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Abstract

Significant improvements in automated image analysis have been achieved in recent years and tools are now increasingly being

used in computer-assisted syndromology. However, the ability to recognize a syndromic facial gestalt might depend on the

syndrome andmay also be confounded by severity of phenotype, size of available training sets, ethnicity, age, and sex. Therefore,

benchmarking and comparing the performance of deep-learned classification processes is inherently difficult. For a systematic

analysis of these influencing factors we chose the lysosomal storage diseases mucolipidosis as well as mucopolysaccharidosis

type I and II that are known for their wide and overlapping phenotypic spectra. For a dysmorphic comparison we used Smith-

Lemli-Opitz syndrome as another inborn error of metabolism and Nicolaides-Baraitser syndrome as another disorder that is also

characterized by coarse facies. A classifier that was trained on these five cohorts, comprising 289 patients in total, achieved a

mean accuracy of 62%.We also developed a simulation framework to analyze the effect of potential confounders, such as cohort

size, age, sex, or ethnic background on the distinguishability of phenotypes. We found that the true positive rate increases for all

analyzed disorders for growing cohorts (n = [10...40]) while ethnicity and sex have no significant influence. The dynamics of the

accuracies strongly suggest that the maximum distinguishability is a phenotype-specific value, which has not been reached yet for

any of the studied disorders. This should also be a motivation to further intensify data sharing efforts, as computer-assisted

syndrome classification can still be improved by enlarging the available training sets.

Abbreviations

AFR African

CEU Central European

DDx Differential diagnoses

DPDL Deep phenotyping for deep learning

DS Down syndrome

ERT Enzyme replacement therapy

FDNA Facial dysmorphology novel analysis

FNR False negative rate

FPR False positive rate

GAG Glycosaminoglycan

HPO Human phenotype ontology
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LSD Lysosomal storage disease

ML Mucolipidosis

MPS I Mucopolysaccharidosis type I

MPS II Mucopolysaccharidosis type II

NCBRS Nicolaides-Baraitser syndrome

ROC Receiver operating characteristics

SLOS Smith-Lemli-Opitz syndrome

TPR True positive rate

Introduction

In syndromology the information content of the facial gestalt

is so extraordinarily high that photographs are important in the

diagnostic work-up. This also holds true for many inborn er-

rors of metabolism that result in dysmorphic facial features

(see also a corresponding list from IEMbase© in the

Supplemental material). Recently, advances in computer vi-

sion improved pattern recognition on ordinary facial photos of

syndromic patients (Boehringer et al 2006; Ferry et al 2014;

Gurovich et al 2018). These approaches also have the poten-

tial to quantify the similarities of patients to any specific syn-

drome for which a model exists and to decide whether there is

a significant difference between gene-phenotypes (Knaus et al

2018; Gurovich et al 2018).

Face2Gene (FDNA Inc., Boston MA, USA) is such a novel

tool that supports pattern recognition in frontal photographs

(https://face2gene.com). The facial analysis within Face2Gene

is a deep convolutional neural network (DCNN) that is referred

to as DeepGestalt. Currently, this DCNN is able to compare a

photo to about 300 different syndromic phenotype models and

to compute a similarity value (Gurovich et al 2018). The

CLINIC application of Face2Gene provides a list of 30 differ-

ential diagnoses that are based on these gestalt scores.

While Face2Gene CLINIC makes the latest classification

models available that were trained on the entire set of suitable

cases the user community provided, a recently launched ap-

plication, referred by RESEARCH, allows working with

DeepGestalt in a controllable environment (Knaus et al

2018). This app can be used to learn the facial gestalts of

different cohorts that share for example disease-causing mu-

tations in the same gene or pathway. The results of an exper-

iment are gestalt models suitable for binary and multi-class

comparisons. The true positive rates (TPRs) as well as the

error rates of the multi-class problem are reported in a confu-

sion matrix, whereas the pairwise comparison of cohorts are

evaluated as receiver operating characteristics (ROC) curves.

If the gestalt models achieve accuracies in the classification

of photographs higher than randomly expected, there are recog-

nizable facial patterns in individuals of a cohort. When pheno-

types of the same molecular subgroup are compared, a signifi-

cant distinguishability also means that a clinical entity can be

delineated based on the facial gestalt. While this delineation of

syndromic phenotypes has been reserved to a few experts in the

field, computer-assisted pattern recognition might help to objec-

tify, even quantify this process. However, if we interpret the

accuracy of a classifier as the quantification of the distinguish-

ability of disease-phenotypes, it is of utmost importance that the

factorwe aremeasuring is not confounded by, e.g., age, ethnicity

or sex. In this work, we therefore present a framework for a

systematic analysis of potential confounders that we tested on

patients with inborn errors of metabolism (IEMs).

Patients and methods

We focused our analysis on IEMs and phenotypically similar

disorders, 1) that have a high prevalence, 2) that are already

represented in Face2Gene CLINIC, and 3) that are straightfor-

ward to confirm in the lab (Baehner et al 2005).We compiled an

original sample set of 289 typical and atypical patients with

mucoploysaccharidosis (MPS I and II), mucolipidosis (ML II

alpha/beta and ML III alpha/beta), Smith-Lemli-Opitz syn-

drome (SLOS), and Nicolaides-Baraitser syndrome (NCBRS)

that have all been molecularly confirmed (see Supplemental

material for literature references). The facial gestalts of some

patients are so similar, even for experts, that it is hard to tell

the diseases apart without enzymatic or genetic testing. Due to

this phenotypic overlap, our data set is also a challenging task

for computer vision. In addition, especially within the IEMs,

there is considerable phenotypic variability. For the lysosomal

storage disorders (LSD) MPS and ML, hardly any symptoms

are present at birth, but they usually appear during early child-

hood and progress during adolescence (Muenzer 2011). The

extent of the enzyme deficiency influences the severity of the

phenotype and in, e.g., MPS I, the genotype-phenotype corre-

lations are also reflected by the clinical subdivision into Hurler,

Hurler-Scheie, and Scheie syndrome (Bunge et al 1998).

Although there is no cure for MPS, hematopoietic stem cell

transplants or enzyme replacement therapies (ERT) have shown

considerable treatment success that could also slow down the

progression of symptoms (Kung et al 2013, 2015; Watson et al

2014; Bradley et al 2017; Kubaski et al 2017; Rodgers et al

2017). This also means treatment duration in addition to age

might affect the severity of the phenotype in this disease cohort.

For a systematic analysis of confounders, we annotated for

each photo the corresponding age, sex, ethnic background,

and treatment status of the patient. If available, the disease-

causing mutations were recorded in HGVS nomenclature and

the phenotypic features were annotated in HPO terminology.

A summary of the analyzed samples is shown in Fig. 1. The

entire case-based data collection is part of a larger knowledge

base, called deep phenotyping for deep learning, DPDL, that

can be accessed upon request and that serves as a set for

computer-assisted image analysis benchmarking.
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The phenotypic comparison of the cohorts was based on

the clinical or molecular diagnosis and all experiments were

run in Face2Gene’s RESEARCH application (version 17.6.2),

which is accessible to registered users.

With our original sample set of 289 labeled photos, we

were able to study the potential confounders cohort size, eth-

nic background, and sex. For an analysis of the intertwined

factors age and treatment duration, we did not have sufficient

individuals to form the required subsets. The performance on

subsets was evaluated after random down-sampling to the

same size. Based on the python requests library v2.18.4, we

built a framework to automatize the repetition of experiments

and the TPRs of the resulting confusion matrices were aver-

aged over five iterations for each setting. The scripts for the

simulations are available on request and can be used to repro-

duce the results.

The influence of the cohort size was analyzed by

incrementing evenly sized subsets from 10 to 40. The change

of the performance was fitted to a linear model and analyzed

for significance using linregress of the SciPy library. The other

potential cofounders, ethnic background and sex, were ana-

lyzed by excluding cohort size as a covariate. For these exper-

iments, we sampled each cohort down to the greatest common

size for each potential confounder. The greatest common size

for the potential confounder male sex would, e.g., be 20, be-

cause there are only 20 male patients with MPS I in our orig-

inal sample set (see Fig. 1). By this means cohort size has no

influence on the performance and allowed an analysis of the

potential confounders sex and ethnicity. Matthews correlation

coefficient (MCC) is a measure of the quality of a two-class

classification. Therefore, we reduced the multiclass confusion

matrix to a two-class matrix for every diagnosis. Then we

calculated the mean MCC for all iterations of the same exper-

iment. If the difference of the MCCs of the potential con-

founder and control experiments was within the range of

two standard deviations of the MCCs of the control experi-

ments, we regarded the variable as not having a significant

effect on the analyzed disease.

Results

Classification of the original sample set in Face2Gene
CLINIC and RESEARCH

Face2Gene CLINIC lists the 30 most likely differential diag-

noses (DDx) per case. If only a frontal facial photograph is

uploaded, and no clinical features are annotated, these DDx

represent syndromes that achieved the highest gestalt scores in

the image analysis. Figure 2 shows the frequency of MPS,

ML, SLOS, and NCBRS in the respective test cohort among

these 30 suggested diagnoses. MPS I and MPS II were com-

bined in Face2Gene CLINIC under the phenotypic series of

MPS. The correct diagnosis was reported among these top 30

DDx in more than 60% of the cases for all five test cohorts.

With about 300 phenotypic models to choose from, a fre-

quency of occurrence above 10% in the top 30 for a DD that is

not the correct diagnosis can also be interpreted as similarity.

Not surprisingly, MPS and ML appear in more than 40% of

the cases as mutual DDx, mirroring their high phenotypic

similarity. While the patient data that was used for modeling

the different phenotypes in Face2Gene CLINIC is not directly

Fig. 1 Overview of the original sample set with sex ratios (male/female/sex not mentioned) and ethnic backgrounds of European (left) vs. Non-European

(right)
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accessible, Face2Gene RESEARCH allows in silico experi-

ments with user defined cohorts. The resulting confusion ma-

trix for the original sample set is shown in Fig. 3 as a heat map.

The stronger the field is colored, the higher the probability for

an actual test case to end up in the respective predicted class.

The high values on the diagonal for all cohorts illustrate the

power of DeepGestalt to distinguish even similar phenotypes.

Based on the probability values of the confusion matrix, we

Fig. 3 The performance of the

gestalt-model in the multi-class

problem in Face2Gene

RESEARCH is shown as a color-

coded confusion matrix, where

deep red corresponds to a high

value. True positive rates (TPR)

are on the diagonal and false

negatives and positives rates

aside. The whole classification

process achieves an accuracy of

62%, which is significantly better

than randomly expected (28%).

Syndrome masks on top show the

average appearance of the

disorder, while photos on the left

show instances of individuals

featuring the respective disorder.

The dendrogram is the result of a

clustering analysis and visualizes

the similarity of the disorders

Fig. 2 Frequency of occurrence

of the five disorders as differential

diagnoses (DDx) under the first

30 ranks in Face2Gene CLINIC

in the respective test groups. The

proportion of the correct

diagnosis at the first rank is

hatched. For instance, the correct

diagnosis BMPS^ appears in the

MPS I and II cohort in 34% of the

cases at the top position and in

altogether 70% in the top 30.With

about 300 DDx to choose from in

gestalt match a frequency of

occurrence above 10% in the top

30 ranks (dotted line) indicates

phenotypic similarity
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calculated a dendrogram. The three lysosomal storage disor-

ders MPS I, MPS II, and ML are close, while the distance to

NCBRS that is also often described by coarse facial features is

largest.

Influence of growing cohort size on classification
accuracy

To analyze the influence of cohort size on the performance of

the classification process, we increased the number of individ-

uals per group stepwise from 10 to 40. TPRs with cohorts of

only ten individuals were already higher than randomly ex-

pected and increased for all phenotypes with a growing cohort

size, while the standard deviation decreased (Fig. 4). The dy-

namics of the TPRs were best fitted with a linear function and

indicate that the full potential of computer-assisted classifica-

tion has not been reached yet with the available image data.

However, we hypothesize that the number of images needed

to reach a maximum in the distinguishability could be differ-

ent for each syndrome and might depend on the clinical var-

iability of the phenotype. The TPRs of NCBRS and SLOS are

the highest in comparison with the other cohorts. The inborn

errors of metabolism are more frequently misclassified among

each other than as SLOS or NCBRS. Notably, the MPS I-TPR

nearly equals the fraction of MPS I cases falsely classified as

MPS II. It is noteworthy that ML is falsely classified as SLOS

in around 14% and vice versa.

Effect of ethnic background or sex on performance

We hypothesized, that a bias in the setup of the cohorts with

respect to the ethnic background or the sex, might affect the

performance. In general, the performance should drop if a true

confounder is removed. If the performance increases instead

after splitting up cohorts, this in an indicator that there is some

characteristic feature that can be more efficiently learned in a

more homogeneous group of patients.

Lumaka et al discussed in their study that certain features of

Down syndrome, such as a deep nasal bridge and thick upper

lips, are less prominent in individuals of African descent

(Lumaka et al 2017). We adjusted for the same cohort size

(n = 19) and computed the MCCs that could be achieved in

the classification of DS patients from Sub-Saharan Africa or

Central Europe (Table 1). Interestingly, we observed a sub-

stantially better performance for the DS model that was

trained on the same ethnic background compared to a mixed

setup of the cohorts (ΔMCC/STD for AFR vs. Mixed: 3.75

and ΔMCC/STD for CEU vs. Mixed: 2.70). This finding

supports the hypothesis of a slightly different facial appear-

ance of DS in Europeans and Africans.

In contrast to DS, we did not observe such marked differ-

ences in the MCCs for MPS I, MPS II, ML, SLOS, and

NCBRS, when running the experiments for n = 22 cohorts that

consisted only of European patients. An analysis for another

background in these disorders was not possible due to a lack

of sufficient patients.

Another potential confounder in the five-class problem of

MPS I, MPS II, ML, SLOS, and NCBRS that we analyzed is

sex. All but two of the MPS II patients were male, whereas the

sex ratios for the other disorders were close to 1. This means

knowing the sex would help with distinguishing MPS II from

MPS I cases. Interestingly, however, the MCC for the MPS II

classification did not decrease, when all other cohorts were

also restricted to male patients only and same cohort sizes of

n = 20. This indicates that a bias in the sex ratios does not

affect the performance of the classification process substan-

tially for the tested syndromes.

Discussion

General distinguishability

The TPRs that were achieved for all disorders in the five-class

problems were higher than expected by random chance. Thus,

our results show that the FDNA technology is capable of

delineating gestalt differences even for clinically similar phe-

notypes. This finding is especially remarkable for the pheno-

types of MPS and ML and is also supported by high AUROC

values in binary classifications (Suppl. Fig. 1).

The difference in TPRs for the syndromes could be

interpreted as different recognizabilities. Notably, SLOS and

NCBRS are more recognizable than MPS I, MPS II, and ML.

This corresponds to the results from the CLINIC app, where

ML and MPS show lower distinguishability. These findings

are in agreement with geneticist expert opinion, who labelML

as highly similar to MPS.

The high TPRs found in our analyses corresponds to the

results of two other studies on phenotypes of molecular path-

way disorders. For Noonan syndrome as well as for GPI-

anchor deficiencies, significant phenotypic substructures

could be detected. This also illustrates that an even more

fine-grained phenotype modeling might be possible with the

CLINIC app in the future.

Ethnicity

Distinguishing MPS I from the other disorders was slightly

more effective when working in a European background. A

possible explanation for this slight increase in performance

might be that there are certain features that are restricted or

more prominent in European patients and that might therefore

be learned more effectively if relatively more cases are used

for training the model. This issue has already been discussed

for other disorders, such as Fragile-X syndrome and Down

syndrome, were ethnic specific differences in the feature

J Inherit Metab Dis (2018) 41:533–539 537



presentation are known (Schwartz et al 1988; Lumaka et al

2017). Although we could replicate these effects for DS, we

did not see a prominent change in the performance in the other

phenotypes, which indicates that that ethnic background is not

a strong confounder in the classification process.

Sex

The human face shows a sexual dimorphism, possibly

even at an early age, making sex a potential confounder

in any facial image analysis process (Zhang et al 2016).

The classification accuracies in our experiments that were

based on data sets adjusted to individuals of the same sex,

did not significantly differ, suggesting that the classifica-

tion method is robust to sex as a confounder. Also, the

mean MCCs showed no significant change when training

the classifier on only male individuals as compared to a

training cohort consisting of both sexes. Our interpreta-

tion is that sex does not confound the classification of

MPS I, MPS II, ML, SLOS, and NCBRS.

Benchmarking

We are just beginning to understand the potential of computer-

assisted image analysis in the field of syndromology. In this

work we have presented a general approach to study the dis-

tinguishability of a phenotype and to test the confounding

effect of variables such as ethnicity or sex. We have applied

this framework to a selection of inborn errors of metabolism,

however, in principle, it is applicable to any other disorders.

It would also be interesting to compare the performance of

the FDNA technology to the accuracies of other, previously

published approaches of automated image analysis of

syndromic patients. Comparative evaluation, however, is

Fig. 4 (a) Confusion matrix with

TPRs and FPRs with a cohort size

of n = 40. (b) Course of TPRs

with increasing cohort size with

linear regression. The

performance of the classification

process was evaluated for equally

sized cohorts from n = 10 to n =

40. The true positive rates for the

prediction of the disorder improve

with increasing cohort size and

seem to approach different limits,

indicating a difference in relative

distinguishability. Especially the

prediction of SLOS and NCBRS

benefit, when the classifier is

trained on more cases. The

inference of the correct lipid

storage disorder increases less for

larger cohort sizes

Table 1 The classification of DS is more accurate on only European or

African patients. These marked differences cannot be observed for ML,

MPS I, MPS II, SLOS, and NCBRS. Also, the restriction to only male

patients has only a minor effect on the performance. The difference of

MCCs for the binary classification of every disease was normalized by

the standard deviations of MCCs that were computed in the mixed

controls

pt. confounder DS pt. confounder ML MPS I MPS II SLOS NCBRS

CEU vs mixed: 2.7 CEU vs mixed: −0.7 1.53 −0.29 0.31 0.77

ΔΜCC-STD AFR vs mixed: 3.75 male vs mixed: 0.14 0.13 1.17 1.84 1.12
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impeded by the lack of a publicly available data set for

benchmarking. Earlier benchmarking approaches merely re-

lied on the comparison to a human classification performance.

To achieve an objective evaluation of computer vision, we

strongly advocate to build a resource for image data of molec-

ularly confirmed syndromic cases.

Conclusion and outlook

In this work we report on a next-generation phenotyping

technology that can be used to study the similarities and

differences between patients with rare genetic disorders.

The framework that we present is not only suited to mea-

sure the accuracies of the DCNN in the classification pro-

cess but also to test for confounding effects. Especially

with respect to the novel and powerful methods in artifi-

cial intelligence, it is crucial to learn more about what is

actually quantified by a DCNN. Our results show that

DeepGestalt, the next-generation-phenotyping technology

within Face2Gene, is not confounded by sex or ethnic

background for the studied phenotypes. The high predic-

tive value for IEMs in the CLINIC application also makes

Face2Gene a valuable tool to detect these kinds of disor-

ders. This is especially of importance for patients that

might have evaded an early detection by new born screen-

ings. The importance of such programs is, however, un-

touched as the outcome improves the earlier ERT can be

started and the evolving phenotype of IEMs might be

more difficult to detect in newborns than in older age

groups.

Apart from detection, an even more important role of com-

puter vision could be disease monitoring if a neural network is

not only able to sense the presence of a disease but also to

quantify features that, e.g., mirror the progress of GAG depo-

sition. We hope to be able to investigate this question in future

research when more data becomes available.
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