenient judges, and judges in between; and, (iii) our algorithms are able to ensure fairness even
if a significant percentage of judges (e.g., 50%) are biased against a group of individuals sharing
a certain sensitive attribute value (e.g., race).

2 Preliminaries

In this section, we first define decision rules and formally define their utility and group benefit.
Then, we revisit threshold decision rules, a type of decision rules which are optimal in terms of
accuracy under several notions of fairness from the literature.

Decision rules, their utilities, and their group benefits. Given an individual with a
feature vector x ∈ R

d, a (ground-truth) label y ∈ {0, 1}, and a sensitive attribute z ∈ {0, 1}, a
decision rule d(x, z) ∈ {0, 1} controls whether the ground-truth label y is realized by means of a
binary decision about the individual. As an example, in a pretrial release scenario, the decision
rule specifies whether the individual remains in jail, i.e., d(x, z) = 1 if she remains in jail and
d(x, z) = 0 otherwise; the label indicates whether a released individual would reoffend, i.e.,
y = 1 if she would reoffend and y = 0 otherwise; the feature vector x may include the current
offense, previous offenses, or times she failed to appear in court; and the sensitive attribute z
may be race, i.e., black vs white.

Further, we define random variables X, Y , and Z that take on values X = x, Y = y, and
Z = z for an individual drawn randomly from the population of interest. Then, we measure
the (immediate) utility as the overall profit obtained by the decision maker using the decision
rule [3], i.e.,

u(d, c) = E [Y d(X,Z) − c d(X,Z)] = E
[
d(X,Z)

(
PY |X,Z − c

)]
(1)

where c ∈ (0, 1) is a given constant. For example, in a pretrial release scenario, the first term
is proportional to the expected number of violent crimes prevented under d, the second term is
proportional to the expected number of people detained, and c measures the cost of detention in
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units of crime prevented. Here, note that the above utility reflects only the proximate costs and
benefits of decisions rather than long-term, systematic effects. Finally, we define the (immediate)
group benefit as the fraction of beneficial decisions received by a group of individuals sharing a
certain value of the sensitive attribute z [15], i.e.,

bz(d, c) = E [f(d(X,Z = z))] . (2)

For example, in a pretrial release scenario, one may define f(x) = 1 − x and thus the benefit
to the group of white individuals be proportional to the expected number of them who are
released under d. Remarkably, most of the notions of (un)fairness used in the literature, such as
disparate impact [1], equality of opportunity [6] or disparate mistreatment [13] can be expressed
in terms of group benefits. Finally, note that, in some applications, the beneficial outcome may
correspond to d(X,Z) = 1.

Optimal threshold decision rules. Assume the conditional distribution P (Y |X,Z) is given1.
Then, the optimal decision rules d∗ that maximize u(d, c) under the most popular fairness
constraints from the literature are threshold decision rules [3, 6]:

— No fairness constraints: the optimal decision rule under no fairness constraints is given
by the following deterministic threshold rule:

d∗(X,Z) =

{
1 if pY=1|X,Z ≥ c

0 otherwise.
(3)

— Disparate impact, equality of opportunity, and disparate mistreatment : the optimal deci-
sion rule which satisfies (avoids) the three most common notions of (un)fairness is given
by the following deterministic threshold decision rule:

d∗(X,Z) =

{
1 if pY=1|X,Z ≥ θZ

0 otherwise,
(4)

where θZ ∈ [0, 1] are constants that depend only on the sensitive attribute and the fairness

notion of interest. Note that the unconstraint optimum can be also expressed using the

above form if we take θZ = c.

3 Problem Formulation

In this section, we first use threshold decision rules to represent biased human decisions and
then formally define our sequential human decision making process.

Biased humans as threshold decision rules. Inspired by recent work by Kleinberg et
al. [7], we model a biased human decision maker v who has access to pY |X,Z using the following
threshold decision rule:

dv(X,Z) =

{
1 if pY=1|X,Z ≥ θV,Z

0 otherwise,
(5)

where θV,Z ∈ [0, 1] are constants that depend on the decision maker and the sensitive attribute,
and they represent human decision makers’ biases (or preferences) towards groups of people
sharing a certain value of the sensitive attribute z. For example, in a pretrial release scenario,
if a judge v is generally more lenient towards white people (z = 0) than towards black people
(z = 1), then θv,z=0 > θv,z=1.

1In practice, the conditional distribution may be approximated using a machine learning model trained on
historical data.
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In the above formulation, note that we assume all experts make predictions using the same
(true) conditional distribution pY |X,Z , i.e., all experts have the same prediction ability. It would
be very interesting to relax this assumption and account for experts with different prediction
abilities. However, this entails a number of non trivial challenges and is left for future work.

Sequential human decision making problem. A set of human decision makers V =
{vk}k∈[n] need to take decisions about individuals over time. More specifically, at each time
t ∈ {1, . . . , T}, there are m decisions to be taken and each decision i ∈ [m] is taken by a human
decision maker vi(t) ∈ V, who applies her threshold decision rule dvi(t)(X,Z), defined by Eq. 5,
to the corresponding feature vector xi(t) and sensitive attribute zi(t). Note that we assume
that yi(t)|xi(t), zi(t) ∼ pY |X,Z for all t ∈ {1, . . . , T} and i ∈ [m].

At each time t, our goal is then to find the assignment of human decision makers vi(t) to
individuals (xi(t), zi(t)), with vi(t) 6= vj(t) for all i 6= j, that maximizes the expected utility of
a sequence of decisions, i.e.,

u≤T ({dvi(t)}i,t, c) =
1

mT

T∑

t=1

m∑

i=1

dvi(t)(xi(t), zi(t))(pY=1|xi(t),zi(t) − c), (6)

where u≤T ({dvi(t)}i,t, c) is a empirical estimate of a straight forward generalization of the utility
defined by Eq. 1 to multiple decision rules.

4 Proposed Algorithms

In this section, we formally address the problem defined in the previous section without and with
fairness constraints. In both cases, we first consider the setting in which the human decision
makers’ thresholds θV,Z are known and then generalize our algorithms to the setting in which
they are unknown and need to be learned over time.

Decisions under no fairness constraints. We can find the assignment of human decision
makers {v(t)}Tt=1 with the highest expected utility by solving the following optimization prob-
lem:

maximize

T∑

t=1

m∑

i=1

dvi(t)(xi(t), zi(t))(pY=1|xi(t),zi(t) − c)

subject to vi(t) ∈ V for all t ∈ {1, . . . , T},
vi(t) 6= vj(t) for all i 6= j. (7)

— Known thresholds. If the thresholds θV,Z are known for all human decision makers, the
above problem decouples into T independent subproblems, one per time t ∈ {1, . . . , T}, and
each of these subproblems can be cast as a maximum weighted bipartite matching, which can
be solved exactly in polynomial (quadratic) time [12]. To do so, for each time t, we build a
weighted bipartite graph where each human decision maker vj is connected to each individual
(xi(t), zi(t)) with weight wji, where

wji =

{
pY |xi(t),zi(t) − c if pY |xi(t),zi(t) ≥ θvj ,zi(t)

0 otherwise,

Finally, it is easy to see that the maximum weighted bipartite matching is the optimal assign-
ment, as defined by Eq. 7.
— Unknown thresholds. If the thresholds are unknown, we need to trade off exploration, i.e.,
learning about the thresholds θV,Z , and exploitation, i.e., maximizing the average utility. To this

4



aim, for every decision maker v, we assume a Beta prior over each threshold θv,z ∼ Beta(α, β).
Under this assumption, after round t, we can update the (domain of the) distribution of θv,z(t)
as:

max(0, θLv,z(t)) ≤ θv,z(t) ≤ min(1, θHv,z(t)), (8)

where

θLv,z(t) = max
t′≤t | zi(t′)=z, vi(t′)=v, dv(xi(t′),z)=0

pY=1|xi(t′),z

θHv,z(t) = min
t′≤t | zi(t′)=z, vi(t′)=v, dv(xi(t′),z)=1

pY=1|xi(t′),z,

and write the posterior distribution of θv,z(t) as

p(θv,z(t)|D(t)) =
Γ(α+ β)(θHv,z(t)− θv,z(t))

α−1(θv,z(t)− θLv,z(t))
β−1

Γ(α)Γ(β)(θHv,z(t)− θLv,z(t))
α+β−1

, (9)

Then, at the beginning of round t+1, one can think of estimating the value of each threshold
θv,z(t) using point estimates, i.e., θ̂v,z = argmax p(θv,z(t)|D(t)), and use the same algorithm as
for known thresholds. Unfortunately, if we define regret as follows:

R(T ) = u≤T ({dvi(t)}i,t, c)− u≤T ({dv∗
i
(t)}i,t, c), (10)

where vi(t) is the optimal assignment under the point estimates of the thresholds and v∗i (t) is
the optimal assignment under the true thresholds, we can show the following theoretical result
(proven in the Appendix A):

Proposition 1 The optimal assignments with deterministic point estimates for the thresholds

suffers linear regret Θ(T ).

The above result is a consequence of insufficient exploration, which we can overcome if we
estimate the value of each threshold θv,z(t) using posterior sampling, i.e., θ̂v,z ∼ p(θv,z(t)|D(t)),
as formalized by the following theorem:

Theorem 2 The expected regret of the optimal assignments with posterior samples for the

thresholds is O(
√
T ).

Proof Sketch. The proof of this theorem follows via interpreting the problem setting as a rein-
forcement learning problem. Then, we can apply the generic results for reinforcement learning
via posterior sampling of [11]. In particular, we map our problem to an MDP with horizon 1 as
follows. The actions in the MDP correspond to assigning m individuals to n experts (given by
K) and the reward is given by the utility at time t.

Then, it is easy to conclude that the expected regret of the optimal assignments with poste-
rior samples for the thresholds is O(S

√
KT log(SKT )), whereK = n.(n−1).(n−2) . . . (n−m+1)

denotes the possible assignments of m individuals to n experts and S is a problem dependent
parameter. S quantifies the the total number of states/realizations of feature vectors xi and
sensitive features zi to the i ∈ [m] individuals—note that S is bounded only for the setting
where feature vectors xi and sensitive features zi are discrete.

Given that the regret only grows as O(
√
T ) (i.e., sublinear in T ), this theorem implies that

the algorithm based on optimal assignments with posterior samples converges to the optimal
assignments given the true thresholds as T → ∞.

Decisions under fairness constraints. For ease of exposition, we focus on disparate impact,
however, a similar reasoning follows for equality of opportunity and disparate mistreatment [6,
13].
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To avoid disparate impact, the optimal decision rule d∗(X,Z), given by Eq. 4, maximizes
the utility, as defined by Eq. 1, under the following constraint [3, 13]:

DI(d∗, c) = |bz=1(d
∗, c)− bz=0(d

∗, c)| ≤ α. (11)

where α ∈ [0, 1] is a given parameter which controls the amount of disparate impact—the smaller
the value of α, the lower the disparate impact of the corresponding decision rule. Similarly, we
can calculate a empirical estimate of the disparate impact of a decision rule d at each time t as:

DIt(d, c) =
1

m
|bt,z=1(d, c) − bt,z=0(d, c)| . (12)

where bt,z(d, c) =
∑m

i=1 I(zi = z)f(d(xi(t), zi(t))), where f(·) defines what is a beneficial out-
come. Here, it is easy to see that, for the optimal decision rule d∗ under impact parity, DIt(d

∗, c)
converges to DI(d∗, c) as m → ∞, and 1/T

∑T
t=1 DIt(d

∗, c) converges to DI(d∗, c) as T → ∞.
For a fixed α, assume there are at least m(1 − α) experts with θv,z < c, at least m(1 − α)

experts with θv,z ≥ c for each z = 0, 1, and n ≥ 2m. Then, we can find the assignment of human
decision makers {v(t)} with the highest expected utility and disparate impact less than α as:

maximize
T∑

t=1

m∑

i=1

dvi(t)(xi(t), zi(t))(pY =1|xi(t),zi(t) − c),

subject to vi(t) ∈ V for all t ∈ {1, . . . , T},
vi(t) 6= vj(t) for all i 6= j,

bt,z(d
∗, c) − αmz(t) ≤ bt,z({dvi(t)}i)∀ t, z

bt,z({dvi(t)}i) ≤ bt,z(d
∗, c) + αmz(t)∀ t, z. (13)

where andmz(t) is the number of decisions with sensitive attribute z at round t and bt,z({dvi(t)}i) =∑m
i=1 I(zi = z)f(dvi(t)(xi(t), zi(t)))). Here, the assignment v

∗(t) given by the solution to the
above optimization problem satisfies that DIt({dv∗

i
(t)}i, c) ∈ [DIt(d, c) − α,DIt(d, c) + α] and

thus limT→∞DI≤T ({dv∗
i
(t)}i,t, c) ≤ α.

— Known thresholds. If the thresholds are known, the problem decouples into T independent
subproblems, one per time t ∈ {1, . . . , T}, and each of these subproblems can be cast as a
constrained maximum weighted bipartite matching. To do so, for each time t, we build a
weighted bipartite graph where each human decision maker vj is connected to each individual
(xi(t), zi(t)) with weight wji, where

wji =

{
pY |xi(t),zi(t) − c if pY |xi(t),zi(t) ≥ θvj ,zi(t)

0 otherwise,

and we additionally need to ensure that, for z ∈ {0, 1}, the matching S satisfies that

bt,z(d
∗, c)− αmz(t) ≤

∑

(j,i)∈S:zi=z

g(wji) and
∑

(j,i)∈S:zi=z

g(wji) ≤ bt,z(d
∗, c) + αmz(t),

where mz(t) denotes the number of individuals with sensitive attribute z at round t and the
function g(wji) depends on what is the beneficial outcome, e.g., in a pretrial release scenario,
g(wji) = I(wji 6= 0). Remarkably, we can reduce the above constrained maximum weighted
bipartite matching problem to an instance of the bounded color matching problem [9], which
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allows for a bi-criteria algorithm based on linear programming techniques with a 1/2 approxi-
mation guarantee. To do so, we just need to rewrite the above constraints as

∑

(j,i)∈S:zi=z

g(wji) ≤ bt,z(d
∗, c) + αmz(t), and (14)

∑

(j,i)∈S:zi=z

gC(wji) ≤ (1 + α)mz(t)− bt,z(d
∗, c). (15)

To see the equivalence between the above constraints and the original ones, one needs to realize
that we are looking for a perfect matching and thus

∑
(j,i)∈S:zi=z

[
g(wji) + gC(wji)

]
= mz(t).

For example, in a pretrial release scenario, g(wji) = I(wji 6= 0) and gC(wji) = I(wji = 0).
— Unknown thresholds. If the threshold are unknown, we proceed similarly as in the case
under no fairness constraints, i.e., we again assume Beta priors over each threshold, update
their posterior distributions after each time t, and use posterior sampling to set their values at
each time.

Finally, for the regret analysis, we focus on an alternative unconstrained problem, which is
equivalent to the one defined by Eq. 13 by Lagrangian duality [2]:

maximize

T∑

t=1

m∑

i=1

dvi(t)(xi(t), zi(t))(pY =1|xi(t),zi(t) − c)

+
T∑

t=1

m∑

i=1

λl,t,z

(
bt,z(d

∗, c)− bt,z({dvi(t)}i)− αmz(t)
)

+

T∑

t=1

m∑

i=1

λu,t,z

(
bt,z({dvi(t)}i)− bt,z(d

∗, c)− αmz(t)
)

subject to vi(t) ∈ V for all t ∈ {1, . . . , T},
vi(t) 6= vj(t) for all i 6= j. (16)

where λl,t,z ≥ 0 and λu,t,z ≥ 0 are the Lagrange multipliers for the band constraints. Then,
we can then state the following theoretical result (the proof easily follows from the proof of
Theorem 2):

Theorem 3 The expected regret of the optimal assignments for the problem defined by Eq. 16

with posterior samples for the thresholds is O(
√
T ).

5 Experiments

In this section we empirically evaluate our framework on both synthetic and real data. To
this end, we compare the performance, in terms of both utility and fairness, of the following
algorithms:
— Optimal: Every decision is taken using the optimal decision rule d∗, which is defined by
Eq. 3 under no fairness constraints and by Eq. 4 under fairness constraints.
— Known: Every decision is taken by a judge following a (potentially biased) decision rule
dv, as given by Eq. 5. The threshold for each judge is known and the assignment between
judges and decisions is found by solving the corresponding matching problem, i.e., Eq, 7 under
no fairness constraints and Eq. 13 under fairness constraints.
— Unknown: Every decision is taken by a judge following a (potentially biased) decision rule
dv, proceeding similarly as in “Known”. However, the threshold for each judge is unknown it
is necessary to use posterior sampling to estimate the thresholds.
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Figure 1: Performance in synthetic data. Panels (a) and (b) show the trade-off between expected
utility and disparate impact. For the utility, the higher the better and, for the disparate impact,
the lower the better. Panel (c) shows the regret achieved by our algorithm under unknown
experts’ thresholds as defined in Eq. 10. Here, the solid lines show the results for m = 20 and
dashed lines for m = 10

— Random: Every decision is taken by a judge following a (potentially biased) decision rule
dv. The assignment between judges and decision is random.

5.1 Experiments on Synthetic Data

Experimental setup. For every decision, we first sample the sensitive attribute zi ∈ {0, 1}
from Bernouilli(0.5) and then sample pY=1|xi,zi ∼ Beta(3, 5) if zi = 0 and from pY=1|xi,zi ∼
Beta(4, 3), otherwise. For every expert, we generate her decision thresholds θv,0 ∼ Beta(0.5, 0.5)
and θv,1 ∼ Beta(5, 5). Here we assume there are n = 3m experts, to ensure that there are at
least m(1−α) experts with θv,z < c, at least m(1−α) experts with θv,z ≥ c for z ∈ {0, 1}, and
Finally, weset m = 20, T = 1000 and c = 0.5, and the beneficial outcome for an individual is
d = 1, i.e., f(d) = d.

Results. Figures 1(a)-(b) show the expected utility and the disparate impact after T units of
time for the optimal decision rule and for the group of experts under the assignments provided
our algorithms and under random assignments. We find that the experts chosen by our algorithm
provide decisions with higher utility and lower disparate impact than the experts chosen at
random, even if the thresholds are unknown. Moreover, if the threshold are known, the experts
chosen by our algorithm closely match the performance of the optimal decision rule both in
terms of utility and disparate impact. Finally, we compute the regret as defined by Eq. 10, i.e.,
the difference between the utilities provided by algorithm with Known and Unknown thresholds
over time. Figure 1(c) summarizes the results, which show that, as time progresses, the regret
degreases at a rate O(

√
T ).

5.2 Experiments on Real Data

Experimental setup. We use the COMPAS recidivism prediction dataset compiled by ProP-
ublica [8], which comprises of information about all criminal offenders screened through the
COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) tool in Broward
County, Florida during 2013-2014. In particular, for each offender, it contains a set of demo-
graphic features (gender, race, age), the offender’s criminal history (e.g., the reason why the
person was arrested, number of prior offenses), and the risk score assigned to the offender
by COMPAS. Moreover, ProPublica also collected whether or not these individuals actually
recidivated within two years after the screening.

In our experiments, the sensitive attribute z ∈ {0, 1} is the race (white, black), the label y
indicates whether the individual recidivated (y = 1) or not (y = 0), the decision rule d specifies
whether an individual is released from jail (d = 1) or not (d = 0) and, for each sensitive attribute
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Figure 2: Performance in COMPAS data. Panels (a) and (b) show the expected utility and true
utility and panel (c) shows the disparate impact. For the expected and true utility, the higher
the better and, for the disparate impact, the lower the better.

z, we approximate pY |X,Z=z using a logistic regression classifier, which we train on 25% of the
data. Then, we use the remaining 75% of the data to evaluate our algorithm as follows. Since we
do not have information about the identify of the judges who took each decision in the dataset,
we create N = 3m (fictitious) judges and sample their thresholds from a θ ∼ Beta(τ, τ), where
τ controls the diversity (lenient vs harsh) across judges by means the standard deviation of
the distribution since std(θ) = 1

4τ(2τ+1) . Here, we consider two scenarios: (i) all experts are

unbiased towards race and thus θv0 = θv1 and (ii) 50% of the experts are unbiased towards race
and the other 50% are biased, i.e., θv1 = 1.2θv0. Finally, we consider m = 20 decisions per
round, which results into 197 rounds, where we assign decisions to rounds at random.

Results. Figure 2 shows the expected utility, the true utility and the disparate impact after
T units of time for the optimal decision rule and for the group of unbiased experts (scenario
(i)) under the assignments provided our algorithms and under random assignments. The true
utility û≤T (d, c) is just the utility after T units of time given the actual true y values rather
than pY |X,Z , i.e., û≤T (d, c) = 1

T

∑T
t=1

∑m
i=1 d(xi(t), zi(t))(yi − c). Similarly as in the case of

synthetic data, we find that the judges chosen by our algorithm provide higher expected utility
and true utility as well as lower disparate impact than the judges chosen at random, even if the
thresholds are unknown.

Figure 3 shows the probability that a round does not allow for an assignment between judges
and decisions with less than α disparate impact for different pools of experts of varying diversity
and percentage of biased judges. The results show that, on the one hand, our algorithms are
able to ensure fairness more effectively if the pool of experts is diverse and, on the other hand,
our algorithms are able to ensure fairness even if a significant percentage of judges (e.g., 50%)
are biased against a group of individuals sharing a certain sensitive attribute value.

6 Conclusions

In this paper, we have proposed a set of practical algorithms to improve the utility and fairness
of a sequential decision making process, where each decision is taken by a human expert, who is
selected from a pool experts. Experiments on synthetic data and real jail-or-release decisions by
judges show that our algorithms are able to mitigate imperfect human decisions due to limited
experience, implicit biases or faulty probabilistic reasoning. Moreover, they also reveal that our
algorithms benefit from higher diversity across the pool experts helps and and they are able to
ensure fairness even if a significant percentage of judges are biased against a group of individuals
sharing a certain sensitive attribute value (e.g., race).

There many interesting venues for future work. For example, in our work, we assumed
all experts make predictions using the same (true) conditional distribution and then apply
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(a) Known θ (b) Unknown θ

Figure 3: Feasibility in COMPAS data. Probability that a round does not allow for an as-
signment between judges and decisions with less than α disparate impact for different pools of
experts of varying diversity and percentage of biased judges.

(potentially) different thresholds. It would be very interesting to relax the first assumption and
account for experts with different prediction abilities. Moreover, we have also assumed that
experts do not learn from the decisions they take over time, i.e., their prediction model and
thresholds are fixed. It would be very . In some scenarios, a decision is taking jointly by a group
of experts, e.g., faculty recruiting decisions. It would be a natural follow-up to the current work
to design our algorithms for such scenario. Finally, in our experiments, we have to generate
fictitious judges since we do not have information about the identify of the judges who took
each decision. It would be very valuable to gain access to datasets with such information [7].
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A Proof sketch of Proposition 1

Consider a simple setup with n = 2 experts and m = 1 decision at each round t ∈ [T ]. Further-
more, we fix the following two things before setting up the problem instance: (i) let g(·) be a
deterministic function which computes a point estimate of a distribution (e.g., mean, or MAP);
(ii) we assume a deterministic tie-breaking by the assignment algorithm, and w.l.o.g. expert
j = 1 is preferred over expert j = 2 for assignment when both of them have same edge weights.

For the first expert j = 1, we know the exact value of the threshold θ1,z. For the second
expert j = 2, the threshold θ2,z could take any value in the range [0, 1] and we are given a prior

distribution p(θ2,z). Let us denote θ̃2,z = g
(
p(θ2,z)

)
. Now, we construct a problem instance for

which the algorithm would suffer linear regret separately for θ̃2,z > 0 and θ̃2,z = 0.

Problem instance if θ̃2,z > 0

We consider a problem instance as follows: c = 0, θ2,z = 0, θ1,z =
c+θ̃2,z

2 , and for all t ∈ [T ]

we have pY=1|xi(t),zi(t) uniformly sampled from the range (c, θ̃2,z) (note that m = 1 and there is
only one individual i = 1 at each round t). The algorithm would always assign the individual

to expert j = 1 and has a cumulative expected utility of
3T θ̃2,z

8 . However, given the true thresh-
olds, the algorithm would have always assigned the individual to expert j = 2 and would have a

cumulative expected utility of
T θ̃2,z
2 . Hence, the algorithm suffers a linear regret of R(T ) =

T θ̃2,z
8 .

Problem instance if θ̃2,z = 0

We consider a problem instance as follows: c = 1, θ2,z = 1, θ1,z =
c+θ̃2,z

2 , and for all t ∈ [T ]

we have pY=1|xi(t),zi(t) uniformly sampled from the range (θ̃2,z, c) (note that m = 1 and there is
only one individual i = 1 at each round t). The algorithm would always assign the individual

to expert j = 1 and has a cumulative expected utility of
−T θ̃2,z

8 . However, given the true thresh-
olds, the algorithm would have always assigned the individual to expert j = 2 and would have

a cumulative expected utility of 0. Hence, the algorithm suffers a linear regret of R(T ) =
T θ̃2,z

8 .
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