Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Volume EM Reconstruction of Spinal Cord Reveals Wiring Specificity in Speed-Related Motor Circuits

MPG-Autoren
/persons/resource/persons118241

Svara,  Fabian
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;
Department of Computational Neuroethology, Center of Advanced European Studies and Research (caesar), Max Planck Society;

Kornfeld,  Joergen
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;

Denk,  Winfried
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;

Bollmann,  Johann H.
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PIIS2211124718307563.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Svara, F., Kornfeld, J., Denk, W., & Bollmann, J. H. (2018). Volume EM Reconstruction of Spinal Cord Reveals Wiring Specificity in Speed-Related Motor Circuits. Cell Reports, 23(10), 2942-2954. doi:10.1016/j.celrep.2018.05.023.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-597E-D
Zusammenfassung
Spinal interneurons coordinate the activity of motoneurons to generate the spatiotemporal patterns of muscle contractions required for vertebrate locomotion. It is controversial to what degree the orderly, gradual recruitment of motoneurons is determined by biophysical differences among them rather than by specific connections from presynaptic interneurons to subsets of motoneurons. To answer this question, we mapped all connections from two types of interneurons onto all motoneurons in a larval zebrafish spinal cord hemisegment, using serial block-face electron microscopy (SBEM). We found specific synaptic connectivity from dorsal but not from ventral excitatory ipsilateral interneurons, with large motoneurons, active only when strong force is required, receiving specific inputs from dorsally located interneurons, active only during fast swims. By contrast, the connectivity between inhibitory commissural interneurons and motoneurons lacks any discernible pattern. The wiring pattern is consistent with a recruitment mechanism that depends to a considerable extent on specific connectivity.