
The interior of a binary black hole merger

Daniel Pook-Kolb,1, 2 Ofek Birnholtz,3 Badri Krishnan,1, 2 and Erik Schnetter4, 5, 6

1Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institute), Callinstr. 38, 30167 Hannover, Germany
2Leibniz Universität Hannover, 30167 Hannover, Germany

3Center for Computational Relativity and Gravitation, Rochester Institute of Technology,
170 Lomb Memorial Drive, Rochester, New York 14623, USA

4Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
5Physics & Astronomy Department, University of Waterloo, Waterloo, ON N2L 3G1, Canada

6Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA
(Dated: 2019-03-12)

We find strong numerical evidence for a new phenomenon in a binary black hole spacetime, namely the
merger of marginally outer trapped surfaces (MOTSs). We show that the MOTS associated with the final
black hole merges with the two initially disjoint surfaces associated with the two initial black holes. This
yields a connected sequence of MOTSs interpolating between the initial and final state all the way through
the non-linear binary black hole merger process. This now allows us to track physical quantities (such
as mass, angular momentum, higher multipoles, and fluxes) across the merger, which can be potentially
compared with the gravitational wave signal in the wave-zone, and with observations by gravitational
wave detectors. This also suggests a possibility of proving the Penrose inequality for generic astrophysical
binary back hole configurations.

The standard picture of the merger of two black holes
(BHs) is often visualized by an event horizon (EH), the
boundary of the portion of spacetime causally disconnected
from far away observers. An example of this is [38], show-
ing the well known “pair of pants” picture of the EH. How-
ever, EHs are not suitable for extracting quantities of phys-
ical interest and track them all the way through the merger
in quantitative studies. In perturbative regimes or in cases
when the end state of the EH is known, it is sometimes
possible to use EHs to calculate mass, angular momentum,
energy fluxes etc. [27], but this does not carry over to non-
perturbative situations (such as during a binary black hole
(BBH) merger) [11, 13, 24, 28].

It is much more satisfactory, both for conceptual and
practical reasons, to use instead marginally trapped sur-
faces. The notion of a trapped surface was first introduced
by Penrose for the singularity theorems [40]. Let S be
a closed 2-surface with in- and out-going future-directed
null normals na and `a respectively. Let Θ(`) and Θ(n)

be the expansions of `a and na respectively. Trapped sur-
faces have Θ(`) and Θ(n) negative, while a marginally outer
trapped surface (MOTS) has Θ(`) = 0 (with no restriction
on Θ(n)). The outermost MOTS on a given Cauchy sur-
face, known as an apparent horizon (AH), has been used
to locate BHs even in the earliest numerical BH simula-
tions (see e.g. [45]). The presence of a trapped surface in a
spacetime shows the presence of a singularity and an EH.
MOTSs were thus used as proxies for EHs (which are much
harder to locate numerically). Over the last two decades,
however, it has become clear that MOTSs are much better
behaved than previously expected. The world tube traced
out by a MOTS during time evolution can be used to study
energy fluxes, the evolution of mass, angular momentum
and higher multipole moments [7, 22, 26, 32, 44]). The
world tube can be used as an inner boundary for Hamil-
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FIG. 1: The scenario for the merger of two separated
marginal surfaces to yield a single final BH and the

monotonicity of area increase during the merger along the
directed path.

tonian calculations, and the laws of BH mechanics hold
[11, 13, 16, 25, 29, 31, 33]. In stationary spacetimes and in
perturbative settings, these calculations coincide with ex-
pectations from EHs, but this framework works more gen-
erally.

There remains, however, a significant gap in our under-
standing. For a BBH merger it is routine to compute phys-
ical quantities for either the two separate initial BHs or
for the common final BH. It is not clear, however, if there
should exist a relationship between the two regimes sepa-
rated by the merger. Neither is it known whether there is a
connected sequence of MOTSs which takes us from the two
separated individual MOTSs to the final one. The existence
of such a connected sequence would allow the possibility
of tracing physical quantities all the way through the dy-
namical and non-linear merger process. These predictions
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could potentially be compared with calculations of gravita-
tional wave (GW) signals in the wave-zone and eventually
with observations of GWs, thus offering a unique probe of
dynamical and non-linear gravity.

Another motivation for studying this is related to cosmic
censorship and the Penrose inequality (PI). In 1973, Roger
Penrose proposed an inequality relating the areaA of a BH
horizon to the spacetime’s total ADM mass MADM [41]:

A ≤ 16πM2
ADM . (1)

As originally formulated by Penrose, this inequality applies
to a marginally trapped surface S formed during gravita-
tional collapse and it brings together three of the most im-
portant results of general relativity: a) the area increase law
for EHs which relies on cosmic censorship, b) the ques-
tion of the final state of gravitational collapse, i.e. the BH
uniqueness theorems, and finally c) the positivity of out-
going GW flux at infinity. The most uncertain of these is
cosmic censorship. An alternate means of establishing the
PI (without using the EH) would thus provide important
support for cosmic censorship. Thus far, the PI has been
established rigorously for time symmetric initial data for
an arbitrary number of BHs [17, 18, 30] (see [2, 19, 35, 37]
for some alternate approaches, and [36] for a review). Note
also that there are examples of AHs which violate the in-
equality [12].

For a BBH system, the PI implies
A1 +A2 ≤ 16πM2

ADM , (2)
where A1,2 are the initial areas of the two individual BHs,
taken to be two disjoint MOTSs S1 and S2. Let Sf be the
final MOTS with area Af . In this paper, we provide evi-
dence for a very different way of tackling the PI, namely
by following the time evolution of S1,2. The goal is to es-
tablish thatA1 +A2 ≤ Af . At late times when the BH has
reached equilibrium, cross-sections of the event horizon are
also marginally trapped surfaces. Thus, we would like to
establish that there is a connected sequence of marginal
surfaces, with monotonically increasing area, which takes
us from S1 and S2 to Sf .

Our proposed scenario is sketched in Fig. 1. We start
with the two BHs far apart, represented by the MOTSs
S1 and S2, and track their areas A1 and A2, respectively.
The branch I and I ′ (red) show A1 + A2 which is always
increasing. The common horizon is formed with a bifur-
cation into inner and outer portions Sinner and Souter, re-
spectively, at the time tbifurcate. Sinner generates the branch
II (green), which decreases in area and eventually merges
with I at time tmerge (which demarcates I and I ′). Segment
III (blue) is traced out by the AH which has increasing
area and asymptotes to a final Schwarzschild or Kerr hori-
zon. The required sequence of MOTSs is then I+II +III ;
if we have monotonic area increase along this sequence, the
PI will hold (segment II is traversed backwards in time).
Note, however, that the portion I ′ is not part of this se-
quence and the MOTSs in this part might in fact end up
with a larger area than the AH.

There are several subtle points regarding this scenario
and its regime of validity (we show that it is in fact not true
in general for time-symmetric initial data). Our goal in this
paper is to provide support for this scenario for astrophysi-
cal initial configurations corresponding to the head-on col-
lision of two non-spinning BHs. We remark that even for
a single BH—while we have evidence from numerical and
analytic calculations that the end state of branch III must
be a Kerr BH —this is not yet mathematically established
in the full non-linear theory. This work does not add any-
thing in that direction. However, it does suggest a mecha-
nism of extending this result, if it holds, to multiple BHs.

Preliminaries.– We recall here two technical details
which will be important below. The first is the stability op-
erator for a MOTS which determines its behavior under de-
formations [4, 5, 14, 42]. If ra is a unit spacelike normal to
S, and f a function on S, then we can vary S along fra

and compute the expansion for the deformed surfaces. Dif-
ferentiation of the expansion then leads to the variation of
the outgoing expansion Θ(`), denoted δfrΘ(`). The stabil-
ity operator L acting on a function f is defined as

L[f ] := δfrΘ(`) . (3)

In general L is a linear elliptic operator but is not necessar-
ily self-adjoint. Nevertheless, its principle eigenvalue Λ0,
i.e. the eigenvalue with lowest real part is real. It can be
shown that the invertibility of L guarantees that S evolves
smoothly at least locally in time (as long as L remains in-
vertible). In particular, if Λ0 > 0, stable time evolution is
guaranteed locally in time since then no eigenvalue of L
vanishes. In case Λ0 < 0, as will happen here, then we
need to consider the next eigenvalue Λ1: as long as its real
part is positive then S evolves smoothly. If a MOTS has
Λ0 > 0, it generically traces out a spacelike surface and
has increasing area. In general the world tubes can be null,
timelike or of mixed signature and can have decreasing area
[8–11, 15, 16].

The other important technical tool is a new method for
locating MOTSs numerically which is capable of finding
even very highly distorted MOTSs [42]. This is a modifi-
cation of the commonly used algorithm known as AHFind-
erDirect [46]. It was previously validated for sequences of
time-symmetric initial data sets, and is here applied during
a time evolution. The software [43] has since been modi-
fied and can now be applied to non time-symmetric cases
as well. It is presently restricted to axisymmetry, but no in-
principle difficulties are foreseen for general cases.

We use the Einstein toolkit [23, 34] infrastructure for
our calculations. We set up initial conditions via the two-
puncture single-domain method [6] and enforce axisymme-
try by the Cartoon method [1]. We solve the Einstein equa-
tions in the BSSN formulation as in [21], using a 1 + log
slicing and a Γ-driver shift condition, with details of our
initial and gauge conditions as described in [47].

We use fourth order finite differencing on a uniform grid
spanning [0, 10] × [0, 0] × [−10, 10] and a fourth order
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FIG. 2: The shapes of the horizons at various times in the
simulation. Details in text.
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FIG. 3: The stability parameter for Sinner as a function of
time. The curve terminates at tlast , the last time that we
locate Sinner. The time ttouch when S1,2 touch is just a

little bit later, but not visually distinguishable from tlast .

Runge-Kutta time integrator. Most calculations shown here
were performed with a resolution of h = 1/256, and some
with h = 1/512 to resolve details. All parameter files are
available in the repository [43].

The merger of the inner horizons.– We consider head-on
collisions of non-spinning BHs. We shall always use time-
symmetric Brill-Lindquist (BL) initial data [20], represent-
ing a BBH system at a moment of time-symmetry. The bare
masses of the two BHs are denoted (m1,m2) and d0 is the
initial separation. While the PI is known to physically hold
in BL data, no such time symmetry is expected to occur in
any astrophysical situation in our universe. Time symmetry
implies that the two BHs approach each other and merge
also under time reversal. Furthermore, the incoming radi-
ation at past null-infinity mirrors the outgoing radiation at
future null-infinity. This non-physical, exceptional aspect
of BL data at finite d0 will be important later.

Some partial results on the behavior of Sinner were

3.8 3.9 4.0 4.1 4.2

evolution time t

0.0

0.1

0.2

d
is

ta
n

ce
,

ci
rc

u
m

fe
re

n
ce

t t
o
u
c
h

distance S1,S2

neck circumference
10× distance Sinner,S1
10× distance Sinner,S2

FIG. 4: Different measures showing the merger S1,2,inner.

known previously [26, 44]: Sinner decreases rapidly in
area initially and becomes increasingly distorted as it ap-
proaches S1 and S2. With our new horizon finder, we are
able to track Sinner almost up to the merger point. We
present our results first for a particular initial configuration
d0 = 0.75, m1 = 0.5, and m2 = 0.8. For this starting
separation, the common horizon has already formed and
thus the AH is always disconnected from any of the inner
horizons. This aspect will not be important for the moment,
and we wish to focus only on the inner horizons here. The
shapes of the various marginal surfaces at selected instants
of time are shown in Fig. 2. The top-left panel shows the
initial configuration with the AH already formed and Sinner
fairly distorted. The bottom-left panel shows the horizons
at a late time when Sinner no longer exists, and S1 and S2
penetrate each other; this feature was first observed in [39];
see also [3].

We are able to track Sinner much further until it almost
coincides with S1,2. The top-right panel shows the MOTSs
at the last time for which we are able to locate Sinner,
namely tlast = 4.171875. This is just a few time steps
before the time at which S1,2 touch each other: ttouch =
4.190585. The bottom right panel shows a close-up of the
neck of Sinner, which is very close to pinching off (note
the much smaller length scale of this panel). We lose track
of Sinner because of the extremely narrow neck which re-
quires a large number of collocation points to resolve. The
numerical difficulties very close to the merger are primar-
ily related to the choice of a reference surface used to con-
struct a local coordinate system in our numerical method
[42]. Due to the very high curvature of the MOTS at its
neck, the numerics becomes very sensitive to the choice of
the reference surface. We expect Sinner should still exist
for a few more time steps. This is confirmed by the stabil-
ity parameter of Sinner, i.e. the second eigenvalue Λ1 of the
stability operator shown in Fig. 3. In this case the operator
is self-adjoint and Λ1 is real. We see that Λ1 is positive,
very far from vanishing and shows no large variations.

Fig. 4 shows various quantities which must all vanish
at the point of merger. First, it shows the proper distance
between S1 and S2 measured at facing points along the
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z-axis. This distance crosses 0 when both MOTSs touch.
Then we plot the proper circumference of the neck of
Sinner, the proper distance between S1,2 and Sinner along
the z-axis (the latter distances are scaled up by a factor of
10 to be properly visible on this plot). All of these quan-
tities indicate that Sinner pinches off when S1,2 touch. We
thus postulate that the time ttouch when S1,2 touch is the
same as the time tmerge when Sinner merges with S1,2. This
is quantified below.

The area increase law.– The area of Sinner and the sum
of the areas of S1,2 is shown in Fig. 5. The left panel shows
the area starting right from t = 0, seemingly decreasing ev-
erywhere. However, the right panel shows a close-up near
ttouch and surprisingly, it reveals a small area increase ∆A
towards the end. Repeating the simulations for different d0
(keeping m1,2 fixed) shows that ∆A decreases with in-
creasing d0; see left panel of Fig. 6. For the simulations

with d0 ≥ 1.00 the common horizon is not present in the
initial configuration and it forms and bifurcates during the
simulation.

The minima are marked with red dots in Fig. 6 (except
for d = 1.20 where the minimum is obtained by extrapo-
lation). It is clear that the area increase time, i.e. the time
difference between tmin and ttouch , also decreases with in-
creasing d0 and approaches zero as d0 increases. This is
also shown in the right panel of Fig. 6 (the blue triangles).

Since the area curves terminate at tlast , we can ex-
trapolate them to the point where the curves for Ainner

and A1 + A2 meet, thereby providing an estimate for
tmerge . We use either a simple linear extrapolation or a
spline extrapolation, which provide estimates tlinearmerge and
tsplinemerge respectively. The right panel of Fig. 6 also shows
these estimates (the green squares and the red triangles),
confirming that these are consistent with ttouch . Finally,
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the orange circles show the difference ttouch− tlast which
indicates the numerical performance of the MOTS finder.

Conclusions.– We have studied the process by which two
marginal surfaces merge to form a common final BH. This
is similar to and complements the “pair of pants” picture of
a BH merger using EHs. We have provided strong numeri-
cal evidence that there is a connected sequence of marginal
surfaces in this process. This will potentially allow us to
track physical quantities through the merger and to com-
pare with results obtained from gravitational waveforms.
Moreover, this scenario suggests a different way of attack-
ing the Penrose inequality. For all “physical” initial con-
figurations, we expect the area to be non-decreasing along
the sequence, and the Penrose inequality is thus guaranteed
to hold for all MOTSs on the sequence. A similar scenario
should work for an arbitrary number of BHs as long as the
mergers occur pairwise.
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