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Asymmetry in energy versus spin transport in certain interacting disordered systems
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We study energy transport in disordered XXZ spin-1/2 chains driven to nonequilibrium configurations by
thermal reservoirs of different temperatures at the boundaries, using large-scale matrix product simulations. In
particular we discuss the transition between diffusive and subdiffusive transport in sectors of zero and finite
magnetization at high temperature. At large anisotropies we find that diffusive energy transport prevails over a
large range of disorder strengths, which is in contrast to spin transport that is subdiffusive in the same regime
for weak disorder. However, at finite magnetization both energy and spin currents decay as a function of the
system size with the same exponent. We conclude that diffusion of energy is much more pervasive than that
of magnetization in these disordered spin-1/2 systems, and occurs across a significant range of the interaction-
disorder parameter phase space. We support the existence of this asymmetry, reminiscent of that in the clean
limit, by an analytical estimation of diffusion constants for weak disorder.
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I. INTRODUCTION

What determines transport of conserved quantities in
generic one-dimensional disordered systems? In contrast to
classical systems, where diffusion is prevalent, there is no uni-
versal answer to this question for quantum systems [1] where
nonstandard hydrodynamical behaviors emerge frequently
[2,3]. In the present paper, we address this by focusing on
the well-known disordered XXZ model of interacting spins,
where the effect of weak disorder has been shown to result in a
slow propagation of excitations [4–9]. Moreover, for stronger
disorder, all forms of transport vanish, and the system transits
into a many-body localized phase, where ergodicity is lost in
favor of a robust integrable phase [10–17].

Slow transport can occur for both spin [4–7,9] and energy
[8,18–20] (the only two conserved quantities of the model). It
has also been argued that coupled particle-energy diffusion
is unstable with disorder, resulting in slow dynamics [21].
Although the transport of these quantities has been suggested
before to be different [8,20], this has not been unambiguously
demonstrated. To settle this question, we employ a config-
uration in which unequal baths are coupled at the ends of
an archetypal interacting-disordered system to drive energy
and/or spin currents. With this approach we access large sys-
tem sizes L ≈ O(102) and thereby clearly unveil the pivotal
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role of interactions in establishing the asymmetry between
energy and spin transport.

Anomalous transport (faster or slower than diffusive) in
quantum mechanical Hamiltonian systems has been asso-
ciated with various properties: eigenfunction and spectral
fractality [22–24], conservation laws or their approximate
emergence due to frustrating dynamical constraints [25–27],
and the presence of rare regions in disordered systems [15,28].
In the clean XXZ spin-1/2 chain, which has an infinite
set of conserved operators, the energy current operator is a
conserved quantity [25]. This implies that the energy current
does not decay, with its current-current correlation function
persisting to a plateau in the long time limit, giving rise to a
Drude peak characteristic of ballistic transport [25,29–37].

The situation for spin conduction in the clean XXZ model
is different. While the spin current is not a conserved quantity,
a Mazur’s inequality [25,38] resulting from nonlocal con-
servation laws of the model may be invoked to show that
high-temperature transport is ballistic for anisotropy � < 1
[26,27]. On the other hand, evidence of superdiffusion for
� = 1 and of diffusion for � > 1 has been obtained numeri-
cally [4,39–46] and analytically [47,48]. For nonzero magne-
tization, however, spin transport is always ballistic due to fi-
nite overlap of the spin current with conserved quantities [25].

In the present work we find that upon the introduction
of disorder, spin and energy transport maintain a relation
to each other similar to that in the clean limit. Namely, if
energy and magnetization flow differently (or similarly) in
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FIG. 1. (a) Scheme of a disordered XXZ spin-1/2 chain driven
out of equilibrium by unequal boundary reservoirs, which impose
a temperature and/or chemical potential imbalance by inducing
different two-site thermal states at each edge. (b) Energy transport
phase diagram, indicated by the current scaling exponent γ as a
function of interaction � and disorder h. The solid black line defines
the diffusive-subdiffusive boundary for zero magnetization and the
dotted horizontal lines are the associated error bars. The underly-
ing colors are Gaussian extrapolation of data, with brighter colors
(γ > 1, orange) indicating subdiffusion and darker colors (γ = 1,
green) diffusion. The gray dashed line is the diffusive-subdiffusive
crossover for zero-magnetization spin transport [4].

the clean limit, then this is retained in the disordered chain.
We also show that the asymmetry between both types of
transport, characteristic of zero magnetization, can be drawn
from an analytical estimation of diffusion constants based
on an expansion of current autocorrelations into low-order
moments.

II. MODEL AND METHOD

Here we describe the nonequilibrium setup used to study
transport across a disordered quantum system, depicted in
Fig. 1(a). We consider a 1D spin-1/2 lattice modeled by a
XXZ Hamiltonian with a disordered magnetic field along the
z axis:

H =
L−1∑
i=1

[
J
(
sx

i sx
i+1 + sy

i sy
i+1 + �sz

i s
z
i+1

) + hi

2
sz
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2
sz

i+1

]

=
L−1∑
i=1

εi,i+1. (1)

Here L is the number of sites, sα
i = 1

2σα
i (α = x, y, z) are

spin-1/2 operators for site i (and σα
i the Pauli matrices, taking

h̄ = 1), J is the nearest-neighbor exchange interaction, � is
the anisotropy, hi ∈ [−h, h] is the uniformly random magnetic
field at site i, and h is the disorder strength. We set the energy
scale by taking J = 1.

To induce a temperature and/or chemical potential imbal-
ance across the lattice, we assume that both its left (k = L) and
right (k = R) boundaries are coupled to a reservoir character-
ized by an inverse temperature βk and a chemical potential μk ,
as depicted in Fig. 1(a). The dynamics of its density matrix ρ

is governed by the Lindblad master equation [49]:

Lρ = dρ

dt
= −i[H, ρ] + LL(ρ) + LR(ρ). (2)

L is the total propagator; the commutator corresponds to
coherent dynamics and the terms Lk represent the incoherent
action of the reservoirs on the chain. Reservoir k = L(R) is
coupled to the two leftmost (rightmost) spins of the chain, in
such a way that, if they were separated from the rest, a two-site
nonequilibrium steady state (NESS) ρL(ρR), corresponding
to a reduced Gibbs state at an inverse temperature βk , would
be induced on them. These target states ρk are defined in the
Supplemental Material [50]; see also Refs. [37,51–53].

To characterize the nature of spin and energy transport we
discuss spin and energy profiles and the NESS local currents.
These are the expectation values of the local magnetization
〈sz

i 〉 and energy density 〈εi,i+1〉 for all values of i and of the
local current operators obtained from continuity equations
[25]. The magnetization current is

jS
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and the energy current is
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(4)

These observables are determined for several disorder re-
alizations, over which the average is performed. The NESS
for each realization, defined as ρ∞ = limt→∞ exp(Lt )ρ(0), is
obtained with the time-dependent density matrix renormaliza-
tion group [51,54–58], using a Suzuki-Trotter decomposition
[59] of the Lindblad evolution operator. In the NESS both
currents are homogeneous, so their disorder-averaged values
are denoted by jα (α = S,E). Details on the simulations are
contained in Ref. [50].

The diffusion equation for transported quantity Aα , with
AS = 〈sz

i 〉 and AE = 〈εi,i+1〉, is given by

jα = −Dα∇Aα = −Dα�Aα/L, (5)

with Dα the corresponding diffusion constant, ∇Aα the gradi-
ent of Aα across the chain, and �Aα the difference between
its boundary values. The general NESS current scaling gives
jα ∼ 1

Lγ . Here γ = 1 indicates normal diffusion i.e., Fick’s
law. When Fick’s law breaks down, transport may be slower
(subdiffusive, γ > 1) or quicker (superdiffusive, γ < 1). The
scaling of the NESS current will be our primary diagonostic
for inferring dynamics. We first study the case of zero magne-
tization, for which the main result of the diffusive-subdiffusive
energy transport phase diagram is indicated in Fig. 1(b).
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FIG. 2. NESS transport properties at zero magnetization for � =
1 and various disorder strengths. (a) Energy profiles for different
system sizes and h = 0.60, with scaled axis x = (k − 1)/(L − 2)
for k = 1, . . . , L − 1. Inset: magnetization profiles for L = 32 and
different disorder strengths, with scaled axis x = (k − 1)/(L − 1) for
k = 1, . . . , L. (b) Scaling of energy current; the disorder strength in-
creases from top to bottom. The symbols correspond to the results of
the simulations, and the lines are fits to the scaling jE ∼ L−γ . Inset:
scaling exponents γ as a function of h for different anisotropies �.

Then we discuss nonzero magnetization. The impact of bro-
ken U(1) symmetry on the first setting has been considered
recently [60].

III. TRANSPORT AT ZERO MAGNETIZATION

We first consider the case when the driving imposes a
finite energy current and a negligible spin current [50]. This
corresponds to an energy gradient across the lattice and almost
zero total magnetization with no bias between the boundaries,
as shown in Fig. 2(a).

In Fig. 2(b) we show the scaling of the NESS current
for � = 1 and different disorder amplitudes. We see that
diffusion persists up to a finite disorder strength, much like
in the case of spin transport [4]. Then at some critical field
hc ≈ 0.6 subdiffusion sets in; this value is roughly similar
for the spin transport at � = 1. For larger anisotropy � > 1

FIG. 3. Comparison of energy and spin transport in the strongly
interacting case � = 1.5 and h = 0.6, showing diffusive and subdif-
fusive transport, respectively. This is in qualitative agreement with
the conclusions of Ref. [8] that spin and energy transport can be
different in this model.

(strong interactions [50]) we also find a diffusion-subdiffusion
transition at finite disorder, as shown in the inset of Fig. 2(b).
However, this is entirely different to the case of spin trans-
port, which becomes subdiffusive for much weaker (perhaps
infinitesimal) disorder in this regime [4]. This effect is seen
more conspicuously in Fig. 3: for the same large anisotropy
� > 1, energy diffusion is clearly discernible, whereas spin
transport is strongly subdiffusive.

Based on the NESS current exponents γ extracted for
several disorder and interaction strengths [50], we display a
summary in the color map in Fig. 1 on a two-dimensional
landscape of h vs �. We see a striking dissimilarity from
that for spin transport: the phase boundary in the latter also
linearly increases from the origin of this plot but buckles back
towards the anisotropy line around � ≈ 1. Thus spin transport
for strongly anisotropic systems immediately becomes subd-
iffusive upon introducing disorder, while for energy transport
the diffusive-subdiffusive boundary increases all the way at
least up to a strong anisotropy � = 4 [50]. We conclude that
a large swath of this landscape remains diffusive for energy
transport in contrast to spin conduction.

IV. MECHANISM

This asymmetry arises from the different dynamical struc-
ture of energy and spin frequency-dependent conductivity
(Fourier transform of current-current correlations) [50] in the
clean limit, particularly for � 
 1: there is a simple delta
function at the origin for the former, but a triple-peaked
structure (at ≈0,±�) for the latter [45]. Introducing disorder
can redistribute spectral weight into the (already) dissipative
components at all frequencies ω for spin but only at small ω

for energy. Even using a simplified single-peak structure for
spin we may account for the difference. Using a short-time
expansion in disorder and interaction [50], automated with the
DiracQ package [61], we find the energy and spin diffusion
constants to decay as

DE ∼ J2�2

h
, DS ∼ J2

√
�2 + h2

(6)
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FIG. 4. NESS transport at finite magnetization. (a) Scaling of
energy and spin currents for � = 1 and two different disorder
strengths, indicating diffusion (h = 0.5) and subdiffusion (h = 0.9).
(b) Scaling of energy and spin currents with � = 1.75 and h = 0.6,
indicating diffusion. Inset: spin profiles for different system sizes,
with rescaled axis x.

for large �. The nonzero diffusion constant for spin is an arti-
fact of the short-time expansion. Nevertheless the parametric
smallness of DS compared to DE at small h is evident. This is
in line with our numerics that the energy transport is “faster”
than spin transport in the disordered strongly interacting case.

V. TRANSPORT AT FINITE MAGNETIZATION

In contrast to the zero magnetization case, in a clean system
and in any finite magnetization sector both spin and energy
transports are ballistic for any �, as known from conservation-
law arguments [25] and numerical calculations [31,37,62–65].
Whether both quantities show the same transport in the pres-
ence of disorder is a natural question which we discuss in the
following.

For this scenario we impose a driving that induces a finite
magnetization on every site, in addition to the temperature
imbalance [50]. This leads to a sizable spin current coexisting
with the energy current, as shown in the main panels of Fig. 4,

and a corresponding magnetization gradient across the lattice,
as depicted in the inset of Fig. 4(b). The current scaling for
� = 1 is shown in Fig. 4(a). As for zero magnetization at
the isotropic point, both currents scale similarly as a function
of disorder strength (h = 0.5 and h = 0.9 are displayed),
signaling equal transport dynamics (diffusion or subdiffusion
for the two h values, respectively) for energy and spin.

For � > 1 a similar conclusion holds, in stark contrast to
zero magnetization. Namely, as illustrated for � = 1.75 and
h = 0.6 in Fig. 4(b), we have spin and energy diffusion. We
note that for stronger disorder both spin and energy transport
become simultaneously subdiffusive. The critical value at
which this happens will be determined in a future study, but
preliminary simulations show that γ > 1 for h = 1, indicating
subdiffusion.

The overarching conclusion of our work is therefore that
when breaking the integrability of the XXZ model with
weak disorder, both the asymmetry in conduction of the
two conserved quantities at zero magnetization, and their
similarity at finite magnetization, are maintained. Specifically,
weak disorder slows the transport by a “single step” from
the clean limit. This is different to the action of another
integrability-breaking term, namely a weak staggered mag-
netic field [37,40,51,66], where all transport becomes diffu-
sive. Whether other terms such as interchain or next-nearest-
neighbor coupling [32,67–69] also break the asymmetry is yet
to be determined.

VI. EXPERIMENTAL REALIZATION

Finally we comment on a very promising architecture
for observing the discussed phenomena in the laboratory. It
consists of a highly controllable and optimally measurable
scheme of two unequal reservoirs of cold atoms connected
through a low-dimensional channel [70]. With this setup
particle currents induced by a chemical potential bias have
been analyzed [71–73], even with disorder [74]. It has also
been exploited to induce energy and thermoelectric transport
by a temperature imbalance [75]. Furthermore, by projecting
optical barriers on top of the channel, a mesoscopic one-
dimensional lattice was engineered, whose conduction prop-
erties were characterized in the presence of particle-particle
interactions [76]. By combining and extending these tech-
niques, it would be possible to induce particle and energy
transport through disordered interacting lattices of tens of
sites, enabling the predictions of our work to be verified.

VII. CONCLUSIONS

We have studied the NESS of boundary-driven interacting
and disordered spin-1/2 chains. The drives were designed
to induce a temperature gradient and an associated energy
current across the lattice. In the zero magnetization sector
(and far from localization) we found a regime of diffusive
energy transport separated from a subdiffusion regime at
finite disorder strength. Moreover, for strong interactions there
is a phase where energy transport is diffusive but the spin
conduction is subdiffusive. However, at finite magnetization
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their dynamics are found to be the same, whether at strong or
weak anisotropies. Thus weak disorder maintains the absence
or presence of symmetry between spin and energy transport
existing in the clean limit.

Our work paves the way for the study of more real-
istic models such as the disordered Hubbard lattice [77],
where asymmetries between more conserved quantities (spin,
charge, energy) might be discerned. We also expect that our
results inspire research on their mechanism [28], and on
quantum thermodynamics applications such as rectification
schemes [78] and thermoelectricity [79].
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[41] M. Žnidarič, Phys. Rev. Lett. 106, 220601 (2011).
[42] J. J. Mendoza-Arenas, T. Grujic, D. Jaksch, and S. R. Clark,

Phys. Rev. B 87, 235130 (2013).
[43] J. J. Mendoza-Arenas, S. Al-Assam, S. R. Clark, and D. Jaksch,

J. Stat. Mech. (2013) P07007.
[44] M. Ljubotina, M. Znidaric, and T. Prosen, Nat. Commun. 8,

16117 (2017).

094435-5

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.114.160401
https://doi.org/10.1103/PhysRevLett.114.160401
https://doi.org/10.1103/PhysRevLett.114.160401
https://doi.org/10.1103/PhysRevLett.114.160401
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevB.93.060201
https://doi.org/10.1103/PhysRevB.93.060201
https://doi.org/10.1103/PhysRevB.93.060201
https://doi.org/10.1103/PhysRevB.93.060201
https://doi.org/10.1088/1742-5468/aa668b
https://doi.org/10.1088/1742-5468/aa668b
https://doi.org/10.1088/1742-5468/aa668b
https://doi.org/10.1002/andp.201600298
https://doi.org/10.1002/andp.201600298
https://doi.org/10.1002/andp.201600298
https://doi.org/10.1002/andp.201600298
https://doi.org/10.1209/epl/i2006-10118-5
https://doi.org/10.1209/epl/i2006-10118-5
https://doi.org/10.1209/epl/i2006-10118-5
https://doi.org/10.1209/epl/i2006-10118-5
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1002/andp.201700169
https://doi.org/10.1002/andp.201700169
https://doi.org/10.1002/andp.201700169
https://doi.org/10.1002/andp.201700169
https://doi.org/10.1002/andp.201600326
https://doi.org/10.1002/andp.201600326
https://doi.org/10.1002/andp.201600326
https://doi.org/10.1002/andp.201600326
https://doi.org/10.1002/andp.201600278
https://doi.org/10.1002/andp.201600278
https://doi.org/10.1002/andp.201600278
https://doi.org/10.1002/andp.201600278
http://arxiv.org/abs/arXiv:1804.11065
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1103/PhysRevX.5.031033
https://doi.org/10.1103/PhysRevX.5.031033
https://doi.org/10.1103/PhysRevX.5.031033
https://doi.org/10.1103/PhysRevX.5.031033
https://doi.org/10.1103/PhysRevB.93.134206
https://doi.org/10.1103/PhysRevB.93.134206
https://doi.org/10.1103/PhysRevB.93.134206
https://doi.org/10.1103/PhysRevB.93.134206
https://doi.org/10.1103/PhysRevB.96.035130
https://doi.org/10.1103/PhysRevB.96.035130
https://doi.org/10.1103/PhysRevB.96.035130
https://doi.org/10.1103/PhysRevB.96.035130
https://doi.org/10.1103/PhysRevLett.76.4372
https://doi.org/10.1103/PhysRevLett.76.4372
https://doi.org/10.1103/PhysRevLett.76.4372
https://doi.org/10.1103/PhysRevLett.76.4372
https://doi.org/10.1103/PhysRevLett.79.1959
https://doi.org/10.1103/PhysRevLett.79.1959
https://doi.org/10.1103/PhysRevLett.79.1959
https://doi.org/10.1103/PhysRevLett.79.1959
https://doi.org/10.1103/PhysRevE.96.032130
https://doi.org/10.1103/PhysRevE.96.032130
https://doi.org/10.1103/PhysRevE.96.032130
https://doi.org/10.1103/PhysRevE.96.032130
https://doi.org/10.1103/PhysRevB.55.11029
https://doi.org/10.1103/PhysRevB.55.11029
https://doi.org/10.1103/PhysRevB.55.11029
https://doi.org/10.1103/PhysRevB.55.11029
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.111.057203
https://doi.org/10.1103/PhysRevLett.111.057203
https://doi.org/10.1103/PhysRevLett.111.057203
https://doi.org/10.1103/PhysRevLett.111.057203
https://doi.org/10.1103/PhysRevB.98.035118
https://doi.org/10.1103/PhysRevB.98.035118
https://doi.org/10.1103/PhysRevB.98.035118
https://doi.org/10.1103/PhysRevB.98.035118
https://doi.org/10.1088/0305-4470/35/9/307
https://doi.org/10.1088/0305-4470/35/9/307
https://doi.org/10.1088/0305-4470/35/9/307
https://doi.org/10.1088/0305-4470/35/9/307
https://doi.org/10.1103/PhysRevB.67.134426
https://doi.org/10.1103/PhysRevB.67.134426
https://doi.org/10.1103/PhysRevB.67.134426
https://doi.org/10.1103/PhysRevB.67.134426
https://doi.org/10.1103/PhysRevB.67.224410
https://doi.org/10.1103/PhysRevB.67.224410
https://doi.org/10.1103/PhysRevB.67.224410
https://doi.org/10.1103/PhysRevB.67.224410
https://doi.org/10.1103/PhysRevB.68.134436
https://doi.org/10.1103/PhysRevB.68.134436
https://doi.org/10.1103/PhysRevB.68.134436
https://doi.org/10.1103/PhysRevB.68.134436
https://doi.org/10.1140/epjst/e2007-00369-2
https://doi.org/10.1140/epjst/e2007-00369-2
https://doi.org/10.1140/epjst/e2007-00369-2
https://doi.org/10.1140/epjst/e2007-00369-2
https://doi.org/10.1103/PhysRevB.84.205115
https://doi.org/10.1103/PhysRevB.84.205115
https://doi.org/10.1103/PhysRevB.84.205115
https://doi.org/10.1103/PhysRevB.84.205115
https://doi.org/10.1103/PhysRevB.88.195129
https://doi.org/10.1103/PhysRevB.88.195129
https://doi.org/10.1103/PhysRevB.88.195129
https://doi.org/10.1103/PhysRevB.88.195129
https://doi.org/10.1103/PhysRevB.91.115130
https://doi.org/10.1103/PhysRevB.91.115130
https://doi.org/10.1103/PhysRevB.91.115130
https://doi.org/10.1103/PhysRevB.91.115130
https://doi.org/10.1103/PhysRevE.91.042129
https://doi.org/10.1103/PhysRevE.91.042129
https://doi.org/10.1103/PhysRevE.91.042129
https://doi.org/10.1103/PhysRevE.91.042129
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1103/PhysRevB.57.8340
https://doi.org/10.1103/PhysRevB.57.8340
https://doi.org/10.1103/PhysRevB.57.8340
https://doi.org/10.1103/PhysRevB.57.8340
https://doi.org/10.1103/PhysRevB.80.035110
https://doi.org/10.1103/PhysRevB.80.035110
https://doi.org/10.1103/PhysRevB.80.035110
https://doi.org/10.1103/PhysRevB.80.035110
https://doi.org/10.1103/PhysRevLett.106.220601
https://doi.org/10.1103/PhysRevLett.106.220601
https://doi.org/10.1103/PhysRevLett.106.220601
https://doi.org/10.1103/PhysRevLett.106.220601
https://doi.org/10.1103/PhysRevB.87.235130
https://doi.org/10.1103/PhysRevB.87.235130
https://doi.org/10.1103/PhysRevB.87.235130
https://doi.org/10.1103/PhysRevB.87.235130
https://doi.org/10.1088/1742-5468/2013/07/P07007
https://doi.org/10.1088/1742-5468/2013/07/P07007
https://doi.org/10.1088/1742-5468/2013/07/P07007
https://doi.org/10.1038/ncomms16117
https://doi.org/10.1038/ncomms16117
https://doi.org/10.1038/ncomms16117
https://doi.org/10.1038/ncomms16117


J. J. MENDOZA-ARENAS et al. PHYSICAL REVIEW B 99, 094435 (2019)

[45] R. J. Sánchez, V. K. Varma, and V. Oganesyan, Phys. Rev. B 98,
054415 (2018).

[46] R. J. Sánchez and V. K. Varma, Phys. Rev. B 96, 245117
(2017).

[47] J. De Nardis, D. Bernard, and B. Doyon, Phys. Rev. Lett. 121,
160603 (2018).

[48] E. Ilievski, J. De Nardis, M. Medenjak, and T. Prosen,
Phys. Rev. Lett. 121, 230602 (2018).

[49] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[50] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.99.094435 for specifics of the implementa-
tion and simulation of the driving scheme, supporting data of
current scaling and energy profiles, and details on the short-time
expansion.
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