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SUMMARY

The hippocampal formation encodes maps of the
physical environment [1–5]. A key question in neuro-
science is whether its spatial coding principles also
provide a universal metric for the organization of
non-spatial information. Initial evidence comes from
studies revealing directional modulation of fMRI re-
sponses in humans [6, 7] during navigation through
abstract spaces and the involvement of place and
grid cells in encoding of non-spatial feature dimen-
sions [8]. However, a critical feature of a map-like
representation is information about distances be-
tween locations, which has yet only been demon-
strated for physical space [4, 9]. Here, we probe
whether the hippocampus similarly encodes dis-
tances between points in an abstract space spanned
by continuous stimulus-feature dimensions that
were relevant to the acquisition of a novel concept.
We find that, after learning, two-dimensional dis-
tances between individual positions in the abstract
space were represented in the hippocampal multi-
voxel pattern aswell as in the univariate hippocampal
signal as indexed by fMRI adaptation. These results
support the notion that the hippocampus computes
domain-general, multidimensional cognitive maps
along continuous dimensions.

RESULTS

In a feedback-based categorization task, participants acquired

the concept of two abstract stimulus categories, which was

defined within a two-dimensional space along the stimulus di-

mensions of opacity and circle size with the diagonal as category

boundary (Figure 1). Prior to the categorization task, six objects

were associated with six specific abstract stimuli (randomized

across participants) to place the objects in clearly defined dis-

tances to each other. Finally, the abstract space was explored

in a free-recall task (‘‘navigation’’; Figure 1), which required col-

lecting certain objects by editing the features of a random ab-

stract stimulus until it matched the stimulus associated with
the requested object. Learning took place over the course of

2 days. To ensure hippocampal dependency of the acquired in-

formation following a night of sleep on day 2, we introduced

slight changes to the space by associating two of the objects

with new abstract stimuli. All six associations were treated

equally during learning on day 2. Critically, fMRI data were

acquired during object-viewing blocks, immediately before and

after the learning phase, in order to test whether hippocampal

responses to the objects correspond to their relative two-dimen-

sional distances in the feature space.

Object Detection Task (in fMRI)
The six objects that were associated with abstract stimuli during

learning, plus an additional catch object, were presented multi-

ple times in a randomized sequence that was identical between

the pre- and the post-learning block. Participants indicated via

button press whether or not a presented object was the catch

object. The task was performed with high accuracy (pre-learning

[mean ± SD]: 97.19% ± 0.98%; post-learning: 98.01% ± 1.74%),

indicating that participants paid attention to the objects.

Learning Tasks
The six object-abstract stimulus associations were learned with

high accuracy (final block on day 1 [96% ± 4%]; final block on

day 2 [83% ± 2%]; Figure S1A). In the categorization task,

each participant’s performance exceeded chance level (50%)

in all six analysis bins à 60 trials and peaked with an average ac-

curacy rate (across participants) of 80% in the final bin (Fig-

ure S1B). When being asked for their categorization strategy at

the end of the experiment, no participant indicated the use of a

spatial rule or an imagination strategy of the spatial layout. Nav-

igation-free recall task data revealed that, during the second half

of the task, participants’ paths (feature editing process) from

start stimuli to stimuli associated with the target objects were

significantly more consistent with the shortest possible paths

on day 1 (t(63) = 3.665, p < 0.001; day 2: t(66) = 1.268, p =

0.209; Figure S1C). This shift to taking shorter paths through

the feature space might reflect improved recall of associations

as well as the buildup of a map-like mental representation.

Neuroimaging
We hypothesized that the hippocampus maps distances be-

tween objects in an abstract multidimensional space defined
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Figure 1. Two-Dimensional Concept

Learning Tasks and Scanning Task

(A) Experimental timeline. Learning (outside MRI;

task-icons left to right: association, categorization,

and navigation) took place over 2 days and was

framed by object-viewing blocks inside the scan-

ner to measure the emergence of neural concept

representations.

(B) (Left) In the learning phase, participants asso-

ciated six objects with six abstract stimuli (asso-

ciation). (Middle) Subsequently, they learned to

categorize abstract stimuli into two categories

(A and B) based on a relational rule (concept) that

set the diagonal through the two-dimensional

feature space as category boundary (categoriza-

tion). (Right) Participants ‘‘navigated’’ the feature

space by collecting requested objects through

merging a ‘‘start’’ stimulus into the stimulus asso-

ciated with the object (navigation-free recall).

(C) In identical object-viewing blocks inside the

scanner, six different objects were presented in a

randomized sequence with 30 repetitions per ob-

ject. Objects were on screen for 1 s and were fol-

lowed by a fixation cross for inter-trial-intervals

(ITIs) ranging from 3.5 to 6.5 s. Participants had to

indicate via button press for each object whether it

was the trampoline (catch object) or any other

object. Catch trial rate was 10%.

See also Figure S1.

Please cite this article in press as: Theves et al., The Hippocampus Encodes Distances in Multidimensional Feature Space, Current Biology (2019),
https://doi.org/10.1016/j.cub.2019.02.035
along the stimulus-feature dimensions, akin to physical space,

as closer objects being represented more similar, akin to [4]

and [9] in the spatial domain. First, we probed the representation

of two-dimensional distances in the hippocampus in an fMRI

adaptation analysis. To this end, we regressed each object’s dis-

tance to the preceding object against each voxel’s time series in

the post-learning block and submitted the resulting beta

weights, averaged across all voxels within the hippocampal

region of interest (ROI), to group-level analysis. We found that

hippocampal responses decreased with decreasing distance

between objects (HPC: t(33) = 1.943; p = 0.027; Figure 2). Hippo-

campal adaptation did not differ significantly across sub-regions

(one-factorial permutation ANOVA F(3, 30) = 0.977; p = 0.442). In

post hoc analyses, we did not observe effects in other brain re-

gions that survived correction for multiple comparisons on a

whole-brain level (cluster-extend-based thresholding; z = 2.3;

p = 0.05). The distance effect did not occur in regions in which

we would not expect coding for distances between the objects

in multidimensional feature space (postcentral gyrus: t(33) =

0.525; p = 0.301), specifically also not in sites along the ventral

visual stream (lateral occipital cortex, [LOC]: t(33) = 1.300;

p = 0.106) which have been shown to code for the two feature di-

mensions (luminance and size) alone [10] (Figures S2A and S2B).

Additionally, we investigated representational changes as a

consequence of the learning process in the hippocampal multi-

voxel pattern. We tested whether changes in hippocampal
2 Current Biology 29, 1–6, April 1, 2019
pattern similarity across objects from the

pre-learning to the post-learning block

corresponded to the distances between

objects as introduced in the learning

phase. The overall hippocampal pattern
did not significantly reflect the two-dimensional distances (bilat-

eral HPC; t(33) = �0.4331; p = 0.3295). However, in accordance

with previous studies demonstrating coding differences along

the long axes as well as between hemispheres [11, 12], we

observed a significant main effect of ROIs (F(3, 30) = 3.647;

p = 0.008) in a one-factorial permutation ANOVA, and post hoc

tests showed that the pattern in the anterior right HPC encoded

the two-dimensional distances (anterior right HPC t(33) =

�2.869, p = 0.012; anterior left HPC: t(33) = �0.173, p = 0.500;

posterior left HPC: t(33) = 1.593, p = 0.797; posterior right

HPC: t(33) = �0.728, p = 0.460). As expected, pattern similarity

increased for small and decreased for large distances (Figure 3).

We did not observe this effect in regions in which we would

not expect coding for abstract distances (postcentral gyrus:

t(33)= �0.091, p = 0.468; LOC: t(33)= 0.677, p = 0.766; Figures

S2A and S2B). These analyses show that the hippocampus rep-

resents the two-dimensional distances between objects located

at different positions in abstract feature space.

DISCUSSION

For the first time, we demonstrate that, during concept learning,

the human hippocampus encodes distances in a multidimen-

sional abstract space akin to distances in navigational space.

After participants had encountered an abstract space that

was defined along two task-relevant continuous perceptual



Figure 2. Two-Dimensional Hippocampal Distance Code for Feature

Space Revealed by BOLD Adaptation

Schematic of two-dimensional distances (red line) in feature space (left).

Average of parameter estimates (pes) of the ‘‘distance to preceding object’’

regressor in all hippocampal voxels. Hippocampal adaptation decreases with

increasing two-dimensional distance between two successively presented

objects (right). Asterisk (*) indicates significance at p = 0.05. Error bars indicate

SEM. See also Figure S2.
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stimulus-feature dimensions and had learned to associate ob-

jects with specific stimuli in this space, their hippocampal re-

sponses to the objects reflected the relative two-dimensional

distances between the objects. First, hippocampal adaptation

scaled with the distance between successively presented ob-

jects, and second, multivoxel pattern similarity across objects

corresponded to their pairwise distances.

So far, the idea that spatial coding principles apply also to non-

spatial domains was supported by studies indicating directional

modulation of fMRI responses [6, 7], and the involvement of

spatially tuned cells in the rat hippocampus and entorhinal cortex

[8] in representing non-spatial feature dimensions [6] demon-

strated that the blood-oxygen-level-dependent (BOLD) signal

in ventral medial prefrontal cortex (vmPFC) and entorhinal cortex

(EC) encoded the path angle during navigation in a two-dimen-

sional space defined by the length of two stimulus features

and [7] showed that, during a virtual role-playing game, the hip-

pocampal response tracked the angle between a participant’s

viewpoint and a character’s position in space defined by two so-

cial dimensions. Comparing the current paradigm to [6], it is

important to note that the grid-cell like signal in EC and vmPFC

was related to the use of structural information only, although

in the current paradigm, mapping the objects according to their

conceptual properties requires a conjunction of structural infor-

mation (two-dimensional space defined by the ratio of opacity

and circle size) and object-specific (sensory and semantic)

information. We do not find evidence for a two-dimensional dis-

tance representation in the EC (mask from Jülich histological

atlas, thresholded at 50% probability; adaptation: t(33) =

1.538, p = 0.064; representational similarity analysis [RSA]:

t(33) = 0.740), p = 0.769). This different localization of map-like

representations of multidimensional non-spatial information in

EC and hippocampus between the two studies fits well with

the idea that the EC extracts the generalized structure of an envi-

ronment and the hippocampus shows conjunctive codes to set

specific information in temporal or spatial contexts. Furthermore,

these studies focused on ‘‘navigation- and direction-related’’ ac-

tivity, and it remained unclear whether abstract information

would also be represented in a map-like format independent of

navigational demands (e.g., as in the present object viewing
blocks). On that note, [13] showed that the entorhinal cortex

maps associative strength of implicitly encoded (not task-rele-

vant), discrete relations that were defined by the temporal dis-

tances between sequentially presented objects. Although this

finding provides evidence for the notion that the hippocampal

formation encodes information along a non-spatial dimension

independent of navigational demands, relations were defined

via associative regularities of discrete variables rather than

abstracted information that emerges from a combination of

two task-relevant continuous dimensions as shown in the pre-

sent study. Thus, our findings significantly go beyond previous

research on navigation of abstract spaces [6–8] and distance

coding in physical space [4, 5, 9], in support of the cognitive

map theory [3] and ultimately in support of universal hippocam-

pal coding principles underlying the formation of multidimen-

sional spaces that are independent of cognitive domain.

Multi-feature similarity coding has also been investigated in

the domain of visual perception [14]. Here, LOC was shown to

encode conjoint representations of behaviorally integral, but

not of separable, feature dimensions during stimulus presenta-

tion. Congruent with [14], we do not find a combined representa-

tion of our two separable dimensions in LOC either. A critical

difference of our paradigm though is the cognitive nature of the

task, involving prior association of ‘‘perceptually unrelated’’

objects to two task-relevant stimulus feature dimensions and

the visual absence of these features during our critical fMRI mea-

surement, imposing the question of how higher level cognitive

areas, such as the hippocampus, would treat two task-relevant

but perceptually separable dimensions. In this regard, our results

offer insight in potential differences in multi-feature similarity

coding across cognitive processes and brain regions.

Importantly, the changes in neural object representations can

only be attributed to the introduced distances between the ob-

jects, as the object-to-abstract stimulus assignment was ran-

domized across participants. As during the object-viewing

blocks participants were not instructed to retrieve any informa-

tion acquired in the learning phase, a fairly automatic process

is conceivable.

The distance effect reflected in hippocampal fMRI adaptation

could, in principle, indicate the imagination of the path through

the two-dimensional feature space (editing features in the free-

recall task) between stimuli associated with the preceding and

currently presented object, where longer paths would require

more intense processing and result in less adaptation. We

consider this unlikely, as participants were neither instructed to

perform any cognitive operation involving distance information

nor were the paths between objects ever experienced directly.

Instead, navigation to objects only occurred from different start

stimuli, and distances would thus need to be inferred indirectly,

e.g., via construction of amental map. In this context, adaptation

among neurons with partially overlapping place fields might ac-

count for the two-dimensional distance effect on hippocampal

adaptation.

As in the present design perceptual and conceptual similar-

ity map onto the same two-dimensional space, it is difficult to

explicitly distinguish whether the hippocampus maps the two-

dimensional distances between objects for the purpose of

concept learning or merely in accordance with the perceptual

similarity of their associated abstract stimuli. We consider the
Current Biology 29, 1–6, April 1, 2019 3



Figure 3. Hippocampal Multivoxel Pattern Reflects Two-Dimensional Distances in Feature Space

After learning relative to pre-learning baseline, two-dimensional distances between objects in feature space (left) significantly correlate with anterior right hip-

pocampal pattern similarity across object pairs (middle; both matrices depict data of one example subject). Bars (right) depict the across-subject correlations

between two-dimensional distances between objects and across-object pattern similarity in each ROI. Pattern similarity in the anterior right hippocampus in-

creases significantly with decreasing distance. Asterisk (*) indicates significance at p = 0.05 corrected formultiple comparisons. Error bars indicate SEM. See also

Figure S2.
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latter explanation less probable, given that the hippocampal

formation was shown to map continuous sensory dimensions

only if they are behaviorally relevant [8], and behavioral rele-

vance is, in the present study, to a significant degree ascribed

via concept learning (the combination of values on both di-

mensions assigns the category to a given symbol). Still, further

research is necessary to explicitly distinguish these options.

One might further question whether the representation of dis-

tances between the objects could also be explained by

perceptual similarity of the input to the hippocampus during

a potential pattern completion process in which the associated

abstract stimuli would be recalled. We regard this unlikely for

two reasons: first, participants were not instructed to recall

the associated stimulus during presentation of the objects in

the scanner. As they were further engaged in an orthogonal

object detection task, increasing their cognitive load, it is

questionable that participants spend additional resources on

recalling currently irrelevant information. Second, if the hippo-

campal distance effects would reflect a two-dimensional

perceptual similarity code forwarded to the hippocampus by

upstream regions during a pattern completion process, we

would expect the distance effects in the respective sensory

representation cortex (LOC for processing of luminance and

size) [10], which we did not observe in the present study.

Together, this suggests that, in the present study, the hippo-

campus encodes a combined multidimensional representation

of task-relevant, non-spatial dimensions entailing relational

distances across multiple entities in an abstract space for

the purpose of concept learning.

We probed distance representations using both fMRI adapta-

tion as well as representational similarity analysis. The represen-

tation of two-dimensional distances in the hippocampus after

learning was shown in both analyses, which parallels previous

demonstrations of spatial distance coding in the human hippo-

campus (adaptation [4] and similarity based [9]). The distance

in abstract space between successively presented objects was

reflected in the adaptation over all hippocampal voxels, and

the distance effect on multivoxel pattern similarity was located
4 Current Biology 29, 1–6, April 1, 2019
anteriorly. This regional difference between the analyses might

be due to the anterior-posterior gradient in memory integration

[11, 15] and the different degrees to which information was inte-

grated in each analysis: although the representational similarity

analysis reflects a multistep integration over all repetitions of

each object, fMRI adaptation is a 1-step-back analysis and

thus is likely more sensitive to effects on a fine-grained scale.

Further, it has been demonstrated that univariate and multivoxel

pattern analyses are susceptible to different sources of variance

(subject-level variance in mean activation and voxel-level vari-

ability in the effect of a condition within subjects, respectively),

and diverging results between the two do thus not per se allow

conclusions about the nature of the neural code [16]. It might

also be worth noting that, in the present RSA as compared to

the adaptation analysis, we additionally remove noise on the

single-subject level by subtracting the pre-learning from the

post-learning correlation matrix. Although, for both analyses,

the reported group-level effects can, due to object randomiza-

tion, be ascribed to our critical manipulation, the higher suscep-

tibility to noise on the individual subject level in the adaptation

analysis might be one reason for lower effects as compared to

the RSA results. Although the relationship between the present

distance code detected in the hippocampal univariate signal

and multivoxel pattern cannot be exactly determined, we can,

importantly, confirm that both markers used to identify distance

coding in spatial navigation (adaptation [4] and similarity based

[9]) can be successfully applied to study abstract spaces.

The distance code for abstract information demonstrated

here provides compelling evidence for the idea that the hippo-

campus encodes new information in form of a cognitive map

[3, 17]. Such a map-like cognitive representation allows infer-

ences about relationships that are not directly experienced

(i.e., participants never navigated directly between the six ob-

jects, and the distances, reflected in hippocampal response

pattern, might have been inferred through the creation of a

two-dimensional representation defined along the two stim-

ulus-feature dimensions) and therefore enables cognitive

operations, such as reasoning, generalization, and abstraction
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[18–21], which are necessary for the organization and use of

knowledge [22].

An open question refers to the generalizability of the map-like

representation to more complex real world concepts, which are

often defined by multiple, not necessarily orthogonal dimen-

sions. It remains to be tested whether hippocampal activity

would reflect the distances between locations defined in a multi-

dimensional space and whether the scale of distance represen-

tations would be shaped by correlated dimensions.

Furthermore, the question emerges of how the category

boundary in the present space would affect grid coding during

navigation as demonstrated for a homogeneous and contin-

uous feature space [6]. In physical space, environmental

boundaries were shown to distort [23–25] or segment grid pat-

terns [26] in entorhinal cortex, and it was also shown that, with

navigational experience in two neighboring compartments,

grids rescale to provide a metric for a unified large-scale envi-

ronment [27, 28]. The latter effect could occur in the current

concept learning paradigm if coarse categorical information

is acquired before representing the exact distances across all

objects.

By demonstrating that the hippocampus encodes distances

between locations in a multidimensional feature space, the pre-

sent study critically supports the idea that hippocampal coding

principles are independent of the cognitive domain and can pro-

vide a suitable format to represent conceptual knowledge.
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MATLAB R2014A MathWorks https://www.mathworks.com

FSL 5.0.9 FMRIB; [29] https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

Presentation 16.4 Neurobehavioral Systems https://www.neurobs.com

Anaconda 2.7 Python https://anaconda.org/anaconda/python
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to the Lead Contact, Stephanie Theves (theves@cbs.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirty-six healthy students from the Radboud University campus participated in this study. All participants were right-handed and

had normal or corrected-to-normal vision. Two participants were excluded from further analyses: One participant was excluded

due to misunderstanding of the task instruction during the object-detection task and one due to technical problems during data

acquisition. The final group consisted of 34 participants (24 females, age 18-30, mean = 23.6, SD = 2.9). All participants gave written

informed consent and were financially compensated for participation. The study was approved by the local ethics committee (CMO

Arnhem-Nijmegen, the Netherlands).

METHOD DETAILS

Behavioral procedures
The study took place in two sessions over the course of two consecutive days, with amaximumof 30 hours between both sessions. A

pre-learning object-viewing block (scanned) preceded the first learning phase (outside scanner). On the subsequent day a second

learning phase was performed in between two additional object viewing blocks (scanned) identical to the first one (Figure 1A). During

these blocks participants performed an object detection task (Figure 1C). The research question of this report is addressed by the

analysis of the first (pre-learning) and the last (post-learning) object-viewing block and the report in the main text is thus restricted to

those. For reasons of transparency, data of the middle scanning session are shown in Figure S2C.

Object detection task

Images of seven objects (generated with the Video game Sims; http://www.thesims3.com), of which six where used in the following

learning phases and one served as a catch-trial object, were presented in a pseudo-randomized sequencewith a stimulus duration of

1 s and inter-stimulus-intervals of 3.5, 5, and 6.5 s (33,3%each). Participants were instructed to indicate for each object whether it is a

trampoline ( = catch trial object) or not, using a button box (buttons counterbalanced across participants). The task included 180 trials

with a catch trial rate of 10%. Each object was presented equally often.

In the first learning phase, participants acquired a novel concept, defined by a two-dimensional stimulus-feature space (see ‘Cate-

gorization’ and Figure 1B) as well as six associations between feature-space stimuli and the objects presented during the object-

viewing blocks. Object to abstract stimulus assignment was randomized across participants, to ensure that similarities between

neural object representations result from their relative distances in the abstract space but not from visual similarities. As on day 2,

conceptual knowledge acquired on day 1 might have already entered the consolidation process, we introduced slight changes in

the second learning phase to ensure hippocampal dependency of the acquired concept at the time of measurement (final fMRI ses-

sion). Therefore, two of the six objects were associated with new abstract stimuli, thereby changing their positions in abstract space

and the relative distances between the six objects. We acquired fMRI data in amiddle scanning session as a backup at the beginning

of day 1, in case participant’s behavioral performance would be significantly deteriorated by the updating manipulation. As his was

not the case, we could restrict our analysis of the role of the hippocampus in mapping abstract distances to the final block which

immediately followed acquisition and not a possible consolidation phase (middle scanning session). The first learning phase

comprised an associative learning, categorization and navigation task, while in the second learning phase the associative learning

and navigation task were performed.

Associative learning

Six object-stimulus associations had to be learned in seven alternating encoding- and test-blocks. In the encoding blocks, objects

were presented next to their corresponding abstract stimulus and participants were instructed to memorize the presented pairs. The
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presentation order of the six pairs was pseudo-randomized with each object/stimulus being equally often presented on the left/right

position of the screen. Pairs were presented for 2 s on the screen and each pair was shown 4x in the first encoding block and twice in

the following encoding blocks (18 repetitions in total). Each encoding block was followed by a test block in which the object is pre-

sented in the center of the screen along with the six abstract stimuli displayed (in a randomized order) below the object. Every as-

sociation was tested once per block in a randomized order. Participants selected the abstract stimulus associatedwith the presented

object via key press (1-6) and received feedback (500ms) on whether the choice was correct. Subsequent to the categorization task,

associations were tested once more (14 tests per association with feedback; named ‘final’ in Figure S1A). In the second learning

phase, new associations (two objects were ‘remapped’ by assigning them to new stimuli) were acquired in seven alternating

encoding- and test blocks with two repetitions per encoding block, once before and once after (summarized as ‘final’ in Figure S1A)

the navigation task, respectively. All six object-stimulus associations were included and treated the same way.

Categorization

Participants were instructed to categorize abstract stimuli (a black circle on a blue square) which varied along two independent

feature dimensions (opacity of the blue feature and size of the circular feature, see Figure 1), into one of two categories (A- and

B-symbols). Categories were, unknown to the participant, delineated via the diagonal through the two-dimensional feature space

(dashed line in Figure 1B middle). Consequently, the ratio between opacity and circle size of a given stimulus defined whether it is

an A- or B-symbol. Both features could take values from 1-10 (opacity: 10%–100% scale with 10% increase per step; circle size:

decrease in size by 10% per step with the biggest circle being 0.67’’x 0,83’’), resulting in 100 possible stimuli to sample the space.

The 90 off-diagonal stimuli were presented 4 times in a randomized sequence. In each trial one abstract stimuluswas presented in the

center of the screen and its category had to be selected via keys press. Participants were given a maximum of 6 s to respond and

each response was followed by feedback (500 ms). Instructions did not include any indications of a spatial rule. All trials were per-

formed in a continuous stream. To depict the learning process, performance is plotted as the average in bins of 60 trials in Figure S1.

Prior to the feedback-based categorization task, participants were given a 3-minutes exploration phase, during which they could

freely up- and downregulate opacity and size of a given stimulus (using 4 adjacent keys; identical to the navigation task) while the

corresponding category membership (‘A’ or ‘B’) was updated with every edition and displayed above the abstract stimulus (compare

trial sequence ‘navigation’ in Figure 1B right: Instead of an object requested during navigation, an ‘A’ or ‘B’ is displayed.). This was

done to accelerate learning. Subsequent to all experimental sessions, participants were asked to describe their categorization strat-

egy, to interrogate whether they had a spatial rule or spatial layout in mind.

‘Navigation’/Free recall

In each trial one of the six objects was presented followed by a random stimulus (selected from the total pool of 100 possible sam-

ples). Participants were instructed to ‘collect’ the displayed object by editing the features of the stimulus (again using 4 adjacent keys)

until they match the stimulus associated with the object. A trial ended when the matching stimulus was created. Participants per-

formed 96 trials in the first and 48 trials in the second learning phase. Along with strengthening participants’ memory of the six as-

sociations through this free-recall, the task was supposed to familiarize participants with the conceptual context of the objects.

Importantly, no distance relationships between the objects were introduced through this process, because participants did not navi-

gate between stimuli associated with the objects, but instead started from random positions in the feature space. Furthermore,

analyzing the length of the paths ( = number of clicks made in the editing process) provides a behavioral indication of a map-like

representation.

All tasks were conducted using Presentation 16.4 (NBS), except the Navigation-Free-recall task, which was programmed using

Anaconda 2.7 (Python).

MRI Methods
All images were acquired using a 3T PrismaFit MR scanner equippedwith a 32 channel head coil (Siemens, Erlangen, Germany). A 4D

multiband sequence (84 slices (multi-slice mode, interleaved), voxel size 2 mm isotropic, TR = 1500 ms, TE = 28 ms, flip angle =

65 deg, acceleration factor PE = 2, FOV = 210 mm) was used for functional image acquisition. In addition, a structural T1 sequence

(MPRAGE, 1mm isotropic, TE = 3.03 ms, TR = 2,300 ms, flip angle = 8 deg, FOV = 256 3 256 3 192 mm) was acquired. Separate

magnitude and phase images were used to create a gradient field map to correct for distortions (multiband sequence with voxel size

of 3.5 3 3.5 3 2.0 mm, TR = 1,020 ms, TE = 10 ms, flip angle = 45 deg).

Preprocessing of functional images was performed with FSL 5.0.9. Motion correction, high pass filtering at 100 s and distortion

correction was applied to the functional datasets. (Exclusion criteria for excessive motion: Mean absolute displacement > 2 mm

or peak in absolute displacement > 3.9 mm; mean and STD of absolute displacement of analyzed sample (mean ± std): 0.349 ±

0.157mm (pre) and 0.347 ± 0.197mm (post). Spatial smoothing was only performed before the univariate analysis of the data. The

data were not spatially smoothed before being subjected to representational similarity analysis (RSA), see below. The FSL brain

extraction toolbox was used to create a skull-stripped structural image. The structural scans were down-sampled to 2mm (matching

the functional image resolution) and segmented into gray matter (GM), white matter (WM) and cerebro-spinal fluid (CSF). Mean-

intensity values at each time point were extracted for WM and used as nuisance regressors in the general linear model (GLM)

analyses (see below). Structural images were registered to the MNI template. For each functional dataset (pre-, post-learning,

post-relearning) the preprocessed mean image was registered to the individual structural scan and the MNI template. The co-regis-

tration parameters of the mean functional image were applied to all functional volumes.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Univariate analysis
First level GLM

The two-dimensional distance between objects in the feature space was modeled in a GLM using a stimulus onset regressor indi-

cating the occurrence of an object on the screen and a second regressor being parametrically weighted by the two-dimensional

Euclidean distance between an object to its preceding object. Distances between positions in abstract space were calculated given

the positions feature-based coordinates (values from 1-10 on the opacity and circle size dimension respectively. Step-sizes reflected

10% increases in opacity and circle size). Smaller distances were expected to result in lower signals, reflecting fMRI adaptation.

Further, the GLM included regressors accounting for catch trials and button presses as well as six motion parameters as covariates.

Resulting beta-maps were transformed to MNI space to extract the average beta value of each ROI for subsequent analysis. Group-

level analysis: First-level beta estimates of the parametric distance regressor were averaged across all voxels within an ROI

(Hippocampus: Figure 2; EC, LOC, PoCG: Figure S2) for each participant and the distribution of these values was tested for signif-

icance (at alpha = 5%) using a one-sample permutation t test [30] in which 1000 randompermutations were computed to estimate the

distribution of the null hypothesis. To test for effects on the whole-brain level, individual contrasts of the parametric distance regres-

sor were subjected to the second level analysis. Cluster extend-based thresholding (z = 2.3, p = 0.05) was performed to correct for

multiple comparisons.

Representational similarity analysis
First level GLM

Object-specific activity during stimulus-viewing blocks (pre- and post-learning) was modeled in a GLMwith a stimulus onset regres-

sor for each of the six objects. Furthermore, regressors accounting for the presence of a catch trial and the button press, aswell as six

motion parameters were included as covariates. Resulting beta-maps were transformed in MNI space before extracting multivoxel-

patterns of each ROI for the next analysis step. First level analysis: We defined a priori regions of interest (ROIs, see below) and

examined the correlation between across-voxel activation patterns of first-level beta estimates within these ROIs as a proxy of neural

similarity. The six object regressors were considered as the regressors of interest, leading to a 6 3 6 matrix of correlations

(Spearman’s correlation coefficient). Each ROI’s pre-learning object-to-object similarity matrix was subtracted from the post-

learning matrix and the resulting neural change matrix was correlated (Spearman’s correlation coefficient) with a 6 3 6 prediction

matrix including the Euclidean distances (calculated as described in ‘univariate analysis’) between each object pair. Distance repre-

sentations were assumed to be reflected in a negative correlation between distance and neural similarity.

Group-level analysis

The distribution of correlation coefficients was tested for significance (alpha = 5%) across participants for each ROI (Hippocampus:

Figure 3; LOC, PoCG: Figure S2) using one-sample permutation t test [30] in which 1000 permutations were computed via random

sign flip to estimate the distribution of the null hypothesis. P values were corrected for multiple comparisons using the ‘‘tmax’’

method [31].

Due to clear directed predictions on the relations between neural pattern similarity/BOLD response and distance (e.g., increasing

distance was supposed to be reflected in a decreased pattern similarity and fMRI adaptation) one-sided tests were applied.

ROI definition
Based on our a-priori hypotheses, analyses were restricted to the hippocampus and a hippocampal mask was constructed using the

WFU pickatlas [32]. In order to be sensitive to potential coding differences between anterior and posterior divisions of the hippocam-

pus [11, 33], we split the hippocampal mask in approximately equally long parts along the long axis (posterior portion of the

hippocampus: from Y = �40 to �30; mid-portion of the hippocampus: from Y = �29 to �19; anterior portion of the hippocampus:

fromY=�18 to�4) for the left and right side, following [11], and selected the resulting anterior and posterior portions asROIs. Control

regions probability maps of LOC, and PoCG from Harvard-Oxford Structural cortical atlas were thresholded at 50% probability.

DATA AND SOFTWARE AVAILABILITY

The data that support the findings of this study and the analysis code are available from the Lead Contact upon request.
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