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We study perturbations of Schwarzschild spacetime in a coordinate-free, covariant form. The GHP
formulation, having the advantage of not only being covariant but also tetrad-rotation invariant, is
used to write down the previously known odd- and even-parity gauge-invariants and the equations
they satisfy. Additionally, in the even-parity sector, a new invariant and the second order hyper-
bolic equation it satisfies are presented. Chandrasekhar’s work on transformations of solutions for
perturbation equations on Schwarzschild spacetime is translated into the GHP form, i.e., solutions
for the equations of the even- and odd-parity invariants are written in terms of one another, and the
extreme Weyl scalars; and solutions for the equations of these latter invariants are also written in
terms of one another. Recently, further gauge invariants previously used by Steven Detweiler have
been described. His method is translated into GHP form and his basic invariants are presented here.
We also show how these invariants can be written in terms of curvature invariants.

PACS numbers: 04.25.Nx, 04.30.Db, 04.70.Bw

I. OVERVIEW

Whether it is studying gravitational waves, the ring-down phase of comparable mass binary black holes, stability
of black holes or the motion of extreme-mass-ratio inspirals, black hole perturbation theory plays a pivotal role.
In this paper we are particularly interested in discussing gauge invariant perturbations which may be identified in
the Schwarzschild spacetime, with the hope of developing methods which will eventually be extendible to the Kerr
spacetime, and perhaps to most of Petrov type D geometries. As will be discussed further below, it is known that
perturbations of the Weyl scalars ψ0 and ψ4 are spin weighted invariants, while the perturbation of the imaginary
part of ψ2 is a scalar invariant. Given the number of invariants we will consider, we will also attempt to find relations
between them, and attempt to specify some minimal set from which all others may be obtained. We shall explain
that the set of scalar invariants which are second order in derivatives of the metric is finite and fully known. Part of
what we do below is explore scalar invariants of higher orders in the derivatives, since it will turn out that, without
separation of variables, the Regge-Wheeler and Zerilli invariants are, in fact, scalar and of higher order. We also find
that a set of invariants obtained by Detweiler and others (see [1]) are also scalar and of higher order in derivatives
(when expressed without the separation of variables). Thus, much of our focus will be on scalar invariants, and we
will always consider not using the separation of variables, since we expect that this will not be practicable in the Kerr
geometry. Consequently, we will use GHP notation throughout, since that should eventually allow us to consider most
Petrov type D spacetimes without the need to introduce coordinates.
We begin by giving an historical perspective on what has previously been achieved, and how.

II. HISTORICAL PERSPECTIVE

With an interest in exploring the stability of the Schwarzschild black hole, Regge and Wheeler in [2] studied linear
perturbations or small departures from perfect sphericity of the Schwarzschild spacetime, and this work led them to
discover the Regge-Wheeler equation. They started by separating the perturbations into two sectors, even-parity and
odd-parity, where parity is governed by the response to the simultaneous transformations, θ → π − θ and φ→ π + φ.
Fields symmetric under this discrete transformation are even parity, fields antisymmetric are odd parity. The Regge-
Wheeler equation is a linear, second-order, hyperbolic equation governing an odd-parity variable. Vishveshwara in
[3] studied the stability of the Schwarzschild metric further, using the Kruskal coordinates. More than a decade later
Zerilli, in [4], discovered a different linear, second-order hyperbolic equation governing an even-parity variable.
Subsequently, Moncrief in [5] carried out a detailed study of both of the Regge-Wheeler and Zerilli equations,

and wrote the variables which satisfy them in a gauge-invariant form. Cunningham-Price-Moncrief in [6] wrote
another odd-parity invariant which solved the same Schrödinger-type equation as the Regge-Wheeler variable. We
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now understand that these two odd parity invariants are related by a time derivative modulo the perturbed Einstein
tensors, and this has been shown in a covariant manner by Martel and Poisson in [7]. One can then see that

the Cunningham-Price-Moncrief function is proportional to a curvature invariant, ℑψ̇2 (an overdo will represent a
perturbed quantity throughout this paper), the imaginary part of the perturbation of the spin-0 Weyl scalar, ψ2; and
the Regge-Wheeler variable is its time derivative (modulo the Einstein tensor components).
Beginning from a quite different approach, Bardeen and Press in [8], on the other hand, studied scalar, electro-

magnetic and gravitational perturbations of the Schwarzschild black hole, and wrote a master-equation for these
perturbations which, subsequently, was generalized to Kerr (and spin-half neutrino fields) by Teukolsky in [9]. In par-
ticular, Bardeen and Press studied gravitational test-fields in terms of perturbed spin-±2 Weyl scalars, and derived
the hyperbolic equation they obey.
Chandrasekhar in [10], was able to combine all these previous works, having first written the Schrödinger-type

equations governing the odd- and even-parity invariants as one master equation by showing a relation between the
potentials of these two equations; he then related solutions to the equations satisfied by these odd- and even-parity
invariants, by writing a solution to one equation in terms of a solution to the other, and its radial derivative. He later
went on and calculated the relation between solutions to the equations for the spin-2 Weyl scalars and solutions to
the equations satisfied by the odd- and even-parity invariants, and wrote each one in terms of the other. This allows
one to know solutions for one invariant and calculate solutions to the equations for the rest, in any source-free region.
However, we stress that the odd and even parity sectors are completely independent, so Chandrasekhar’s approach
allowed alternative methods of finding solutions and not a method of relating odd and even parity perturbations for
a given source or vacuum spacetime perturbation.
Until now, equations satisfied by the odd- and even-parity gauge-invariant perturbations were written in a coordinate

form, whether the usual Boyer-Lindquist or the null Kruskal coordinates. Gerlach and Sengupta in [11] wrote these
equations in a 2+2 covariant form paving the road to a coordinate-independent study of these perturbations. Sarbach
and Tiglio in [12] took this work further, writing the equations in a completely covariant form, and showed how to
get Weyl scalar from these odd- and even-parity invariant amplitudes. Martel and Poisson in [13] completed these
works by providing the gauge-invariant, covariant form of these equations, along with the source terms written in a
covariant form, making their work suitable for any coordinate system that one might adopt. All these works were
later reviewed by Nagar and Rezzolla in [14]. Eventually, these perturbations were studied in a light-cone gauge by
Preston and Poisson in [15].
Most recently, Aksteiner and Andersson in [16] wrote the perturbation equations in a Gerald-Held-Penrose (GHP)

form and later showed how one can derive the odd- and even-parity equations from a master equation governing
perturbations of ψ2. Steven Detweiler, in his work (of more than a decade ago but only recently described [17]),
uses an EZ gauge which is closely related to the Regge-Wheeler gauge. The metric components in his gauge are
directly proportional to the ones in the Regge-Wheeler decomposition up to normalization factors. He finds six basic
invariants, four of even-parity and two odd-parity, and writes the Einstein tensors in terms of these invariants.
In this paper, we present a further chapter in perturbation theory for the Schwarzschild spacetime, hopefully paving

the way for a new study of perturbations on Kerr spacetime. Throughout, we use the GHP formalism, a coordinate-
independent formalism, to write all the inhomogeneous equations with source terms. No separation in terms of radial
and angular harmonics is performed. One advantage of using the GHP formalism over the Newman-Penrose (NP)
formalism is due to the invariance in terms of a null-tetrad rotation. Another advantage is the obvious prime- and
star-symmetries. A prime symmetry, where applying a prime implies ℓα ↔ nα and mα ↔ m̄α simultaneously, reduces
the number of equations to half the number. A Sachs star symmetry involves ℓα ↔ ±mα and nα ↔ ±m̄α (± does not
refer to ambiguity here; for correct usage see [18]). Here (ℓ, n) form the (out-, in-)going null vector legs of the tetrad,
and (m, m̄) forms the null-pair on the 2-sphere (where bar implies a complex conjugate). These symmetries can
drastically reduce the number of independent components of the Einstein tensor one needs to consider for a minimal
set. However, see appendix B for a practical set representing the linearized Einstein tensor perturbations. We write
the Einstein field equations, and the known odd- and even-parity equations in GHP form. Einstein field equations
and Weyl scalar invariants are then scalarized to GHP type (0,0) by applying appropriate angular operators and/or
multiplying with appropriately-weighted Ricci rotation coefficients.
Among other things, we have discovered a new, second order, hyperbolic differential equation for another even-

parity invariant, and this equation is of a lesser formal (angular derivatives included) order than the one solved by the
Zerilli invariant. In addition, we have transformed Chandra’s work on relating solutions to the equations satisfied by
the odd- and even-parity invariants, and writing the solutions to one in terms of solutions to the other in a coordinate-
independent, GHP form. Their relation with solutions to the equations satisfied by the extreme Weyl scalars is also
shown in GHP form. Following Steven Detweiler’s work, we calculate his invariants in GHP form and show how they
are related. One question that we try to address here is whether all known invariants are related to each other by
curvature invariants and their derivatives (perturbed Einstein tensor components, ψ̇0, ψ̇4, and ℑψ̇2). And, we see
that it is possible to do so.
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We organize our work in the following manner. In the next section, Sec. III, we summarize the NP and GHP
formalisms. We refer the interested reader to the original works in [18, 19] for further explanation, and only present
details relevant to the current work. In Sec. IV, we present the already known odd- and even-parity invariants, along
with the equations they obey (including the source terms) in a completely covariant, unseparated form, which involves
reinstating many suppressed angular derivatives. We also show how a small transformation leads us to write the two
odd-parity equations as one. In Sec. V, we show how solutions to the equations for the even and odd parity invariants
can be written in terms of each other. We also show how to write either in terms of solutions to the equations for
ψ̇0 or ψ̇4, and vice versa. For these relations to be possible, being in a background, source-free region is a necessary
condition. In the following section, Sec. VI, we translate Steven Detweiler’s work into an unseparated, GHP form,
and show how to obtain further invariants. In principle, it is possible to get as many invariants as one wishes, but
they will all be of order higher than for these basic invariants. We then show how these basic invariants can be written
in terms of curvature invariants. In the last section, Sec. VII, we summarize our work, leave the reader with some
additional remarks, and indicate where we wish to take this work in future. In App. A, we show the relation between
the GHP components of metric perturbation and those of tensor harmonics. In App. B, we write the scalarized,
GHP type (0,0) form of perturbed Einstein tensors, and in App. C, we show how to translate GHP quantities to a
coordinate form and present the new even-parity equation in coordinate form. The signature used throughout this
work is -2, i.e., (+ −−−).

III. NP AND GHP FORMULATION

Newman and Penrose in [19] used a novel approach to study the general theory of relativity by introducing a
complex, null tetrad (ℓα, nα, mα, m̄α), and all the known equations were projected on this tetrad. In this work,
for simplicity, we will enumerate the tetrad as (eα1 = ℓα, eα2 = nα, eα3 = mα, eα4 = m̄α). The orthogonality relation
between them is

e1 · e2 = 1, e3 · e4 = −1, (1)

with rest of the dot-products being zero. The background metric is then written as

gαβ = ℓαnβ + nαℓβ −mαm̄β − m̄αmβ. (2)

The derivative operators along (ℓα, nα,mα, m̄α) are (D, ∆, δ, δ̄), and for the case at hand (Schwarzschild background),
the non-zero spin coefficients are α, β, ρ, ǫ, γ, and µ. We refer the readers to [19] for further details.
Under a tetrad transformation

ℓα → λ λ̄ ℓα , nα → 1

λ λ̄
nα,

mα → λ

λ̄
mα , m̄α → λ̄

λ
m̄α, (3)

the metric and the orthogonality relations above are preserved. Regarding such a transformation, if a scalar, Ψ,
transforms as

Ψ → λp λ̄q Ψ, (4)

it is said to be of type, (p,q), where the spin-weight is (p − q)/2, and the boost-weight is (p + q)/2. As an example,
the Weyl scalar, ψ0 (= −Cαβγδℓαmβℓγmδ), is of type (4,0), has spin-weight 2, and boost-weight 2. An important
symmetry is the prime-symmetry in the GHP formalism, where the prime-operator implies

(ℓα)′ = nα , (nα)′ = ℓα,

(mα)′ = m̄α , (m̄α)′ = mα, (5)

where

ρ′ = −µ, ǫ′ = −γ, β′ = −α. (6)

The prime-operator changes a scalar of type (p, q) to type (−p,−q), and complex conjugation changes it to type (q, p).
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We now introduce GHP derivative operators (Þ, ð), and their primes. When acting on a scalar, Ψ, of type (p, q),
these operators are

ÞΨ = (D − pǫ− qǭ)Ψ,

Þ
′ Ψ = (D′ + pǫ′ + qǭ′)Ψ,

ðΨ = (δ − pβ + qβ̄′)Ψ, and

ð
′ Ψ = (δ′ + pβ′ − qβ̄′)Ψ. (7)

This combination guarantees no derivatives of the parameter λ under the transformation eq. (3).
Finally, we present the relevant Ricci identities,

Þ ρ = ρ2,

Þ ρ′ = ρ ρ′ − ψ2,

Þψ2 = 3 ρψ2 (8)

Their primes also hold.

IV. GAUGE-INVARIANTS

To construct some basic gauge invariants, we first present the metric perturbation in GHP form, letting

hab =h22 (ℓaℓb) + h11 (nanb) + h12 (ℓanb + naℓb) + h33 (m̄am̄b) + h44 (mamb) + h34(mam̄b + m̄amb)

− h24 (ℓamb +maℓb)− h23 (ℓam̄b + m̄aℓb)− h14 (namb +manb)− h13 (nam̄b + m̄anb) . (9)

We now write the transformation of the metric perturbation under a linearized diffeomorphism, (δξh)ab = ∇(aξb),
in GHP form,

(δξh)11 = 2Þ ξ1,

(δξh)12 = Þ
′ ξ1 + Þ ξ2,

(δξh)22 = 2Þ
′ ξ2,

(δξh)13 = ð ξ1 + (Þ + ρ) ξ3,

(δξh)14 = ð
′ ξ1 + (Þ + ρ) ξ4,

(δξh)23 = ð ξ2 + (Þ′ + ρ′) ξ3,

(δξh)24 = ð
′ ξ2 + (Þ′ + ρ′) ξ4,

(δξh)33 = 2 ð ξ3,

(δξh)44 = 2 ð
′ ξ4,

(δξh)34 = 2 ρ′ ξ1 + 2 ρ ξ2 + ð
′ ξ3 + ð ξ4, (10)

where hij is the projection of the metric perturbation on the null tetrad, and ξi is the gauge vector projected on the
null tetrad. At any stage these can be plugged in to check the gauge-invariance of the invariants found in this work.
The gauge-invariants we construct, or translate in the GHP form from previous works, are all of type (0, 0). This

has meant constructing them from the following basic set

ρ′ 2 h11, ρ
2 h22, ð

′
ð
′ h33, ð ðh44, h12,

ρ′ ð′ h13, ρ
′
ðh14, ρ ð

′ h23, ρ ðh24, h34. (11)

Odd-parity gauge-invariants are constructed by subtracting a quantity from its complex conjugate. This implies that
the odd-parity gauge-invariants can only be constructed from linear combinations of h13, h14, h23, h24, h33, and h44.
On the other hand, even parity gauge-invariants can be constructed from any of these ten components. In this work,
we will be presenting our gauge-invariants in terms of these basic type (0,0) quantities, which are easy to relate to the
Regge-Wheeler-Zerilli metric components as shown in Appendix A. The three invariants and the equations presented
in this section are also invariant under the prime-symmetry (up to a possible minus sign for the invariants themselves).
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A. Odd Parity Invariants

We now present the first odd-parity invariant in GHP form, the Cunningham-Price-Moncrief function,

IO1
=
(

ρÞ
′ − ρ′ Þ

)(

ρ′ ð′ h13 − ρ′ ðh14 + ρ ð
′ h23 − ρ ðh24

)

+
(

ρÞ
′ + ρ′ Þ − 2 ρ ρ′

)(

ρ′ ð′ h13 − ρ′ ðh14 − ρ ð
′ h23 + ρ ðh24

)

≡ −2ρρ′ℑψ̇2 (12)

which is proportional to ℑψ̇2. A related invariant can also be presented in the following form,

IO1a
= Þð

′ h23 − Þ
′
ð
′ h13 − Þðh24 + Þ

′
ðh14 ≡ ℑψ̇2. (13)

which is exactly ℑψ̇2. The relation between the two forms of this invariant is IO1
= −2ρρ′IO1a

. We bring the reader’s
attention to the operators

(

ρÞ
′ − ρ′ Þ

)

and
(

ρÞ
′ + ρ′ Þ

)

in IO1
. Using the Kinnersley tetrad, these operators are

directly proportional to the time- and radial- derivatives, respectively, and become

(

ρÞ
′ − ρ′ Þ

)

=
−1

r
∂t

(

ρÞ
′ + ρ′ Þ

)

=
1

r
∂r∗ (14)

where r∗ is the tortoise-coordinate. The equation satisfied by IO1a
is

[

(

ρÞ
′ + ρ′ Þ

)(

ρÞ
′ + ρ′ Þ

)

−
(

ρÞ
′ − ρ′ Þ

)(

ρÞ
′ − ρ′ Þ

)

− 14ρρ′
(

ρÞ
′ + ρ′ Þ

)

− 2ρρ′
(

ðð
′ + ð

′
ð − 12ρρ′ − 12ψ2

)

]

IO1a

= 2
(

ρÞ
′ + ρ′ Þ − 6ρρ′

)(

ρ′ ð′ E13 − ρ′ ð E14 − ρ ð
′ E23 + ρ ð E24

)

+2
(

ρÞ
′ − ρ′ Þ

)(

ρ′ ð′ E13 − ρ′ ðE14 + ρ ð
′ E23 − ρ ðE24

)

(15)

where Eab is the GHP-projected, linearized Einstein tensor (see also App. B). We also present the source in terms of
the basic type (0,0) quantities where derivatives of h are replaced by E , as these are then easy to convert into the
Regge-Wheeler-Zerilli source terms (again, see App. C).
Another odd-parity invariant, related to IO1a

(loosely, by a time-derivative), is the Regge-Wheeler invariant,

IO2
=

(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

)(

ρ′ð′h13 − ρ′ðh14 + ρ ð
′h23 − ρ ðh24

)

−
(

ρ′Þ + ρÞ
′ − 4 ρ ρ′

)(

ð
′
ð
′h33 − ð ðh44

)

. (16)

The equation it satisfies is

[

(

ρÞ
′ + ρ′ Þ

)(

ρÞ
′ + ρ′ Þ

)

−
(

ρÞ
′ − ρ′ Þ

)(

ρÞ
′ − ρ′ Þ

)

− 18ρρ′
(

ρÞ
′ + ρ′ Þ

)

− 2ρρ′
(

ðð
′ + ð

′
ð − 24ρρ′ − 14ψ2

)

]

IO2

= 2
(

ρÞ
′ + ρ′ Þ − 8ρρ′

)(

ρÞ
′ − ρ′ Þ

)(

ρ′ ð′ E13 − ρ′ ð E14 − ρ ð
′ E23 + ρ ð E24

)

+2
[

(

ρÞ
′ + ρ′ Þ

)(

ρÞ
′ + ρ′Þ

)

− 18ρ ρ′
(

ρÞ
′ + ρ′ Þ

)

− 2ρρ′
(

ðð
′ + ð

′
ð − 24ρρ′ − 14ψ2

)

]

×
(

ρ′ ð′ E13 − ρ′ ð E14 + ρ ð
′ E23 − ρ ðE24

)

. (17)

The exact relation between the Cunningham-Price-Moncrief invariant and the Regge-Wheeler invariant is

(

ρÞ
′ − ρ′Þ

)

IO1
= −2 ρ ρ′IO2

+ 4 ρ ρ′
(

ρ′ð′E13 − ρ′ð E14 + ρ ð
′E23 − ρ ðE24

)

. (18)

It is relatively straightforward to check these relations, and the validity of the equations presented, by brute-force,
simply by substitution using the Einstein tensor components presented in Appendix B. We would like to bring the
reader’s attention to the potentials involved in the two odd-parity equations above. They appear to be different when
compared to the covariant Eqs (5.14) and (5.19) of Martel-Poisson [13] which have the same potential for both of
them. This difference can be removed by re-scaling the two invariants, IO1a

and IO2
appropriately, which will be

shown later.
With this we now move to the even-parity sector.
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B. Even Parity Invariants

As is well known, the Zerilli potential involves division by an algebraic factor which involves both r and ℓ, the
angular eigenvalue. Thus to write the equation without division by the angular operator, many extra angular factors
need to be used in both the Zerilli equation and, in fact, in the Zerilli variable itself too. We find Zerilli’s even-parity
invariant in GHP form is

IZ =
(

ðð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

)(

ðð
′ + ð

′
ð
)(

ρÞ
′ − ρ′ Þ

)

h34

+
(

ðð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

)(

ðð
′ + ð

′
ð
)(

ρ′2h11 − ρ2h22
)

+
(

ðð
′ + ð

′
ð − 4 ρ ρ′ + 2ψ2

)(

ρÞ
′ − ρ′ Þ

)(

ð
′
ð
′h33 + ð ðh44

)

+
(

ðð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

)(

ρÞ
′ + ρ′ Þ − 6 ρ ρ′ + 2ψ2

)(

ρ′ð′h13 + ρ′ðh14 − ρ ð
′h23 − ρ ðh24

)

+
(

ðð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

)(

ρÞ
′ − ρ′ Þ

)(

ρ′ð′h13 + ρ′ðh14 + ρ ð
′h23 + ρ ðh24

)

, (19)

and the equation it satisfies is given by

(

X̂ − 4 ρ ρ′ + 2ψ2

)2(
ρÞ

′ + ρ′ Þ
)(

ρÞ
′ + ρ′ Þ

)

IZ

−
(

X̂ − 4 ρ ρ′ + 2ψ2

)2(
ρÞ

′ − ρ′ Þ
)(

ρÞ
′ − ρ′ Þ

)

IZ

− 2 ρ ρ′
(

X̂ − 4 ρ ρ′ + 2ψ2

)(

13 X̂ − 52 ρ ρ′ + 38ψ2

)(

ρÞ
′ + ρ′ Þ

)

IZ

− 2 ρ ρ′
(

X̂ − 4 ρ ρ′ + 2ψ2

)

[

X̂ 2 − 16
(

4 ρ ρ′ + ψ2

)

X̂ − 24
(

ψ2 − ρ ρ′
)(

ψ2 + 10 ρ ρ′
)

]

IZ

=

4 ρ ρ′
(

X̂ − 4 ρ ρ′ − 4ψ2

)(

X̂ − 4 ρ ρ′ + 2ψ2

)2(
ρÞ

′ + ρ′ Þ
)(

ρ′ð′E13 + ρ′ð E14 − ρ ð
′E23 − ρ ð E24

)

− X̂
(

X̂ − 4 ρ ρ′ − 4ψ2

)(

X̂ − 4 ρ ρ′ + 2ψ2

)2(
ρÞ

′ + ρ′ Þ
)(

ρ′2E11 − ρ2, E22
)

− X̂
(

X̂ − 4 ρ ρ′ − 4ψ2

)(

X̂ − 4 ρ ρ′ + 2ψ2

)2(
ρÞ

′ − ρ′ Þ
)(

ρ′2E11 + 2 ρ ρ′E12 + ρ2, E22
)

+ 4 ρ ρ′
(

X̂ − 4 ρ ρ′ + 2ψ2

)3(
ρÞ

′ − ρ′ Þ
)(

ð
′
ð
′E33 + ðð E44

)

+ 4 ρ ρ′
(

X̂ − 4 ρ ρ′ − 4ψ2

)(

X̂ − 4 ρ ρ′ + 2ψ2

)2(
ρÞ

′ − ρ′ Þ
)(

ρ′ð′E13 + ρ′ð E14 + ρ ð
′E23 + ρ ð E24

)

+ 4 ρ ρ′X̂
(

X̂ − 4 ρ ρ′ + 2ψ2

)(

X̂ − 4 ρ ρ′ + 8ψ2

)(

X̂ − 4 ρ ρ′ − 4ψ2

)(

ρ′2E11 − ρ2E22
)

+ 2 ρ ρ′
(

X̂ − 4 ρ ρ′ − 4ψ2

)(

X̂ − 4 ρ ρ′ + 2ψ2

)

[

X̂ 2 − 2 X̂
(

ψ2 + 8 ρ ρ′
)

− 8
(

ψ2
2 + 7 ρ ρ′ψ2 − 6, ρ2ρ′2

)

]

×
(

ρ′ð′E13 + ρ′ð E14 − ρ ð
′E23 − ρ ðE24

)

, (20)

where X̂ =
(

ð ð
′+ð

′
ð
)

is used for brevity. Once again, one can straightforwardly check the validity of these equations
by using App. B.

1. A New Gauge Invariant

Finally in this section, we present a new even-parity gauge-invariant which also obeys a 2nd order hyperbolic
equation. The invariant is

IνE1 =
(

X̂ − 4 ρ ρ′ − 4ψ2

)

[

ρ′2h11 + 2 ρ ρ′h12 + ρ2h22 +

(

2 ρ ρ′ − ρ′Þ − ρÞ
′ − 1

2
X̂ − ψ2

)

h34

+ ρ′ð′h13 + ρ′ðh14 + ρ ð
′h23 + ρ ðh24 +

1

2
ð
′
ð
′h33 +

1

2
ð ðh44

]

+ 3ψ2

(

ð
′
ð
′h33 + ð ðh44

)

, (21)

which is of a total differential order (4), less than that for the Zerilli variable (5 — see equation eq. (19)). The equation
our new invariant obeys is given by
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2
(

X̂ − 4 ρ ρ′ + 2ψ2

)

[

(

ρÞ
′ + ρ′Þ

)2 −
(

ρÞ
′ − ρ′Þ

)2
]

IνE1 − 4 ρ ρ′
(

11 X̂ − 44 ρ ρ′ + 34ψ2

)(

ρÞ
′ + ρ′Þ

)

IνE1

+4 ρ ρ′
[

− X̂ 2 + 2
(

7ψ2 + 22 ρ ρ′
)

X̂ + 20
(

ψ2
2 + 8 ρ ρ′ − 8 ρ2ρ′2

)

]

IνE1

=
(

X̂ − 4 ρ ρ′ + 2ψ2

) (

X̂ − 4 ρ ρ′ − 4ψ2

)

X̂
(

ρ′2E11 + 2 ρ ρ′E12 + ρ2E22
)

− 4 ρ ρ′
(

X̂ − 4 ρ ρ′ + 2ψ2

) (

X̂ − 4 ρ ρ′ + 2ψ2

) (

ð
′
ð
′E33 + ð ð E44

)

− 2
(

X̂ − 4 ρ ρ′ + 2ψ2

) (

X̂ − 4 ρ ρ′ − 4ψ2

) (

ρÞ
′ − ρ′Þ

) (

ρ′2E11 − ρ2E22
)

− 4 ρ ρ′
(

X̂ − 4 ρ ρ′ + 2ψ2

) (

X̂ − 4 ρ ρ′ − 4ψ2

) (

ρ′ð′E13 + ρ′ð E14 + ρ ð
′E23 + ρ ð E24

)

− 2
(

X̂ − 4 ρ ρ′ + 2ψ2

) (

X̂ − 4 ρ ρ′ − 4ψ2

) (

ρÞ
′ + ρ′Þ

) (

ρ′2E11 − 2 ρ ρ′E12 + ρ2E22
)

−
[

X̂ 2 + X̂
(

2ψ2 − 20 ρ ρ′
)

+ 64 ρ2ρ′2 − 80 ρ ρ′ψ2

]

(

X̂ − 4 ρ ρ′ − 4ψ2

) (

ρ′2E11 − 2 ρ ρ′E12 + ρ2E22
)

. (22)

Compared to Zerilli’s 6th order equation (20), this equation is of 4th order. Moreover, the Zerilli invariant is 5th order
in derivatives acting on the metric perturbation and the one above is of 4th order. Effectively, the Zerilli’s equation
is 11th order acting on the metric perturbation whereas the one above is 3 orders less, i.e., 8th order on the metric
perturbation.
One would have noticed that two expressions,

(

X̂ − 4 ρ ρ′ + 2ψ2

)

and
(

X̂ − 4 ρ ρ′ − 4ψ2

)

, occur frequently in these

calculations. Using Kinnersley tetrad, these correspond to −(ℓ − 1)(ℓ + 2)/r2 and −(ℓ − 1)(ℓ + 2)/r2 − 6M/r3,

respectively, in their separated forms. And X̂ by itself is −ℓ(ℓ+ 1)/r2. The equations presented in this section have
Eab in the right-hand-side; one can substitute Eab = 8 π Tab and use the relevant source for the problem concerned
(here Tab is the stress-energy tensor). The coordinate-form of equation (22) is presented in App. C.

V. FOLLOWING CHANDRASEKHAR’S ANALYSIS

Chandrasekhar’s work finding relations between solutions to equations is especially interesting in this context
because he was able to relate solutions of the even parity equation to solutions of the odd parity equations, even
though these sectors are completely decoupled. He was in fact, relating solution spaces for the equations in question,
and not particular solutions for one parity to concurrent solutions for the other parity for a given metric perturbation.
With our odd- and even-parity invariants now presented, along with the hyperbolic equations they solve, we proceed

to follow Chandrasekhar and first write the homogenous Regge-Wheeler and Zerilli equations as one, but also in GHP
form. To do so, we will first need to introduce a spin and boost weight scalar ζ which satisfies ζ ∝ (−ψ2)

−1/3, where
the constant is chosen so the the Minkowski space limit is well defined (and becomes exactly r in polar coordinates)[20].
Then we introduce new odd parity variables IO1a

/ψ2 (i.e., the imaginary fractional change in ψ2) and ζ
4IO2

, which
will both satisfy equation (23) below for I− (Note: whereas these two new quantities will each satisfy the same
equation and have the same physical dimension, only one of them remains regular in the flat space limit.), while for

even parity, with I+ also satisfying equation (23), then the quantity ζ−4(X̂ − 4ρρ′ + 2ψ2)I+ will satisfy the Zerilli
equation for IZ .
Following Chandrasekhar’s work in [10], one can write the homogenous equations for I±, defined using the trans-

formations above, with Chandrasekhar’s master equation being given by
[

ζ
(

ρÞ
′ + ρ′Þ

)

]2

I± −
[

ζ
(

ρÞ
′ − ρ′Þ

)

]2

I± = V± I±, (23)

where the potential V± is given by

ζ−2
(

X̂ − 4 ρ ρ′ + 2ψ2

)2
V± = ±24 ρ ρ′ψ2

[

ψ2

(

X̂ + 2ψ2

)

− 2 ρ ρ′
(

X̂ + ψ2

)

+ 8 ρ2ρ′2
]

+ 144 ρ2ρ′2ψ2
2

+2 ρ ρ′X̂
(

X̂ − 4 ρ ρ′ − 4ψ2

) (

X̂ − 4 ρ ρ′ + 2ψ2

)

. (24)

Once solutions to the equations for the odd- and even-parity invariants are written in this form, one can relate the
solution spaces for the two invariants, I+ and I−, as follows,

ζ−4
(

X̂ − 4 ρ ρ′ + 2ψ2

)

I± =
[

X̂
(

X̂ − 4 ρ ρ′ − 4ψ2

) (

X̂ − 4 ρ ρ′ + 2ψ2

)

+ 144 ρ ρ′ψ2
2

]

I∓

∓12ψ2

(

X̂ − 4 ρ ρ′ + 2ψ2

) (

ρÞ
′ + ρ′Þ

)

I∓ . (25)
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One can also go on and relate these invariants to the perturbed Weyl scalar, ψ̇0,

ψ̇0 = ð ðh11 + ÞÞh33 − 2 ρÞh33 − 2 ðÞh13 + 2 ρ ðh13. (26)

in the source-free region. ψ̇0 which can be scalarized to

ρ′ρ′ð′
ð
′ψ̇0 =

1

4
X̂

(

X̂ − 4 ρ ρ′ − 4ψ2

)

ρ′2h11

−1

2

(

X̂ − 4 ρ ρ′ − 4ψ2

)

[

(

ρÞ
′ + ρ′Þ

)

−
(

ρÞ
′ − ρ′Þ

)

− 6 ρ ρ′ + 2ψ2

]

ρ′ð′h13

+
1

4

[

(

ρÞ
′ + ρ′Þ

)2
+

(

ρÞ
′ − ρ′Þ

)2 − 2
(

ρÞ
′ + ρ′Þ

) (

ρÞ
′ − ρ′Þ

)

+ 2
(

ψ2 − 7 ρ ρ′
) (

ρÞ
′ + ρ′Þ

)

+
(

16 ρ ρ′ − 2ψ2

)(

ρÞ
′ − ρ′Þ

)

+ 24 ρ2ρ′2
]

ð
′
ð
′ h33. (27)

The homogenous equation it solves is

[

ζ
(

ρÞ
′ + ρ′Þ

)

]2

Y0 −
[

ζ
(

ρÞ
′ − ρ′Þ

)

]2

Y0 − ζ
(

4ψ2 − 8 ρ ρ′
)

Λ− Y0

= ζ2
[

2 ρ ρ′
(

X̂ − 4 ρ ρ′ − 4ψ2

)

+ 12 ρ ρ′ψ2

]

Y0 (28)

where (note, again, that the flat space limit is not regular here)

ψ2Y0 = ζ2ρ′ ρ′ ð′
ð
′ ψ̇0, and (29)

Λ± = ζ
[

(

ρÞ
′ + ρ′Þ

)

∓
(

ρÞ
′ − ρ′Þ

)

]

. (30)

Once in this form, solutions to the equation for Y0 can be related to solutions for the equations satisfied by I±,

F F Y0 = V± I± −F (W± + 2F T) Λ+I± (31)

F K±(2 ρ ρ
′)2I± = (2 ρ ρ′)2 F F Y0 + (W± + 2F T) Λ−Y0, (32)

where

2 ρ ρ′F = ζ2
(

X̂ − 4 ρ ρ′ + 2ψ2

)

, (33)

K± = κ± 2 β T, (34)

κ = ζ4 X̂
(

X̂ − 4 ρ ρ′ − 4ψ2

)

, (35)

ρ ρ′ ζ−3W± =
(

2 ρ ρ′ − ψ2

)

X̂ − 2ψ2
2 − 8 ρ2ρ′2 + 2ρ ρ′ψ2 ∓ βρ ρ′ζ−3, (36)

V± = F κ± β
[

ζ
(

ρÞ
′ + ρ′Þ

)

F ± β
]

, (37)

β = 6ψ2 ζ
3, (38)

T = ζ
(

ρÞ
′ − ρ′Þ

)

. (39)

Its prime relating scalarized solutions for ψ̇4 with solutions for I± also holds. We emphasize again that one should
be very careful when using Eqs (25, 31 and 32) since these transformations should be used for solution classes of the
equations specified, and not for particular parts of the solution corresponding to a given metric perturbation.

VI. OTHER GAUGE-INVARIANTS

To systematically get more gauge-invariants, we begin with looking for 2nd order invariants other than ψ̇0, ψ̇4, IO1a

and Eab’s. It can now be shown that these are the only 2nd order invariants possible, and any more of type (0,0)
invariants would just be linear combinations of their scalarized version. To find other (higher order) gauge-invariants
we translate the gauge transformations given in Eq (10) to the ones for the metric components given by Regge-
Wheeler-Zerilli in terms of radial components of tensorial spherical harmonics as follows (but without the separation
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in terms of radial and angular components),

ρ′2(δξh)11 − ρ2(δξh)22 = −
(

ρÞ
′ − ρ′Þ

)

(ρ′ξ1 + ρ ξ2)

+
(

ρÞ
′ + ρ′Þ − 2 ρ ρ′ + 2ψ2

)

(ρ′ξ1 − ρ ξ2)

ρ′2(δξh)11 − 2 ρ ρ′(δξh)12 + ρ2(δξh)22 = 2ψ2 (ρ
′ξ1 + ρ ξ2)−

(

ρÞ
′ − ρ′Þ

)

(ρ′ξ1 − ρ ξ2)

ρ′2(δξh)11 + 2 ρ ρ′(δξh)12 + ρ2(δξh)22 =
(

ρÞ
′ + ρ′Þ − 2 ρ ρ′ + ψ2

)

(ρ′ξ1 + ρ ξ2)

ð
′
ð
′(δξh)33 + ð ð (δξh)44 =

(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ð
′ξ3 + ð ξ4

)

ρ′ð′(δξh)13 + ρ′ð (δξh)14 + ρ ð
′(δξh)23 + ρ ð (δξh)24 =

(

ð ð
′ + ð

′
ð
)

(ρ′ξ1 + ρ ξ2) +
(

ρÞ
′ + ρ′Þ

) (

ð
′ξ3 + ð ξ4

)

ρ′ð′(δξh)13 + ρ′ð (δξh)14 − ρ ð
′(δξh)23 − ρ ð (δξh)24 =

(

ð ð
′ + ð

′
ð
)

(ρ′ξ1 − ρ ξ2)−
(

ρÞ
′ − ρ′Þ

) (

ð
′ξ3 + ð ξ4

)

(δξh)34 = 2 (ρ′ξ1 + ρ ξ2) +
(

ð
′ξ3 + ð ξ4

)

ρ′ð′(δξh)13 − ρ′ð (δξh)14 + ρ ð
′(δξh)23 − ρ ð (δξh)24 =

(

ρÞ
′ + ρ′Þ

) (

ð
′ξ3 − ð ξ4

)

ρ′ð′(δξh)13 − ρ′ð (δξh)14 − ρ ð
′(δξh)23 + ρ ð (δξh)24 = −

(

ρÞ
′ − ρ′Þ

) (

ð
′ξ3 − ð ξ4

)

ð
′
ð
′(δξh)33 − ð ð (δξh)44 =

(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ð
′ξ3 − ð ξ4

)

. (40)

A. Odd Parity Invariants

We begin with finding the odd-parity gauge-invariants from the above equations. The last three of eqs (40), are of
odd-parity. Hence, there are three ways to eliminate the odd-parity gauge vector projection,

(

ð
′ξ3 − ð ξ4

)

, to obtain
the following invariants (here and below, names chosen are consistent with those used in ref. [1]),

Iβ =
(

ρÞ
′ − ρ′Þ

) (

ð
′
ð
′h33 − ð ðh44

)

+
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′ð′h13 − ρ′ðh14 − ρ ð
′h23 + ρ ðh24

)

,

Iα =
(

ρÞ
′ + ρ′Þ − 4 ρ ρ′

) (

ð
′
ð
′h33 − ð ðh44

)

−
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′ð′h13 − ρ′ðh14 + ρ ð
′h23 − ρ ðh24

)

,

Iγ =
(

ρÞ
′ − ρ′Þ

) (

ρ′ð′h13 − ρ′ðh14 + ρ ð
′h23 − ρ ðh24

)

+
(

ρÞ
′ + ρ′Þ − 2 ρ ρ′

) (

ρ′ð′h13 − ρ′ðh14 − ρ ð
′h23 + ρ ðh24

)

.

(41)

It will be recognized that Iγ ≡ IO1 given by eq. (12) and Iα ≡ −IO2 given by eq. (16), which have already been related

to ℑψ̇2 and its time derivative in section IVA. It will be seen below that Iβ , the first in the list above, is related

to the radial derivative of ℑψ̇2, modulo Einstein tensor components and a multiplicative factor. The exact relation
is presented in section VIC below. One should also note that Iα and Iγ each obey a second-order hyperbolic PDE,
while Iβ (proportional to the radial derivative of Iγ) does not. However, three invariants are not all independent:

(

ρÞ
′ + ρ′Þ − 6 ρ ρ′

)

Iβ −
(

ρÞ
′ − ρ′Þ

)

Iα −
(

ðð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

)

Iγ = 0, (42)

(43)

which is exactly equivalent to the Regge-Wheeler equation (17).

B. Even Parity Invariants

To get the even-parity invariants, we concentrate on the first seven of Eqs (40). Instead of just one, we now
have three even-parity gauge vectors projections, (ρ′ξ1 + ρ ξ2), (ρ

′ξ1 − ρ ξ2) and
(

ð
′ξ3 + ð ξ4

)

. The recipe involves
eliminating these three quantities step-by-step. For example, one can use the fifth and seventh equations of the set
and eliminate

(

ð
′ξ3 + ð ξ4

)

, and finally use the third to eliminate (ρ′ξ1 + ρ ξ2). Obviously, a number of combinations
is possible, potentially leading to a variety of invariants that can be calculated from these seven equations. We choose
to translate Steven Detweiler’s systematic coordinate-dependent work into a coordinate-independent, covariant GHP
formulation. The first step is to write three gauge-vectors in terms of metric perturbations with as few derivatives as
possible, and we choose the fourth, sixth and seventh of Eqs (40),
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(

ðð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ð ð
′ + ð

′
ð
) (

ð
′ξ3 + ð ξ4

)

=
(

ð ð
′ + ð

′
ð
) (

ð
′
ð
′(δξ h)33 + ð ð (δξ h)44

)

, (44)
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ð ð
′ + ð

′
ð
)

(ρ′ξ1 − ρ ξ2) =
(

ρÞ
′ − ρ′Þ

) (

ð
′
ð
′(δξ h)33 + ðð (δξ h)44

)

+
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′ð′(δξ h)13 + ρ′ð (δξ h)14 − ρ ð
′(δξ h)23 − ρ ð (δξ h)24

)

, (45)

(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ð ð
′ + ð

′
ð
)

(ρ′ξ1 + ρ ξ2) =
1

2

(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ð ð
′ + ð

′
ð
)

(δξ h)34

− 1

2

(

ð ð
′ + ð

′
ð
) (

ð
′
ð
′(δξ h)33 + ð ð (δξ h)44

)

. (46)

We use these to eliminate the gauge vectors projections from the first, second, third and fifth of Eqs (40), to have 4
even-parity invariants,

Iδ =2
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ð ð
′ + ð

′
ð
) (

ρ′2h11 − ρ2h22
)

+
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ðð
′ + ð

′
ð
) (

ρÞ
′ − ρ′Þ

)

h34

− 2
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρÞ
′ + ρ′Þ − 6 ρ ρ′ + 2ψ2

) (

ρ′ð′h13 + ρ′ðh14 − ρ ð
′h23 − ρ ðh24

)

−
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρÞ
′ − ρ′Þ

) (

ð
′
ð
′h33 + ð ðh44

)

− 2
(

ρÞ
′ − ρ′Þ

) (

ρÞ
′ + ρ′Þ − 6 ρ ρ′ + 4ψ2

) (

ð
′
ð
′h33 + ð ðh44

)

, (47)

Iǫ =
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ð ð
′ + ð

′
ð
) (

ρ′2h11 − 2 ρ ρ′h12 + ρ2h22
)

− ψ2

(

ðð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ð ð
′ + ð

′
ð
)

h34

+ 2
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρÞ
′ − ρ′Þ

) (

ρ′ð′h13 + ρ′ðh14 − ρ ð
′h23 − ρ ðh24

)

+ ψ2

(

ðð
′ + ð

′
ð
) (

ð
′
ð
′h33 + ð ðh44

)

+ 2
(

ρÞ
′ − ρ′Þ

) (

ρÞ
′ − ρ′Þ

) (

ð
′
ð
′h33 + ð ðh44

)

, (48)

Iχ = −
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ðð
′ + ð

′
ð
)

h34

+ 2
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′ð′h13 + ρ′ðh14 − ρ ð
′h23 − ρ ðh24

)

+
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ð
′
ð
′h33 + ð ðh44

)

− 2
(

ρÞ
′ + ρ′Þ − 6 ρρ′ − 2ψ2

) (

ð
′
ð
′h33 + ð ðh44

)

, (49)

Iψ =
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′2h11 + 2 ρ ρ′h12 + ρ2h22
)

−
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρÞ
′ + ρ′Þ − 2 ρ ρ′ + ψ2

)

h34

+
(

ρÞ
′ + ρ′Þ − 6 ρ ρ′ + ψ2

) (

ð
′
ð
′h33 + ð ðh44

)

. (50)

On the other hand, one could have used other components of metric perturbations to eliminate the gauge vector
projections, and arrive at a different set of invariants.

C. Curvature Invariants

We now try to relate these odd- and even-parity invariants with curvature invariants.

1. Odd Parity

We begin with defining three, scalarized, odd-parity invariants

I0 = ρ′ρ′ð′
ð
′ψ̇0 − ρ′ρ′ð ð

˙̄ψ0, (51)

I2 =
1

2
(ψ̇2 − ˙̄ψ2) ≡ ℑψ̇2, and (52)

I4 = ρ ρ ð ð ψ̇4 − ρ ρ ð
′
ð
′ ˙̄ψ4, (53)

and then seek ways of relating the Detweiler invariants to them. By direct computation, we find
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Iα = −
(

ρÞ
′ − ρ′Þ

)

I2 − 2
(

ρ′ð′E13 − ρ′ð E14 + ρ ð
′E23 − ρ ðE24

)

, (54)

Iβ = −
(

ρÞ
′ + ρ′Þ − 8 ρ ρ′

)

I2 + 2
(

ρ′ð′E13 − ρ′ðE14 − ρ ð
′E23 + ρ ð E24

)

, (55)

Iγ = −2ρρ′I2. (56)

Eqs (54) and (56) together are equivalent to eq. (18) above. Finally, we show that the three curvature invariants are
themselves related:

2 I0 + 2 I4 −
(

ρÞ
′ − ρ′Þ

) (

ρÞ
′ − ρ′Þ

)

I2 −
(

ρÞ
′ + ρ′Þ − 10 ρ ρ′ + 2ψ2

) (

ρÞ
′ + ρ′Þ − 8 ρ ρ′

)

I2

= 2
(

ρÞ
′ − ρ′Þ

) (

ρ′ð′E13 − ρ′ð E14 + ρ ð
′E23 − ρ ð E24

)

− 2
(

ρÞ
′ + ρ′Þ − 10 ρ ρ′ + 2ψ2

) (

ρ′ð′E13 − ρ′ð E14 − ρ ð
′E23 + ρ ð E24

)

. (57)

To our knowledge, this equation, differentially relating the curvature invariants, ℑψ̇0, ℑψ̇2 and ℑψ̇4, has not previously
been explicitly given. With the analysis on odd-parity invariants complete, we now move to the complicated even-
parity invariants.

2. Even Parity

The even-parity invariants, Iδ, Iǫ, Iχ and Iψ, can be related to each other using the following relations,

4R0 − 4R4 = Iδ + (ρÞ
′ − ρ′Þ)Iχ, (58)

2R0 + 2R4 + 4 ρ ρ′
(

ð
′
ð
′E33 + ð ðE44

)

= Iǫ − ψ2Iχ, (59)

2R0 + 2R4 − 4 ρ ρ′
(

ð
′
ð
′E33 + ð ðE44

)

=
(

ð ð
′ + ð

′
ð
)

Iψ −
(

ρÞ
′ + ρ′Þ − 10 ρ ρ′ + ψ2

)

Iχ, (60)

4
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′2E11 − ρ2E22
)

= Iδ +
(

ρÞ
′ − ρ′Þ

)

Iψ + (ρÞ
′ − ρ′Þ)XIχ, (61)

12Ψ2

(

ρ′2E11 − 2 ρ ρ′E12 + ρ2E22
)

+ 8 ρ ρ′Ψ2 (2 E12 + E34) =
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ + 2Ψ2

)

Iψ

−
(

ρÞ
′ + ρ′Þ − 12 ρ ρ′ +Ψ2

)

(Iχ + 2 Iψ) , (62)

where

R0 = ρ′ρ′ð′
ð
′ψ̇0 + ρ′ρ′ð ð

˙̄ψ0, and (63)

R4 = ρ ρ ðð ψ̇4 + ρ ρ ð
′
ð
′ ˙̄ψ4 . (64)

These equations can then be inverted to write the four invariants in terms of curvature invariants as follows

(

ρÞ
′ − ρ′Þ

)

Iψ = −4 (R0 −R4) + 4
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′2E11 − ρ2E22
)

, (65)

ρ ρ′
(

ρÞ′ − ρ′Þ
)

Iχ = 6ψ2

(

ρÞ
′ − ρ′Þ

) (

ρ′2E11 − 2 ρρ′E12 + ρ2E22
)

+ 4 ρ ρ′ψ2

(

ρÞ
′ − ρ′Þ

)

(2 E12 + E34)
−
(

ρÞ
′ − ρ′Þ

)

(R0 +R4) + 2 ρ ρ′
(

ρÞ
′ − ρ′Þ

) (

ð
′
ð
′E33 + ð ðE44

)

− 4
(

ρÞ
′ + ρ′Þ − 12 ρ ρ′

)

(R0 −R4)

+ 4
(

ρÞ
′ + ρ′Þ − 12 ρ ρ′

) (

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′2E11 − ρ2E22
)

, (66)

ρ ρ′Iδ = 4 ρ ρ′ (R0 −R4)− 6ψ2

(

ρÞ
′ − ρ′Þ

) (

ρ′2E11 − 2 ρ ρ′E12 + ρ2E22
)

− 4 ρ ρ′ψ2

(

ρÞ
′ − ρ′Þ

)

(2 E12 + E34) +
(

ρÞ
′ − ρ′Þ

)

(R0 +R4)

− 2 ρ ρ′
(

ρÞ
′ − ρ′Þ

) (

ð
′
ð
′E33 + ð ð E44

)

+ 4
(

ρÞ
′ + ρ′Þ − 12 ρ ρ′

)

(R0 −R4)

− 4
(

ρÞ
′ + ρ′Þ − 12 ρ ρ′

) (

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′2E11 − ρ2E22
)

, (67)

ρ ρ′
(

ρÞ
′ − ρ′Þ

)

Iǫ = (2 ρ ρ′ − ψ2)
(

ρÞ
′ − ρ′Þ

)

(R0 +R4) + 4 ρ2ρ′2
(

ρÞ
′ − ρ′Þ

) (

ð
′
ð
′E33 + ð ð E44

)

+ 6ψ2
2

(

ρÞ
′ − ρ′Þ

) (

ρ′2E11 − 2 ρ ρ′E12 + ρ2E22
)

+ 4 ρ ρ′ψ2
2

(

ρÞ
′ − ρ′Þ

)

(2 E12 + E34)
+ 2 ρ ρ′ψ2

(

ρÞ
′ − ρ′Þ

) (

ð
′
ð
′E33 + ð ð E44

)

− 4ψ2

(

ρÞ
′ + ρ′Þ − 12 ρ ρ′

)

(R0 −R4)

+ 4ψ2

(

ρÞ
′ + ρ′Þ − 12 ρ ρ′

) (

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′2E11 − ρ2E22
)

. (68)
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Along with these we also get an equation relating the curvature invariants with Einstein tensors,

−
(

ρÞ
′ − ρ′Þ

) (

ρÞ
′ + ρ′Þ − 16 ρ ρ′ + 3ψ2

)

(R0 +R4) + 4 ρ ρ′
(

ð ð
′ + ð

′
ð
)

(R0 −R4)

− 4
(

ρÞ
′ + ρ′Þ − 16 ρ ρ′ + 3ψ2

) (

ρÞ
′ + ρ′Þ − 12 ρ ρ′

)

(R0 −R4)

= 4 ρ2ρ′2
(

ρÞ
′ − ρ′Þ

) (

ð
′
ð
′E33 + ð ð E44

)

+ 4 ρ ρ′
(

ð ð
′ + ð

′
ð
) (

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′2E11 − ρ2E22
)

+
(

ρÞ
′ + ρ′Þ − 16 ρ ρ′ + 3ψ2

)

[

− 6ψ2

(

ρÞ
′ − ρ′Þ

) (

ρ′2E11 − 2 ρ ρ′E12 + ρ2E22
)

− 4 ρ ρ′ψ2

(

ρÞ
′ − ρ′Þ

)

(2 E12 + E34)

− 2 ρ ρ′
(

ρÞ
′ − ρ′Þ

) (

ð
′
ð
′E33 + ð ð E44

)

− 4
(

ρÞ
′ + ρ′Þ − 12 ρ ρ′

) (

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′2E11 − ρ2E22
)

]

. (69)

Its nature is yet to be investigated.
Though none of these 4 even-parity invariants solve a 2nd-order hyperbolic PDE, their combinations, the Zerilli

invariant, IZ and the new even-parity invariant, IνE1, which are related to these invariants as follows,

2 IνE1 = 2Iψ + Iχ, (70)

2 IZ = Iδ −
(

ρÞ
′ − ρ′Þ

)

Iχ, (71)

do each obey a second order hyperbolic PDE as shown in Eqs ((22), (20)) above.

VII. CONCLUSIONS AND OUTLOOK

This work, which started as a warm-up exercise to study perturbations on Kerr spacetime, has led to many new
and interesting results. In this article, we investigate gauge-invariant quantities in Schwarzschild spacetime and,
where possible, present and derive a 2nd-order hyperbolic PDE they obey. Previous work by numerous authors who
studied perturbations on Schwarzschild background have been translated to a covariant, coordinate-independent and
tetrad-rotation invariant form using the GHP-tools. Relations between the various odd- and even-parity invariants,
and curvature invariants that enter these relations, have been derived and presented here as a set of minimal number
of equations required. While working on this, we discovered a new even-parity invariant which obeys a second-order
hyperbolic PDE. Both the invariant, and the equation it obeys, are of order lesser than Zerilli’s. It is interesting to
note how the real and imaginary parts of the Weyl scalars are related to the various invariants derived in this work.
Chandra’s work on relating the RWZ-invariants with each other and the Weyl scalars have also been translated to a
GHP-form, and one should be careful when using these relations as these relations relate elements of the solution set
and not solutions satisfying the same boundary conditions. In the Appendices, we show how to translate the metric
perturbation in GHP form to that in the RWZ-gauge. We also present the Einstein tensors and their scalarized
version which can easily be related to ones in the works of RWZ and others.
A number of difficulties come up when carrying forward this work to studying perturbations of Kerr black hole, and

deriving gauge-invariant quantities and the equations they obey. The obvious one is the presence of complex Ricci
coefficients, π and τ (along with ρ); and ψ2 being complex. Commutation relations between various operators are
not simple anymore, for example, ð and ð

′ (when acting on a quantity of type (0,0)) don’t commute with each other,
nor can ð or ð

′ pass through ρ or ψ2 anymore. Angular operators like (ð ð
′ + ð

′
ð) that gives a term proportional to

ℓ(ℓ+ 1), and (ð ð
′ + ð

′
ð− 4 ρ ρ′ − 4ψ2) that is proportional to (ℓ− 1)(ℓ+ 2), are no more possible in Kerr spacetime;

if needed, one will have to use the Teukolsky-Starobinsky identities. With these difficulties comes a lot of freedom,
for example, there is more than one way to write an operator proportional to ∂r or ∂t. Unlike in this work, many
combinations are possible to scalarize the metric perturbations, Weyl scalars and Einstein tensors, for example, one
will have to use a linear combination of ð, τ and τ̄ ′ to get a quantity of type (1,-1), where as in this work, the only
possibility was the ð-operator (owing to τ = 0 here) which is also a spin-raising operator for spin-weighted spherical
harmonics. While struggling with these difficulties and exploring the various possibilities in defining quantities of
interest (owing to the freedom involved in Kerr spacetime), we hope to derive quantities equivalent to the odd- and
even-parity invariants in Schwarzschild spacetime and the equations they obey.
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Appendix A: GHP vs coordinate metric perturbation

If one were to use the tensor harmonics given in Appendix A of [21], and the metric perturbation given in Appendix
D of [21], we then have the following relations,

H0L,M
=

r2
(

1− 2M
r

)

∫

(ρ′
2

h11 − 2ρρ′h12 + ρ2h22)ȲL,MdΩ, (A1)

H2L,M
=

r2
(

1− 2M
r

)

∫

(ρ′
2

h11 + 2ρρ′h12 + ρ2h22)ȲL,MdΩ, (A2)

H1L,M
=

r2
(

1− 2M
r

)

∫

(ρ′
2

h11 − ρ2h22)ȲL,MdΩ, (A3)

h
(m)
1L,M

=
− r3

L(L+ 1)
(

1− 2M
r

)

∫

(ρ ðh24 + ρ ð
′h23 + ρ′ðh14 + ρ′ð′h13)ȲL,MdΩ, (A4)

h
(m)
0L,M

=
r3

L(L+ 1)

∫

(ρ ðh24 + ρ ð
′h23 − ρ′ðh14 − ρ′ð′h13)ȲL,MdΩ, (A5)

GL,M =
2 r2

(L− 1)L(L+ 1)(L+ 2)

∫

(ð′
ð
′h33 + ð ðh44)ȲL,MdΩ, (A6)

KL,M − L(L+ 1)

2
GL,M =

∫

h34ȲL,MdΩ, (A7)

h0L,M
=

i r3

L(L+ 1)

∫

(ρ′ð′h13 − ρ′ðh14 − ρ ð
′h23 + ρ ðh24)ȲL,MdΩ, (A8)

h1L,M
=

i r3
(

1− 2M
r

)

L(L+ 1)

∫

(ρ′ð′h13 − ρ′ðh14 + ρ ð
′h23 − ρ ðh24)ȲL,MdΩ, (A9)

h2L,M
=

2 r4

(L− 1)L(L+ 1)(L+ 2)

∫

(ð′
ð
′h33 − ð ðh44)ȲL,MdΩ. (A10)

Similar relations hold for Einstein or stress-energy tensors given in Appendix A of [21].

Appendix B: EFE and scalarized versions

In this section we present the scalarized versions of the Einstein tensor in terms of metric perturbations.

ρ′2E11 =
(

ρÞ
′ − ρ′Þ

) (

ρ′2h11
)

+
1

2

(

ð ð
′ + ð

′
ð
) (

ρ′2h11
)

− 1

2

[(

ρÞ
′ + ρ′Þ

)

−
(

ρÞ
′ − ρ′Þ

)

− 4 ρ ρ′ + 2ψ2

]

(2 ρ ρ′h12)

+
1

4

[

(

ρÞ
′ + ρ′Þ

)2
+
(

ρÞ
′ − ρ′Þ

)2 − 2
(

ρÞ
′ + ρ′Þ

) (

ρÞ
′ − ρ′Þ

)

]

h34

+
1

2

[

(4 ρ ρ′ − ψ2)
(

ρÞ
′ − ρ′Þ

)

− (3 ρ ρ′ − ψ2)
(

ρÞ
′ + ρ′Þ

)]

h34

− 1

2

[(

ρÞ
′ + ρ′Þ

)

−
(

ρÞ
′ − ρ′Þ

)

− 6 ρ ρ′ + 2ψ2

] (

ρ′ð′h13 + ρ′ðh14
)

, (B1)

ð
′
ð
′E33 =− 1

8

(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ð ð
′ + ð

′
ð
)

(2 ρ ρ′h12)
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+
1

4

[(

ρÞ
′ + ρ′Þ

)

+
(

ρÞ
′ − ρ′Þ

)

− 10 ρ ρ′
] (

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

) (

ρ′ð′h13 + ρ ð
′h23

)

+
1

4

[

(

ρÞ
′ − ρ′Þ

)2 −
(

ρÞ
′ + ρ′Þ

)2
+ 14 ρ ρ′

(

ρÞ
′ + ρ′Þ

)

− 4 ρ ρ′ (3 ρ ρ′ + ψ2)
]

(

ð
′
ð
′h33

)

, (B2)

ρ ρ′ρ′ð′E13 =
1

8

(

ð ð
′ + ð

′
ð
) [(

ρÞ
′ + ρ′Þ

)

+
(

ρÞ
′ − ρ′Þ

)

− 4 ρ ρ′
] (

ρ′2h11
)

− 1

16

(

ð ð
′ + ð

′
ð
) [(

ρÞ
′ + ρ′Þ

)

+
(

ρÞ
′ − ρ′Þ

)

+ 2ψ2

]

(2 ρ ρ′h12)

+
1

8
ρ ρ′

(

ð ð
′ + ð

′
ð
) [(

ρÞ
′ + ρ′Þ

)

−
(

ρÞ
′ − ρ′Þ

)]

h34 −
1

4
ρ ρ′

(

ðð
′ + ð

′
ð
)

(ρ′ðh14)

− 1

4
ρ ρ′

[(

ρÞ
′ + ρ′Þ

)

−
(

ρÞ
′ − ρ′Þ

)

− 4 ρ ρ′
] (

ð
′
ð
′h33

)

+
1

8

[

(

ρÞ
′ + ρ′Þ

)2
+
(

ρÞ
′ − ρ′Þ

)2 − 2
(

ρÞ
′ + ρ′Þ

) (

ρÞ
′ − ρ′Þ

)

]

(

ρ ð
′h23

)

+
1

4

[

(ψ2 − 7 ρ ρ′)
(

ρÞ
′ + ρ′Þ

)

+ (8 ρ ρ′ − ψ2)
(

ρÞ
′ + ρ′Þ

)

+ 8 ρ2ρ′2
] (

ρ ð
′h23

)

+
1

8

[

(

ρÞ
′ − ρ′Þ

)2 −
(

ρÞ
′ + ρ′Þ

)2
+ 2 ρ ρ′

(

ð ð
′ + ð

′
ð
)

]

(

ρ′ð′h13
)

+
1

4

[

(7 ρ ρ′ − ψ2)
(

ρÞ
′ + ρ′Þ

)

+ (4 ρ ρ′ − ψ2)
(

ρÞ
′ − ρ′Þ

)

− 8 ρ ρ′ (2 ρ ρ′ + ψ2)
] (

ρ′ð′h13
)

, (B3)

ρ ρ′E12 =
1

2

[(

ρÞ
′ + ρ′Þ

)

+
(

ρÞ
′ − ρ′Þ

)

− 6 ρ ρ′
] (

ρ′2h11
)

+
1

2

[(

ρÞ
′ + ρ′Þ

)

−
(

ρÞ
′ − ρ′Þ

)

− 6 ρ ρ′
] (

ρ2h22
)

− 1

4

(

ð ð
′ + ð

′
ð
)

(2 ρ ρ′h12)− (ρ ρ′ + ψ2) (2 ρ ρ
′h12)−

1

2
ρ ρ′

(

ð
′
ð
′h33 + ð ðh44

)

+
1

4

[(

ρÞ
′ + ρ′Þ

)

+
(

ρÞ
′ − ρ′Þ

)

− 10 ρ ρ′
] (

ρ′ð′h13 + ρ′ðh14
)

+
1

4

[(

ρÞ
′ + ρ′Þ

)

−
(

ρÞ
′ − ρ′Þ

)

− 10 ρ ρ′
] (

ρ ð
′h23 + ρ ðh24

)

+
1

4

[

(

ρÞ
′ − ρ′Þ

)2 −
(

ρÞ
′ + ρ′Þ

)2
+ 10 ρ ρ′

(

ρÞ
′ + ρ′Þ

)

+ 2 ρ ρ′
(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

)

]

h34, (B4)

(ρ ρ′)
2 E34 =

1

8

[

(

ρÞ
′ + ρ′Þ

)2
+
(

ρÞ
′ − ρ′Þ

)2
+ 2

(

ρÞ
′ + ρ′Þ

) (

ρÞ
′ − ρ′Þ

)

]

(

ρ′2h11
)

− 1

4

[

(7 ρ ρ′ − ψ2)
(

ρÞ
′ + ρ′Þ

)

+ (8 ρ ρ′ − ψ2)
(

ρÞ
′ − ρ′Þ

)

− 12 (ρ ρ′)
2
]

(

ρ′2h11
)

+
1

8

[

(

ρÞ
′ + ρ′Þ

)2
+
(

ρÞ
′ − ρ′Þ

)2 − 2
(

ρÞ
′ + ρ′Þ

) (

ρÞ
′ − ρ′Þ

)

]

(

ρ2h22
)

− 1

4

[

(7 ρ ρ′ − ψ2)
(

ρÞ
′ + ρ′Þ

)

− (8 ρ ρ′ − ψ2)
(

ρÞ
′ − ρ′Þ

)

− 12 (ρ ρ′)
2
]

(

ρ2h22
)

− 1

4
ρ ρ′

[(

ρÞ
′ + ρ′Þ

)

+
(

ρÞ
′ − ρ′Þ

)

− 6 ρ ρ′
] (

ρ′ð′h13 + ρ′ðh14
)

− 1

4
ρ ρ′

[(

ρÞ
′ + ρ′Þ

)

−
(

ρÞ
′ − ρ′Þ

)

− 6 ρ ρ′
] (

ρ ð
′h23 + ρ ðh24

)

− 1

8

[

(

ρÞ
′ + ρ′Þ

)2 −
(

ρÞ
′ − ρ′Þ

)2 − 2 ρ ρ′
(

ð ð
′ + ð

′
ð
)

]

(2 ρ ρ′h12)

+
1

4

[

(5ρ ρ′ − 2ψ2)
(

ρÞ
′ + ρ′Þ

)

− 2
(

2 ρ2ρ′2 + ψ2
2

)]

(2 ρ ρ′h12)

+
1

4
ρ ρ′

[

(

ρÞ
′ + ρ′Þ

)2 −
(

ρÞ
′ − ρ′Þ

)2 − 6 ρ ρ′
(

ρÞ
′ + ρ′Þ

)

]

h34. (B5)

The scalarized versions of E44, E22, and E24 can be obtained by taking a prime of the one’s with E33, E11 and E13,
respectively. The scalarized versions of E14 and E23 can be obtained by taking a bar (complex conjugate) of the one’s
with E13 and E24, respectively. With this, our presentation of the scalarized versions of the 10 components of Einstein
tensors is complete.
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Appendix C: Translating GHP to Boyer-Lindquist coordinates

In this section we translate some of the GHP operators acting on quantities of type (0,0) to Boyer-Lindquist
coordinates using the Kinnersley tetrad.

(

ρÞ
′ + ρ′Þ

)

=
1

r

∂

∂r∗
=

(

1− 2M
r

)

r

∂

∂r
, (C1)

(

ρÞ
′ − ρ′Þ

)

=
−1

r

∂

∂t
, (C2)

(

ð ð
′ + ð

′
ð
)

=
−ℓ(ℓ+ 1)

r2
, (C3)

(

ð ð
′ + ð

′
ð − 4 ρ ρ′ − 4ψ2

)

=
(ℓ− 1)(ℓ+ 2)

−r2 , (C4)

(

ð ð
′ + ð

′
ð − 4 ρ ρ′ + 2ψ2

)

=
(ℓ− 1)((ℓ + 2) + 6M

r

−r2 . (C5)

When acting on quantities of type (p, q), the ð and ð
′ operators are

ðfp,q =
1√
2r

(

∂θ +
i

sin θ
∂φ +

(

q − p

2

)

cot θ

)

fp,q, (C6)

ð
′fp,q =

1√
2r

(

∂θ −
i

sin θ
∂φ +

(

p− q

2

)

cot θ

)

fp,q. (C7)

Using these, the equation for IνE1 is

(

∂2t − ∂2r∗
)

IνE1 −
2(r − 2M) [36M + 5(ℓ− 1)(ℓ+ 2)r]

r2 [6M + (ℓ2 + ℓ− 2) r]
∂r∗IνE1

+
(r − 2M)

[

300M2 + 30M r
(

ℓ2 + ℓ− 8
)

+ (ℓ− 4)(ℓ+ 5)(ℓ− 1)(ℓ + 2)r2
]

r4 [6M + (ℓ2 + ℓ− 2) r]
IνE1

=− 8 π (ℓ− 1)(ℓ + 2)

r3
∂r∗A

(0)
ℓ,m +

4
√
2π i (ℓ− 1)(ℓ + 2)(r − 2M)

r4
∂tA

(1)
ℓ,m

− 4 π (ℓ− 1) ℓ (ℓ+ 1)(ℓ+ 2)(r − 2M)2

r6
Aℓ,m

+
4
√
2 π

√

(ℓ− 1) ℓ (ℓ+ 1)(ℓ+ 2)(r − 2M)
[

6M +
(

ℓ2 + ℓ− 2
)

r
]

r6
Fℓ,m

− 4
√
2 π (ℓ− 1)(ℓ+ 2)

√

ℓ (ℓ+ 1) (r − 2M)2

r6
Bℓ,m

+
4 π (ℓ− 1)(ℓ + 2)

[

96M2 + 2M r
(

7 ℓ2 + 7 ℓ− 32
)

+ (ℓ− 1)(ℓ + 2)
(

ℓ2 + ℓ− 4
)

r2
]

r5 [6M + (ℓ2 + ℓ− 2) r]
A

(0)
ℓ,m, (C8)

where A
(0)
ℓ,m, A

(1)
ℓ,m, Aℓ,m, Bℓ,m and Fℓ,m are the widely used components of tensor harmonics given in Eq (A1) of [21]

(where we replaced L with ℓ), and IνE1 is decomposed as sum over ordinary spherical harmonics.
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