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Supplemental Material for
“Asymmetry in energy versus spin transport in certain interacting, disordered

systems”

SIMULATION OF TWO-SITE DRIVING SCHEME

In the following we describe how the two-site driving
protocol for inducing a nonequilibrium NESS in a disor-
dered lattice is implemented, and present details of its
numerical simulation.

Defining target states for energy and spin driving

To study spin and energy transport across disordered
spin lattices, we simulate the nonequilibrium configura-
tion depicted in Fig. 1(a). Here the two left-most (L)
and right-most (R) sites are coupled to reservoirs of dif-
ferent temperature and chemical potential. Let βk and
µk be the target inverse temperature and chemical po-
tential characterizing the target state ρk that reservoir
k tries to impose at the k boundary (k = L,R). The
corresponding grand-canonical state for m > 2 sites is

ρ
(m)
k = exp
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βk

(

−H
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k ,
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(
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(m)
))]
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where H
(m)
k is the Hamiltonian for the m sites at bound-

ary k, M (m) =
∑m

i=1 s
z
i is the magnetization operator for

the m sites, and Z
(m)
k is the corresponding partition func-

tion. The two-site target state ρk results from tracing out

the m− 2 most internal sites from ρ
(m)
k . Once the target

states are defined for both left and right boundaries for
a particular value of m (we take m = 4), the Lindblad
dissipators Lk are built so that Lk(ρk) = 0, with the cou-
pling strength between the chain and the reservoirs being
Γ = 1. Full details of how this is done are given in several
references [1–4], which we summarize below. We empha-
size that even though a microscopic derivation of master
equation (2) with the described two-site driving might be
quite challenging [5], the transport properties we obtain
in the bulk are independent of the details of such driving
for the system sizes we take in our calculations [6]. Thus
we also note that these bulk transport properties are not

affected by taking H
(m)
k as the m-site Hamiltonian of the

clean model, which we do for the finite magnetization
simulations.
Several nonequilibrium configurations can be induced

by choosing different values of βk and µk. In our work
we are interested in two cases. Firstly we consider energy
transport for zero total magnetization, where βL < βR

and µL = µR = 0. In particular, our simulations were
performed with βL = 4× 10−3 and βR = 4× 10−2. This
leads to a NESS in which an energy flow is established

from left to right, with negligible net magnetization flow
across the lattice. Secondly we discuss the case of a tem-
perature imbalance beyond half filling, where βL < βR

and βLµL = βRµR > 0. Specifically, for our simulations
we took the same temperature imbalance and βkµk = 1.
Here a significant spin current emerges in addition to the
energy flow, which features a different nature to the spin
transport at zero magnetization and no temperature im-
balance [6], as discussed in the main text.

Building the driving superoperator

Now we briefly describe how to create a two-site bath
superoperator L inducing a target state ρ as the NESS
of a pair of isolated sites, such that

L(ρ) = 0. (S2)

We need to define L so that ρ is its only eigenvector with
zero eigenvalue, and that all the other eigenvalues are
equal to −1. This leads to the fastest possible conver-
gence to ρ [1]. For this, we first diagonalize the target
state, ρ = V †dV , and obtain the “diagonal” superoper-
ator Ldiag for which the diagonal matrix d is the only
zero-eigenvalue eigenstate,

Ldiag(d) = 0. (S3)

The matrix elements of the “diagonal” superoperator are
determined depending on the particular definition of the
two-site operator-space basis Ωn (n = 0, . . . , 15). For
example, for Ωn = (σn1

⊗ σn2
)/4, with σnα

(α = 1, 2)
the Pauli matrices plus the identity (nα = 0, . . . , 3), the
exact form of Ldiag is given in Refs. [1, 4] for two different
orders of the Pauli basis.
Once Ldiag is built, the total superoperator L is ob-

tained through a rotation in operator space,

L = R†LdiagR. (S4)

The elements of the rotation matrix R are given by

Ri,j =
1

4
tr(V †ΩiV Ωj), (S5)

thus being defined through V .

Details on numerical simulation method

To obtain the NESS of the system for each set of pa-
rameters, we consider M realizations of the disordered
magnetic field. For each realization r we simulate the
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FIG. S1: Transport at zero magnetization, showing scaling of energy current in NESS for various anisotropies ∆ and disorder
strengths h. As in Fig. 2(b) of the main text, the disorder strength h increases from top to bottom in each plot. We find that
stronger disorders are required for the onset of subdiffusion as we enter the Ising regime.

long-time evolution of the density matrix of the lattice,

given by ρ
(r)
∞ = limt→∞ exp(L(r)t)ρ(0), with ρ(0) the ini-

tial state. A unique NESS ρ
(r)
∞ is obtained after evolving

for a long-enough time from any ρ(0), guaranteed due to
the ergodicity of the bulk coherent dynamics [1]. We take
ρ(0) as a product state with homogeneous magnetization
〈szi 〉 = βkµk/4, which is the value imposed by the driving
on two isolated sites.

The time-evolution simulation is performed using the
t-DMRG technique, which allows us to analyze spin
chains of hundreds of lattice sites. The algorithm is based
on a Suzuki-Trotter decomposition [7] of the Lindblad
evolution operator. Here at any time t the density ma-
trix of the system ρ(r)(t) is described by a matrix product
operator (MPO) with matrix dimension of up to χ = 150,
and its time evolution is calculated by a sequence of two-
site gates corresponding to applications of local evolution
operators [8]. This process is performed until the currents
become homogeneous across the lattice, which indicates
that the NESS has been reached.

After the NESS is obtained for M realizations (taking
up to M = 200 for small system sizes), the expecta-
tion values of interest are averaged over all of them, get-

ting maximal statistical uncertainty of σ(jE)/
√
M ≈ 2%

for the zero-magnetization sector and of ≈ 3 − 4% for
the harder-to-simulate nonzero magnetization transport,
with σ(jE) the standard deviation of the NESS energy
current when averaged over all the disorder realizations
and across the lattice.

ADDITIONAL CURRENT SCALING

In Fig. 2(b) of the main text, we showed that from the
current scalings for different anisotropies ∆ we may claim
that (i) there is a transition from diffusive to subdiffusive
transport of energy as a function of disorder strength; (ii)
this critical disorder strength is far from the localization
transition. Similar conclusions also hold for other weaker
and stronger anisotropies as shown in Fig. S1. However
we note that as we increase the Ising anisotropy, the dif-
fusive regime also increases i.e. a larger portion of the
Hamiltonian-paramater space is diffusive before the on-
set of subdiffusion. Thus we have a regime where spin
is transported subdiffusively whereas the energy is trans-
ported diffusively; a particular instance is shown in Fig.
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FIG. S2: Rescaled energy profiles averaged over disorder for
L = 64 and parameters leading to different type of energy
transport (symbols), and fits using a spatially varying diffu-
sion constant D(x) ∝ [x(1−x)]1−γ for bulk transport (dotted
lines); 20-30% of either ends of the chain has been removed.
(a) Naive NESS current scaling would give superdiffusive be-
haviour from finite-L, which from the profile nicely shows dif-
fusion instead. (b) Here at large anisotropy and disorder the
bulk still shows nice subdiffusive scaling despite 50% of the
edges being removed.

3 where this phenomenon is seen more clearly.
Collecting all data from Fig. 2 and Fig. S1 results in

the dynamical phase diagram Fig. 1(b).

ENERGY PROFILES AND BULK TRANSPORT

A point to note from Fig. 2 and Fig. S1 is that for
very weak disorder fields h = 0.25, the thermodynamic

limit is reached only very slowly and fitting a straight
line is problematic. Nevertheless we have drawn a 1/L
diffusive fit that looks like it will asymptotically be par-
allel to the data. To better characterize the transport
in this and similar cases, we defined rescaled and shifted
energy profiles 〈ε̃x〉 so −1 ≤ 〈ε̃x〉 ≤ 1, and fitted them
to generalized diffusion equations with spatially depen-
dent diffusion constants [6], as shown in Fig. S2. Here
the slowest asymptoting (most nondiffusive i.e. naively
superdiffusive fit with γ = 0.9) case of h = 0.25, ∆ = 1.5
clearly shows diffusive scaling in the bulk (Fig. S2(a)).
A γ < 1 fit to the energy profile cannot be reasonably
made, thereby discounting superdiffusive transport for
bulk physics. For h = 0.95, ∆ = 4 (Fig. S2(b)) where the
data already converged (Fig. S1) to subdiffusive trans-
port, the energy profile provides a quantitatively consis-
tent result (albeit a slightly different numerical value for
the exponent).

SHORT TIME EXPANSION

A short time expansion of current-current correlators
is possible in order to glean some transport properties of
the two conserved quantities of the model [9]. These are
fully characterized by the moments µk, k > 0,

〈j(t)j(0)〉 ≡
∞
∑

k=0

µk

(2k)!
t2k, (S6)

where j =
∑

i ji is the total current in the system, and
j(t) is its Heisenberg representation.

At high-temperature and for uncorrelated disorder

with variance h2

3 (so that off-site terms such as hihj ,
with i 6= j, average out to zero) we find may compute
the moments to be

〈jS(t)jS(0)〉 =
J2

8
+

J2

16

(

∆2 +
4h2

3

)

t2 +
J2

64

[

∆2(4∆2 + 5J2) + h2(4J2 + 16∆2) +
128h4

15

]

t4 + . . . ,

〈jE(t)jE(0)〉 =
J2

96

(

3J2 + 6∆2 + 4h2
)

+
J2h2

720

[

45J2 + 28h2 + 45∆2
]

t2 + . . . (S7)
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We note the following checks before proceeding with
the analysis:

1. For ∆ = h = 0 both have only a nondecaying Drude
weight component (i.e. long-time plateau in the
correlator limt→∞〈j(t)j(0)〉), as expected for tight-
binding model.

2. For h = 0 the time dependence in the second line of
Eq. (S7) drops out, as expected for energy trans-

port in the XXZ model, but does not in the first
one, as expected for spin conduction.

3. For ∆ = 0 both have a time-dependence with a
different sum-rule governed by µ0 =

∫ +∞

−∞
σ(ω)dω2π ,

as expected for a noninteracting spin-chain.

Similarly for the integrability broken chain with next-
nearest neighbour interactions ∆2, we find the following
expansions:

〈jS(t)jS(0)〉 =
J2

8
+

J2

16

(

∆2 − 2∆∆2 + 2∆2
2

)

t2

+
J2

64

[

J2(5∆2 − 16∆∆2 + 17∆2
2) + 4(∆4 − 4∆3∆2 + 9∆2∆2

2 − 10∆∆3
2 + 5∆4

2)
]

t4 + . . . ,

〈jE(t)jE(0)〉 =
J2

32

(

J2 + 2∆2 − 2∆∆2 + 6∆2
2

)

+
J2∆2

2

64

[

17J2 + 8∆2 − 16∆∆2 + 10∆2
2

]

t2 +

+
J2∆2

2

256

[

444J4 + 24∆4 − 112∆3∆2 + 416J2∆2
2 + 88∆4

2 − 27∆∆2(17J
2 + 8∆2

2) + 2∆2(89J2 + 112∆2
2)
]

t4

. . . (S8)

From Eqs. (S7) and (S8) and assuming we are perturb-
ing, with weak disorder h or ∆2, the initial (broadened)
delta function conductivity (valid for all ∆ for energy but
only at low ∆ for spin) and given by

σ(ω) = F {〈j(t)j〉} , (S9)

where F denotes the real-Fourier transform, is approxi-
mated by:

σ(ω) =
A√
πω0

e
−( ω

ω0
)2
. (S10)

The above two unknowns A, ω0 are computed by match-
ing against the moments µn so that the conditions µn =
∫ +∞

−∞
ω2nσ(ω)dω2π are satisfied for n = 0, 1. Taking density

of states to be O(1) at infinite temperature, this approxi-

mates the diffusion constantD ∝ σ(ω → 0) by D =
√

µ3

0

µ1

.

This implies, for the two quantities:

DS(h) ∼ J2

√
6∆2 + 8h2

,

DE(h) ∼ κ2

h
, (S11)

where

κ =

{

J2, if ∆ ≪ 1
∆J, if ∆ ≫ 1

}

A qualitatively similar dependence is also seen for the
next-nearest-neighbour interacting case, with different
coefficients O(1), as may be seen by taking the ratios

√

µ3

0

µ1

for spin and energy using Eq. (S8). The main point

to highlight from this result is that the divergence with
h of the diffusion constants is different for energy and
spin. Note however that the precise forms of divergences
do not fully reproduce known results. In particular (a)
DS does not even really diverge with h unless ∆ = 0,
whereas it should do so with a power between 0.66 and 2
[6] for ∆ ≤ 1. (b) Only very few moments are employed,
so genuine low-frequency physics is missed.

However the above argument does show a stronger di-
vergence for the energy-energy autocorrelation at small
h. For example, fixing h ≪ 1 and ∆ ≫ 1 in Eq. (S7)
indeed gives a much larger diffusion constant for energy
than for spin transport, which we might interpret as sup-
portive of the diffusion vs. subdiffusion scenario and thus
are in the same qualitative direction of our numerics.

We have used the DiracQ package [10] for automating
the short-time expansions.
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