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ABSTRACT To identify novel disease genes for type 2 diabetes (T2D) we generated two backcross populations of obese and diabetes-
susceptible New Zealand Obese (NZO/HI) mice with the two lean mouse strains 129P2/OlaHsd and C3HeB/Fe). Subsequent whole-
genome linkage scans revealed 30 novel quantitative trait loci (QTL) for T2D-associated traits. The strongest association with blood
glucose [12 cM, logarithm of the odds (LOD) 13.3] and plasma insulin (17 cM, LOD 4.8) was detected on proximal chromosome
7 (designated Nbg7p, NZO blood glucose on proximal chromosome 7) exclusively in the NZOxC3H crossbreeding, suggesting that the
causal gene is contributed by the C3H genome. Introgression of the critical C3H fragment into the genetic NZO background by
generating recombinant congenic strains and metabolic phenotyping validated the phenotype. For the detection of candidate genes in
the critical region (30-46 Mb), we used a combined approach of haplotype and gene expression analysis to search for C3H-specific
gene variants in the pancreatic islets, which appeared to be the most likely target tissue for the QTL. Two genes, Atp4a and Pop4,
fulfilled the criteria from our candidate gene approaches. The knockdown of both genes in MIN6 cells led to decreased glucose-
stimulated insulin secretion, indicating a regulatory role of both genes in insulin secretion, thereby possibly contributing to the
phenotype linked to Nbg7p. In conclusion, our combined- and comparative-cross analysis approach has successfully led to the
identification of two novel diabetes susceptibility candidate genes, and thus has been proven to be a valuable tool for the discovery
of novel disease genes.
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E 2 diabetes (T2D) is a complex metabolic disease
affecting nearly half a billion people worldwide (Cho

et al. 2018). It is well established that both genetic factors
and lifestyle contribute to the pathophysiology of the disease
(Permutt et al. 2005; Das and Elbein 2006). Genome-wide
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association studies and familial linkage analyses in humans
have led to the identification of > 100 gene variants poten-
tially associated with the pathogenesis of T2D (Dorajoo et al.
2015; Fuchsberger et al. 2016). However, the known genetic
variants that have been identified so far only account for a
relatively small fraction of the interindividual variability in
diabetes-related traits in humans, indicating that a consider-
able proportion of the underlying genetic variants still re-
mains to be identified (Morris et al. 2012; Schwenk et al.
2013; Tsaih et al. 2014).

Mouse models have proven to be an essential experimental
tool for the identification of novel disease genes and signaling
pathways for human diseases (Attie et al. 2017; Kleinert
et al. 2018). Inbred strains are available that differ in their
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prevalence toward obesity and T2D, thereby providing genetic
diversity with respect to diabetes risk. In contrast to human
studies, mice can be used for the introduction of targeted mu-
tations or naturally occurring risk alleles with the help of well-
established genetic tools, and tissues can be collected for the
analysis of gene expression or functional assays (Attie et al.
2017; Kleinert et al. 2018). Moreover, the ability to control
the environment and short generation times in combination
with large litter sizes represent further advantages that empha-
size the utility of mouse models over human studies.

The New Zealand Obese (NZO) mouse strain presents
features of the metabolic syndrome, including early onset
hyperglycemia, hyperinsulinemia, hypercholesterinemia, hy-
perlipidemia, and hypertension, in response to high-fat diet
(HFD) consumption (Jiirgens et al. 2006, 2007; Kluth et al.
2011; Joost and Schiirmann 2014). In the course of the dis-
ease, ~70% of the mice progress into islet cell failure and
develop overt diabetes (Jiirgens et al. 2006). Consequently,
NZO mice have been utilized in several studies as a polygenic
model for obesity-driven human T2D (Joost and Schiirmann
2014).

Previous linkage analyses with outbred populations derived
from obese, diabetes-prone NZO and lean, diabetes-resistant
mice, such as C57BL/6J, NON, and SJL, have contributed
substantially to the understanding of the genetic architec-
ture of T2D, and the underlying gene-diet interactions that
determine the onset and progression of the disease. Several
genomic regions, designated quantitative trait loci (QTL),
that show linkage to disease-related phenotypes have been
identified and, in some cases, subsequent positional cloning
has led to the identification of causal, strain-specific gene
variants including Thc1d1, Zfp69, and Ifi202b (Chadt et al.
2008; Scherneck et al. 2009; Vogel et al. 2012). Analysis of
the risk alleles, and their interaction with genetic and envi-
ronmental factors in experimental mouse breeding studies,
provides a relevant picture of the genetic architecture of T2D
and related traits. Importantly, clinical and experimental
studies have provided evidence that genes identified from
mouse studies are also linked to the onset and progression
of obesity, insulin resistance, and diabetes in humans (Dash
et al. 2009; Scherneck et al. 2009; Vogel et al. 2012).

Despite successful positional cloning of diabetes risk genes
in rodents, many causal gene variants for the majority of
diabetes-related QTL are unknown and the complexity of
T2D genetics is not well understood. However, current ge-
nome and phenome databases, as well as modern bioinfor-
matics resources, may be used for data mining and subsequent
reduction of the number of candidate genes identified by
linkage scans (Keane et al. 2011; Yalcin et al. 2011).

To identify novel risk loci for obesity and T2D, we
conducted crossbreeding experiments using the obese and
diabetes-susceptible NZO, and two different lean mouse
strains. Genome-wide linkage analysis and subsequent QTL
mapping revealed two novel diabetes-related gene variants
that might be involved in the regulation of insulin secretion
in pancreatic B-cells.
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Materials and Methods
Animals and breeding strategy

All experiments were in accordance with the National Institutes
of Health guidelines for the care and use of laboratory animals,
and were approved by the Ethics Committee (references:
84-02.04.2013.A118 and 84-02.04.2015.A354) of the State Min-
istry of Agriculture, Nutrition and Forestry (State of North Rhine-
Westphalia, Germany). Diabetes-prone NZO/HI [NZO; German
Diabetes Centre Duesseldorf (Herberg and Coleman 1977)],
and diabetes-resistant 129P2/0OlaHsd (129P2; German Institute
of Human Nutrition, Nuthetal, Germany) and C3HeB/FeJ [C3H;
Helmholtz Center Munich, Germany (Gailus-Durner et al. 2005)]
mice were housed at three to six mice per cage (Macrolon type
IID) at a constant temperature of 22° and a 12-hr light-dark cycle
(lights on at 6 am). Animals had free access to food and water ad
libitum. Female NZO, and male 129P2 or C3H mice, respectively,
were used to generate a F; generation (NZOx129P2; NZOxC3H),
and male F; offspring were subsequently backcrossed with NZO
females (No: NZOxF;). For each backcross generation, N»(NZOx
F1(NZOxC3H)) and N,(NZOx F;(NZOx129P2)), ~300 males
and 300 females were generated, designated N,(NZOxC3H)
and N,(NZOx129P2). For the introgression of heterozygous
C3H alleles on chromosome 7 on the NZO background, repeated
backcrosses were performed until the generation of an N5/Ng
generation. Subsequently; intercrosses (brother-sister breeding)
were conducted to produce homozygous C3H alleles on chromo-
some 7. Homozygous NsF; and NgF; mice with the same geno-
type were intercrossed to obtain 100% homozygous mice in the
NsF,/NgF, generation, which were metabolically phenotyped in
this study. After weaning at the age of 21 days, all experimental
animals received a HFD containing 45 kcal% fat, 20 kcal% pro-
tein, and 35 kcal% carbohydrates with 4.73 kcal/gm energy
(D12451; Research Diets, New Brunswick, NJ). All backcross
(week 21 of age) and recombinant congenic strains (RCSs)
(week 17 of age) mice were fasted for 6 hr before they were
killed by cardiac puncture under isoflurane anesthesia. For the
collection of the pancreatic islets, parental and RCS mice were
killed at the age of 6 weeks by cervical dislocation. Due to severe
B-cell loss with the progression of the disease in parental NZO
and NZO allele carriers for chromosome 7, we could not collect
sufficient islets from older animals.

Genotyping

Genomic DNA was isolated from mouse tail tips using the
InViSorb Genomic DNA Kit II (Invitek, Berlin, Germany). The
genotyping was performed by Kompetitive Allele-SpecificPCR
using appropriate SNP assays (LGC Genomics, Teddington,
UK). Informative SNP markers [118 for N5 (NZOx129P2) and
115 for N,(NZOxC3H)] polymorphic between NZO and
129P2 or C3H, respectively, were selected at a distance of
20 Mbp for each chromosome.

Body weight and body composition

Body weight was determined weekly with an electronic scale,
and body composition was measured at weeks 3, 6, 10, and



15 by noninvasive nuclear magnetic resonance spectroscopy
(EchoMRI-100 System; Echo Medical Systems, Houston, TX).

Blood glucose levels, determination of T2D prevalence,
and survival rate

Blood glucose was measured weekly in the morning between
8 and 10 am using a CONTOUR XT glucometer (Bayer Con-
sumer Care AG, Leverkusen, Germany). T2D prevalence was
calculated by determining the cumulative number of diabetic
animals (N»: blood glucose > 300 mg/dl for 3 consecutive
weeks) and expressing the percentage of affected mice in
relation to the total number of animals. The survival rate
(living animals/total animals) was calculated accordingly.

Analysis of plasma insulin and C-peptide

Insulin and C-peptide levels were measured in plasma
samples (Ny: week 21 of age and RCS: week 17 of age)
by ELISA (Insulin: Mouse Ultrasensitive ELISA Kit; DRG,
Marburg, Germany; C-Peptide: Mouse C-Peptide ELISA Kit;
CrystalChem, Chicago, IL) according to the manufacturer’s
recommendations.

Pancreatic islet isolation

At the age of 6 weeks, experimental mice were killed by cervical
dislocation and the pancreatic islets were isolated by ductal
collagenase perfusion of the pancreas, as previously described
(Yesil et al. 2009). Subsequently, the islets were cultivated
overnight in CMRL (Connaught Medical Research Laborato-
ries) islet medium (see cell culture) at 37° with 5% CO..

RNA extraction and microarray analysis

Total RNA from pancreatic islets (collected from 6-week-
old animals) and MING6 cells was isolated using the RNeasy
mini kit (QIAGEN, Valencia, CA) including DNase digestion,
according to the manufacturer’s instructions. For microarray
analysis of the pancreatic islets, the quality of the isolated
RNA was tested using an RNA 6000 nano kit (Agilent Tech-
nologies, Taufkirchen, Germany). Only samples with RNA
integrity number (RIN) values > 8 were selected for the sub-
sequent microarray analysis. Genome-wide expression anal-
yses (n = 5 per genotype) were performed with 150 ng RNA
according to the Ambion WT Expression Kit and the WT
Terminal Labeling Kit (Thermo Fisher Scientific, Darmstadt,
Germany). All protocol steps were monitored using an RNA
6000 nano kit (Agilent). Mouse Gene 1.0 ST arrays were
hybridized with labeled complementary RNA samples. Data
were collected with the GeneChip scanner 3000 7G and anal-
yses of primary data were performed with the GDAS 1.4
package, [Affymetrix, (Thermo Fisher Scientific)]. Data were
analyzed with Expression ConsoleTM v1.1 and Transcrip-
tome Analysis ConsoleTMv2.0 (Affymetrix) as previously de-
scribed (Knebel et al. 2015).

cDNA synthesis and quantitative real-time PCR

c¢DNA was synthesized using the GoScript Reverse Transcrip-
tase Kit (Promega, Madison, WI) using 500 ng RNA. For

quantitative real-time (qRT)-PCR, the GoTaq qPCR Master
Mix (Promega) on a QuantStudio 7 Flex PCR System (Applied
Biosystems, Foster City, CA) was used. For the three genes
Ffar2, Ffar3, and Zfp719, TagMan probes (Thermo Fisher
Scientific) were used. TATA box binding protein (Tbp) for
pancreatic islets and B-actin (Actb) for MING6 cells was used
as an endogenous control, and gene expression was quanti-
fied using the 272ACT method (Livak and Schmittgen 2001).

Cell culture

Isolated pancreatic islets were cultivated in CMRL medium
(Thermo Fisher Scientific) containing 15% fetal calf serum,
0.05 mM B-mercaptoethanol (Thermo Fisher Scientific),
1% penicillin/streptomycin, 10 mM glucose, and 39.2 mM
NaHCO;. MING cells (a gift from S. Baltrusch from the Uni-
versity of Rostock, Germany) were cultured in Dulbecco’s
Modified Eagle Medium (Thermo Fisher Scientific) with
25 mM glucose, supplemented with 10% fetal calf serum
and 1% penicillin/streptomycin. Both cell types were con-
stantly cultivated at 37° with 5% CO,.

Electroporation of MING6 cells

For the knockdown of Atp4a and Pop4, MING cells were electro-
porated with small interfering RNA (siRNA) oligonucleotides
using the SF Cell Line 4D-Nucleofector kit (Lonza, Cologne,
Germany) in combination with the 4D-Nucleofector system
(Lonza). Cells were electroporated according the Amaxa 4D-
Nucleofector protocol for SH-SY5Y cells provided from Lonza
(bio.lonza.com/go/0p/290). Two million cells from each cu-
vette were split into six wells of a 12-well plate; three of the
wells were used for glucose-stimulated insulin secretion (GSIS)
(technical triplicates) and the other three for RNA isolation to
confirm the knockdown efficiency by qRT-PCR. The medium
was changed 1 day after the electroporation.

GSIS assay in MIN6 cells

The GSIS assay was executed 2 days after the electroporation
of siRNA. For the assay, MING6 cells (cultivated in 12-well
plates) were washed three times with 500 p.l of Krebs-Ringer
HEPES (KRH) buffer (containing 15 mM HEPES, 5 mM KCl,
120 mM NaCl, 24 mM NaHCOs, 1 mM MgCl,, 2 mM CaCl,,
and 1 mg/ml BSA). After starvation for 1 hr in glucose-free
KRH buffer, the medium was removed and cells were incu-
bated for 2 hr in 500 pl KRH bulffer either containing no or
25 mM glucose, respectively. Subsequently, the supernatant
was collected for the determination of the insulin concentra-
tions. All incubation steps were conducted at 37° with 5%
CO,, Finally, cells were detached in lysis buffer [containing
20 mM Tris, 150 mM NaCl, 1 mM EGTA, 1 mM EDTA, and 1%
(v/v) Triton-X-100] and protein content was determined by
bicinchoninic acid (BCA) assay (Pierce Chemical, Rockford,
IL) for normalization of insulin levels.

Linkage analysis

Data sets for males and females from both N, (NZOx129P2
and NZOxC3H) populations were treated separately in the
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linkage analysis. Distributions of phenotypic data were tested
for normality by the use of the D’Agostino-Pearson omnibus
test (GraphPad Software, La Jolla, CA). All data sets that
were not normally distributed were log2 transformed. QTL
analyses including the genetic map, genotyping errors, and
linkage between individual traits and genotypes were per-
formed on N,(NZOx129P2) (290 males and 307 females)
and N,(NZOxC3H) (329 males and 310 females) mice using
the R/qtl 1.40-8 package (Broman and Sen 2009) of R (ver-
sion 1386 3.3.2). Single-QTL genome scans were performed
by interval mapping with the Expectation-maximization algo-
rithm (Lander and Botstein 1989). The significance thresholds
(P < 0.05) for linkage were estimated by 1000 permutations
(Lander and Kruglyak 1995).

Sequence and haplogroup analysis

Data for mouse SNPs and SNP-gene assignments were from
the Sanger Welcome Trust Institute Database (https://www.
sanger.ac.uk/sanger/Mouse_SnpViewer). Coding nonsynon-
ymous SNPs were analyzed for their potential impact on
protein function using the “Sorting Tolerant From Intoler-
ant” algorithm (http://sift.jcvi.org; (Kumar et al. 2009). As
described before (Schmidt et al. 2008), intervals of 250 kbp
were selected for the determination of the frequency of
polymorphic SNPs between the different mouse strains,
and a threshold of 100 SNPs /window was chosen to distin-
guish the QTL into regions that are identical-by-descent
(IBD, genomic regions that are identical between individu-
als due to descent from a common ancestor without re-
combination) and polymorphic (non-IBDs) between the
different mouse strains. For the determination of the total
number, all SNPs annotated for the C57BL/6J reference
genome with calls for C3H/HeJ, 129P2/0OlaHsd, and
NZO/HILtJ were counted.

Statistical analysis

Data are presented as mean values *+ SEM. Statistical signif-
icance was reported by two-tailed Student’s t-test or one/
two-way ANOVA followed by post hoc Bonferroni test as
appropriate. Differences were considered significant when
P < 0.05. Statistical analysis was conducted by GraphPad
Prism 7 (GraphPad Software).

Data availability

Supplemental Material, File S1 contains R/qtl formatted
mapping information, including mouse identifiers, phenotype
information, and SNP marker identifiers, locations, and ge-
notypes (A = NZO/NZO, and H = NZO/C3H or NZO/129P2)
from both N, (NZOxC3H and NZOx129P2) populations.
File S2 contains the sequences of all qRT-PCR primers and
siRNAs, as well as information about the SNP markers used
for genotyping of RCS.NZO.C3H-Nbg7 mice. File S3 con-
tains further data supporting material. Microarray data are
available under accession number GSE117553. Supplemen-
tal material available at Figshare: https://figshare.com/s/
3666e6e39dced467c48f.
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Results

Diverging prevalence for obesity and T2D in the
parental strains

We first phenotyped the experimental animals by measuring
basic metabolic features of male NZO, 129P2, and C3H mice
on a HFD with 45% calories from fat. One week after weaning
at the age of 4 weeks, NZO mice started to exhibit significantly
higher body weight compared to C3H and 129P2 mice (NZO
25.4 = 0.6 g, 129P2 19.9 = 0.7 g, and C3H 15.9 += 0.4 g;
Figure 1A). At week 20, NZO mice had gained substantially
more weight than C3H and 129P2 mice (NZO 62.1 = 2.3 g,
129P2 37.6 = 1.2 g, and C3H 44.0 * 0.4 g), most of it due to
increased body fat (week 15 of age: NZO 22.5 = 1.2 g, 129P2
6.7 = 0.7 g, and C3H 10.7 = 0.3 g). Moreover, in contrast to
the lean strains, NZO mice developed early-onset hypergly-
cemia (> 300 mg/dl) and hyperinsulinemia. On average, at
the age of 6 weeks, NZO mice started to exceed the T2D
threshold (> 300 mg/dl), whereas C3H and 129P2 mice
maintained blood glucose levels constantly below 190 mg/dl
(Figure 1B). The most significant differences in glycemia be-
tween NZO mice and the lean strains were observed at week
15, when NZO mice exhibited on average 361 = 32 mg/dl
blood glucose, compared to 160 = 8 mg/dl observed in C3H
and 142 = 6 mg/dl in 129P2 mice. In week 8, 16-hr fasting
plasma insulin levels were about threefold higher (P <
0.001) in NZO (1.0 pg/liter = 0.13 wg/liter) compared to
C3H (0.23 = 0.04 pg/liter) and 129P2 (0.37 =+ 0.06 pg/liter)
mice. At 21 weeks of age, 6-hr fasting plasma insulin levels
were significantly lower in the 129P2 strain (1.0 = 0.2 pg/
liter) compared to levels in the NZO (6.2 + 1.1 wg/liter) and
C3H (4.9 = 0.7 ng/liter) strains.

Genome-wide linkage analysis on both N, populations
revealed 30 novel T2D-associated QTL

Two F, populations were generated by mating NZO females
with either 129P2 or C3H males. All males from both F;
generations were metabolically phenotyped. As expected,
the phenotypic data from both F; generations, including body
weight and blood glucose levels, were intermediate to those
from the parental mice (Figure S1 and File S3). In general,
F1(NZOxC3H) males exhibited higher mean blood glucose
levels compared to F;(NZOx129P2) males [week 20 of age:
F1(NZOxC3H) 377 *= 23 mg/dl and F;(NZOx129P2) 198 +
23 mg/dl, P < 0.001], whereas body weight development
was similar between the two F; generations. Subsequently,
two N, populations were generated by breeding female NZO
mice with males from the F;(NZOx129P2) cross or from the
F1(NZOxC3H) cross.

In total, 290 males and 307 females from the N,-
(NZOx129P2) population, and 329 males and 310 females
from the N,(NZOxC3H) population, were characterized for
obesity- and T2D-associated traits, including body weight,
body composition, blood glucose, and plasma insulin. As
expected from their genetic diversity, huge variation of
blood glucose levels and body weight was observed in both
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N, populations (Figure S2 and File S3). Compared to the
female N,(NZOx129P2) population, females from the N,-
(NZOxC3H) backcross exhibited higher blood glucose levels
[week 20 of age, N,(NZOxC3H) 194 = 4 mg/dl and N,-
(NZOx129P2) 141 = 2 mg/dl, P < 0.001, Figure S2C]
and body weight [week 20 of age, N,(NZOxC3H) 61 *+
1 and N,(NZOx129P2) 51 * 1 g, P < 0.001, Figure S2D].
Also, for the N, males of the N,(NZOxC3H) population, we
measured higher blood glucose levels [week 20 of age: N,-
(NZOxC3H) 350 = 9 mg/dl and N,(NZOx129P2) 252 *
7 mg/dl, P < 0.001, Figure S2A] but lower body weight
values compared to males from the other backcross [week
20 of age: N,(NZOxC3H) 68 = 1 g and N,(NZOx129P2)
73 £ 1 g, P <0.001, Figure S2B].

For genetic linkage analysis, as described in the Materials
and Methods, a genome-wide SNP panel was used to interro-
gate each animal (males and females) at > 100 loci. For the
N, (NZOxC3H) cross, a total number of 25 QTL (LOD > 4)
were mapped, compared to only five QTL identified in the
N5(NZOx129P2) cross (File S3 and Table S1). Details on the
major QTL from both male N, populations, which revealed
significance for several weeks, are shown in Table 1.

Major T2D modifier QTL on chromosomes 4, 7, and 15

Several loci revealed significant linkage with body weight,
blood glucose, or plasma insulin for several consecutive weeks
in life (Table 1). In the N,(NZOx129P2) population, the
strongest QTL for blood glucose levels was identified on chro-
mosome 4 at weeks 12-20 (week 17 of age: LOD 7.4 at
44 cM, Figure 2A), this locus was designated Nbg4d (NZO

blood glucose on distal chromosome 4). The NZO allele for
Nbg4d was associated with lower blood glucose levels (Nbg4d
is associated with decreased blood glucose levels in NZO-allele
carriers). Nbg4d revealed only suggestive linkage (LOD 2.1 at
47 cM) with plasma insulin levels measured at week 21.
Homozygous allele carriers exhibited significantly lower lev-
els of plasma insulin compared to heterozygous allele carriers
(Nbg4dN20/Nz0 8 3 g/liter = 0.6 and Nbg4dN?0/129 11.3 png/
liter = 0.8, A: 3 ng/liter, P = 0.003). Starting from week
15 of age, another QTL for blood glucose (Nbg4p, NZO blood
glucose on proximal chromosome 4) appeared at a more
proximal position on chromosome 4 (weeks 17 of age: LOD
5.8 at 28 cM, Figure 2A) in the N,(NZOx129P2) population.
Similar to what was observed for Nbg4d, the NZO allele for
Nbg4p was associated with lower blood glucose levels (week
17 of age: Nbg4pN?0/N20 234 + 9 mg/dl and Nbg4pN?0/129
307 + 11 mg/dl, A 74 mg/dl, P < 0.001).

Also in the N,(NZOxC3H) population, a strong QTL for
blood glucose levels mapped to distal chromosome 4 at
weeks 14-20 (week 20 of age: LOD 6.6 at 42 cM, Figure
2C), thus the locus was likewise designated Nbg4d. As ob-
served in the N,(NZOx129P2) cross, homozygous NZO allele
carriers exhibited lower mean blood glucose levels compared
to the heterozygous NZO/C3H allele carriers for Nbg4d
(week 20 of age: Nbg4dN?0/NZ0 291 + 11 mg/dl and
Nbg4dN20/C3H 389 + 15 mg/dl, A: 98 mg/dl, P < 0.001).
In the N,(NZOxC3H) population, Nbg4d was further signifi-
cantly linked with plasma insulin levels (week 21 of age: LOD
4.2 at 45 cM). Different from the N,(129P2xNZO) population,
homozygous allele carriers exhibited higher plasma insulin
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Table 1 Summary of the major QTL with significance for several weeks from both male N, (NZOxC3H and NZOx129P2) populations

Mean
Closest SNP Signif. weeks Mean NZO/C3H or

Name  Chr Traits Peak Pos (cM) 95% C.I. (¢(M) marker (Mbp) Max. LOD (max. effect) NZO/NZO  NZO/129P2  Cross
Nbg4p 4 BG 28 23-31 58.1 5.8 15-20 (17) 234 mg/dl 307 mg/dl Nx129
Nbg4d 4  BG 44 38-47 97.3 7.4 12-20 (17) 230 mg/dl 306 mg/dl - Nx129
Nbg4d 4 BG 42 38-52 119 6.6 14-20 (20) 291 mg/dl 389 mg/dl  NxC

Pancr. ins 45 44-51 119 4.2 21 129 pg/mg 6.2 pg/mg  NxC

Plasma ins 40 44-62 119 4.3 21 10.8 pgfliter 7.2 pg/liter  NxC
Nbw4 4  BW 32 16-41 91.0 8.2 6-20 (19) 69.1¢g 62.79 NxC
Nbg7p 7 BG 12 7-27 37.3 133 3,6-20(10) 369 mg/dl 247 mg/dl NxC

BW 17 7-22 37.3 7.4 12-20 (17) 59.8 g 654 g NxC

LM 11 4-21 37.3 8.6 15 31.5¢ 332 ¢ NxC

Plasma ins 17 13-25 37.3 4.8 21 6.5 pg/liter  11.3 pglliter  NxC
Nbg7d 7 BG 26 23-29 76.7 12.5 6-16 (10) 374 mg/dl 252 mg/dl NxC
Nbgl5p 15 BG 23 18-30 63.3 6.7 7-20 (15) 409 mg/dl 310 mg/dl NxC
Nbg15d 15 BG 41 34-47 98 6.5 7-20 (10) 349 mg/dl 272 mg/dl NxC

LOD scores, peak positions, and 95% confidence intervals (Bayesian method) were calculated by R/qgtl software. NZOXC3H: n = 269-329 males, NZOx129P2: n = 285-290
males. Chr, chromosome; Pos, Position; max., maximum,; Signif., significant; NZO, New Zealand Obese; BG, blood glucose; N, NZO; C, C3H; Pancr., Pancreas; ins, insulin; BW,

body weight; LM, lean mass.

levels compared to heterozygous allele carriers (week 21 of
age: Nbg4dN?0/Nz0 10.8 + 0.9 pg/liter and Nbg4dN?0/C¢3H
7.2 = 0.7 pg/liter, A: 3.6 pg/liter, P = 0.005). A more
proximal locus on chromosome 4 from the N,(NZOxC3H)
population (Nbw4, NZO body weight on chromosome 4)
revealed significant linkage with body weight at weeks
6-20 (week 19 of age: LOD 8.2 at 32 cM, Figure 2C). Homo-
zygous allele carriers gained on average more body weight
compared to heterozygous allele carriers for Nbw4 (week
19 of age: Nbw4NZ20/NZO 691 =+ 0.7 g and Nbw4N20/C3H
62.7 = 0.7 g, A: 6.4 g, P < 0.001).

The most striking linkages with blood glucose (week 10 of
age: LOD 13.3 at 12 cM) and plasma insulin levels (week 21 of
age: LOD 4.8 at 17 cM) in the N,(NZOxC3H) population were
detected on proximal chromosome 7 (Nbg7p, NZO blood glu-
cose on proximal chromosome 7). The linkage of Nbg7p with
blood glucose levels was already significant at 3 weeks of age
and persisted until the end of the study. In addition, this locus
was further linked to body weight at weeks 12-20 (week 17 of
age: LOD 7.4 at 17 cM, Figure 2B) and lean mass at week
15 (LOD 8.6 at 11 cM; File S3 and Table S1). Homozygous
NZO allele carriers for Nbg7p exhibited on average higher
blood glucose levels (week 10 of age: Nbg7pN40/NZ0 369 +
12 mg/dl and Nbg7pN?0/C3H 247 + 8 mg/dl, A: 122 mg/dl,
P < 0.001), in combination with lower plasma insulin levels
(week 21 of age: Nbg7pN?ON20 65 =+ 0.6 pg/liter and
Nbg7pN?0/CG3H 113 = 1.1 pg/liter, A: 4.8 pg/liter, P <
0.001) and lower body weight (week 17 of age: Nbg7pN?0/Nz0

59.8 = 0.6 g and Nbg7pN?/C3H 64.4 + 0.6 g, A: 5.6 g, P <
0.001) compared to heterozygous mice. Moreover, in the same
backcross, a second peak for the blood glucose QTL (week
10 of age: LOD 12.5 at 26 cM, Figure 2B) was identified at a
more distal region on chromosome 7 (Nbg7d, NZO blood glu-
cose on distal chromosome 7). Similar to Nbg7p, the NZO allele
for Nbg7d was associated with increased blood glucose levels
(week 10 of age: Nbg7dN?0/Nz0 374 + 12 mg/dl and
Nbg7dN?0/C3H 252 + 8 mg/dl, A: 122 mg/dl, P < 0.001).
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Furthermore, in the N,(NZOxC3H) population, we de-
tected two loci on chromosome 15 that were strongly associ-
ated with blood glucose levels at weeks 7-20 (week 15 of
age: LOD 6.7 at 23 cM and 5.2 at 35 cM). Whereas the prox-
imal QTL (Nbg15p, NZO blood glucose on proximal chromo-
some 15) was exclusively linked to blood glucose levels, the
distal QTL (Nbg15d, NZO blood glucose on distal chromosome
15) showed additional suggestive linkage with body weight
(week 15 of age: LOD 2.9 at 42 cM) and plasma insulin levels
(week 21 of age: LOD 2.2 at 44 cM) (Figure 2D). Homozy-
gous animals for both QTL had higher blood glucose levels
compared to the heterozygous allele carriers (week 15 of age:
Nbg15pN70/NZ0 409 =+ 12 mg/dl and Nbg15pN?9/C3H 310 =+
12 mg/dl, A: 99 mg/dl, P < 0.001; week 10 of age:
Nbg15dN?0/Nz0 349 + 11 mg/d] and Nbg15dN?0/C3H 272 +
10 mg/dl, A: 77 mg/dl, P < 0.001) (Table 1).

Nbg4d is associated with decreased blood glucose levels
in NZO allele carriers

Figure 3 shows the development of blood glucose levels, T2D
prevalence, and body weight for homozygous NZO and het-
erozygous allele carriers for Nbg4d from the N,(NZOx129P2)
population. Starting at week 8 of age, heterozygous allele car-
riers exhibited significantly higher mean blood glucose levels
(week 17 of age: 307 + 10 mg/dl in Nbg4dN?0/129P2 compared
to 230 = 7 mg/dl in Nbg4dN?/NZ0 p < 0.001, Figure 3A) in
line with a higher T2D prevalence (week 20 of age: 55% in
Nbg4dNZ0/129P2 compared to 35% in Nbg4dN?O/NZ0_ Figure
3B). In contrast, the development of body weight was similar
between the two genotypes (Figure 3C).

Three loci on chromosomes 4, 7, and 15 contribute to
distinct steps in the onset and development of T2D
in the N>(NZOxC3H) population

Next, we tested whether the loci on chromosomes 4, 7, and
15 may contribute distinctly at different stages in the devel-
opment of diabetes in the N,(NZOxC3H) population. We
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therefore calculated mean values for blood glucose levels,
cumulative T2D prevalence, and survival rates for each
risk/protective allele on chromosomes 4, 7, and 15, and for
the combined effect of all risk/protective alleles. The results
of the analysis are illustrated in Figure 4. Starting in week 11,
higher blood glucose levels were observed in mice carrying
the C3H allele of Nbg4d (week 20 of age: 389 + 15 mg/dl in
Nbg4dN?9/¢3H compared to 291 + 11 mg/dl in Nbg4dN?0/NZ0,
P < 0.001, Figure 4A). This was accompanied by a higher
T2D prevalence of C3H allele carriers of Nbg4d (week 18 of
age: 79% in Nbg4dN?0/C3H compared to 61% in Nbg4dN?0/NZ0,
Figure 4D). However, risk allele carriers of Nbg4d exhibited a
higher survival rate (week 20 of age: 90% in Nbg4dNZ0/C3H
compared to 76% in Nbg4dN?0/NZ0_ Figure 4G).

In contrast, already starting from 6 weeks of age, the NZO
allele for Nbg7p was associated with increased blood glucose
levels (week 10 of age: 369 + 12 mg/dl in Nbg7pN20/Nz0
compared to 247 * 8 mg/dl in Nbg7pN?0/C3H p < 0.001,
Figure 4B), an increased T2D prevalence (week 10 of age:
57% in Nbg7pN?9/NZ20 compared to 17% in Nbg7pNZ0/C3H,
Figure 4E), and a lower survival rate (week 20 of age: 73%
in Nbg7pN?0/NZ0 compared to 92% in Nbg7pN?0/C3H | Figure
4H).

Similarly, Nbg15pN?9NZ0 mice exhibited higher blood glu-
cose levels (week 15 of age: 409 *+ 12 mg/dl in Nbg15pN20/NZ0
compared to 310 * 12 mg/dl in Nbg15pN?0/CG3H p < 0.001,
Figure 4C), an increased T2D prevalence (week 13 of age:
75% in Nbg15pN?0/NZ0 compared to 45% in Nbgl5pN20/C3H,
Figure 4F), and a lower survival rate (week 20 of age: 74% in
Nbg15pN?0/NZ0 compared to 93% in Nbgl5pN?0/C3H | Figure
41) compared to Nbg15pN?9/C3H mice.

Blood glucose levels increased with the number of risk
alleles. Mice carrying all three risk alleles (Nbg4dN?/C3H,

e ins, insulin; N/N, NZO/NZO; NZO, New Zealand Obese

Nbg7pN?0/NZ0  and Nbg15pN?0/NZ0) exceeded the T2D thresh-
old of 300 mg/dl already at 7 weeks of age and reached a
maximum average blood glucose level of 486 mg/dl in life-
week 15. Conversely, mice carrying the protective alleles for all
three QTL (Nbg4dN?0/NZ20 Nbg7pN?0/C3H and Nbg15pN20/C3H)
exhibited substantially lower mean blood glucose levels
(A: 238 mg/dl) in the same week of life and did not exceed
the T2D threshold until the end of the study (Figure 4J).
The T2D prevalence reached 93% in the risk allele carriers
but only 36% in the protective allele carriers for the three
QTL (Figure 4K). However, we did not observe that a com-
bination of the three protective alleles improved the sur-
vival rate of the animals (week 20 of age: 85% in risk
allele combination compared to 95% in protective allele
combination, Figure 4L).

Validation for the linkage of Nbg7p with blood glucose
and plasma insulin in recombinant congenic mice

To validate linkage of the Nbg7p locus with blood glucose
and plasma insulin, we generated recombinant congenic
mouse lines (RCS.NZOxC3H.Nbg73H/C3H and RCS.NZOxC3H.-
Ngb7N20/NZO) that harbor the Nbg7p locus on an NZO back-
ground (see Materials and Methods). Both genotypes were
fed a 45% HFD and were metabolically characterized at
weeks 3-16. Blood glucose levels were lower in RCS.
NZOxC3H.Nbg7¢3H/C3H mice compared to RCS.NZOxC3H.-
Nbg7N?0/NZO0 mice (week 12 of age: 219 * 17 mg/dl vs.
299 * 44 mg/dl, not significant). At 10 weeks of age, 38%
of the RCS.NZOxC3H.Nbg7N?O/NZ0 mice were already dia-
betic (blood glucose > 300 mg/dl), whereas all RCS.
NZOxC3H.Nbg7¢3H/C3H mice were normoglycemic (blood
glucose < 300 mg/dl) (Figure 5B). Moreover, starting at
13 weeks of age, RCS.NZOxC3H.Nbg7¢3H/C3H animals gained
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more body weight compared to RCS.NZOxC3H.Nbg7N?0/NZ0
mice (week 16 of age: 63.7 + 2.5 gvs. 55.0 = 1.8 g, P <
0.001, Figure 5C). In addition, RCS.NZOxC3H.Nbg7¢3H/C3H
mice exhibited significantly higher plasma levels of insulin
(18.3 £ 4 pg/liter vs. 3.0 = 0.5 pg/liter, P = 0.0012; Figure
5D) and C-peptide (5.5 = 0.7 pg/liter vs. 2.1 + 0.2 pg/liter,
P < 0.001; Figure 5E) than RCS.NZOxC3H.Nbg/N?0//NZO
mice.

Selection of candidate genes for Nbg7p by combined
haplotype and gene expression analysis

For the selection of candidate genes for Nbg7p, we analyzed
SNPs of the parental strains by using the database from the
Wellcome Trust Sanger Institute (Keane et al. 2011; Yalcin
et al. 2011). Since the genomic sequence for our C3H sub-
strain is not available in the database, the sequence from the
closely related C3H/HeJ strain was used instead. As Nbg7p
was exclusively detected in N,(NZOxC3H) progeny and thus
likely underlies a C3H-specific gene variant, we searched for
C3H polymorphisms in the critical region (30-46 Mb) that
differed from NZO and 129P2. We identified 26 coding non-
synonymous SNPs (File S3 and Table S2) and 6 indel (in-
sertion/deletion) polymorphisms (File S3 and Table S3)
where C3H differs from both NZO and 129P2, but none of
these variants are likely to affect protein function. Further
haplotype analyses were conducted to narrow down regions
of interest. For the dissection of the QTL peak into regions
that are IBD between the strains and C3H polymorphic re-
gions, we determined the number of C3H polymorphic SNPs
each 250 kbp. As described before (Schmidt et al. 2008),
regions exceeding a threshold of 100 SNPs/window were
considered as C3H polymorphic (Figure 6A). Only genes with
C3H-specific SNPs located in C3H polymorphic regions were
considered as candidates for the QTL. Hence, out of 417 genes
annotated in the database for the region, the number of can-
didates for Nbg7p could be narrowed down to 174 genes.
Next, to further reduce the number of candidates, we
integrated genome-wide transcriptome data from a micro-
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array analysis of the islets of the parental strains C3H and
NZO. This analysis revealed 23 genes with differential ex-
pression and thus potential candidates for Nbg7p (Figure 6B).

In total, we found an overlap of nine genes [Heat shock
protein, a-crystallin-related, B6 (Hspb6); Gastric hydrogen-
potassium exchanging ATPase o (Atp4a); Transmembrane pro-
tein 147 (Tmem147); Free fatty acid receptor 2 (Ffar2); Free
fatty acid receptor 3 (Ffar3); Zinc finger protein 719 (Zfp719);
D site albumin promoter binding protein (Dbp); and Related
RAS viral (r-ras) oncogene (Rras)] from our candidate gene
approaches (Figure 6C). We further analyzed the expression
of these genes by qRT-PCR and could validate the expression
differences of seven genes, whereas differential expression
for Tmem147 and Rras could not be confirmed. In addition,
we integrated pancreatic islets from 129P2 in the qRT-PCR
analysis to search for C3H-specific expression. Only the two
candidates Atp4a and Pop4 were distinctively regulated in
islets from C3H, thus representing the most likely candidates
for Nbg7p. mRNA levels of Atp4a were significantly higher in
islets from C3H compared to NZO and 129P2. In contrast,
expression of Pop4 was downregulated in C3H compared to
the other two strains (Figure 7A). For both genes, a similar
expression pattern as in the pancreatic islets was further de-
tected in liver tissue of the parental strains (Figure 7B). We
further analyzed the expression of Atp4a and Pop4 in the
pancreatic islets (Figure 8A) and liver (Figure 8B) of our
RCS.NZO.C3H.Nbg7 mice, and found the same expression
differences between NZO and C3H allele carriers for chromo-
some 7 as observed in the parental strains.

Atpda and Pop4 alter GSIS in MING6 cells

We investigated the roles of Atp4a and Pop4 in insulin secre-
tion using MING cells. By applying specific siRNA oligonucle-
otides, mRNA levels could be reduced by 92% for Atp4a
(Figure 9A) and by 81% for Pop4 (Figure 9B). Insulin se-
cretion without glucose was not different between control
(nontarget siRNA-transfected) and knockdown (target siRNA-
transfected) cells. In contrast, upon glucose stimulation
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Figure 4 Single and combined effects of major QTL in the N,(NZOxC3H) population. Mean values for blood glucose levels (+ SEM) (A), cumulative T2D
prevalence (D), and survival (G) for NZO/C3H and NZO/NZO allele carriers for Nbg4d. Mean values for blood glucose levels (+ SEM) (B), cumulative T2D
prevalence (E), and survival (H) for NZO/C3H and NZO/NZO allele carriers for Nbg7p. Mean values for blood glucose levels (= SEM) (C), cumulative T2D
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Nbg4dNZO/C3H Npg7pNZOMNZO Npg 15pN20NZ0 = 39_46. C, C3H; N, NZO; NZO, New Zealand Obese; T2D, type 2 diabetes.
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test (B) or Student’s t-test, two-tailed (D) or unpaired (E); ** P < 0.01 and *** P < 0.001. NZO, New Zealand Obese; T2D, type 2 diabetes.

(25 mM glucose), significantly lower insulin secretion was
observed for both Atp4a- (~40% reduction) and Pop4-
(~50% reduction) knockdown cells (Figure 9C). Moreover,
we measured insulin mRNA levels in our knockdown cells
and observed a significant reduction in Pop4-deficient cells
compared to controls (Figure 9D).

Discussion

Numerous inbred mouse strains are available that exhibit
substantial genetic diversity and may reflect susceptibility
to various metabolic diseases in humans, including obesity
and diabetes (Clee and Attie 2007). Previous studies have
investigated the genetic architecture of diabetes and related
diseases by taking advantage of different physiological prop-
erties that segregate in outbred populations, advanced se-
quencing resources, and publicly available data sets (Bogue
et al. 2018).

Most linkage studies used a single outcross population to
search for the genetic determinants for phenotypic distinc-
tions between two strains. However, the genetic comparison
of only two strains usually results in a high nomination of
candidate genes. The use of more than one inbred cross
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may substantially improve the mapping resolution of candi-
dates and thus can facilitate gene discovery (Li et al. 2005;
Vogel et al. 2018). In our study, we combined linkage data
from two different backcross populations generated from the
breeding of obese and T2D-prone NZO mice with two widely
used lean strains, C3H and 129P2, thereby allowing the iden-
tification of strain-specific linkage signals. The strongest QTL
for blood glucose and plasma insulin on proximal chromo-
some 7 (designated Nbg7p), presumably directly influencing
pancreatic function, appeared exclusively in the NZOxC3H
crossbreeding. Through a combination of sequence and ex-
pression data from the three different parental inbred strains,
we identified Pop4 and Atp4a as candidates in C3H polymor-
phic regions with C3H-specific expression patterns in the
pancreatic islets, and thus as likely candidates for the QTL
Nbg7p.

Inresponse to a HFD, NZO mice develop obesity and insulin
resistance, with rapid progression of B-cell failure and severe
hyperglycemia (Jiirgens et al. 2006, 2007; Joost 2010; Kluth
et al. 2011; Joost and Schiirmann 2014). In contrast, 129P2
mice are known to be protected from the development of
T2D (Clee and Attie 2007). C3H mice show an intermediate
phenotype, as they exhibit mild features of the metabolic
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Figure 6 Combined approach of haplotype and gene expression analysis in the islets of parental strains for the identification of C3H-specific gene
variants within Nbg7p. (A) Haplotype analysis using Genome Reference Consortium Mouse Build 38 provided by the Wellcome Trust Sanger Institute.
The red line represents the number of C3H-specific SNPs, whereas the gray line shows the total number of SNPs (all SNPs annotated for C57B6/J
reference genome with calls for C3H, 129, and NZO). Both lines overlap in the region between 37.25 and 39.5 Mb. Genomic regions containing <
100 C3H polymorphic SNPs per window (250 kb) are considered as identical to 129P2 or/and NZO (identical-by-descent) and are represented by the
white boxes. In contrast, regions with > 100 C3H polymorphic SNPs per window are designated as C3H polymorphic regions and are highlighted by red
boxes. Genes carrying C3H-specific SNPs located in a C3H polymorphic region are listed above. For a better overview, gene models are not included.
(B) Significantly (P < 0.05) differential gene expression at the age of 6 weeks in the pancreatic islets between C3H and NZO revealed from the
microarray analysis. Higher expression in C3H (ratio C3H/NZO > 1) is shown by red vertical lines and higher expression in NZO (ratio C3H/NZO < 1) is
shown by blue vertical lines. Differences between the strains were calculated by one-sided Wilcoxon signed rank test. (C) Venn diagram showing the
total number of annotated genes (top), the number of genes revealed from the haplotype analysis (left), the number of genes revealed from the
microarray analysis (right), and the overlap of genes (center). The yellow triangles in (A) and (B) mark the position of the QTL peak marker (rs3724525).
NZO, New Zealand Obese.

syndrome, including relatively high body fat content in com-  advantage of the metabolic diversity of the three different
bination with high plasma glucose, cholesterol, and triglyc- inbred strains, and generated two backcross populations
eride levels (Champy et al. 2008). Notably, embryonic stem by breeding NZO females with 129P2 and C3H males,
cells from 129P2 have been widely used for the generation  respectively.

of targeted mutations in mice, thus rendering many exist- As expected from the genetic diversity of the used paren-
ing lines partially congenic with this strain. Similarly, C3H-  tal strains, the subsequent linkage analysis revealed numer-
derived stem cells were used to generate multiple mutant  ous QTL associated with metabolic traits. A locus on distal
lines carrying ENU-induced mutations (Coghill et al. 2002;  chromosome 4 (Nbg4d) revealed linkage with blood glucose
Sabrautzki et al. 2012; van Buerck et al. 2012). We took in both backcross populations, indicating that both QTL

Novel Genes for Insulin Secretion 1537



>
m

Pancreatic islets = 7O

0 129P2 2.0+
1.54

1.0

0.5

Expression relative to C3H

-8
101 —

0.0-

Relative gene expression (2"*4CT)

2 X & o I 9 o Q
‘\69 v}q £ 13 ?\'E}‘ ?«,\e“ Q‘:’Q P 6\’\ Q_(b ® ?&Q
&

Liver

= C3H Figure 7 Quantitative real-time PCR of

= NZO candidate genes in the parental strains.

£ 129P2  (A) Expression of nine candidate genes
in isolated pancreatic islets is shown
relative to C3H. Genes were selected
based on differential expression between
C3H and NZO in the microarray analysis,
and location in C3H polymorphic regions.
Significance is indicated for genes with
similar expression patterns between NZO
and 129P2, but differing from C3H. (B)
Expression of Pop4 and Atp4a in liver
X tissue. Both tissues were collected at
o the age of 6 weeks and Thp was used
as endogenous control. Data represent

mean values * SEM from five to eight

mice. Statistical differences between strains were calculated by one-way ANOVA followed by post hoc Bonferroni test; ** P < 0.01 and *** P <

0.001 (in (A): by comparison to C3H). NZO, New Zealand Obese.

underlie the same gene variant derived from the NZO strain,
used as a breeding partner in both crosses (NZOx129P2 and
NZOxC3H). Interestingly, the NZO allele for Nbg4d was as-
sociated with decreased blood glucose levels, suggesting that
the obese NZO strain carries a T2D-protective gene variant at
this locus. On the other hand, it may also be possible that the
QTL might underlie different diabetogenic gene variants
from the two lean strains. Interestingly, the Nbg4d locus over-
laps partially with a previously reported diabetes QTL,
Nidd1/SJL, where Zfp69 (Scherneck et al. 2009) and likely
additional variants (Chung et al. 2015) in the region were
identified to contribute to the hyperglycemia phenotype. Fur-
ther studies are required to identify shared candidates in the
Nbg4d region. Surprisingly, despite a higher diabetes risk,
C3H allele carriers for Nbg4d from the N,(NZOxC3H) back-
cross had better survival compared to NZO allele carriers.
This contradictory phenotype could be explained by addi-
tional gene variants within the locus itself or elsewhere in
the genome that might regulate survival through glucose-in-
dependent mechanisms.

In addition to Nbg4d, we found two further major T2D
modifier QTL (Nbg7p and Nbgl5p) exclusively in the
NZOxC3H crossbreeding where the C3H allele was associ-
ated with lower blood glucose, indicating the contribution
of two T2D-protective genes from the C3H genome. The ef-
fects mediated by the chromosomes 4, 7, and 15 showed
different time courses of linkage, indicating that the loci con-
tribute distinctly at different stages in the development of
T2D in the N,(NZOxC3H) population. Linkage of blood glu-
cose with Nbg7p was already significant at 3 weeks of age,
clearly indicating that the locus targets early steps of T2D
development. In contrast, linkage of Nbg4d was not observed
before week 14, suggesting that the locus contributes at late
stages to the progression of the disease. Interestingly, we
could observe a combined effect of the three loci on the de-
velopment of blood glucose levels, which almost seems to
fully explain the incidence of T2D within the population. This
observation is remarkable when considering that T2D is as-
sumed to be influenced by dozens of genes scattered all
across the genome, each of them contributing to a different
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extent to its pathophysiology (Clee and Attie 2007; Ali 2013;
Prasad and Groop 2015). The onset of T2D due to three loci
clearly emphasizes the important impact of the underlying
genes. The QTL Nbg7p revealed the most significant linkage
with blood glucose and plasma insulin levels from the N-
(NZOxC3H) population. Whereas NZO.C3H-Nbg7pN?0/C3H
animals were revealed to be widely protected from T2D,
NZO.C3H-Nbg7pN?O/NZ0 animals displayed hyperglycemia
already at early age, progressing to severe pancreatic -cell
loss as indicated by the lack of plasma insulin and body
weight reduction at final stages of age. The onset of hyper-
glycemia was independent from the body weight, indicating
that the locus directly targets the pancreatic islets rather
than the peripheral tissues. We generated RCSs for the vali-
dation of the linkage (Darvasi 1997; Brockmann and Neuschl
2012). In accordance with the phenotype from the backcross
population, C3H allele carriers exhibited lower mean blood
glucose values, and markedly higher plasma insulin and
C-peptide levels compared to controls (NZO allele carriers
on chromosome 7). However, due to the variation in the
control group, the differences in glycemia between the geno-
types did not reach statistical significance.

A survey of genetic polymorphisms listed in the Sanger
database did not identify sequence variants likely to affect
protein function and thus failed to reveal strong candidate
genes in the Nbg7p locus. By a combined approach of hap-
lotype and gene expression analysis, we identified C3H-
specific sequence and expression variants differing from
NZO and 129P2, and thus were able to reduce the num-
ber of candidates from 417 annotated genes to two candi-
dates: Potassium-transporting ATPase o chain 1 (Atp4a) and
Ribonuclease P protein subunit p29 (Pop4). Differential expres-
sion for both genes could further be confirmed in the pancre-
atic islets from the RCSs, demonstrating that the expression
differences associate with the critical fragment from C3H on
the NZO background. Interestingly, two genes in the Nbg7p
locus, Ffar2 and Ffar3, have already been associated with di-
abetes-related phenotypes in islets (Priyadarshini and Layden
2015; Priyadarshini et al. 2015) and show lower expression in
islets of the diabetes-prone NZO strain. However, both lean
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strains showed higher expression of Ffar2 and Ffar3, indi-
cating that both genes are unlikely candidates for the phe-
notype contributed by the C3H allele. Moreover, a mutation
of Abcc8 located close to the Nbg7p locus that results in
strongly reduced expression of the gene has been reported
previously to impair insulin secretion in the related NZO/
Wehi strain (Andrikopoulos et al. 2016). Abcc8 was not dif-
ferentially expressed between our strains, suggesting that
this gene is rather an unlikely candidate for the Nbg7p QTL.

Using the murine B-cell line MIN6 (Miyazaki et al. 1990),
the knockdown of our strongest candidates, Pop4 and Atp4a,
was associated with a decreased GSIS, indicating that the
genes may function in the process of insulin release. For
Pop4, whose mRNA levels were higher in nondiabetic NZO
islets, the observed function is contradictory to the pheno-
type, as NZO allele carriers exhibited lower levels of plasma
insulin. However, mRNA levels were measured in 6-week-old
animals, whereas plasma insulin levels were determined at
weeks 21 (N,) and 17 (RCS). It might be possible that Pop4-
related changes in insulin secretion at early stages of life
might contribute to late-onset failure of the islets. Pop4 (also
known as Rpp29) encodes one of the protein subunits of the
ribonuclease P complex, a protein that was originally discov-
ered as the endoribonuclease that processes the 5’ leader of
precursor transfer RNA (tRNA) (Guerrier-Takada et al.
1983). Whereas critical defects in this processing machinery
are lethal, alterations in tRNA processing have been associ-
ated with impaired insulin secretion and diabetes (Wei et al.
2011; Palmer et al. 2017). In recent years, it has become
increasingly clear that the different subunits of the ribonu-
clease P complex are engaged in other important roles. Pop4
has recently been shown to be involved in the DNA damage
response machinery (Abu-Zhayia et al. 2017), and to partic-
ipate in the regulation of chromatin structure and function
(Newhart et al. 2016), which is known to play a fundamental
role in the epigenetic modification of the genome and likely
also in B-cell biology (Paul et al. 2016). In humans, copy
number variants of POP4 have been associated with breast
and ovarian cancer (Wrzeszczynski et al. 2011; Natrajan et al.
2012). Our finding that knockdown of Pop4 reduces mRNA
for insulin supports a role of this gene in B-cells and insulin

Pop4

secretion. We speculate that elevated levels of Pop4 in young,
nondiabetic NZO mice may be compensatory to early-onset
insulin resistance, whereas gene expression could be reduced
in overt diabetes. Further studies of Pop4 in B-cell function
are therefore required.

Another candidate for Nbg7p is Atp4a, as its insulin-
stimulating impact is in accordance with increased mRNA
and plasma insulin levels in the C3H strain. The gene encodes
the o subunit of the heterodimeric gastric proton pump
H*/K*-ATPase, which has been reported to function in pro-
ton exchange in gastric parietal cells (Spicer et al. 2000).
Recently, the gastric H*/K*-ATPase has also been shown to
be expressed in the human pancreas where it contributes to
pancreatic exocrine secretion (Wang et al. 2015), but its po-
tential role in the secretion of insulin is unknown. It is well
established that GSIS in pancreatic islets involves the closure
of Karp channels to allow the depolarization of the cell mem-
brane followed by calcium influx through voltage-dependent
Ca?* channels, which subsequently triggers the exocytosis of
insulin vesicles. The observed impact of the H*/K*-ATPase
on GSIS in MING cells suggests that this proton pump may
participate in this process, possibly by contributing to the
regulation of the intracellular ion concentration. Interest-
ingly, the autoimmune disease atrophic body gastritis, which
is characterized by the persistent presence of ATP4A autoan-
tibodies, has been associated with type 1 diabetes mellitus in
humans (Chobot et al. 2014), indicating that the gene may
also play an important role in human diabetes.

In conclusion, our study demonstrates that the compara-
tive analysis of multiple inbred populations generated with
one common breeding partner allows the identification of
strain-specific linkage signals, thereby substantially improv-
ing the mapping resolution of disease genes. While T2D is
polygenic, the nature of the onset and progression of the
disease can be almost fully reconstituted by the interaction
of only three different genetic loci, suggesting that in the
NZOxC3H backcross only a limited number of variants are
contributing to T2D. Nevertheless, considerable evidence
exists that QTL regions may include multiple genes that
contribute to the phenotype (Buchner and Nadeau 2015).
Moreover, a number of genetic variants, including noncoding
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Figure 9 GSIS in MIN6 cells after knockdown of Pop4 and
Atp4a. MIN6G cells were electroporated with siRNA oligo-
nucleotides 2 days prior the GSIS assay. The knockdown
efficiency of Atp4a (A) and Pop4 (B) in MIN6 cells was
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eight independent experiments. Statistical differences
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(A and B), and two- (C) or one-way (D) ANOVA followed
by post hoc Bonferroni test; * P < 0.05, ** P < 0.01, and
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SNPs, indels, copy number polymorphisms, and yet unknown
de novo mutations, may exert effects on regulatory circuits in
the locus, thereby affecting islet cell function and glycemic
control. Consequently, future studies, including characteriza-
tion of congenic and tissue-specific knockout lines, will be
needed to determine the contribution of Pop4 and Atp4a,
and potentially other genetic variations in the locus, to the
impact of Nbg7p on blood glucose and plasma insulin levels.
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