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Abstract
Phenomenology of massive spin-2 fields. We derive and discuss the implications of massive spin-2
fields as possible extensions of the standard theory of gravity, general relativity, in the spirit of extension
of the standard model of particle physics. We give a thorough introduction to the topic of massive
gravity from the point of view of bi- or multi-metric extensions of general relativity, focussing on the
bimetric case in the phenomenological considerations. Furthermore, known shortcomings and benefits
of such models are discussed. From this discussion it is evident that the parameter regime of interest is
mostly that of very small spin-2 masses, such that effects on galactic and extra-galactic length scales
are expected. On these grounds, we investigate the dynamics of spiral galaxies in the form of rotation
curves, from which we derive constraints on the model’s parameter space. Moreover, we discuss the
modifications of gravitational lensing by galaxy clusters, which strongly constrain these parameters.
We also highlight how these modifications could explain tentative anomalies in the observations of such
systems. Finally, we make use of the recent detection and conformation of gravitational waves. If more
than one spin-2 field is present, they are expected to mix dynamically in close analogy to the oscillation
of neutrino flavours. This observation is confirmed quantitatively, and subsequently used to derive new
constraints on the allowed masses and mixings of the two tensors. To this end, we employ both the
available data as well as a future, hypothetical sample of many such signals and their distribution as a
function of the cosmological redshift. We conclude our discussion with another critical contemplation
of the current status and provide an outlook onto possible ultraviolet completions.

Zusammenfassung
Phänomenologie massiver Spin-2-Felder. Ziel dieser Arbeit ist es die Auswirkungen massiver Spin-
2-Felder als Erweiterungen der Allgemeinen Relativitätstheorie zu erkunden, angelehnt an das Vorgehen
in der Teilchenphysik. Das Thema soll im Kontext sogenannter Bi- bzw. Multi-Metrik-Erweiterungen
der Allgemeinen Relativitätstheorie eingeführt und detailliert besprochen werden, wobei die phäno-
menologische Diskussion auf den Fall zweier Tensorfelder beschränkt bleibt. Darüber hinaus wird die-
se Klasse von Erweiterungen der Allgemeinen Relativitätstheorie kritisch diskutiert, indem bekannte
Vor- und Nachteile solcher Modelle gegenübergestellt werden. Aus dieser Diskussion folgt, dass der
interessante Massenbereich jener mit besonders kleinen Massen ist, sodass Effekte auf galaktischen und
extragalaktischen Längenskalen zu erwarten sind. Aus diesen Erwägungen heraus wird die Dynamik von
Spiralgalaxien in Form von Rotationskurven untersucht und daraus folgende Schranken an den Parame-
terraum hergeleitet. Weiterhin diskutiert wird die veränderte Vorhersage des Gravitationslinseneffekts
in Galaxienhaufen, welcher erhebliche Einschränkungen der Parameter mit sich bringt. Jedoch beobach-
tet man gleichzeitig, dass diese Modifikationen mögliche Anomalien solcher Systeme erklären können.
Zuletzt werden die unlängst erstmals gemessenen Gravitationswellensignale herangezogen. In Gegen-
wart mehrerer Spin-2-Felder erwartet man, dass diese dynamisch mischen, ähnlich den Oszillationen
mehrerer Neutrinogenerationen. Diese Beobachtung wird quantitativ bestätigt und im weiteren Verlauf
dazu verwendet die erlaubten Massen und Mischungsparameter beider Spin-2-Felder einzuschränken.
Zu diesem Zweck werden sowohl die aktuell verfügbaren Daten, sowie eine zukünftige, hypothetische
Stichprobe vieler solcher Signale und ihre Verteilung als Funktion der kosmologischen Rotverschiebung
herangezogen. Die Diskussion wird mit einer kritischen Betrachtung der Sachlage beendet, insbesondere
im Hinblick auf mögliche Hochenergievervollständigungen.
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Chapter 1

Introduction

Habe nun, ach! Philosophie,
Juristerei und Medizin,

Und leider auch Theologie
Durchaus studiert, mit heißem Bemühn.

Da steh ich nun, ich armer Tor!
Und bin so klug als wie zuvor;

[. . . ]
Daß ich erkenne, was die Welt
Im Innersten zusammenhält,

– Faust: Der Tragödie Erster Teil,
J. W. von Goethe

Why did Goethe’s Faust not study physics ‘To learn the hidden mystic lore, Within
the world’s innermost core’ [9]? In fact, physics was considered a branch of philosophy
until the early 19th century. But even so, the modern understanding of the field of the
physical sciences arguably dates back to the work of Galileo Galilei, who was born only
after the historical figure Johann Georg Faust walked the Earth.1 Indeed, the scientific
advances of humankind since these days are quite remarkable: Starting with the early
developments of the classical theories of gravitation and electromagnetism, we have now
developed an understanding of matter’s innermost core and their interactions that defies
all attempts to replace it – and from the first observations of planetary motion, indicating
that the geocentric system needed to be superseded by a heliocentric system, to the very
recent direct measurement of gravitational waves (GWs) that help us to develop a model
describing the cosmos that surrounds us. A modern Doktor Faustus should not have to
make a deal with the devil to get a grasp of the world’s innermost functioning, which
today we believe to be described by the standard model of cosmology (ΛCDM) and the
standard model of particle physics (SM). These frameworks have allowed us to make
falsifiable predictions from the smallest, sub-atomic realm of quantum mechanics (QM)
up to scales as large as the Universe itself.
1Johann Georg Faust: *1480 – †1541 [10]; Galileo Galilei: *1564 – †1642 [11].
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69%

dark energy

26%

dark matter

5%
visible baryonic matter

Figure 1.1.: Energy budget of the Universe as measured by the Planck space telescope [12].

Many important developments in theoretical physics have only been conceived in the
past century, most notably QM, which describes the structure of matter on the sub-
atomic level; and the theories of special and general relativity (GR), which describe the
structure of space-time. The unification of the principles of special relativity and QM,
which led to the development of quantum field theories (QFTs), marks the beginning
of modern particle physics. A further milestone was the formulation of the SM [13–15],
whose predictions have been thoroughly tested with many experiments, most notably a
decade of scrutinising its predictions at the Large Hadron Collider (LHC). And with the
discovery of the last missing piece in the form of the Higgs boson [16, 17], it might seem
that we are very close to understanding the hidden mystic lore of Nature.

Given that the SM describes Nature at the smallest scales humans can resolve, one may
ask if it is also the foundation of Nature at the largest scales, i.e. does it also describe
the Universe as we observe it? Unfortunately, the answer is no, as Fig. 1.1 suggests.
Observations of the cosmic microwave background (CMB) anisotropies indicate that 95%
of the Universe consist of dark substances [12, 18], which are needed to explain the late-
time acceleration of the Universe’s Hubble flow (roughly 69% in the form of so-called dark
energy (DE) or a cosmological constant (CC) Λ; evidence for which was first found from
supernova observations [19, 20]), and the excess in gravitational attraction observed on
galactic and extragalactic scales (approximately 26% non-relativistic, cold dark matter
(DM), see e.g. Refs. [21, 22] for early work on the subject). Moreover, the SM does not
exhibit enough charge-parity (CP) violation to understand the origin of the asymmetry
between matter and anti-matter necessary to explain the remaining 5% visible matter [23],
which otherwise would have annihilated into radiation [24]. It seems, therefore, that
Doktor Faustus would not be any more appeased – even today. However, while many
consider this a crisis, it is precisely this disparity that drives the creativity of an agile
community of theoreticians to build models beyond the SM attempting to identify the
microscopic properties of the dark forms of energy and matter and unravel the matter–
anti-matter asymmetry. Simultaneously, many ambitious experimentalists are testing
these models’ predictions in order to single out a candidate theory. Although theoretically
well motivated, many popular extensions of the SM’s particle and symmetry content have
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escaped experimental confirmation, putting the guiding principles for constructing such
models under pressure. While it is premature to jump to conclusions just yet, it is a
timely question if we can find new approaches to model building beyond the SM.
In the present work, we employ the methods common to particle physics, studying the

implications of adding a light field to the SM particle content. However, we do so with
a field of spin 2. This seemingly simple modification will have profound consequences for
the predictions of the resulting model, most prominently it will give us an explanation
for the observed late-time acceleration in terms of the spin-2 mass, thereby addressing
the so-called the CC problem. We consider this the primary motivation to study such
theories. A subject of concern in this yet not fully explored class of modifications is the
fact that the gauge symmetry, i.e. our guiding principle to constructing forces from a
redundant description of Nature, associated with a field of spin 2 is realised non-linearly.
This is no new observation given that GR can be formulated as such a gauge theory
of non-linear transformations. In contrast, the gauge symmetries associated with fields
of spin 1 typically allow a linear realisation. Consequently, we will have to modify the
gravitational sector in order for the resulting theory to remain consistent, such that we
are led to a hybrid approach: Having introduced a new particle to the spectrum, we
are led to a modification of the predictions in the gravitational sector, already at the
classical level. The scope of this thesis is to study the implications of these modifications
on various length and energy scales, and in a variety of physical systems.
Historically, the quest for a consistent theory of massive spin-2 fields dates back to

the late 1930s, when Fierz and Pauli first wrote down a linearised theory for a massive
spin-2 field [25, 26]. While consistent at the linear level, coupling the theory to matter
immediately challenged the idea, as it appeared that in the limit where the mass goes
to zero, the longitudinal mode still couples to matter in a way that is inconsistent with
observations. This is the infamous discontinuity found in 1970 by van Dam, Veltman,
and Zakharov (vDVZ) [27, 28]. Most importantly, the bending of light, which is correctly
described by GR, challenges the massive spin-2 paradigm. Only two years later, in 1972,
Vainshtein conjectured that strong-coupling effects restore GR at small distances. How-
ever, the theory was still plagued by a tachyonic degree of freedom, also referred to as the
Boulware–Deser (BD) ghost, when non-linearly completed [29, 30]. With this, the idea
was buried until the turn of the millennium, when a number of models were proposed to
address the weakness of gravity compared to the other known forces in Nature, allowing
gravity to protrude into a large extra dimension, see Refs. [31–35] for a selection. While
not the primary subject of these models, they did renew the interest in realising a con-
sistent four-dimensional description of a massive spin-2 field, because they give rise to
precisely such states. It was not until almost another 40 years after the BD ghost was
found, that finally a consistent theory of a massive spin-2 field in four dimesnions had
been found in 2010, and the absence of the BD ghost was proven rigorously [36–45] in
the model of massive gravity proposed by de Rham, Gabadadze, and Tolley (dRGT).
A curiosity of tensor fields is that a mass term can only be constructed by introducing

new fields, changing dimensions, or giving up some fundamental construction principle,
such as locality [46, 47]. In this sense it is not only natural, but a requirement to consider
settings in which more than one tensor field is present, either as a background or a
dynamical field itself. This leads to the notion of bimetric theories of gravity, which make
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the background tensor a dynamical field, cf. [48, 49], and which are readily extended to the
multi-metric case [50].2 This suggests a study of bimetric theories of gravity, or bigravity
for short, in the spirit of contemporary particle physics, where the particle or symmetry
content of the SM is extended and modified, and the phenomenological implications are
investigated. Due to the non-linear nature of gravity, this question is much more involved
for the spin-2 case. For recent review articles on the subject and beyond, see Refs. [52–54],
or Refs. [47, 55] for a broader overview.
In this work, we approach the subject in the spirit of particle physics to assess which

phenomenological consequences the presence of massive spin-2 fields in Nature might have.
Using available data, the model is put to test and the discussion is founded on neutral
grounds, allowing the reader to objectively draw their conclusions. While this is much
along the lines of surveys of beyond the SM phenomenology, we frequently make use of
the fact that the theory will give rise to modified classical gravitation, and we employ this
fact to derive self-consistent background solutions and to find constraints on the allowed
values of the model parameters. While the phenomenological consequences discussed here
are of classical origin, the initial motivation – the study of a massive spin-2 field – was
of quantum nature. It should be noted however, that these modifications present no cure
to the non-renormalisability of GR [54].
This manuscript is structured as follows. In Chapter 2 we establish the framework

that we will be working in. Starting from a general discussion of spin-2 masses, we
outline in detail the construction of the action and show how a consistent theory of
massive spin-2 fields is obtained. These procedures are straightforwardly generalised to
an arbitrary number of such fields, in any space-time dimension. Furthermore, we discuss
two solutions to the modified field equations of the resulting gravitational theory and
their implications on the CC problem. In Chapter 3 we introduce the phenomenon of
GW oscillations, which originates from the modification of the propagation dynamics in
this framework. We highlight the analogy to neutrino oscillations that can be drawn and
use the recent observation of gravitational waves (GWs) [56–61] to derive constraints.
The subsequent Chapter 4 is concerned with astrophysical implications of massive spin-2
fields. We discuss modifications to both, gravitational lensing and galactic dynamics, and
use data to constrain the parameter space. We summarise the results and put them
into context in Chapter 5 before concluding in Chapter 6. The Appendices contain
supplemental material and detailed calculations whenever skipped in the main body of
the text.

Units and conventions. We work in natural units with the speed of light and Planck’s
constant equal to one, c = 1 = ~, and with the reduced Planck mass MPl ≡ (8πGN)−

1
2 '

2 ·1018 GeV constructed from Newton’s constant GN. Astrophysical masses are expressed
in units of the solar mass M� = 2.0 · 1030 kg and we use the (−+ ++) metric convention.
Four-dimensional space-time is labelled by Greek letters, µ, ν, . . . = 0, 1, 2, 3, where the
spatial components will be distinguished by the Latin letters i, j, . . . = 1, 2, 3. Space-
time indices other than in four dimension are capitalised, M,N = 0, . . . , d− 1, and local
Lorentz indices are denoted as a, b, . . .

2While the notion of bimetric theories has been used since the 1970s, see e.g. Ref. [51], we will always
refer to the framework proposed by Hassan and Rosen [48].



Chapter 2

Theoretical Foundations

In order to appreciate the complications that were overcome in the historical development
of massive gravity, and those that still remain, we begin by outlining how theoretically
viable models of massive spin-2 fields can be constructed – first at the linear and later
also at the non-linear level. In this quest, we derive the action for bigravity from the dis-
cretisation of an extra, space-like dimension, which proves to be not only a simple way to
understand the structure of the action, but also highlights possible UV completions of the
model. Next, we outline the proof that the action is free of any a priori inconsistent ghost
degrees of freedom (DOF), i.e. that pathological, tachyonic DOF are absent in the theory.
Finally, we study two explicit solutions in Sec. 2.3, a spherically symmetric black hole
(BH) solution and a cosmological solution. Both solutions are used to address the long-
standing CC problem – the observation that the vacuum energy density associated with
the observed CC, ΛM2

Pl = ρobsvac = (2 · 10−3 eV)4 is smaller by many orders of magnitude
than the known scales of vacuum energy in Nature set, e.g., by the SM particle masses and
the electroweak phase transition from which we would expect ρEWvac ∼ (100 GeV)4. While
the former BH background solution is not apt to resolve this discrepancy entirely, the
latter cosmological solution will highlight one of the main motivations to study massive
gravity: late-time acceleration induced by the graviton mass. We closely follow Refs. [53–
55], to which we also refer the reader for a pedagogical introduction and a broad overview
of the topic. Furthermore, we remark that parts of Sec. 2.3.1 are based on work previously
published in Ref. [1], while the cosmological solution presented in Sec. 2.3.2 had already
been studied in Ref. [2].

2.1 Historical approaches to massive spin-2 fields

GR was developed from a purely geometrical perspective, demanding invariance under
general coordinate transformations [62]. Upon linearisation of the field equations, one
obtains the equation of motion (EOM) of a massless field of spin s = 2. While this
remains the textbook approach to GR, one can reverse the logic and obtain Einstein’s
field equations as the unique, non-linear completion of the theory of a massless spin-2
field invariant under linear coordinate transformations and coupling to matter in accord
with the equivalence principle [53, 55, 63]. Thus, one is led to a theory formulated in
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terms of a symmetric tensor field. Starting from this reversed logic, it is of – primarily
theoretical – interest to see if such a non-linear completion exists for the massive field of
spin s = 2.

The earliest attempt to giving a mass m to a spin-2 field hµν in 3 + 1 space-time
dimensions dates back to the year 1939 and is due to M. Fierz and W. Pauli [25, 26].
They found that, at the level of the quadratic action expanded around the Minkowski
background ηµν = diag(−1, 1, 1, 1), the unique and consistent combination of terms is

SFP ⊃ −
m2

8

∫
d4x

[
hµνh

µν − (hµµ)2
]
, (2.1)

which leads to the set of equations [54],

(2−m2)hµν = 0 , ∂µhµν = 0 , h ≡ hµµ = 0 , (2.2)

where 2 ≡ −∂2
t +∇2 is the d’Alembertian and ∇i = ∂i the spatial gradient operator. This

set of equations can be summarised as follows. The linearised spin-2 field propagating
on flat space follows a simple Klein-Gordon equation, and is transverse and traceless.
Therefore, it propagates 10−4(transverse)−1(traceless) = 5 DOF. This is precisely what
we expect for the massive spin-2 representation of the Lorentz group: 2s+ 1 = 5.

Given that GR is the unique theory of a massless spin-2 field invariant under general,
non-linear coordinate transformations [63–66], one is immediately led to the question how
to generalise the qudratic mass term (2.3) to a non-linear interaction, and whether the
resulting theory is also unique. From our experience with scalar (Lφ ⊃ m2

2 φ
2) and vector

fields (LA ⊃ m2

2 AµA
µ), one might be led to the conclusion that the mass term of a tensor

should read Lg ⊃ m2

2 gµνg
µν , where gµν = ηµν + hµν is the metric. However, this is

nothing but a (cosmological) constant which is non-dynamical. Hence, either some of the
principles of constructing the theory (four-dimensional flat space-time, Lorentz invariance,
locality etc.) have to be abandoned, or additional (tensor) fields must be introduced [46].
Therefore, a local, Lorentz-invariant non-linear extension of the Fierz-Pauli mass in four
dimensions must be a function of gµνfµν , where f is some reference metric.

Let us try to better understand the structure of the mass term (2.1) by allowing for a
different relative factor between the two terms,

L′FP ⊃ −
m2

8

[
hµνh

µν − a (hµµ)2
]
, (2.3)

where we consider the Lagrangian density instead of the action S =
∫

d4xL. It should
first be noted that under linearised coordinate transformations, the mass terms (2.1, 2.3)
are not invariant. It is a well-known fact from the formulation of the SM, that mass terms
of gauge bosons apparently break gauge invariance of the action. Nevertheless, the SM
is gauge invariant, while simultaneously giving rise to massive gauge bosons by virtue of
the Higgs mechanism [67–70]. While a similar mechanism is, unfortunately, not known
for gravity, we may invoke the so-called Stückelberg trick (historically first applied to
spin-1 fields [71]) by introducing a field that mimics the linearised gauge transformation
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hµν → hµν + 1
2(∂µξν + ∂νξµ) [53]:

L′FP ⊃ −
m2

8

[(
hµν − 2∂(µAν)

) (
hµν − 2∂(µAν)

)
− a (hµµ − ∂µAµ)2

]
, (2.4)

where ∂(µAν) ≡ 1
2(∂µAν + ∂νAµ) signifies the symmetrisation of indices. In order for

Eq. (2.4) to be invariant under a gauge transformation, we demand that the transforma-
tion of hµν is compensated by transforming simultaneously Aµ → Aµ+ 1

2ξµ.
1 Furthermore,

we can decompose the spin-1 field Aµ into its transverse and longitudinal modes,

Aµ =
1

m
A⊥µ +

1

m2
∂µχ . (2.5)

With this decomposition we find for the longitudinal field χ, integrating by parts twice,

L′FP ⊃
1

4m2

(
∂µ∂νχ∂

µ∂νχ+ ∂ν∂µχ∂
µ∂νχ− 2a(∂µ∂

µχ)2
)

=
1− a
2m2

(2χ)2 . (2.6)

Such higher derivative theories are known to give pathological solutions, as they encom-
pass more than the apparent DOF. In the case of Eq. (2.6), this can be seen by rewriting
the Lagrangian as was done in Ref. [53]:

Lghost =
1− a
2m2

(
χ̂2χ− 1

4
χ̂2

)
. (2.7)

Now, χ̂ acts as a Lagrange multiplier enforcing Eq. (2.6). Diagonalising the kinetic term,
χ̂ = φ1 − φ2 and χ = φ1 + φ2, makes the issue apparent:

Lghost =
1− a
2m2

(
φ12φ1 − φ22φ2 −

1

4
(φ1 − φ2)2

)
. (2.8)

There are two DOF, one of which has a negative kinetic term, unless a = 1 in order to
eliminate the pathology. This statement remains true, even if a different field parametri-
sation is chosen [72]. Therefore, we see that only the Fierz-Pauli mass term eliminates
the spurious and pathological DOF.

Even before a non-linear description was found, it was realised by van Dam, Veltman,
and Zakharov (vDVZ) that the mass term in Eq. (2.1) is problematic when coupled to
matter [27, 28]. We can investigate this by adding a matter coupling of the form

Smatter =

∫
d4xhµνT

µν (2.9)

to Eq. (2.1), where Tµν is an energy momentum tensor (EMT). The linearised EOM

1This construction can also be understood in terms of a redefined background, ηµν → ηµν − 2∂(µAν),
which can be generalised non-linearly to ηµν → ∂µφ

a∂νφ
bηab ≡ fµν [53]. Thus, choosing a background

f is equivalent to fixing a gauge in the Stückelberg language.
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read2 [54, 74]

Eαβµν hαβ +
m2

2
(hµν − h ηµν) =

1

MPl
Tµν , (2.10)

where h ≡ hµµ, and the so-called Lichnerowicz operator E follows from the linearisation
of the Einstein tensor around the Minkowski background ηµν .
Assuming the source term on the right-hand side to be conserved, ∂µTµν = 0, we can

take derivatives of Eq. (2.10) to find h = −2
3

T
m2M2

Pl
, which can be used in (2.10) to obtain

the generalisation of Eqs. (2.2) [54, 74]:

(2−m2)hµν = − 1

MPl

(
Tµν −

1

3
Tηµν

)
− 1

3

∂µ∂νT

m2MPl
. (2.11)

Expanding h in Fourier modes, h(x) = (2π)−4
∫

d4k eikµx
µ
ĥ(k), and analogously for T ,

one can construct the graviton propagator by the Green’s function method, such that

ĥµν = D̂(m)
µνρσ

T̂ ρσ

MPl
. (2.12)

The momentum-space propagator is found to be [74]

D̂(m)
µνρσ =

1

k2 +m2

(
ηρµησν + ηρνησµ −

2

3
ηρσηµν −

2

3
ηρσ

kµkν
m2

)
. (2.13)

This should be compared to the zero mass propagator which, up to gauge-dependent
terms that are irrelevant for tree-level calculations, reads

D̂(0)
µνρσ '

1

k2
(ηρµησν + ηρνησµ − ηρσηµν) . (2.14)

In order to obtain the classical potential, one computes the amplitude for the exchange
of a graviton between two sources, say two resting masses T1,2

µ
ν = diag(M1,2, 0, 0, 0)

separated by a distance r,

A(m)(x) =

∫
d4x′ T1

µν(x)D(m)
µνρσ(x− x′)T2

ρσ(x′) . (2.15)

It was found by van Dam, Veltman, and Zakharov in Refs. [27, 28] that in the linearised
theory the limitm→ 0 is not continuous. This is the so-called vDVZ discontinuity [30, 74]:

lim
m→0

A(m) =
4

3
A(0) = −4

3

GNM1M2

r
. (2.16)

This unacceptably large deviation from GR is readily excluded by solar system tests,
or, upon rescaling GN by an appropriate factor, by the measured light deflection angle
which agrees well with GR [75, 76]. The reason for this discrepancy lies, once again, in
the coupling of the scalar χ, which becomes a dynamical field only by mixing with the
2Notice that one power ofMPl is absorbed into hµν in order to give it the canonical mass dimension one.
Moreover, one obtains Eαβµν hαβ = − 1

2

[
∂µ∂νh+ 2hµν − ∂ρ∂µhρν − ∂ρ∂νhρµ + ηµν(∂ρ∂σhρσ − 2h)

]
on

a flat background, see e.g. Ref. [73].
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tensor field hµν . This is rooted in the fact that the mass term (2.1) gives rise only to
higher time-derivatives of χ, which are eliminated by the Fierz-Pauli choice, cf. Eq. (2.6).
Indeed, the full Lagrangian (2.4) including a matter coupling (for a = 1) is found to
be [53]

LFP =− 1

4
hµνEαβµν hαβ −

m2

8

[
hµνh

µν − h2
]

+
1

2MPl
hµνT

µν−

− 1

8
FµνFµν −

m

2
[hµν − h ηµν ] ∂(µAν)−

− 1

2
hµν [∂µ∂ν − ηµν2]χ ,

(2.17)

and we observe that only the mixing with hµν renders χ dynamical. Redefining hµν =
h̃µν − χηµν allows us to diagonalise the kinetic terms at the price of coupling χ to the
trace of the EMT (for clarity we disregard the vector Aµ which does not couple to a
conserved EMT at this level) [53]:

LFP =− 1

4
h̃µνEαβµν h̃αβ −

m2

8

[
h̃µν h̃

µν − h̃2
]

+
1

2MPl
h̃µνT

µν−

− 3

4
(∂µχ)(∂µχ) +

3

2
m2χ2 +

3

2
m2χ h̃− 1

2MPl
χT ,

(2.18)

with T ≡ ηµνT
µν . From this form of the Lagrangian, one can deduce that h̃µν will give

rise to the transverse traceless (TT) helicity-2 state, Aµ is the helicity-1 mode, and χ is
the longitudinal, helicity-0 mode [77]. Clearly, the limit m → 0 does not decouple the
helicity-0 mode which is the origin of the vDVZ discontinuity found in Eq. (2.16).

This first drawback for a massive spin-2 theory was, however, quickly overcome by
the investigations of A. Vainshtein [78], who conjectured, that in the limit m → 0, the
longitudinal mode is strongly coupled, precisely to restore a smooth limit to GR. For a
detailed and thorough introduction to the Vainshtein mechanism we refer the interested
reader to the literature [79–92], see also Ref. [74] for an introduction. To understand the
Vainshtein mechanism, it is convenient to employ a decoupling limit [74],

MPl →∞, m→ 0 , keeping Λn =
(
MPlm

n−1
) 1
n = const,

Tµν
MPl

= const . (2.19)

Moreover, one retains in the action only quadratic terms in the helicity-2 mode, but
non-linear terms of the helicity-0 mode, which are suppressed by powers of the strong-
coupling scale Λn. The integer n depends on the structure of the action, most importantly
n = 3 yields the lowest scale Λn for the cases we discuss in this thesis [36]. See also
Refs. [53, 93, 94] for further discussions.

While we will see how the Vainshtein mechanism operates in a concrete setting in
Sec. 2.3.1, a general discussion is very difficult and beyond the scope of this work. How-
ever, the equations governing the dynamics of the perturbations in the decoupling limit
on some background generally take the form [74]

Eαβµν h̃αβ =
Tµν
MPl

, 32χ+ FNL
χ =

T

MPl
, (2.20)
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with E generalising the Lichnerowicz operator, and where FNL
χ is some complicated, non-

linear function whose terms are suppressed by powers of Λn, e.g. in the cases relevant for
us [53],

FNL
χ ∼ Λ−3

3 ∂µ∂νχ(ηµν2− ∂µ∂ν)χ+ Λ−6
3 . . . (2.21)

In the limit of small momenta (large distances) the non-linearities will be suppressed by
powers of (k/Λ3), where k is the momentum scale. By virtue of Eqs. (2.20), we observe
that FNL

χ � 2χ and χ ∼ T ∼ h̃. It is therefore found that, in this limit, the physical
metric perturbation will be a composition of helicity-2 and helicity-0 modes [74],

hµν = h̃µν − ηµν χ−
∂µχ∂νχ

Λ3
3

, (2.22)

and the theory is in the regime where the graviton is genuinely massive.
The Vainshtein mechanism will operate once the non-linearities in FNL

χ become relevant.
To this end, we need to introduce some non-trivial background other than flat space.
Suppose that χ = χ+ δχ, and T = T + δT , e.g. a point mass T = δ(3)(~r)M . Then, terms
of the form Λ−3

3 ∂2χ will become large, while the perturbations remain small, and we can
expand the χ-part of the Lagrangian corresponding to Eq. (2.20) schematically as [55]

L ⊃ −3

4

(
1 +

(∂2χ)

Λ3
3

+
(∂2χ)2

Λ6
3

+ . . .

)
(∂µδχ)(∂µδχ)− 1

2MPl
δχ δT . (2.23)

Normalising canonically, we obtain

L ⊃ −1

2
(∂µδχ)(∂µδχ)− 1

3MPl

δχ δT√
1 + (∂2χ)

Λ3
3

+ (∂2χ)2

Λ6
3

+ . . .
, (2.24)

and the decoupling is manifest: In the limit where k →∞, the non-linear term becomes
dominant and the helicity-0 mode turns out to be subdominant in Eq. (2.22), χ � T .
Thus, the physical perturbation is purely helicity-2, hµν = h̃µν , and GR is restored.
While this resolves the issues posed by the vDVZ discontinuity, it was quickly realised

that non-linear generalisations of the Fierz-Pauli action (2.1) are plagued by a ghostly
DOF that tends to destabilise the theory. We have already encountered this ghost at
the linear level when we allowed for a deviation from the Fierz-Pauli mass, cf. Eq. (2.3).3

With the work of Boulware and Deser in the 1970s [29, 30] a non-linear extension seemed
doomed to failure, because they could argue that the ghost would reenter at each non-
linear level; see also Ref. [95] for examples. However, it turns out that a loophole in
the argument exists, which allows one to construct a consistent non-linear interaction
term that gives rise to Eq. (2.1) when linearised, as we will see in Sec. 2.2.3. One can
now appreciate the obstacles one is facing in the construction of a consistent theory of a
massive spin-2 field: The scalar mode does not come with a canonical kinetic term, as its
purely derivative interactions are pathological and need to be removed. What remains

3Another way to see the appearance of this ghost DOF is in the decoupling limit studied above, where
the interactions suppressed by a scale Λ5 turn out to be pathological, see Ref. [93]. Initially, the
interactions we derive in Sec. 2.2 were chosen such that in the decoupling limit these terms vanish
identically.
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is the mixing with the tensor mode, which in turn is the key to the Vainshtein effect.
Ensuring that the mixing does not induce new, ghost-like DOF is a difficult task. We
now depart from the historical path and construct such a consistent theory which evades
all of these inconsistencies and return to this discussion in Sec. 2.2.3.

2.2 From general relativity to massive gravity

In this section we derive the action for bigravity from the discretisation of an extra, space-
like dimension, often referred to as dimensional deconstruction [96–105]. We choose this
ansatz, because it allows the inclined reader to appreciate the structure of the interac-
tions giving rise to a mass term, and how they could originate from a more fundamental
theory. The reader who is not interested in such a derivation can safely skip the follow-
ing subsection. For a more detailed discussion of the aspects discussed here, we refer to
Appendix B.1 and Refs. [73, 106, 107], which also form the basis of this section.

2.2.1 An excursion to extra dimensions

To start with, we recall that GR is a theory of a dynamical rank-2 tensor gµν . It can be
formulated through an action principle, via the Einstein-Hilbert action,

S = SEH + Sm =
M2

Pl
2

∫
d4x

√
−det g R+

∫
d4x

√
−det gLm , (2.25)

where R is the Ricci scalar and Lm a matter Lagrangian. Varying this action with respect
to (w.r.t.) gµν leads to the Einstein field equations,4

Rµν −
1

2
Rgµν =

1

M2
Pl
Tµν , (2.26)

with the matter EMT Tµν is defined as

Tµν = − 2√−g
δ(
√−gLm)

δgµν
, (2.27)

where
√−g is short for

√−det g.
In the textbook formulation of GR, see e.g. [73, 107, 110, 111], all geometrical quantities

are formulated in terms of coordinates. For example, we write down a metric in a specified

4This can be seen as follows:

δ

∫
d4x
√
−gRµνgµν =

∫
d4x

[(
δ
√
−g
)
R+
√
−g(δRµν)gµν +

√
−gRµνδgµν

]
Using that gµνgµν = 4, from which it follows that δgµν = −gµαδgαβgβν , it is straightforward to
show that δ

√
−g = − 1

2

√
−g gµνδgµν (see also Appendix A.1). The final ingredient is the observation

that gµνδRµν = ∇α
[
∇β(δgαβ)− gγδ∇α(δgγδ)

]
is a total derivative [73]. Thus, we see that δSEH =∫

d4x
√
−g
(
Rµν − 1

2
Rgµν

)
δgµν plus a boundary term, which we will not consider in this thesis. See

Refs. [55, 73] for a discussion of this issue and how to resolve it via the so-called Gibbons-Hawking-York
boundary term [108, 109].
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coordinate system, and compute the Christoffel symbols via

Γµαβ =
gµν

2
(∂αgνβ + ∂βgαν − ∂νgαβ) . (2.28)

This specific choice of connection, the Levi-Cività connection, is compatible with the
metric, in the sense that the covariant derivative of the metric vanishes,

∇σgµν = ∂σgµν − Γασµgαν − Γασνgµα = 0 . (2.29)

In fact, this equation uniquely determines the connection to have the specified form
Eq. (2.28). The notion of curvature is subsequently introduced via the parallel transport
of a vector around a closed curve, or in differential language as the commutator of two
(co-)variant derivatives acting on a covector,

[∇µ,∇ν ]ωρ ≡ Rµνρσωσ or [∇µ,∇ν ]vρ ≡ Rρσµνvσ . (2.30)

Going through the algebra one can see that in terms of the connection,

Rµνρ
σ = ∂νΓσµρ − ∂µΓσνρ + ΓαµρΓ

σ
αν − ΓανρΓ

σ
αµ . (2.31)

Expressed in this manner, we can directly infer that Rµνρσ = −Rνµρσ = −Rµνσρ = Rρσµν .
Moreover, we can finally construct the Ricci tensor Rµν = Rµσν

σ and the Ricci scalar
R = Rµνg

µν . These are the quantities that describe the curvature of space-time and
relate them to matter via Eq. (2.26).

At this point, we stress that while very convenient for practical calculations, the co-
ordinate base method for computing the geometrical quantities has its limitations. A
more elegant way to derive the quantities of interest and perform the deconstruction of
the extra dimension is the vielbein method, which was first applied to GR by H. Weyl
in 1929 (cf. Ref. [112]). As we will see shortly, this approach highlights the formulation
of GR as a gauge theory with local Lorentz invariance. Although we will ultimately be
interested in a five-dimensional action, let us consider a general number of space-time
dimensions. Here and in what follows, we use the convention that Greek letters label the
four-dimensional space-time indices, µ = 0, 1, 2, 3, while capital Roman letters stand for
the d > 4 space time coordinates, M = 0, . . . , d− 1. Lower case Roman letters represent
the local Minkowski space.

Vielbein method. The generalisation of the coordinate method we seek is one in which
the local Lorentz structure of space-time is manifest. To do so, we consider a orthonormal
set of basis covectors, or one-forms, {ea}, labelled by a = 0, . . . , d− 1, such that we can
express each covector as a linear combination of the ea. In general, this basis will not be
a coordinate basis, as can be seen by assuming the contrary. For a coordinate basis in a
given coordinate system {xM}, we have

ea = dxa ⇒ eaM =
∂xa

∂xM
⇒ ∂Ne

a
M = ∂Me

a
N . (2.32)
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Thus, we find that if the components of ea in a coordinate system satisfy ∂[Me
a
N ] ≡

1
2(∂Me

a
N − ∂NeaM ) 6= 0, ea ≡ eaM (x)dxM will not be a coordinate basis at a specified

point of space-time [107]. Due to the orthonormality, we can define the inverse to the
matrix eaM (x) at every point in space-time, such that

eaMe
M
b = δab and e N

a eaM = δNM , (2.33)

and we can express vectors, covectors and more general tensors in terms of the newly
chosen basis, e.g. for a vector V = VM∂M = V aea with ea = e M

a ∂M and V a = VMeaM ;
and furthermore, we can express dxM = e M

a ea.

Most importantly, however, we can express the invariant line element in this basis as

ds2 = gMN dxMdxN = gMN e
M
a e N

b e
aeb ≡ gab eaeb , (2.34)

where we have used that ea = eaMdxM and e M
a eaN = δMN . A rather natural choice for the

basis is such that the underlying symmetry is manifest, i.e. that the metric coefficients
in the vielbein basis are those of the Minkowski metric in d dimensions, gab = ηab =
diag(−1,+1, . . . ,+1), or

gMN = eaMe
b
Nηab . (2.35)

A final remark should be made concerning the uniqueness of this basis. By definition,
a Lorentz transformation is a transformation that leaves η invariant. Therefore, if ea

satisfies Eq. (2.35), so will ea′ = Λabe
b by virtue of the identity ΛabηacΛ

c
d = ηbd. Thus,

Lorentz invariance is manifestly implemented as a local redundancy in the description of
the the dynamical variables given by the vielbeins ea, i.e. a gauge symmetry.

Let us proceed to write down the desired expressions relating to the curvature. The
first step is, of course, to find a connection compatible with the metric. We define the
connection one-form [73]

Ωab
M ≡ eaN∇MebN (2.36a)

= ∇M (eaNe
bN )︸ ︷︷ ︸

eaNe
b
Lg

NL

−ebN∇MeaN

= −Ωba
M . (2.36b)

Here, the antisymmetry is implied by the definition of the vielbeins (2.35), and employing
the compatibility condition ∇LgMN = 0. Conversely, imposing the antisymmetry of ω,
as in Eq. (2.36b), is sufficient to guarantee the compatibility of the covariant derivative
and the metric [73].

There is another way to express the connection one-form which implements the re-
quirement that the covariant derivative be torsion-free. We first note that ∇[Me

a
N ] =

ηabeb [MΩab
N ] and that for a torsion-free connection, this should equal [73]

∇[Me
a
N ] = eb [MΩab

N ]
!

= ∂[Me
a
N ] . (2.37)
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In this way, we can express the components as in Ref. [53]:

Ωab
M =

1

2
ecM

(
Oabc −Ocab −Oacb

)
, (2.38)

where Oabc ≡ 2eaAebB∂[AeB]c. Reverting to the description in the language of differential
forms, we find

ea = eaMdxM and Ωab = Ωab
MdxM . (2.39)

Using this, we can express Eq. (2.37) more compactly as dea = eb ∧Ωa
b.

This allows us to define a covariant derivative of a one-form ξ, Dξ ≡ dξ+ Ω∧ξ, which
defines the (matrix-valued) two-form Riemann curvature [73],

Rab = (DΩ)ab = dΩab + Ωa
c ∧Ωcb . (2.40)

Notice the analogy to the field strength tensor of non-Abelian gauge theories.5 From
Eq. (2.40) we can always revert to the coordinate basis formulation via

RMNLK = eMae
b
NR

a
bLK . (2.41)

We are now in a position to write down the d-dimensional action with the conventions of
Ref. [113]:

S
(d)
EH =

Md−2
d

4(d− 2)!

∫
εa1a2a3...adR

a1a2 ∧
(d−2) factors︷ ︸︸ ︷

ea3 ∧ . . . ∧ ead

=
Md−2
d

4(d− 2)!

∫
εa1a2a3...ad R

KL
M1M2e

a1
K e

a2
L e

a3
M3

. . . eadP dxM1 ∧ . . . ∧ dxMd

=
Md−2
d

4(d− 2)!

∫
εKLM3...Md

εM1M2...Md︸ ︷︷ ︸
=2!(d−2)!(δ

M1
K δ

M2
L −δM1

L δ
M2
K )

det(e)RKLM1M2 dx1 ∧ . . . ∧ dxd

→
=
Md−2
d

2

∫
ddx

√
−det g (d)R(g) , (2.42)

with the d-dimensional Ricci scalar (d)R and det(e) ≡ εa1a2...ade
a1

1e
a2

2 · · · eadd =
√−det g.6

To arrive at the last equality, we used that RKLMN = −RLKMN = −RKLNM = RMNKL

and the contraction properties of the d-dimensional totally antisymmetric tensor εAB...C .

Deconstruction of an extra dimension. Let us now go to d = 5 and decompose
the action into a 4D action and the remaining fifth dimension, which is then discretised
following the procedure presented in Ref. [113]. In doing so we assume that some compact-
ification is applied to the fifth dimension, for definiteness we assume periodic boundary
conditions, e.g. x4 + L = x4. To make the distinction clear, we write A = 0, . . . 4 for
a Lorentz index that runs through all five dimensions, and which are associated with

5To draw this analogy, notice that the lower case latin letters correspond to the gauge group indices,
while the capital letters are the space-time indices.

6This last equality holds because by definition det g = det(eT η e) = (det e)2 det η = −(det e)2.
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tensors named in capital letters, while a = 0, . . . 3 is attached to lower case, 4D tensors
(the Riemann tensor is an exception to this rule, as it is conventionally written as capital
R it will be distinguished by a superscript). Moreover, let us abbreviate x4 = y, and fix
a gauge such that, in the metric language, g55 = 1 and g5µ = 0, or

GMNdxMdxN = dy2 + gµν(x, y)dxµdxν ⇔ EA =
(
eaµdxµ, dy

)T
. (2.43)

Furthermore, we choose six of the remaining Lorentz transformations such that the y-
component of the connection one-form reads Ωab

5 = 1
2(eaµ∂ye

b
µ−ebµ∂yeaµ) = 0. Defining

the d = 4 Riemann curvature two-form (4)Rab = dωab + ωac ∧ ωcb constructed from the
4D connection ωab, and introducing the extrinsic curvature

Kµν ≡
1

2
∂ygµν =

1

2
∂y(e

a
µe
b
νηab) =

1

2
(eaµ∂ye

b
ν + ebν∂ye

a
µ)ηab , (2.44)

we decompose

Ωab = ωab + Ωab
5dy , (2.45a)

Ω5a = Ka = Kµνe
aνdxµ =

1

2
(ebν∂ye

a
ν + eaν∂ye

b
ν)ebµdxµ = −Ωa5 , (2.45b)

(5)R
ab

= (4)R
ab −Ka ∧Kb − ∂yωab ∧ dy , (2.45c)

(5)R
5a

= dKa − ∂yKa ∧ dy + ωab ∧Kb , (2.45d)

where in the last line it is understood that dKa = ∂µK
a
νdxµ∧dxν is the exterior derivative

in d = 4. Assembling the terms and integrating by parts once, one arrives at [113]

S
(5)
EH =

M3
5

4

∫
εabcd

(
(4)Rab ∧ ec ∧ ed −Ka ∧Kb ∧ ec ∧ ed+

+ 2Ka ∧ ∂yeb ∧ ec ∧ ed
)
∧ dy (2.46a)

→
=
M3

5

2

∫
d4x dy

(
(4)R+ (Kµ

µ)2 −KµνKνµ

)
. (2.46b)

One could have arrived at Eq. (2.46b) without introducing the vielbein formalism; how-
ever, it turns out that the discretisation we now carry out yields a viable result only at
the vielbein level and not at the metric level, since we would have to deal with the square
root of the metric. This is an important observation made in Ref. [113], from which we
also adopt the discretisation scheme below. Allowing y to take two distinct values, we
arrive at a two-site model: eaµ(x, y) 7→ e(i) a

µ(x), with i = 1, 2. We now discretise the
above quantities using an inverse length scale m ∼ L−1,

∂ye
a
µ 7→ m (e(2) a

µ − e(1) a
µ) on site 1, m (e(1) a

µ − e(2) a
µ) on site 2, (2.47a)

Ωab
5 = 0 7→ e(1) aµ e(2) b

µ = e(1) bµ e(2) a
µ , (2.47b)

Ka 7→ m(e(2) a − e(1) a) , (2.47c)
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∫
dy f(x, y) 7→ 1

m

2∑
j=1

fj(x) , (2.47d)

where Eq. (2.47a) implements the periodicity in y in the discretised formulation. An-
ticipating the construction of a mass term, we have introduced the length scale as m−1.
Dropping the superscript Rab ≡ (4)Rab, we find (M2

Pl = M3
5 /m) [113]

S
(5)
EH 7→

M2
Pl

4

∫
εabcd

[
R(1) ab +m2(e(2) a − e(1) a) ∧ (e(2) b − e(1) b)

]
∧ e(1) c ∧ e(1) d+

+ (1↔ 2) . (2.48)

Before translating this into a metric-based expression, we highlight that the discretisation
procedure above is not unique. For example, in Eq. (2.47a) we could have chosen not to
keep the non-derivative terms at a fixed site, i.e. instead of ec 7→ e(i) c we could replace
ec 7→ (1 − r)e(2) c + re(1) c for 0 ≤ r ≤ 1. The same could be done for ed appearing in
the interaction term, for a parameter 0 ≤ s ≤ 1. Eventually, one finds the most general
interaction term of the form

Mabcd(e,f) ≡c0 e
a ∧ eb ∧ ec ∧ ed + c1 e

a ∧ eb ∧ ec ∧ fd + c2 e
a ∧ eb ∧ f c ∧ fd

+ c3 e
a ∧ f b ∧ f c ∧ fd + c4 f

a ∧ f b ∧ f c ∧ fd , (2.49)

and the c0,1,2,3,4 are combinations of r and s [113]. Had we considered only Eq. (2.48),
we would have found the terms proportional to c0 (which is nothing but a CC on site 1),
c1, and c2.

For practical calculations, the vielbein formulation is often not very convenient, and
hence the next step is to translate it back to a metric formulation. In analogy to the
calculation in Eq. (2.42), we wish to translate the action

S =
M2

Pl
4

∑
i

∫
εabcd

[
R(i) ab ∧ e(1) c ∧ e(1) d +Mabcd(e(i), e(i+1))

]
(2.50)

into the metric language. While the first summand in square brackets simply yields two
copies of the Einstein-Hilbert action, the interaction potentialM requires some care. In
Ref. [50] this has been studied for the most general case for N sites in d dimensions. In-
deed, it is straightforward to generalise the above discretisation procedure to an arbitrary
number of dimensions and sites. The same is true for the generalised interaction terms,
which in d = 4 dimensions have a structure of the form

εabcd e
(i1) a ∧ e(i2) b ∧ e(i3) c ∧ e(i4) d = εabcd ε

µ1µ2µ3µ4 e(i1) a
µ1 e

(i2) b
µ2 e

(i3) c
µ3 e

(i4) d
µ4 d4x ,

where ij labels the site and d4x ≡ dx1 ∧dx2 ∧dx3 ∧dx4 is the canonical volume element.
A certain number of the ij will be identical, and therefore we may want to single out one
specific site, say i1, and express it in terms of a determinant. Thus, we factor out exactly
d = 4 such terms by appropriately multiplying inverse matrices e(i1)

a
µ [recall Eq. (2.33)],
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to obtain [50]

det(e(i1)) d4x εabcd ε
klmn δak

(
e(i1)−1

e(i2)
)b
l

(
e(i1)−1

e(i3)
)c
m

(
e(i1)−1

e(i4)
)d
n
. (2.51)

For the two-site model we discussed above, the relevant matrix is X ≡ e(1)−1
e(2), and we

find7

εabcd e
(1) a ∧ e(1) b ∧ e(1) c ∧ e(2) d = 6 det(e(1)) d4x [X], (2.52a)

εabcd e
(1) a ∧ e(1) b ∧ e(2) c ∧ e(2) d = 2 det(e(1)) d4x

(
[X]2 − [X2]

)
, (2.52b)

εabcd e
(1) a ∧ e(2) b ∧ e(2) c ∧ e(2) d = det(e(1)) d4x

(
[X]3 − 3[X][X2]− 2[X3]

)
, (2.52c)

where we have made use of the notation [A] ≡ tr (A). In order to relate this expression
to the conventional metric formulation of bimetric and massive gravity given below, one
needs to impose an additional condition on the vielbeins, which is simply due to the fact
that, in general, the defining relation (2.35) cannot be inverted [115]. Let us identify
g(1)µν = e(1) µ

a e
(1) ν

b η
ab and g(2)

µν = e(2) a
µe

(2) b
νηab, such that

g(1)µλg(2)
λν =

(
e(1) µ

a e
(1) λ

b η
ab
) (

e(2) c
λe

(2) d
νηcd

)
(2.53a)

=

[(
e(1)−1

)T
η−1e(1)−1

e(2)T η e(2)

]µ
ν

(2.53b)

=

[
η e(2)

(
e(1)−1

)T
η−1e(1)−1

e(2)T
]µ
ν

, (2.53c)

where in the last line we have used that Eqs. (2.52) involve traces that allow cyclic
permutations. The sought after condition reads [50],

η e(2)
(
e(1)−1

)T
=

[
e(2)

(
e(1)−1

)T]T
η = e(1)−1

e(2)T η , (2.54)

and allows us to express

g(1)µλg(2)
λν =

[(
e(1)−1

e(2)T
)(

e(1)−1
e(2)T

)]µ
ν
, (2.55)

or more suggestively,

X = e(1)−1
e(2) ∼=

√
g(1)−1

g(2) . (2.56)

To see that imposing this condition is dynamically equivalent to the unconstrained theory,
consider a decomposition of e(1) = exp(ω)e(1), where e(1) satisfies Eq. (2.54), and exp(ω)
is a general, parametrised Lorentz transformation:

exp(ω)T η exp(ω) = η ⇒ ωη = −ωT η . (2.57)

7We remark, without going into the details, that the ε-structure of these terms ensures the absence
of the pathological Λ5-terms in the decoupling limit [36, 93, 114], and gives rise to interactions of
precisely the form (2.21) in this limit [53], where Xµν ∼ hµν + ηµνχ.
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Given that the kinetic terms are invariant under independent Lorentz transformations
of the vielbeins, we see that ω enters only algebraically through the potential, and has
a constant solution ω = 0. This establishes the dynamical equivalence as claimed in
Ref. [50]. However, in Ref. [45] it is shown that this equivalence does not generally hold
true, which means that there are branches where ω = 0 is not a solution. It is found that
the equivalence can be established if the matrix square root in Eq. (2.56) exists and is
real. Nonetheless, there exist cases in which the metric formulation does not exist and
one must revert to the vielbein method, see also Refs. [116, 117]. For the remainder of
this manuscript we assume that the real matrix square-root (2.56) exists and we employ
the metric approach, which we discuss in the subsequent section.

2.2.2 The bigravity action in metric form

The considerations of the previous sections lead us to a picture describing two dynamical
tensor fields, g(1) = g and g(2) = g̃, as shown schematically in Fig. 2.1. Inspired by the
extra-dimensional arguments given above, we couple matter to one of the two metrics
only: In the deconstruction of the fifth dimension, we apply the same procedure to the
matter sector, decomposing matter fields φ(x, y) 7→ φ(i)(x). We then interpret the tensor
that lives on the same site as the matter Lagrangian L(i) as that sector’s physical metric.
Remarkably, the two matter sectors will automatically couple only via the gravitational
interaction terms. In fact, starting with the action in the metric language and coupling
one matter Lagrangian to both metrics reintroduces the BD ghost [118, 119], and must
therefore be disregarded for reasons of consistency, analogous to the requirement that
a viable QFT contain only anomaly-free interactions, albeit other more symmetric and
viable matter couplings have been found in Refs. [120–122], which we will not consider
here. With this in mind and disregarding any hidden matter sector for now, the action
reads

Sbi =
M2
g

2

∫
d4x
√
−det g R(g) +

M2
g̃

2

∫
d4x
√
−det g̃ R̃(g̃)−

−m2M2
eff

∫
d4x
√
−det g

4∑
n=0

βnen(X) +

∫
d4x
√
−det g Lmatter .

(2.58)

In this expressionMg is the Planck mass of the physical metric g, which measures distances
in the matter sector, whileMg̃ is the corresponding mass scale of the hidden sector field g̃.
Furthermore, we introduce an effective massM−2

eff ≡M−2
g +M−2

g̃ in order to obtain a more
symmetric action; however this has no impact on the physics, see e.g. Ref. [54] which uses
a different convention. The kinetic terms of the tensors are given by the corresponding
Ricci scalars R(g) and R̃(g̃). The constants βn parametrise the potential terms which are
given in terms of matrix polynomials of fixed order in X ≡

√
g−1g̃, cf. Eqs. (2.52):

e0(X) = 1 e1(X) = [X] , e2(X) =
1

2

(
[X]2 −

[
X2
])
,

e3(X) =
1

6

(
[X]3 − 3 [X]

[
X2
]

+ 2
[
X3
])
,

e4(X) = det X ,

(2.59)
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LSM

physical
metric g

hidden
metric g̃

Lhidden

∫√ −
|g
|L

SM

m2

∫ √
−|g|βnen (X)

∫ √
−
|g̃|L

hidden

Figure 2.1.: Schematic representation of the action in Eq. (2.58). We have included a hidden
matter Lagrangian, which would naturally arise from the discretisation of matter in the decon-
structed extra-dimensional theory considered before. We have indicated that the two metrics
can only be transformed simultaneously due to the interaction term. Only if m = 0, the hidden
and physical metrics can transform independently. This naively leads us to assume that m is
a naturally small parameter, as was confirmed in Ref. [123]. It is interesting that consistency
forbids us to couple the SM and hidden sectors other than gravitationally [118, 119].

where [X] ≡ tr (X), [X2] = XµνXνµ etc. For later convenience, we define a mixing angle θ
via the relation sin2(θ) = M2

eff/M
2
g , cos2(θ) = M2

eff/M
2
g̃ . Variation of the action yields the

equations of motion of the gravitational fields, henceforth referred to as Einstein equations
in the light of their GR analogue:

Rµν −
1

2
gµνR+m2 sin2(θ)

3∑
n=0

βnV
(n)
µν =

1

M2
g

Tµν , (2.60a)

R̃µν −
1

2
g̃µνR̃+m2 cos2(θ)

4∑
n=1

√
det(g−1g̃)βnṼ

(n)
µν =0 . (2.60b)

The interaction terms V (n)
µν , Ṽ

(n)
µν are obtained from the variation of en(X), w.r.t. g, g̃.

For example, we find V (0)
µν = gµν (see Appendix A.1 for the remaining V (n)). The EMT

is obtained from the variation of the matter part of the action via Eq. (2.27). In Ap-
pendix A.3 we linearise these interaction terms and find that the above action gives rise
to two dynamical fields of spin-2, one massless and one massive.
An interesting observation is that the action is invariant only under a simultaneous

transformation of the two sectors, which leaves the trace of the matrix X invariant, as
indicated in Fig. 2.1 by equally oriented arrows. However, if the interactions are turned
off, e.g. by setting m = 0, the two sectors allow independent changes of coordinates
(or equivalently space-time diffeomorphisms). Intuitively, one would immediately suspect
that the parameter m is therefore naturally small, i.e. stable against radiative corrections.
It turns out that this naive picture is correct, cf. Ref. [123].
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Notice that the field equations (2.60) have two interesting limits. In the limit where
the mixing angle θ → 0, i.e. Mg̃ � Mg, the hidden sector is entirely decoupled from the
matter sector and the solution of Eq (2.60a) will coincide with that of GR. Therefore, a
smooth limit to GR is feasible without the notorious vDVZ discontinuity. Second, when
Mg̃ �Mg, or θ → π/2, one is in the limit of massive gravity, in which only one of the two
tensors is a dynamical field. This can be seen from Eq. (2.60b), where all reference to g is
lost. From the point of view of the g-Equations, g̃ is therefore merely a fixed background
field. This is precisely the point of view taken in the dRGT version of massive gravity,
where the kinetic term for g̃ is dropped from the action. Consequently, in the linearised
EOM derived in Appendix A.3, the limit θ → 0 (θ → π/2) manifests the decoupling of
the massive (massless) spin-2 field from the matter sector.
A physically well-motivated requirement is that the energy-momentum tensor, Tµν is

covariantly conserved, i.e. ∇µTµν = 0 as it is true in GR by construction of the Einstein
tensor. In order for this to be compatible with the field equations, we demand

∇µV (n)µ
ν = 0 and ∇̃µṼ (n)µ

ν = 0 , (2.61)

with the covariant derivatives constructed from g or g̃ as indicated. These equations are
known as Bianchi constraints. One might be led to the conclusion that these yield an
additional set of 8 equations (in four dimensions); however, these equations turn out not
to be independent in general. For example, they yield only one independent equation for
the cosmological solution we discuss in Sec. 2.3.2. With the machinery developed in this
section, we are now in a position to reexamine the discussion of the BD ghost and how
its appearance is avoided in Eq. (2.58).

2.2.3 Massive (bi-)gravity is free of the Boulware-Deser ghost

In order to study the consistency of a theory in terms of its propagating DOF, one needs
to assure that the dynamics are such that only healthy DOF propagate. By healthy, it is
understood that the energy of the system must be bounded from below; e.g. by ensuring
that the kinetic terms have the correct sign, as otherwise increasing the momentum could
lead to arbitrarily low kinetic energy – a state which would not be considered relevant
for any physical system. Similarly, we know very well from the study of QFTs that the
potential of a scalar needs to be bounded from below, such that arbitrarily low potential
energies cannot be achieved by larger and larger field values. All these aspects of ‘health-
iness’ can be studied by considering the Hamiltonian formulation of a given model. Thus,
to understand how the BD ghost is avoided by the interactions considered above, we have
to study the action in the Hamiltonian language, as was done in Refs. [29, 30]. There,
Boulware and Deser argue that non-linear completions of the Fierz-Pauli action (2.1)
will encompass six, instead of the expected five DOF of a massive spin-2 field (see Ap-
pendix A.3). And moreover, that this state inevitably destabilises the dynamics of the
system by spoiling the boundedness from below of the Hamiltonian. The crucial observa-
tion made by de Rham, Gabadadze, and Tolley in 2010 [36, 37], was that there is a way
around this no-go theorem hidden in the structure of the interaction terms (2.52, 2.59).
In order to show the absence of the BD ghost, we reformulate the action (2.58) in the
Hamiltonian language and count the DOF that it propagates.
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Hamiltonians in classical mechanics. In the Hamiltonian formulation of a theory,
all variables are accompanied by their conjugate momenta, e.g. for a classical Lagrangian
describing the motion of a particle in one dimension, L(x, ẋ), we find that the Hamiltonian
is a function of x and π, parametrised by a time variable t. Here, the conjugate momentum
to the variable x is [124]

π =
∂L

∂ẋ
⇒ H = π ẋ(π)− L(x, ẋ(π)) , (2.62)

and the the Euler-Lagrange equations become the first order Hamilton EOM,

ẋ =
∂H

∂π
, π̇ = −∂H

∂x
, (2.63)

which can be obtained by variation of the action,

S =

∫
dt L(x, ẋ(π)) =

∫
dt [π ẋ(π)−H(x, π)] , (2.64)

and which describe one DOF, or two phase space variables.
In contrast, GR is not described in a manner where the number of DOF can directly

be read off from the action, i.e. the Einstein-Hilbert action is not in canonical form [124],
which is intimately related to the general covariance of GR. In analogy to this, let us
parametrise the coordinate x of the above particle with an arbitrary parameter τ such
that x(τ) = x(t(τ)). Now t(τ) appears as a new, independent variable and we see that,
since neither H nor L depend explicitly on time, we can write Eq. (2.64) as [125]

S =

∫
dτ
[
πx x

′ + πt t
′] , (2.65)

where we now have x′ = dx
dτ and t′ = dt

dτ . Furthermore, it is necessary to enforce that
πt+H(x, π) = 0, which can generally be implemented by means of a Lagrange multiplier:

S =

∫
dτ
[
x′πx + t′πt +N(τ)R(x, πx, πt)

]
, (2.66)

such that R(x, πx, πt) has a simple first order zero at πt = −H(x, π). The analogy to
GR is now manifest in the sense that (2.66) is invariant under general transformations
τ → τ̃(τ):

S =

∫
dτ̃
[
x′πx + t′πt + Ñ(τ̃)R(x, πx, πt)

]
, (2.67)

with Ñ(τ̃) = dτ
dτ̃N(τ), and primes now denote derivatives w.r.t. τ̃ . To summarise, we can

obtain from an action with only canonical DOF, and which is not covariant, one which
is covariant; however, at the prize of introducing spurious DOF. For the gravitational
actions considered here, the logic must now be reversed.

Hamiltonians in GR and beyond. The actions we will consider below are all in the
non-canonical form (2.66), and the task is to put them into the form (2.64) in order to
read off the number of physical, propagating DOF. This will then be used to circumvent
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Figure 2.2.: Sketch illustrating the interpretation of the lapse and shift functions. The coordinate
time evolution of a point (t, xi) is decomposed into a lapse in coordinate time, perpendicular to
the hypersurface Σt by a distance Ndt, and a shift in the plane of constant t by ∆xi = N idt.
This represents the ‘time flow’ of a point with constant spatial coordinate xi [73]. The total line
element reads ds2 = −N2dt2 + γij(dx

i +N idt)(dxj +N jdt).

the no-go theorem of Refs. [29, 30]. The programme that remains to be completed in
this section is first, to find the Hamiltonian form of the GR action, extend it to the gen-
eralised action (2.58), and finally revert to the canonical form equivalent to Eq. (2.64).
If the remaining DOF are equal to the expected number, the argument given by Boul-
ware and Deser is circumvented. Therefore, we expect to find five DOF for the case of
massive gravity where one has one field of spin-2, constituting (2s + 1) = 5 DOF, and
seven DOF for the bimetric case where a massive and a massless spin-2 mode propagate;
cf. Appendix A.3. In principle, one should then verify that the Hamiltonian is bounded
from below, but, as it turns out, other instabilities may persist due to the peculiarities
associated with the dynamics of the helicity-0 mode. We will return to this discussion in
Sec. 2.3.2.

Following Ref. [73], we apply the same procedure to gravity. We first note that
the action S =

∫
d4xL splits into a GR and a non-derivative interaction contribution,

cf. Eq. (2.58),
Lbi = LEH + Lint , (2.68)

such that we may consider them separately. Let us first focus on the Einstein-Hilbert
part. In the standard procedure due to Arnowitt, Deser, and Misner (ADM), the metric
is decomposed into spatial slices as follows [125]:

g00 = −N2 +NiNjγ
ij , g0i = gi0 = Ni and gij = γij , (2.69)
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whose inverse reads

g00 = −1/N2, g0i = gi0 = N i/N2 and gij = γij − N iN j

N2
, (2.70)

with N i = γijNj and γij denoting the inverse of γij . N is often referred to as the lapse,
while the N i are conventionally called shift functions. We give a geometric interpretation
of these variables in Fig. 2.2. A rather tedious, but straightforward calculation allows us
to express the Einstein-Hilbert action in terms of these new fields and their conjugate
momenta, most prominently πij ≡ ∂LEH

∂γij
[53, 54, 125],

SEH = −
∫

d4x

[
γij∂tπ

ij −NR0 −NiR
i + 2∂i

(
πijNj −

πjj
2
N i +

√
det γ∇iγN

)]
,

(2.71)
where the last term is a total derivative. The symbol ∇γ is the covariant derivative
w.r.t. the spatial metric only, and

R0 =
√

det γ

[
Rγ +

1

det γ

(
πjj
2
− πijπij

)]
, Ri = 2∂jπ

ij , (2.72)

with the 3D Ricci scalar Rγ built from γij . From here, we could proceed and construct
the Hamiltonian, H(γij , πij , N,N

i) = πij γ̇
ij − L(γij , πij , N,N

i), to arrive at Einstein’s
equations via the Hamiltonian equations of motion, Eq. (2.63). See Refs. [73, 125] for an
explicit calculation. For our purposes, it suffices to consider the action (2.71) and observe
that it is precisely of the form of Eq. (2.66).
While for most practical applications Eq. (2.71) is not very useful, it expresses a re-

markable result: Only the six components of γij along with their conjugate momenta
πij appear as dynamical variables, while the lapse N and shift N i [often summarised as
Nµ = (N,N i)] are non-dynamical. Furthermore, even though we have not made any
assumptions other than the ADM decomposition to exist, the Nµ appear exactly linearly
in the action. Therefore, they act as Lagrange multipliers enforcing the constraint func-
tions (2.72) to vanish, reducing the number of independent phase space variables by four.
Using the gauge freedom, which reduces the number of phase space variables by another
four, we see that GR propagates 12 − 4 − 4 = 4 phase space, or two physical DOF – as
expected.8

Let us now go one small step beyond GR, and expand the ‘generalised’ Fierz-Pauli
mass term in Eq. (2.3) in the ADM manner [29, 54]:(

hµνh
µν − a(hµµ)2

)
= −

(
hijh

ij − a(hii)
2 − 2δijNiNj + 2a (1−N2 +Niγ

ijNj)h
i
i︸ ︷︷ ︸

'−2δN hi i

+

+ (1− a)(1−N2 +Niγ
ijNj)

2
)
. (2.73)

8In decomposing the metric as in Eq. (2.69) we have not fixed any gauge. This becomes obvious
when counting DOF: The symmetric rank-2 tensor gµν has 10 independent components, while γij
contains only six of these. The remaining four are the Nµ. Here, we have simply made use of the
reparametrisation invariance of the action [125].



24 2. Theoretical Foundations

Here, we used the notation hij ≡ γij − δij for the spatial metric perturbation. Noting
that the second-to-last term contains terms cubic in the perturbations δN ≡ N − 1 and
δNi = Ni which we neglect at this order, only the last term is troublesome. It gives rise
to contributions which are quadratic in the shift and the lapse, such that they no longer
serve as Lagrange multipliers removing unwanted DOF. Only the Fierz-Pauli form of the
mass term will avoid this illustrating once again its special structure. Note that this is
analogous to what we discussed below Eq. (2.8): The higher-order time derivatives that
appear in Eq. (2.6) give rise to a sixth propagating DOF with unbounded, negative energy.
This is precisely the DOF that is removed by the remaining constraint in Eq. (2.73). See
also Ref. [53] for a discussion.
Even with the special Fierz-Pauli choice a = 1, the δNi no longer appear linearly

thereby enforcing constraints; only the lapse function δN remains linear and reduces the
number of phase space variables by two. Instead of two, the (linearised) theory now
propagates 12− 2 = 10 phase space variables, corresponding precisely to the five helicity
states expected for a massive spin-2 field. However, this prediction is already lost at the
cubic order, where the lapse function reenters non-linearly. We could now introduce new
terms in order to cancel these new inconsistencies from the action; however, the work
of Boulware and Deser seemed to indicate that this approach is doomed to fail [29, 30].
It was pointed out in Refs. [37, 39] that the condition for the lapse to act as Lagrange
multiplier is, in fact, weaker than the action being linear in the lapse, e.g. if this can be
achieved by a field redefinition [54]. While it is a matter of taste how to approach this, we
believe that the vielbein language highlights this much more transparently. We therefore
proceed in this language.

Evading the appearance of the BD ghost. The interaction terms (2.52) have a
remarkable feature: Due to the totally antisymmetric structure, only one independent
temporal component can appear in each interaction term, such that the lapse and shift
functions will appear linearly in the action. As noted in Ref. [50], this is even true for the
case of N metrics in d dimensions! We will not provide the full proof of the absence of
the BD ghost, but outline the idea following closely Refs. [44, 50], which also work in the
vielbein language. The reader interested in a full proof is referred to Refs. [36–45, 49].
For the sake of making contact with the above observation, let us revert to the vielbein

formulation, where the ADM decomposition analogous to that of the metric reads [50]

Ê
(I)A

µ =

(
N (I) N j(I)

e(I)
j
a

0 e(I)
j
a

)
, Ê

(I) µ

A =

(
1/N (I) 0

−N j(I)
/N (I) e(I)j

a

)
, (2.74)

where we have introduced a capital E to make it more easy to distinguish the 4D vielbein
from its spatial part, which is defined via γ(I)

ij = e(I)a
ie

(I)b
jδab. Plugging this ansatz into

the defining equation of the vielbein (2.35), one recovers the ADM decomposition for each
metric:

g(I)
µν = Ê

(I)A

µÊ
(I)B

ν ηAB =
(
−N (I)2 −N (I)

k Nk(I)
)

dt2+N
(I)
j dxjdt+γ

(I)
jk dxjdxk . (2.75)

However, as we had noted below Eq. (2.35), the choice of vielbein is unique only up to
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a Lorentz transformation. Thus, the most general form of Eq. (2.74) is actually EAµ =

Λ(~k)ABÊ
B
µ, where ~k is the momentum that parametrises the Lorentz boost

Λ(~k)

(
1
~0

)
=

(√
1− ~k · ~k
~k

)
. (2.76)

As was shown in Ref. [115], we can go from the metric to the vielbein language by simply
writing the action in the form suggested there [Rµ ≡ (R0, Ri)],

SEH =

∫
d4x

[
pa i ė

a i +Nµ(e)Rµ(g(e), π(e, p))
]

(2.77)

with the canonical momentum variable pa i related to the metric equivalent as πij =
1
4(pa iea

j + pa jea
i) [115]. However, this cannot be the correct form of the action for

a simple reason: While the action (2.71) contains six (twelve) dynamical DOF (phase
space variables) in the form of the six independent components of γij (and πij), the nine
independent spatial components of eai in Eq. (2.77) constitute too many independent
variables (eighteen in phase space). Thus, we find that six phase space variables need
to be removed by additional constraints. Following Deser and Isham [115], the correct
constraints can be found by observing that pa i ėa i is not invariant under local Lorentz
transformations, Λµν = Λµν(x),

ea i → Λabe
b i, pa i → Λ b

a pb i ⇒ ėa ipa i → ėa ipa i + eb ipc iΛ̇
a
bΛ

c
a . (2.78)

Noting that ΛabΛ
c
a = δ c

b , we see that it is sufficient to demand that the antisymmetric
part vanishes, e[a

ip
b] i = 0. In conclusion, we find that the action (2.77) needs to be

augmented by six constraints,

SEH =

∫
d4x

[
pa i ė

a i +Nµ(e)Rµ[g(e), π(e, p)] + λabe
[a
ip
b] i
]
, (2.79)

with precisely six antisymmetric Lagrange multipliers λab = −λba, removing the unwanted
and spurious DOF.
Finally, we may write down the bigravity action (2.58) in vielbein language and ADM

decomposition, and count the number of propagating DOF. Let us add the interaction
term to Eq. (2.79). Using that the kinetic terms in Eq. (2.58) are independent of one
another, we add for each site (I) one such kinetic term. What we obtain can be put in
the compact form [50]

Sbi =

∫
ddx

∑
I

[
p

(I)
a i ė

(I)a i −N (I)
µ

(
R(I)µ +R(I)

m

µ
)

+ λ
(I)
ab e

(I)[a
i p

(I)b] i
]
, (2.80)

making explicit that the shift and lapse appear linearly in the interaction terms, which we
indicate by adding a subscriptm.9 The reason for this can be understood from Eq. (2.74):
While the components E(I) 0

µ are linear in lapse and shift, the E(I) i
µ are independent

9One should bear in mind that the R(I)
m

µ
may depend explicitly on all boost momenta ~k(J).
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of both lapse and shift [50]. This is a crucial observation and we wish to highlight once
more that, in order to arrive at this result, it was of vital importance that we consider
a interaction term as a function of X = (g−1g̃)1/2 (or equivalently a discretisation of the
vielbein action). Any construction of a mass term founded on g−1g̃ instead, is subject to
the no-go theorem by Boulware and Deser.
Let us count the number of DOF in phase space for N metrics in a (d+ 1)-dimensional

space-time:

• Our construction ensured that the action (2.80) is locally Lorentz invariant; however,
the interaction terms remain only invariant if the metrics, or vielbeins, at different
sites are rotated simultaneously, i.e. the diagonal subgroup of the N SO(d, 1) sym-
metries of the kinetic terms. Using this, we can eliminate the d-momentum ~k(1)

from the action, i.e. putting E(1) it in the form (2.74).

• Furthermore, we can use N − 1 of the N shift constraints, arising from Eq. (2.80)
upon invoking the N (I)

i EOM, in order to eliminate the remaining d × (N − 1)

momenta ~k(I), leaving one shift, and N lapse constraints:

Sbi =

∫
ddx

{∑
I

[
p

(I)
a i ė

(I)a i −N (I)
(
R(I) +R(I)

m

)
+ λ

(I)
ab e

(I)[a
i p

(I)b] i
]
−

−N (1)
i

(
R(1)i +R(1)

m

i
)}

. (2.81)

At this point, we have used all the reparametrisations to arrive at the action in
terms of the N × 2d2 ADM variables and a number of constraints:

• Eq. (2.81) contains (d+ 1) shift and lapse constraints on site (1), and

• additionally N − 1 lapse constraints for the remaining sites.

Balancing the contributions above, we find a total of [50]

2
(
N d2 − N × d

2
(d− 1)︸ ︷︷ ︸

each λ(I)
ab

− (N + d)︸ ︷︷ ︸
N(1...N)&N

(1)
i

)

=2

([
d

2
(d− 1)− 1

]
+ (N − 1)

[
d

2
(d+ 1)− 1

])
=2 (2 + (N − 1)× 5) phase space DOF for d = 3 ,

(2.82)

which corresponds to one massless and N − 1 massive spin-2 fields in d + 1 dimensions.
For example, bigravity in four dimensions comprises a total of 2 × (2 + 5) phase space
variables. In order to arrive at this result, it was crucial to have at hand the N − 1 lapse
constraints, which suffice to remove the expected N − 1 BD ghosts [50].

We conclude our discussion of the absence of the BD ghost in multi-metric gravity
with nearest neighbour interactions remarking that Ref. [50] also studied more general
couplings, which are also ghost-free. The proof for the dRGT theory follows immediately,
by observing that it corresponds to the decoupling limit of bigravity, i.e. Mg̃ → ∞.
Furthermore, we remark that we have only considered the so-called primary constraints
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here, i.e. those arising from integrating out the Lagrange multiplier functions, implicitly
assuming that these give rise to secondary constraints, that remove another DOF in phase
space.10 While this has been discussed quite controversially at first, see e.g. [94, 126–128]
and [129–132] for dRGT, or [133–136] for bigravity, the issue is now settled [39, 49, 137–
141]. Notice that, we have not yet studied the perturbations of the metric that would
allow us to conclude that the remaining modes are truly propagating. This is shown in
Appendix A.3.

2.3 Solutions to the field equations of bigravity

In this section we apply the findings of the previous section to two important settings,
namely a static, spherically symmetric vacuum solution of the field equations, which in GR
leads to the Schwarzschild metric. Furthermore, we study a specific type of cosmological
solution, which we will need in Chapter 3.

2.3.1 Central mass problem

In order to understand the implications the modified action (2.58) has on observations, we
will need to understand the ‘Newtonian’ limit, i.e. the limit in which Newtonian gravity
is recovered, if the mixing is chosen to reproduce GR. It turns out that the result is a
potential that has a mixed Newtonian (∼ 1/r) and an exponentially decaying, Yukawa-
type contribution (∼ e−mg r/r). This should not come as a surprise, given that both
the counting of DOF of the previous section, as well as the study of linear perturbations
in Appendix A.3 shows that the theory propagates two spin-2 force carrier fields, one
massless and one massive.
In GR Birkhoff’s theorem tells us that any spherically symmetric vacuum solution of

the field equations is static and asymptotically flat, leading to the Schwarzschild metric.
This no longer applies in a bimetric setup. Consequently, a more vivid landscape of
BH solutions is found. Most notably, solutions exist where both tensors maintain a
diagonal shape (bidiagonal BHs), as well as so-called non-bidiagonal BH solutions, where
off-diagonal entries are relevant, too. This has been studied extensively in the literature;
we refer the reader to Refs. [142–144] and references therein for an overview. For our
purposes, it will suffice to consider solutions, which follow from the ansatz

gµνdxµdxν = −eν1(r)dt2 + eλ1(r)dr2 + r2dΩ2 , (2.83a)

g̃µνdxµdxν = −eν2(r)dt2 + eλ2(r)(r + rµ(r))′
2
dr2 + (r + rµ(r))2dΩ2 , (2.83b)

which was first studied in Ref. [91]. Here, µ is a function of r and parametrises the
non-linearities that will become important in solving the field equations. We refer the
reader to Appendix A.2 for a step-by-step solution of the field equations, which is quite
instructive to see the Vainshtein screening in operation and the emergence of GR in the
small distance limit. Here, we merely summarise our result in a suggestive form that

10To remove one physical DOF, two phase space variables need to be removed. The secondary constraint
can be obtained by demanding the primary constraint to be conserved in time, i.e. its Poisson bracket
with the Hamiltonian vanishes [49, 124].
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allows us to read off the Newtonian potential Φ(r):

2Φ(r) = ν1(r) =

−
rS
r − r2 Λeff

3 , r � rV = 3

√
rS
m2
g

− rS
r [α(θ) + β(θ)e−mgr]− r2 cos2(θ) Λeff

3 , r � rV = 3

√
rS
m2
g
,

(2.84)

where α(θ) ≡ cos2(θ)
[
1 + 2

3 sin2(θ)
]
and β(θ) ≡ 2

3 sin2(θ)
[
1 + 2 sin2(θ) + Λeff

m2
g

]
. The

Schwarzschild radius is related to the point mass M via rS ≡ 2GNM , and the effective
CC, Λeff = m2 sin2(θ)(β0 + 3β1 + 3β2 + β3), as well as the physical spin-2 mass, m2

g =
m2(β1 +2β2 +β3), are derived in Appendix A.2 and coincide with the expression obtained
from a cosmological solution considered in the next section. Interestingly, both Λeff and
mg are proportional to m, the naturally small mass parameter in the action (2.58).

Discussion. Eq. (2.84) has several interesting features that we wish to highlight at this
point. First, there are two regimes that reproduce the result obtained in standard GR:
One, where we take the mixing angle to vanish, i.e. θ → 0 and α(θ)→ 1, or equivalently
Mg̃ � Mg, different from the naive limit where the physcal graviton mass mg → 0. As
we discussed above, this latter limit is plagued by the vDVZ discontinuity in the linear
regime. The other interesting regime is the Vainshtein regime defined by a critical radius
rV = (rS/m

2
g)

1/3. This defines a sphere inside which the potential looks identical to
the weak-field limit of GR. At first sight this may come as a surprise; however, we have
already argued that this is in fact a generic feature of massive spin-2 fields, that can be
linked to the onset of strong coupling of the helicity-0 mode [78]. This has been found
to be a general feature in massive gravity, see Refs. [74, 79–84, 86, 91, 92], and was also
confirmed via numerical studies for massive and bimetric gravity [145, 146].
Second, going to the opposite limit, namely that of massive gravity (Mg̃ � Mg), θ →

π/2 and therefore cos(θ)→ 0 and β(θ)→ 2
3

[
3 + Λeff

m2
g

]
, we see that the CC term we have

included in our calculations vanishes outside the Vainshtein radius. This is an effect known
as degravitation, cf. Refs. [147–149]. The general idea behind this mechanism is that one
may be able to resolve the CC problem by a screening mechanism. More concretely,
instead of tuning its value to the observed, small value, the vacuum energy is decoupled
from gravity at large distances.11 As Eq. (2.84) indicates, coupling vacuum energy to a
massive spin-2 field is a possible realisation of such a screening mechanism. However, by
observing that inside the Vainshtein regime the CC is still present, cf. Eq. (2.84), there
is still some severe tuning required: From the precession of the perihelion of Mercury
a bound on the effective CC Λeff = ρvac/M

2
Pl can be obtained in terms of the vacuum

energy density ρvac < (14 eV)4 [150], while cosmological late time acceleration indicates
that ρobsvac = (2 · 10−3 eV)4. This is still a large discrepancy, but it can be brought into
agreement with a mixing angle that brings us close to massive gravity, cos(θ) & 10−8, if
the bound is saturated. While this still requires the tuning of the vacuum energy density
to be in agreement with solar system tests, it is less severe than the tuning required
to cancel the contributions from the electroweak ρEWvac ∼ (100 GeV)4 or the QCD phase

11In Ref. [149] this is referred to as a high-pass filter, as only high frequency modes are allowed to couple
to gravity, while the low frequency modes (with wave lengths outside the Vainshtein regime) are
decoupled.
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transition ρQCD
vac ∼ (100 MeV)4 to achieve the observed value. See also Ref. [151] for a

discussion in massive gravity alone.
Furthermore, even away from this limit, i.e. without such a screening mechanism at

work, the induced CC is proportional to the mass oparameter m, which is naturally small
by virtue of the arguments given in Sec. 2.2.2.
Finally, in the massive gravity limit, cos(θ) → 0, and in the regime where rV < r <

m−2
g , the strength of the gravitational force is enhanced by a factor of 2 compared to the

region r < rV . We will return to this observation and put it to test in Chapter 4.

2.3.2 Cosmological solution

It is a natural question to ask if the field equations admit solutions of the Friedman-
Lemaître-Robertson-Walker (FLRW) type, and whether they are phenomenologically vi-
able. Before deriving such a cosmological solution, we emphasise that dRGT massive
gravity, i.e. the version of Eq. (2.58) with no kinetic term for g̃, does not seem to possess
stable, FLRW type cosmological solutions as discussed in Refs. [151–158]. Given that
this shortcoming is alleviated as g̃ becomes dynamical itself can be seen as an incentive
to study instead the bimetric case, beyond our argument coming from the 5D deriva-
tion of the action. Such bimetric cosmologies have been studied extensively in the past
years [159–170].
In principle, there is no reason why both metrics should be perturbed around one and

the same background. However, given our knowledge that the Universe is flat, homoge-
neous and isotropic on large scales [12], and on the other hand we assume the hidden
sector to be devoid of matter, an FLRW-like background is a reasonable assumption for
both g̃ and g (see Ref. [159] for more exotic ansätze, which however turn out to yield
decoupled, GR-like solutions [54]).
Using conformal time η, we can parametrise the respective line elements as was first

done in Refs. [159–161]

ds2 ≡ gµνdxµdxν = a(η)2(−dη2 + d~x2) ,

ds̃2 ≡ g̃µνdxµdxν = b(η)2(−c̃(η)2 dη2 + d~x2) ,
(2.85)

where we assume that the spatial part takes the form d~x = dr2

1−κr2 +r2(dθ2 +sin2(θ)dφ2).12

The EMT is assumed to be compatible with homogeneity and isotropy, i.e. Tµν =
diag(ρ, P, P, P ), with the energy density ρ and pressure P related by the equation of
state P = w ρ for the matter component under consideration. With this ansatz, the task
that lies ahead is solving the field equations for the the functions a(η), b(η), and c̃(η).
Consequently, we plug the ansatz into Eqs. (2.60) and find

3

a2

(
H2 + κ

)
−m2 sin2(θ)

[
β0 + 3β1y + 3β2y

2 + β3y
3
]

=
ρ

M2
g

, (2.86a)

3

b2
(
J2/c̃2 + κ

)
−m2 cos2(θ)

[
β1y
−3 + 3β2y

−2 + 3β3y
−1 + β4

]
= 0. (2.86b)

12One might wonder if the two sectors may have different curvatures κ, but it turns out that this is not
viable, cf. Ref. [161].
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Here, a prime denotes a derivative w.r.t. η, y ≡ b/a, and H = a′/a, J = b′/b. The latter
two are the Hubble parameters for both metrics in conformal time, related to the Hubble
rate in proper time (dt = a(η) dη) via H(t) = a(t)−1H(t) and J(t) = b(t)−1J (t).

The conservation of energy implies ρ′ = 3H(1 + w)ρ [159], and the Bianchi con-
straints (2.61) yield

(c̃H−J )
[
β1y + 2β2y

2 + β3y
3
]︸ ︷︷ ︸

≡Γ(y)

= 0 . (2.87)

Below and in later chapters, we will study the linearised equations of motion, where it
turns out that the asymptotic limit of the expression named Γ is proportional to the mass
of the heavy spin-2 field. Therefore, the solution to Eq. (2.87) with Γ = 0 is not viable:
it seems that the massive mode is, in fact, massless and this branch is identical to GR
(at the linearised level). However, it has been argued that the missing DOF will reenter
non-perturbatively as a pathological ghost [168, 171]. Therefore, we choose the branch
J (η) = c̃(η)H(η). Using this and subtracting Eq. (2.86a) from Eq. (2.86b), we obtain an
algebraic equation for y:

β1 cos2(θ)y−1 + [3β2 cos2(θ)− β0 sin2(θ)] + [3β3 cos2(θ)− 3β1 sin2(θ)]y+

+[β4 cos2(θ)− 3β2 sin2(θ)]y2 − β3 sin2(θ)y3 =
ρ

M2
gm

2
.
(2.88)

By assumption, ρ is the density of a perfect fluid with w ≥ −1:

ρ(η) = ρ0

1 if w = −1,(
a(η)
a(η0)

)−3(1+w)
if w > −1 .

(2.89)

Therefore, any fluid of type w > −1 dilutes, i.e. ρ → 0 for η → ∞. We note that, since
a CC-type of matter with w = −1 is already build into the theory via the potential term
β0, we may disregard such types of matter in the following. Hence, if we are interested
in late times, the solution to Eq. (2.88) will approach a constant value y∗, for ρ = 0. In
fact, the exact value of y∗ is irrelevant, since it can be absorbed via a redefinition of the
parameters. To proceed, we linearise around the constant solution y = y∗ + δy and find

δy(η) = − ρ(η)

3m2M2
g

y3
∗

Γ∗(cos2(θ) + y2
∗ sin2(θ))− 2 Λ̃ y4

∗
3m2

, (2.90)

with Γ∗ ≡ Γ(y∗) and Λ̃ ≡ m2 cos2(θ)
(
β1y
−3
∗ + 3β2y

−2
∗ + 3β3y

−1
∗ + β4

)
an effective cosmo-

logical constant for the hidden sector. Combining the findings so far, we find the cosmic
evolution in the visible sector obeys

a(η)−2(H(η)2 + κ) = 1
3Λ +

ρ(η)

3M2
Pl
, (2.91)

which coincides with the evolution of ΛCDM [172]. Here, the effective CC is found to
be Λ ≡ m2 sin2(θ)

(
β0 + 3β1y∗ + 3β2y

2
∗ + β3y

3
∗
)
and we have defined the physical Planck
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mass

M2
Pl ≡M2

g

cos2(θ) + y2
∗ sin2(θ)− 2 Λ̃ y4

∗
3m2

g

cos2(θ)− 2 Λ̃ y4
∗

3m2
g

. (2.92)

Notice that M2
Pl → M2

g

(
1 + y2

∗ tan2 θ
)
, as Λ̃ → 0, in agreement with Refs. [173, 174].

Moreover, we have introduced the graviton mass (cf. Appendix A.3)

m2
g ≡ m2Γ∗ = m2

[
β1y∗ + 2β2y

2
∗ + β3y

3
∗
]
. (2.93)

Finally, we may use that y′ =
(
b
a

)′
= y(J −H) and J = c̃H to find that,

c̃(η) =1 +
y′

yH ' 1 +
δy′

y∗H
' 1− (1 + w)

ρ(η)

m2
gM

2
Pl

y2
∗

cos2(θ)− 2 Λ̃ y4
∗

3m2
g

, (2.94)

where the continuity equation, ρ′ = 3H(1 + w)ρ, was used in the last step. This allows
us to define precisely what we mean by ‘late times’: When the quantity ρ(η)

M2
Plm

2
g
� 1, we

can take c̃(η) = 1 to a good approximation. For example, using the energy density of the
CMB today, ρ0 = TCMBkB ' 2.4 · 10−4 eV, the critical redshift z∗ is found by solving

ρ(zc)

m2
gM

2
Pl

=
(2.4 · 10−4 eV)4 z4

∗
m2
gM

2
Pl

!
= 1 ⇒ z∗ ' 13×

[ mg

10−33 eV

] 1
2
, (2.95)

where we used that radiation scales with the cosmological redshift as z4, with 1 + z ≡
a(t0)/a(t) and t0 is today. Moreover, mg = 10−33 eV = H0 ≡ H(t0) corresponds to
the lowest observable mass: Any lower mass would only yield effects observable at scales
outside the Hubble radius.

Discussion. Cosmological solutions in massive gravity, and even more so in bigravity,
have a couple of remarkable features that should be emphasised at this point. At the
same time we wish to highlight some of the shortcomings of these cosmological solutions.
To begin with, it can be seen from the cosmic evolution equations (2.86), cast into the
form (2.91), that late-time acceleration is built into the model, even in the absence of a
bare CC (absorbed into β0), if the parameter m is of the order of the Hubble rate today.
This remains true even if quantum corrections are included, i.e. the small mass parameter
required for this is technically natural in ’t Hooft’s sense [175], as was shown in Ref. [123].
At the same time, the evolution is such that it resembles GR without a CC at early times,
where y → 0 if β1 6= 0, cf. Eq. (2.88) and Ref. [162].

Next, we remark without going into the details, that in cosmological solutions of massive
gravity, one often encounters yet another instability, first found by Higuchi, and hence
referred-to as the Higuchi ghost [176]. Similar to the BD ghost, this scalar instability arises
in the helicity-0 mode of a massive spin-2 field propagating on a de Sitter background,
i.e. a metric whose curvature satisfies Rµν = Λgµν [54]. There, the helicity-0 mode comes
with a kinetic term proportional to (m̃2(H) − 2H2) [157, 169], where the dressed mass
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parameter of Ref. [177] has to satisfy [cf. also Eq. (A.38)]13

m̃2(H) ≡ m2H

J

(
β1 + 2β2

H

J
+ β3

H2

J2

)
≥ 2H2 , (2.96)

in order for the helicity-0 mode to be stable. Indeed, it turns out that one cannot satisfy
this bound, and at the same time invoke a self-accelerated solution of the type (2.85) [151–
158]. In principle, however, one might conceive more exotic cosmological solutions to
resemble the observations at late times see e.g. Ref. [152]. We do not consider this
possibility here, but instead emphasise that the bound (2.96) is modified in bigravity [177]:

m̃2(H)

[
H2 + J2

M2
g

M2
g̃

]
≥ 2H4 . (2.97)

Thus, choosing the parameters such that tan θ =
Mg̃

Mg
� J/H, the modified bound (2.97)

is easily evaded, see also Refs. [53, 54] for further discussions.
Finally, a number of authors have considered perturbations on FLRW backgrounds,

see Refs. [166, 169–171, 178–186]. It is generally found that some branches of solutions
involve exponentially growing scalar and/or tensor modes that render perturbative pre-
dictions non-trustworthy and raise questions about the viability of these scenarios – or at
least require to extend the scenario at early times. It seems that including an inflation-
ary phase would be sufficient to obtain suitable initial conditions to avoid these growing
modes [187]. Alternatively, this could also be avoided if a hidden matter sector is in-
cluded [171]. Conversely, it has also been argued by some authors that these instabilities
could actually serve as seeds for structure formation by virtue of the Vainshtein mechanism
that is expected to set in when these instabilities lead to large overdensities [169, 188].
In any case, the cosmology in bigravity has a very rich spectrum and remains an ongoing

field of research; e.g. recently there has been a growing interest in so-called doubly coupled
cosmologies, where matter is coupled to a composite metric. This seems to help alleviate
some of these instabilities, see Refs. [120–122] for the construction and [189–193] for the
cosmological phenomenology.

13In terms of the physical Hubble parameters, the Bianchi constraint yields J /H = y2J/H = y2c̃ ' y2.
Thus, the mass (2.96) coincides with that in Eq. (2.93).



Chapter 3

Gravitational Wave Oscillations

This chapter is dedicated to the analysis of the modified propagation of GWs and the
implications for the induced signals in a detector. It turns out that one can draw a very
close analogy to neutrino oscillations – the dynamical conversion among neutrino genera-
tions – which one can consult to get some intuition about the expected observable effects.
Neutrinos are produced in weak interactions and therefore in the flavour basis of the SM,
(e, µ, τ). However, in this basis the mass matrix of neutrinos is not diagonal. Therefore,
an electron-neutrino νe, produced e.g. in a nuclear reaction, is a QM superposition of
mass eigenstates which propagate with different phase velocities. As it propagates, the
interference of the mass eigenstates changes the initial state’s composition in terms of
flavours, until the neutrino is detected via another weak interaction. The same picture is
true in bigravity: The metric perturbations of g, the tensor that couples to matter, is a
superposition of massive and massless spin-2 modes. Both the production and the detec-
tion of GWs occur in the matter sector, e.g. a merging binary BH system producing GWs
which are detected in the advanced LIGO detectors. Thus, a superposition of massive and
massless GW is produced and an oscillation pattern is expected. For certain parameter
choices, the wave packets corresponding to different mass eigenstates will overlap, and
one will be able to observe an interference pattern due to the distinct phase velocities of
massive and massless modes. On the contrary, in the regime where the wave packets no
longer overlap, one will see a reduced overall signal strength in the detector. This will
lead to a distortion of the redshift-dependent event rate. Both effects can be used to place
constraints on the parameter space of bigravity and related frameworks, as we discuss in
detail in this chapter.
In practice, the detection of GWs is achieved by an L-shaped laser interferometer,

such as the two advanced LIGO detectors in the United States, the GEO600 detector
in Germany, and the Virgo detector in Italy. If a GW passes through the array, the
perpendicular arms are stretched and contracted, which leads to an observable interference
pattern in the detector. The measured quantity is the strain projected onto the detector
area, h, which is measured as the difference in the arm lengths induced by a passing GW,
i.e. δL(t) = δLx − δLy = h(t)L [56]. By increasing the arm length and using multiple
reflections in the interferometer, displacements that are fractions of the wave length of
the laser can be measured. Currently, the two LIGO detectors with their 4 km long arms
located in Livingston, Louisiana and Hanford, Washington, achieve a remarkable strain
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sensitivity of 10−23/
√

Hz for frequencies in the range 50 Hz ≤ ν ≤ 300 Hz [194, 195].
Thus far, the LIGO/Virgo collaborations have observed a total of six events from

merging binary systems, five BH-BH mergers [56–60] and one binary neutron star (NS)
merger event [61]. While the former necessarily produce a BH final state, it remains
unclear which final state the latter produce, see Refs. [196, 197] for some recent work.
In addition, there is a tentative signal, dubbed LVT151012 as it was only observed by
the Livingston detector at much lower significance [198]. All seven have been determined
to lie at redshifts well below z = 1, e.g. the first event GW150914 is associated with a
redshift z ≈ 0.09, while the most distant event is GW170104 at z ' 0.2. Furthermore,
there is, as of yet, no measurement of stochastic [199] or periodic [200] background GW
signals.
The first mention of GW oscillations in analogy to neutrinos can be found in Ref. [201];

however, in a very different and rather exotic setup which entails Lorentz violation.
Ref. [202] first discussed this possibility in bigravity. However, it was not until the work
of Refs. [173, 174] that the phenomenon was considered quantitatively in the bimetric
framework. These references find that the effect is proportional to the deviation of the
hidden metric background propagation speed from one, i.e. [c̃(η) − 1] in the language of
Sec. 2.3.2. Given the arguments there, one might be led to the conclusion that the effect
should be negligible for late times, and even more so for the relevant redshifts z < 1. After
the measurements of GW150914 and GW151226, Refs. [2, 3] reexamined the phenomenon,
using the recently available data. Furthermore, it is found there that the leading effect
persists even if c̃(η) = 1. Here, we begin with a discussion of the quadratic action which
can be derived from the full action (2.58). Following our work in Refs. [2, 3], we will then
see how the oscillation of GWs arises and which implications this has.

3.1 Quadratic action

In order to study the propagation of GWs, we need to expand the EOM around a suitable
background. In Chapter 2 we have already studied a cosmological solution, which we will
employ as the background solution for our analysis in the present chapter. Remarkably, we
had found there that for late times, i.e. for z < zc ' 13×

[ mg
10−33 eV

]1/2, the cosmological
background approaches that of ΛCDM with a dynamically generated CC if mg ∼ H0.
While this is interesting from a conceptual point of view, we do not solely focus on such
small masses, but allow the mass to span several orders of magnitude, and only then draw
our conclusions on viable mass ranges. Clearly, such larger masses invalidate the solution
to correctly describe late-time acceleration. As we have argued in Sec. 2.3.1, degravitating
the CC would be one alternative, albeit at the expense of some fine-tuning.

Tensor perturbations. Given that none of the observed GW events exceeds a redshift
of z = 0.2, we may safely neglect the corrections to the constant solution of Eq. (2.88)
and take c̃(η) = 1. Furthermore, the scale factor can be taken as constant, since at the
redshifts of interest a(η) = 1

1+z = 1 + O(.1). One last simplification that is justified is
that we consider only the vacuum propagation of GWs, since at the time of production
the Vainshtein screening will be in effect. This means that the production of the GW
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signal is described correctly in the GR framework.1

For the cosmological background (2.85), a suitable choice to parametrise the perturba-
tions is given by [171]

gµν = a2(η)

(
ηµν +

hµν(η, ~x)

Mg

)
, g̃µν = b2(η)

(
ηµν +

h̃µν(η, ~x)

Mg̃

)
, (3.1)

where ηµν is the flat Minkowski metric. It is certainly not too far-fetched to guess that
the linearised EOM for hµν and h̃µν will take the Fierz-Pauli form (2.2). Nevertheless, we
discuss in detail how the linearised EOM are obtained from the action in Appendix A.3.
Indeed, the resulting EOM can be derived from an action of the form (2.1):

S
(2)
bi ⊃ −

m2
gM

2
eff

8

∫
d4x a4

(
h̃TTµν
Mf
−
hTTµν
Mg

)2

, (3.2)

where m2
g ≡ m2 Γ∗ = y∗m

2(β1 + 2y∗β2 + y2
∗β3), and we have chosen to show only the

TT tensor components for both metrics, i.e. those that satisfy ∂µhTTµν = 0 = ηµνhTTµν .
These correspond to two helicity-2 excitations for each metric.2 Thanks to this choice,
the resulting EOM are cast into a very suggestive form, as derived in Appendix A.3:

2hTTµν + 2Hh′TTµν −m2
g a

2 sin(θ)
[
sin(θ)hTTµν − cos(θ) h̃TTµν

]
= 0 , (3.3a)

2h̃TTµν + 2Hh̃′TTµν −m2
g a

2y−2 cos(θ)
[
cos(θ) h̃TTµν − sin(θ)hTTµν

]
= 0 , (3.3b)

where primes denote derivatives w.r.t. conformal time η and H = Ha(η), cf. Sec. 2.3.2.
Upon diagonalisation via a generalised rotation,(

h

h̃

)
≡
(

cos(θ) −y2 sin(θ)
sin(θ) cos(θ)

)(
h(1)

h(2)

)
, (3.4)

these equations are decoupled,

2h(1),TT
µν + 2H h′(1),TT

µν = 0 , (3.5a)

2h(2),TT
µν + 2H h′(2),TT

µν − a2(η)
m2
g

y2
h(2),TT
µν = 0 . (3.5b)

1This assumption is easily justified by realising that in order to satisfy solar system tests, the Vainshtein
radius of the solar system must be larger than the solar system itself, which contains roughly 1M�.
The binary systems quoted above comprise masses of the order 10M� while being spatially much
more compact, separated only by a few hundred kilometres when merging [56, 203]. Therefore, it is
easy to see that they will safely lie inside the Vainshtein volume, if the solar system tests are passed.

2For the purely massive mode, the transverse-traceless condition is always true because it is a gauge
invariant quantity, cf. Eq. (2.2) and Ref. [54]. Furthermore, the helicity-1 modes do not couple to
the EMT, while the Vainshtein mechanism ensures that the helicity-0 modes are screened at produc-
tion [53].
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To solve these equations, we go to Fourier space,

h(j)(η, ~x) =

∫
d4k

(2π)4
e−iωη+i~k·~x ĥ(j)(ω,~k) , j = 1, 2 , (3.6)

which gives

−ω2 h(1),TT
µν + k2 h(1),TT

µν − 2H iω h(1),TT
µν = 0 , (3.7a)

−ω2 h(2),TT
µν + k2 h(2),TT

µν − 2H iω h(2),TT
µν − a2(η)

m2
g

y2
h(2),TT
µν = 0 , (3.7b)

where the hat has been omitted and k ≡ |~k|. While these expressions are exact as far as
linear perturbations are concerned, we will now make a number of sensible assumptions
that will allow us to find a simple analytic solution to the problem. To this end, we
apply the late-time approximation y = y∗ = const, together with the assumption that the
Hubble rate is much less than the typical wave vector, H � k. The resulting equations
allow simple plane wave solutions. Since we will be interested in redshifts z < 1, we may
also safely set a = 1 (whereby η = t) to find

h(1)
µν (t, ~x) ∝ exp(−ik t+ i~k · ~x) , (3.8a)

h(2)
µν (t, ~x) ∝ exp

(
−i
√
k2 +m2

g t+ i~k · ~x
)
' exp(−ik t+ i~k · ~x) exp

(
−i
[
m2
g

2k

]
t

)
,

(3.8b)

where in the limit k2 � m2
g, the massive mode exhibits two distinct frequencies: the plane

wave frequency ω0 ≡ k and a dispersive modulation with frequency δω ≡ m2
g

2ω0
. Finally,

the rotation (3.4) indicates the composition of the matter basis waves in terms of the
mass eigenstates:

hµν = cos(θ)h(1)
µν − y2

∗ sin(θ)h(2)
µν , (3.9a)

h̃µν = sin(θ)h(1)
µν + cos(θ)h(2)

µν . (3.9b)

From hereon, we set y∗ = 1, which can always be achieved by an appropriate rescaling of
the mass parameter and the β1,2,3: e.g.m2 y∗ → m̃2 1, such that the physical mass remains
invariant, m2

g → m2
g = m̃2(β1 +2β̃2 + β̃3). These equations form the basis of our analysis,

in which we discriminate two phenomenologically distinct regimes. In one regime, the
two solutions, superimposed to form a spatially confined wave packet, will overlap and
produce a frequency-dependent suppression of the strain and thereby modulate the signal
shape. Depending on the choice of parameters, this can be quite drastic as we will see.
Furthermore, the above plane wave solutions disregard the finite size of the physical wave
packets that propagate in space-time. Due to the different propagation speeds of massive
and massless mode, the signals will no longer overlap after they have travelled for a certain
distance, resulting in a global suppression of the signal instead of interference. Combining
the two regimes allows us to draw some interesting conclusions about the viable regions
of the parameter space.



3.2 Oscillating gravitational waves 37

3.2 Oscillating gravitational waves

Let us first consider the regime in which the produced GWs interfere coherently, as re-
quired to produce an oscillatory phenomenon. At production, matter in the form of a
BH or a NS binary system will produce g-type waves as it only couples to the g-metric,
cf. the action (2.58), i.e. h(t = 0) = h0, while h̃(t = 0) = 0. Following the calculations of
Appendix A.3, wee see that this will excite a linear combination of massive and massless
modes given by h(1)(t = 0) = h0 cos(θ) and h(2)(t = 0) = h0 sin(θ), cf. Eqs (A.41). No-
tice that the modifications discussed here have no implications on the polarisation states
and we may disregard the index structure. Moreover, we discard the spatial dependence,
and we set the initial value h0 = 1 as it will be determined later. Combining everything
we find the plane waves

h(t) = cos2(θ) exp(−i ω0 t) + sin2(θ) exp(−i ω0 t) exp(−i δω t) , (3.10a)

h̃(t) = sin(θ) cos(θ) [exp(−i ω0 t)− exp(−i ω0 t) exp(−i δω t)] , (3.10b)

whose real part is plotted in Fig. 3.1. From this we see that the maximal effect is obtained
when the slow variation δω =

m2
g

2ω0
induces a maximal phase shift of δωT∗ = π, which is

true if
T∗ =

2πω0

m2
g

. (3.11)

We note that this coincides with the expression found for the oscillation length in neutrino
oscillations, when multiplied by the propagation speed, approximately equal to the speed
of light. This is one manifestation of the analogy to neutrino oscillations that we had
claimed earlier. It is, of course, not a surprise to find this analogy given that the equa-
tions (3.5) describing the dynamics are wave equations, just as the Schrödinger equation
governing the propagation of the neutrino wave function. Furthermore, the limit of small
masses compared to the typical energies, mg � ω0, is equally applicable to both phe-
nomena. The crucial difference lies in the interpretation. We interpret the perturbation
hµν as a physical quantity that induces a displacement of the laser beams in the GW
detector leading to an interference pattern. The neutrino wave function, in contrast, has
no physical interpretation; only its squared modulus can be interpreted as a probability
density for the neutrino’s flavour composition and location.

It should be noted that Eqs. (3.10) comprise two distinct effects. One is exclusively
due to the modified dispersion relation of the massive spin-2 field and has already been
studied in Refs. [56, 204], which are founded on the earlier work of Ref. [205]. There, the
signal is distorted because different frequency modes of the signal propagate at different
velocities, i.e. the frequency modes of the GW receive a different phase shift e−i δω t. In our
study, we wish to discuss another effect, which crucially relies on the interference of the
massive and massless mode. This can be seen in Fig. 3.1, where only one frequency mode
is plotted. Due to the interference of massive and massless mode, we obtain a modulation
of the amplitude for each frequency mode, which would be lost if the mixing was θ = π/2
(massive spin-2 limit). Away from θ = π/2 this turns out to be the dominant effect. To
quantify this suppression factor, we may proceed in two ways. The first makes use of the
neutrino analogy and quickly gives the desired results, because in the massive limit, the
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Figure 3.1.: Illustration of the averaging procedure. Shown in black is the real part of the solu-
tion (3.10a), given in Eq. (3.13a), and which upon applying the averaging procedure in Eqs. (3.15)
gives the modulation (3.18). We denote s(t) =

√
s2(t). Notice the very fast oscillation with

ω0 = 6 Hz (black line) superimposed with a slow modulation with δω = 0.1 Hz (coloured lines).
The mixing is chosen maximal, θ = π/4.

modified dispersion relation of the massive mode gives merely a global phase. Conversely,
the second approach will highlight the physical assumptions we make in discarding the
dispersion of the signal due to a massive spin-2 mode. The agreement of both approaches
is yet another, a posteriori manifestation of the analogy.
In the former approach, we treat h(t) as if it were the neutrino wave function. Squaring

this quantity yields

s2(δωt) ≡ |h(t)|2 = h(t)h∗(t) = cos4(θ) + 2 cos2(θ) sin2(θ) cos(δωt) + sin4(θ) , (3.12)

where the global phase e−iω0t has dropped out. This is the frequency dependent suppres-
sion factor that needs to be convolved with the signal strain, as discussed below.
The latter approach makes use of a real solution of Eqs. (3.5), which reads

h(t) = cos2(θ) cos(ω0 t) + sin2(θ) cos ([ω0 + δω] t) , (3.13a)

h̃(t) = sin(θ) cos(θ) [cos(ω0 t)− cos ([ω0 + δω] t)] . (3.13b)

With Fig. 3.1 in mind, we wish to identify the slowly modulating envelope function s that
multiplies each frequency mode of the zero-mass result h ∼ cos(ω0t) (the fast oscillations
in Fig. 3.1). Thus, once convolved with a GR signal, this yields the corresponding wave-
form in bigravity without the need of a full-fledged numerical simulation. To do so, we
make use of the trigonometric identity

cos([ω0 + δω]t) = cos(ω0 t) cos(δω t)− sin(ω0 t) sin(δω t) , (3.14)
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and average out the fast oscillations to retain only the strain modulation s. In order to
do so, we square the above expression for h(t), and apply an averaging scheme over a
time scale T which should be thought of as the propagation time of the GW. This time
scale exceeds the period T0 = 2π/ω0 by many orders of magnitude, but is much smaller
than the oscillation time T∗, i.e. T0 � T � T∗. Thus, we obtain

〈sin(ω0 t)〉T0�T�T∗ ≡
1

T

∫ T

0
sin(ω0 t)dt = 0 = 〈cos(ω0 t)〉T0�T�T∗ , (3.15a)

〈sin2(ω0 t)〉T0�T�T∗ = 〈cos2(ω0 t)〉T0�T�T∗ =
1

2
, (3.15b)

〈sin(δω t)〉T0�T�T∗ ≡
1

T

∫ T

0
sin(δω t)dt ' sin(δω T ) , (3.15c)

〈cos(δω t)〉T0�T�T∗ ≡
1

T

∫ T

0
cos(δω t)dt ' cos(δω T ) . (3.15d)

Using these expressions, we eventually find the envelope of the strain (see also Fig. 3.1)

s(δωT )2 = 2× 〈h(ω, t)2〉T0�T�T∗ = cos4(θ)
[
1 + tan4(θ) + 2 tan2 θ cos(δω T )

]
, (3.16)

which needs to be rescaled by a factor 2 because the unmodulated Fourier mode is simply
cos(ω0t), which, upon squaring, averages to 1/2. As advocated, this agrees with Eq. (3.12)
and establishes the analogy to neutrino oscillations. In this expression T should be
understood as the time travelled, and can be expressed in terms of the cosmic redshift by
reintroducing the scale factor for late times in coordinate time,

a(T ) = a(t0)eH0 T

1 + z ≡ a(t0)

a(T )

⇒ T = − 1

H0
log(1 + z) , (3.17)

where H0 ' 70 km
s Mpc is the Hubble rate today. Notice that this is in fact in contrast with

our previous assumption that a = const, and therefore is valid only for small z < 1.3

Finally, we obtain for a given redshift a frequency modulation of the form

s2(ω0, z) = cos4(θ)

[
1 + tan4(θ) + 2 tan2(θ) cos

(
m2
g

2ω0

log(1 + z)

H0

)]
. (3.18)

Given that we do not assume any modification of the production process by virtue of
the Vainshtein mechanism, we can use the binary system parameters as inferred from the
events GW150914 and GW151226 by the LIGO detector array. These serve as input values
for the publicly available numerical code, the Einstein Toolkit, that we use to generate
a GR waveform [206–215]. The resulting waveform should now be convolved with the
frequency dependent modulation s, which in practice is implemented by multiplication

3In general, the Hubble rate is given by H(z) = H0

√
Ωm(1 + z)3 + Ωr(1 + z)4 + Ωk(1 + z)2 + ΩΛ, with

energy densities for non-relativistic matter Ωm, radiation Ωr, curvature Ωk, and dark energy ΩΛ.
Using this and the best fit values of Ref. [12], one can find that the transition to an accelerated
expansion occurs for redshifts z . 0.6, which is true for all observed LIGO/Virgo events.
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Figure 3.2.: Waveform modulation in bigravity for different graviton masses mg. The mixing
angle has been chosen such as to maximise the visible effect, θ = π/4. Figures adapted from
Ref. [2].

in Fourier space. Concretely, we start with a simulated strain hGR(t), and obtain the
bigravity strain via

hbi(t) =

∫
dω eiωts(ω, z) ĥ

GR
(ω) =

∫
dω eiωt s(ω, z)

∫
dτ

2π
e−iωτhGR(τ)

=

∫
dτ s̃(t− τ, z)hGR(τ) , (3.19)

where s̃(t, z) is the Fourier transform of s(ω, z) w.r.t. ω. The resulting waveform is shown
in Fig. 3.2 for two different benchmark models. We observe that the resulting signal
(solid red line) can be extremely distorted compared to GR (dashed line), as Fig. 3.2a
illustrates. We remark that the parameters have been chosen in order to maximise the
effect for illustrative purposes.
Another important result can be seen in Fig. 3.2b, where the signal shape is modulated

independently of the frequency. It appears that all frequency modes receive a constant
suppression. This signals that for the chosen parameters, one has entered the regime of
decoherence, which we will discuss closer in the next section.
Finally, we can analyse the waveform, which we allow to be rescaled by a global factor in

order to lie within the error bands. This would be interpreted as a merger event at larger
distance, as we will discuss shortly. The result of this analysis is shown in Fig. 3.3, where
we used a simple χ2 estimator to draw the 95% C.L. exclusion limits (cf. Appendix B.2 for
details). Clearly, this does not capture the entire picture in the regime of larger masses,
where the suppression will become constant and independent of frequency. Nevertheless,
it gives us a simple and reliable way to rule out masses and mixing angles that heavily
modulate the signal as in Fig. 3.2a.
We have also included the most stringent, model-independent bound on the graviton

mass available in the literature, namely the one from tests in our solar system: mg <
7.2 · 10−23 eV [205, 216]. Since we smoothly approach GR in the limit where θ → 0, by
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Figure 3.3.: Excluded region from GW oscillations. Recall that the mixing angle is defined such
that θ = 0 reproduces GR and θ = π/2 corresponds to gravity mediated by a massive spin-2 field
alone. The case of maximal mixing, θ = π/4, yields the strongest bound. Figure adapted from
Ref. [2].

decoupling the heavy spin-2 state, we rescale this bound by a factor sin−1(θ). This is
consistent with considerations concerning the Newtonian limit of bigravity, see Eq. (2.84).4

3.3 Gravitational waves in the decoherence regime

In order to better understand the regime where the suppression becomes independent of
the frequency, or equivalently independent of the distance [cf. Eq. (3.11)], we calculate
the average strain w.r.t. GR for various masses and mixing angles in Fig. 3.4. There we
see that the squared strain averaged over the signal time, and plotted as a function of
redshift, receives a constant suppression depending on the mixing angle, see Fig. 3.4a.
The critical redshift where this decoherence occurs is, in turn, a function of the massmg as
we conclude from Fig. 3.4b. Let us now specify under which conditions this phenomenon
occurs and which observable consequences this would have. Suppose a source produces
a GW strain of given functional form, which is decomposed into massless and massive
contributions according to Eqs. (3.10), ĥ = cos2(θ) ĥ1 + sin2(θ) ĥ2. This corresponds to a

4To see this, notice that the solar system bound is obtained from the modification of the force, which
is given by − ∂V

∂r
= rS

r2
(1 + mg r)e

−mg r = 1
r2

[
1− 1

2
(mg r)

2 +O
(
(mg r)

4
)]

[205]. Thus, the bound
applies to m2

g × sin2(θ).
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Figure 3.4.: Suppression factor as a function of redshift for fixed graviton mass (left) and mixing
angle (right). For large redshift the oscillation averages out and we enter the decoherence regime,
where the suppression is no longer redshift (frequency) dependent. The level of suppression is
determined by the mixing angle θ, while the onset of the decoherence regime is determined by
the mass mg.

GW strain

h(t, ~x) = cos2(θ)

∫
d3k

(2π)3

e−iω1(k)t+i~k·~x

2ω1(~k)
ĥ1(ω1(~k),~k)+

+ sin2(θ)

∫
d3k

(2π)3

e−iω2(k)t+i~k·~x

2ω2(~k)
ĥ2(ω2(~k),~k) ,

(3.20)

where ω1(k) = k = ω0 and ω2(k) =
√
m2
g + k2 ' ω0 +

m2
g

2ω0
= ω0 + δω. While the massless

mode will travel with a group velocity equal to the speed of light,

vg, 1 =
dω1(k)

dk
= 1 , (3.21)

the massive mode will travel with a dispersive and lower group velocity,

vg, 2 =
dω2(k)

dk
=

k

ω2
' 1−

m2
g

2ω2
0

. (3.22)

Consulting Fig. 3.5 for some physical intuition, we see that after a time of flight T
yet to be determined, the centre of the wave packets will be separated by a distance
∆L = ∆vg T =

m2
g T

2ω2
0
. If this separation exceeds the width of the wave packets, say σx,

any interference pattern will be lost, i.e. if

T > Tcoh ≡
2σxω

2
0

m2
g

, (3.23)
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Figure 3.5.: Separation of wave packets with different group velocities v1 > v2, and widths σx.
Once the distance travelled exceeds the coherence length, the wave packets no longer overlap and
therefore no interference is possible. For large enough distances two signals can be observed in
principle. See also Refs. [217, 218] for discussions in the context of neutrino wave packets.

or equivalently if the distance of the GW source is more distant to the detector than

Lcoh ≈ 0.1 s · c 2ω2
0

m2
g

≈ 1 Gpc
( σx

0.1 s

) (10−22 eV

mg

)2 ( ν

30 Hz

)2
, (3.24)

where we have estimated the signal width with σx/c = 0.1 s, and used that the frequency
is ν = ω0/2π. Finally, we remark that an exact determination of σx would require a
simulation of the signal at production, which is computationally very costly. However, the
argument can be turned around by using a fixed distance, say L = 100 Mpc or z = 0.02,
and a frequency ν = 30 Hz, which is on the lower end of the observed frequency spectra.
With these numbers, we find that the mass must be larger than 5 · 10−22 eV in order for
that specific frequency mode to decohere entirely. This is in qualitative agreement with
Fig. 3.4b. We content ourselves with this estimate, but emphasise that a future, possibly
numerical treatment of this phenomenon should improve on this uncertainty.
With the understanding of the requirement for the two wave packets corresponding to

massive and massless components of the GW signal to be non-overlapping, we can now
consider the phenomenological consequences. Assuming to be in the decoherence regime,
i.e. L > Lcoh for all frequencies, a source at a distance L will induce two signals in the
detector, separated by a time

∆T = L(v−1
g, 2 − v−1

g, 1) ' L∆vg
v2
g, 1

. (3.25)

According to Eqs. (3.10), the first signal will be suppressed by a factor cos2(θ), the second
one by a factor sin2(θ), which is confirmed by Fig. 3.4.
The key observation underlying our analysis is that the luminosity distance of a GW

source is derived from the assumption that, as the wave propagates isotropically away
from the production site, its strain is reduced as 1/dL [219], where

dL(z) = c (1 + z)

∫
H(z′)−1dz′ (3.26)

is the luminosity distance. Thus, the decohered signals would be interpreted as lying at
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Figure 3.6.: Left : Modulation of the suppression factor as a function of the mixing angle θ
and excluded range of angles from the non-observation of an echo for GW170817 (red). Right :
Summary of excluded parameter regions due to the non-bservation of GW echoes in the available
LIGO/Virgo data for BH merger events (turquoise) and the NS merger GW170817 (red). The
turquoise region is overlain by the red region for better visibility. Figures adapted from Ref. [3].

larger luminosity distance, or redshift zobs:

cos2(θ)/dL(z) = 1/dL(zm=0
obs ) , sin2(θ)/dL(z) = 1/dL(zm 6=0

obs ) . (3.27)

It is then a matter of interpretation if we study individual events and their echoes, or the
distribution of merger events as a function of redshift, where each event would be double
counted. We will discuss both approaches in more detail now.

3.3.1 Echo events in the gravitational wave detector

First, we take the point of view that the secondary signal, hb, which is suppressed by
sin2(θ), would be seen as an echo of the first signal, ha. For the available GW signals, we
display in Fig. 3.6 how constraints on the parameter space arise from the non-observation
of such echo events. The left panel shows an example for the NS merger event GW170817,
which is the event with the largest signal-to-noise ratio (SNR) (SNR = 32). The red region
is excluded, because inside it the echo event would be observable above the background
noise (sin2(θ) > SNR−1).5 The range of mixing angles that can be excluded by this
procedure is then transformed into an exclusion region in the right panel of Fig. 3.6 by
demanding the mass mg to be sufficiently large for the entire signal to be in the deco-
herence regime. Note that the shading indicates the onset of decoherence via Eq. (3.24).
This yields the red region, while the turquoise regions correspond the available binary BH
merger events. Notice that these exclude a smaller range of angles – due to the smaller
SNR – however, probing smaller masses owing to the larger distance of the event sources.

5Notice that conventionally a threshold SNR > 8 is adopted for a detection [220]. However, a dedicated
search for echo events could make use of the primary signal waveform and thereby effectively lower
the threshold.
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event name dL [Mpc] min. ν [Hz] time scale [s] max. SNR reference

GW150914 420 35 0.1 24 [56]
GW151226 440 35 1.0 13 [57]
GW170104 880 35 0.1 13 [58]
GW170608 340 35 1.0 13 [59]
GW170814 540 35 0.1 18 [60]
GW170817 40 40 10.0 32 [199]

Table 3.1.: Parameters of the BH and NS binary merger events. Time scales are order-of-
magnitude estimates from the total duration of the events. For updated values see also Ref. [198].

We have summarised the relevant parameters of the LIGO GW events in Tab. 3.1, from
which we can draw the conclusions shown in Fig. 3.6b.

3.3.2 Modified merger distribution

Next, one may study what can be learnt from a larger set of binary merger events.
Given that a signal is misplaced to larger redshift, we expect the annual merger rate as
a function of redshift to be modified compared to the standard prediction. More specif-
ically, one should expect less events at small redshift, and simultaneously more events
at larger redshift, when compared to the GR prediction. Let us make the assumption
that zm6=0

obs > zm=0
obs , i.e. the primary signal is due to an undistorted, massless spin-2 wave,

which effectively restricts the mixing angle to be 0 ≤ θ < π/4. The regime π/4 ≤ θ ≤ π/2
is straightforwardly obtained from this; however, there is an additional complication be-
cause the signal is distorted due to the modified dispersion relation, cf. [205], which we
discard in our analysis. While future surveys can easily implement this numerically, we
try to isolate the present phenomenon and study it analytically.
Given a BH binary merger rate R, we follow Ref. [220] and parametrise the differential

merger rate per unit redshift as

dN

dz
= 4π Rχ(z)2(1 + z)(Rb−1) c

H(z)
, (3.28)

with the co-moving distance χ(z) and a free parameter Rb. Ref. [220] finds the best
fit value Rb = 2 and remarks that the result is valid for z < 10. From the O1 run of
advanced LIGO (GW150914, LVT151012, GW151226), it can be inferred that the merger
rate is6 [198]

R = 55 +103
−41 Gpc−3 yr−1 . (3.29)

While the errors on this number are still large, it is expected that in the near future, with
more events available and advanced LIGO running at design sensitivity probing redshifts
6This number is obtained by an event based mass distribution disregarding astrophysical population
models. Note, however, that this number changes significantly when astrophysically motivated mass
distributions are assumed. More conservatively, the LIGO/Virgo collaborations quote a range of
R = 9 . . . 240 Gpc−3 yr−1, which is the lowest and the largest R found from various priors and mass
distributions, cf. Ref. [198]. This range is consistent with later events at larger redshift, namely
GW170104 at z = 0.18 [58].
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Figure 3.7.: Integrated annual BH merger rate as a function of redshift and for different merger
rate constants taken from Ref. [198].

z . 1 [195, 221], the error bars could come down to about 10% [220]. We remark that with
the envisioned Einstein Telescope, redshifts as large as z . 10 could be probed [222–224].

Integrating Eq. (3.28) up to a redshift z ≈ 0.1, yields a total of 20+50
−15 observable

events per year; not all of which induce a strain large enough to be actually detected.7

This is shown in Fig. 3.7, where one can see that increasing the sensitivity, such that
redshifts z = 1 can be probed, may increase this number by a factor 103.
It is now straightforward to solve Eq. (3.27), and thereby determine the differential

merger rate for a given, observed redshift zobs. Demanding that the event lies entirely in
the decoherence regime, yields a lower bound on mg, cf. Eq. (3.24). Combing this with
the upper bound from solar system tests, mg sin(θ) ≤ 7.2 · 10−23 eV, we finally obtain a
necessary condition

dL(z) > Lcoh > 1.0 Gpc
( σx

0.1 s

) ( ν

30 Hz

)2
(

10−22 eV

mg

)2

> 2.4 Gpc
( σx

0.1 s

) ( ν

30 Hz

)2
× sin2(θ) .

(3.30)

In Fig. 3.8 we show the result of this procedure for various mixing angles, using both the
current and future merger rate intervals. Notice that we have indicated the necessary
condition (3.30) by dashed lines. The fading of the shaded areas indicates that this is
only an estimate and the bounds cannot be fully trusted already in the shaded region
which indicates the onset of decoherence.
Generally speaking, the reduction of the strain leads to the mislocation of events to

7Using the merger rate R = 9 . . . 240 Gpc−3 yr−1 quoted in Footnote 6, and integrating up to the redshift
of GW170104, z = 0.18, we find instead a range of 26 . . . 693 merger events per year.
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Figure 3.8.: Annual merger rates in bigravity modulated according to the individual event
assumption with current (left) and projected (right) uncertainties. The dashed lines indicate the
onset of decoherence. Figures adapted from Ref. [3]

lie at larger redshift. Therefore, the event rate relative to GR is less than one for small
redshifts, with the reduction increasing with the mixing angle, and reaching its maximum
for θ = π/4. Consequently, we find more events at larger redshifts than expected in GR.
Due to the presently large error bars, all values of θ are compatible with the GR

prediction and we cannot draw any conclusions, as we see from the left panel. However,
with the current experiments reaching design sensitivity and more data being collected
(cf. Fig. 3.8, right panel), scenarios with large mixing (θ & π/8) can be probed.

3.4 Discussion and outlook

We have presented the phenomenon of GW oscillations, an effect reminiscent of neutrino
oscillations, which originates from the presence of multiple spin-2 fields of different masses
that couple non-diagonally to matter. We have studied two regimes, where in the first
the wave packets interfere coherently allowing us to immediately constrain the parameter
space. Interestingly, the resulting bounds are of similar order as the solar system tests.
The second regime is reached when the two wave packets are separated due to different
group velocities and no longer interfere. This leads to a frequency-independent reduction
of the strain and a misinterpretation of the event to be more distant, if GR is assumed.
While an ‘echo event’ would be a striking signature of bi- or multi-metric models, one can
even learn about the existence of such events from the binary BH merger distribution,
given that the secondary event is interpreted to lie at a redshift beyond the sensitivity of
the detector. Therefore, if after a few years of recording BH merger events, the rate of
such events turns out to be lower than expected at low redshift, this might hint towards
GW echoes. It would also be interesting to consider instead of BH binaries, NSs which
would additionally produce an electromagnetic signal. This could be used to compare the
population of binary NS systems deduced from optical signals to those inferred from GW
measurements. However, at present only one binary NS event is available and this is left
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for future work.
In fact, there are claims of such echo events in the literature (cf. Refs. [225–227]), but

this interpretation is subject to debate [228–230]. However, we would like to point out
that while such echoes are usually interpreted in the context of so-called exotic compact
objects [231–233], an echo is also expected if the massless mediator of gravity can oscil-
late into massive spin-2 states. Our aim was to gain an analytic understanding of the
phenomenon of GW oscillations. In order to to so, we have made a number of approxima-
tions that allowed an analytic treatment. Nevertheless, the results are straightforwardly
generalised and can be implemented in a numerical survey taking into account all effects.
A direct generalisation of the approach outlined in this chapter is to study different

matter couplings such as those in doubly-coupled bigravity [120–122], whose background
solutions have been studied in Refs. [190, 191, 234–236]. This has already been done in
Ref. [237], where the authors find that the main effect is a modified GW speed different
from the speed of light, and no interference pattern seems to arise.
A final remark is in order at this point. The inclined reader may have noticed that some

of our early results deviate from the expressions found in Ref. [2]; however, physically
observable results agree, most importantly the modulation factor in Eq. (3.18). The
reason for the initial disagreement is that in the reference, non-canonically normalised
states were considered. While it is irrelevant to the final result, canonically normalised
states should always be given preference, especially in the light of a particle interpretation.



Chapter 4

Astrophysical Implications of
Bigravity

Rotation curves of galaxies, i.e. the circular velocity of the visible contents of a galaxy
around its centre, are considered one of the evidences for the existence of DM. While
observations of galaxy clusters, the CMB, and structure formation simulations support
this hypothesis, the properties and origin of the DM remain among the greatest myster-
ies of modern physics. Modified gravity models such as modified Newtonian dynamics
(MOND) have prominently been used to argue that DM is obsolete [238]. However, there
is little to no evidence that such theories describe the phenomenon correctly on all length
scales [239–241].1 This can be seen from a very simple argument: Cold DM – the ‘CDM’
in ΛCDM – is a non-relativistic fluid which forms haloes of various sizes and mass. It
is found that the mass of these haloes approximately scales with the third power of the
characteristic radius, M ∝ r3

c ∼ Vc, over a vast range of halo sizes [244]. This yields
the correct behaviour in order to explain dynamics on galactic and extragalactic (galaxy
cluster) scales. MOND, on the other hand gives rise to a critical scaling incompatible
with these observations. This is because MOND modifies the gravitational force at a
critical acceleration ac = Fc/m ∝ M/r2

c . Thus, one finds that Vc ∼ r3
c ∝ M3/2, and it

is impossible to explain all observed phenomena with a single MOND-type acceleration
or length scale. This is different for modifications that invoke the Vainshtein screening
mechanism, such as the present bimetric framework. Here, the modifications occur at the
Vainshtein radius rV ∝ 3

√
M [cf. Eq. (2.84)], and therefore one obtains a critical scaling

identical to that of DM. This argument, due to J. Smirnov [4], raises the question how
the modifications that arise due to the presence of multiple spin-2 fields affect the DM
phenomenon. This will be the subject of the present chapter.
Historically, it is not a new idea to apply modified gravity frameworks to galaxy dynam-

ics. However, it is often implied that the modifications should replace the DM component
in the galaxies. For example, many studies of modified gravity models tried to argue
that DM is obsolete, in the spirit of the early work of Ref. [245]. These references often
considered only individual examples, or argued on the basis of feasibility [246–249]. Nev-

1Recently, it has been found that a single-scale modification cannot even successfully explain the dy-
namics on various galactic scales [242, 243].
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ertheless, a few of these studies considered more data sets of galaxies [250, 251], some even
including galaxy clusters [252, 253]. There are indeed examples of studies that considered
a DM component [254, 255], and yet others quantified the observational bias due to the
assumption of a Newtonian potential in favour of a modified Yukawa potential [256]. A
more recent idea was put forward in Ref. [257], where the authors included for the first
time the Vainshtein screening effect. However, this is done on the rather simplistic ar-
gument that the galaxy should be contained in its own Vainshtein radius – disregarding
potential positive effects this might have. Moreover, dRGT massive gravity and its im-
plications for galactic dynamics was recently explored in [258]; however, only in a specific
parameter regime and neglecting the Vainshtein mechanism. Finally and most recently,
Ref. [259] assumed generic Yukawa-type modifications of the gravitational potential and
explored their impact on galaxy rotation curves – once more disregarding the Vainshtein
effect and considering modifications in the DM sector only.

Here, we do not pursue to replace DM, but rather ask what implications does the
presence of a massive spin-2 field – in addition to the massless spin-2 mediator of gravity –
have on the DM phenomenology. Nevertheless, we do highlight when improved fits can be
obtained. In this manner, we believe to present an unbiased analysis of potential benefits
and shortcomings of the model at hand. To this end, the expression for the deflection
angle of light in bigravity is derived and put to test on a galaxy cluster. While this is
only meant as a proof of principle, it can be directly applied to large surveys involving
many such clusters. We continue with the study of galactic dynamics, derive the matter
potentials for gas, baryonic matter and DM components, and finally apply the findings
to galaxy rotation curves. The results of this chapter have been published in Ref. [4].

4.1 General procedure

Newtonian Gravity. The starting point for our discussion is Poisson’s equation for
Newtonian gravity, which determines the potential Φ in terms of a mass density ρ,

∆Φ(~r) = 4πGN ρ(~r) , (4.1)

where ∆ =
∑

i ∂
2
i is the Laplace operator. This is easily solved by the Green’s function

method,

Φ(~r) = −GN

∫
d3~r ′

ρ(~r ′)

|~r − ~r ′| . (4.2)

Let us assume spherical symmetry such that ρ(~r) = ρ(|~r|). Orienting the primed coor-
dinates such that the polar angle θ′ is the angle between ~r and ~r ′, we can carry out the
angular integrations,

Φ(|~r| = r) = −2πGN

∫
d cos θ′ dr r′2

ρ(r′)√
r2 − 2 cos θ′r r′ + r′2
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= 2πGN

∫
dr′ ρ(r′)

r′

r

√
r2 − 2 cos θ′r r′ + r′2

∣∣∣1
cos θ′=−1

= −2πGN

{∫
r′<r
dr′ ρ(r′)

r′

r

[
(r + r′)− (r − r′)

]
+

+

∫
r′>r
dr′ ρ(r′)

r′

r

[
(r + r′)− (r′ − r)

]}

= −4π
GN

r

∫
r′<r

dr′ ρ(r′)r′2︸ ︷︷ ︸
=M(r)/4π

+ r-independent terms, (4.3)

where r′ = |~r ′|. Thus, we find for a Newtonian potential a mass-velocity relation of the
form2

v2(r) = r
dΦ

dr

GR
=

GNM(r)

r
. (4.4)

Massive gravity. For the case of a massive mediator, the Poisson equation is modified
to include a mass term, cf. [260]

(∆−m2)Φ̃(~r) = 4πGNρ(~r) , (4.5)

which is responsible for the Yukawa potential, with its exponential fall-off for r > mg,

Φ̃(~r) = −GN

∫
d3~r ′ ρ(~r ′)

e−mg |~r−~r
′|

|~r − ~r ′| . (4.6)

The radial integral in this potential cannot be decomposed as we had done before, and
the mass distribution contributes also for r′ > r – however, exponentially suppressed.
This leads to a modification in the relation between the radius and (circular) velocity
distribution. Thus, the validity of Eq. (4.4) is lost, and we have to revert to the integration
of the potential,

v2(r) = r
dΦ̃

dr
6= GNM(r)

r
. (4.7)

Nevertheless, it should be remarked that the exponential fall-off is negligible if the mass
distribution is well inside the Compton radius of the massive mediator, i.e. r0 � λc ≡
m−1
g . Here, r0 is the length scale of the mass density, in the sense that ρ(r) → 0, as

r0/r → 0, and λc is the Compton wavelength of the graviton. In this limit the exponent
is close to unity and the Yukawa modification becomes irrelevant: exp(−mg r) ∼ 1 for all
r ≤ r0 � λc.

Bigravity. One may now assemble the pieces of the previous paragraphs and the study
of the central mass problem in Sec 2.3.1. Owing to the linearity of Poisson’s equation, the
potential generated by two spin-2 mediators – one massless and one massive – is given by

2In computing the derivative, it should be noted that in the second to last line, differences in the
integration boundaries cancel and can therefore be ignored. Thus, there is no dM

dr
term.
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the superposition (see also Eq. (2.84) for a point mass)

Φ(~r) = −GN

∫
d3~r ′ ρ(~r ′)

[
α(θ)

|~r − ~r ′| +
β(θ)e−mg |~r−~r

′|

|~r − ~r ′|

]
. (4.8)

This, together with the relation v2(r) = r dΦ
dr , fully determines the velocity profile of the

galaxy under consideration once the mass density is specified.

At this point, one should highlight the importance of the Vainshtein mechanism in
massive and bimetric gravity. We have seen in Chapter 2, that the longitudinal mode
becomes non-dynamical if the gravitational potential is evaluated for distances r < rV ,
where the Vainshtein radius is found to be

rV =

√
rS
m2
g

. (4.9)

Here, one needs to take into account that the mass distribution itself becomes a function
of the radial coordinate r, and thereby also the Vainshtein radius rV via the Schwarzschild
radius rS(r) = 2GNM(r).

Given that this effect is of non-linear nature and that, in general, one cannot evaluate
the true potential for all values of parameters efficiently, we choose a phenomenological
approach to account for this effect. This is done via the mixing angle as it allows an
interpolation between the massive and the massless, i.e. GR, regimes. We introduce the
effective mixing angle,

θeff ≡
θ

2

[
1 + tanh

(
r − rV
∆rV

)]
, (4.10)

which replaces the mixing angle θ in the numerical evaluation of all expressions that we
use in this chapter, even if not stated explicitly. This expression smoothly interpolates
between a linear regime where θeff = θ, for r � rV , and the non-linear regime, where
θeff = 0, for r � rV . The width of the intermediate regime, ∆rV , is taken to be a free
parameter, although this will not be strictly speaking true in a fully non-linear analysis.
There, one would find that the transition regime is fully determined dynamically. Given
that we are interested in a physical picture rather than an exact treatment to all orders,
we believe that such a phenomenological approach is well justified. We proceed with
the analysis of gravitational lensing and subsequently discuss galactic rotation curves in
Sec. 4.3.

4.2 Gravitational lensing

The bending of light is one of the most important predictions of GR, and considered
one of the earliest successful tests of Einstein’s theory of gravity by the measurements of
Eddington and Dyson during the solar eclipse of 1919 [261]. However, the phenomenon
is not unique to GR. Indeed, it is a generic feature of metric formulations of gravity, in
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Figure 4.1.: Sketch of the light deflection geometry.

which a test mass follows a geodesic.3 Thus, it seems rather natural to ask how light is
deflected in a modified theory of gravity, like the present bimetric theory. To the best
of our knowledge, this result has not been obtained consistently in the literature, and
was recently presented in Ref. [4]. In the following we derive the light deflection angle
in bigravity and study some observational implications for the parameter space of the
theory.

4.2.1 Bending of light in bigravity

To study the effects massive spin-2 extensions have on the propagation of light, we follow
the derivation of Ref. [111]; however in a general, spherically symmetric and static metric
ansatz inspired by the study of BH solutions in bigravity, (cf. Ref. [144] and Sec. 2.3.1)

ds2 = eνdt2 − eλdr2 − r2dΩ2 , with (4.11)

ν(r) = −rS
r

(
α(θ) + β(θ)e−mgr

)
, λ(r) =

rS
r

(
α(θ) +

β(θ)(1 +mgr)

2
e−mgr

)
,

and α(θ) = cos2(θ)

[
1 +

2

3
sin2(θ)

]
, β(θ) =

2

3
sin2(θ)

[
1 + 2 sin2(θ)

]
,

where 0 ≤ θ ≤ π/2. Light, by construction, follows null-geodesics corresponding to
ds2 = 0. To avoid confusion with the mixing angle θ, we take light to propagate in a
plane characterised by the coordinates (r, φ) and time t, perpendicular to the conserved
angular momentum; see Fig. 4.1 for the geometry. Since the metric components are
independent of t and φ, we expect that we can construct at least two constants of the
motion [110]. Indeed, the total energy and the angular momentum of a test particle
moving in space-time (4.11) are conserved. Each conserved quantity corresponds to a
Killing vector field oriented in the corresponding direction, i.e.

ξ1
µ = (1, 0, 0, 0)T and ξ2

µ = (0, 0, 1, 0)T , (4.12)

3If gravity were described by a scalar instead of a tensor field, it could only couple to the trace of the
energy-momentum tensor, which vanishes for light. Therefore, the measured bending of light implies
that gravity is described by a tensor field, whose quantum fluctuations would be associated with a
spin-2 particle.
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for which the Killing equation holds [110],

0
!

= (Lξig)αβ ≡ ξiµ∇µgαβ︸ ︷︷ ︸
=0

+(∇αξiµ)gµβ + (∇βξiµ)gαµ = ∇αξiβ +∇βξiα , (4.13)

where Lξi is the Lie derivative w.r.t. the vector field ξi and ∇ is the covariant deriva-
tive. Moreover, we used that the metric is covariantly constant, ∇αgµν = 0. Com-
bining Eq. (4.13) and the geodesic equation ∇µUν = 0, we obtain two conservation
equations [110],

d

dτ
(ξi

µUµ) = ξi
µ Uν ∇νUµ︸ ︷︷ ︸

=0

+UµUν∇νξiµ
(4.13)

= U (µUν)∇[µξiν] = 0 , i = 1, 2. (4.14)

The meaning of these equation is that the scalar product ξiµUµ is conserved along the
geodesic with tangent vector Uµ. Thereby, we obtain two conserved quantities, expressed
in terms of the proper time τ as

g00
dt

dτ
≡ E

m
, gφφ

dφ

dτ
≡ J

m
. (4.15)

These, in turn, correspond to the energy E and the angular momentum J of a test particle
of mass m, and allow us to compute the null geodesic directly from the metric (4.11):

0 =

(
ds

dτ

)2

= eν
(

dt

dτ

)2

− eλ
(

dr

dτ

)2

− r2

(
dφ

dτ

)2

, (4.16)

from which it follows that (
dr

dτ

)2

= e−λ
[
e−ν

E2

m2
− r−2 J

2

m2

]
. (4.17)

This can be simplified further by using the identity

dr

dτ
=

dφ

dτ

dr

dφ
=

1

r2

J

m

dr

dφ
. (4.18)

Noting that the mass has dropped out and can be set to m = 0 (as it should), we finally
arrive at the light geodesic4 (

1

r2

dr

dφ

)2

=
e−(λ+ν)

b2
− e−λ

r2
. (4.19)

This equation can be recast into a more useful form by introducing the dimensionless
variable u ≡ R

r . Here, dr
dφ

∣∣∣
r=R

= 0 defines the radius of closest approach, R, which is

4One may object that the procedure shown here is inconsistent, since the previously introduced mass is
now set to zero. However, the result is the same as one would have obtained from solving the set of
geodesic equations, which involves a tedious computation of the Christoffel symbols, see e.g. Ref. [111].
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Figure 4.2.: The light deflection angle in bigravity normalised to the GR value, ∆φGR = 2 rS/R,
obtained from solving the integral (4.22), and the two approximate solutions (4.23) and (4.24).
All expressions agree when mgR � 1; however, only Eq. (4.23) approximates ∆φ well when
mgR < 1. Figures adapted from Ref. [4].

related to the impact parameter b ≡ J/E via

1

b2
=
eν(R)

R2
. (4.20)

Notice that for R ≤ r < ∞ we obtain 0 < u ≤ 1. Conventionally, the geodesic equation
is expanded in powers of rS/R to simplify the exponentials,(

du

dφ

)2

=
[
1− λ(r = R/u)

]
(1− u2) + ν(R)− ν(r = R/u) . (4.21)

In GR, we find that eν eλ = 1 and this equation can be solved analytically. In bigravity
however, eν eλ ∼ e−mgr, such that the exponentials carry non-trivial information about
the massive spin-2 modification. In order to obtain the total deflection angle [111],

∆φ = 2

∫
dφ = 2

∫ 1

0
du

dφ

du
, (4.22)

we plug Eq. (4.19), expressed in u, into Eq. (4.22) and only then expand in powers of
rS/R.
The resulting integral, however, cannot be given in closed form due to the u-dependence

of λ and ν. Nevertheless, an approximation to the numerically integrated result can be
found: On the one hand, terms of the form e−mg R/u can be disregarded when mg R� 1,
as 0 < u ≤ 1. On the other hand, when mg R < 1, we see that e−mg R/u → e−mg R ' 1
for u → 1, and e−mg R/u → 0 for u < mgR. This can be implemented into Eq. (4.22)
by replacing the exponential factors as e−mg R/u → e−mg R, while simultaneously shifting
the lower integration boundary to u = mg R. This yields

∆φ ' 2
rS
R

[
α(θ) +

1

4
β(θ)e−mgR

(
(3 +mgR)

√
1 +mgR

1−mgR
+mgR arccos (mgR)

)]
.

(4.23)
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Some care is required when using this equation, as for mgR > 1 the arccos function
will develop an imaginary part. However, in this regime one can simply drop the piece
proportional to e−mg R, as it quickly goes to zero (cf. Fig. 4.2).
An even simpler, but less general approximation is to take mgR � 1, and retain only

the global exponential factor in Eq. (4.23),

∆φ ' 2
rS
R

[
α(θ) +

3

4
β(θ)e−mgR

]
. (4.24)

The three different solutions to ∆φ (numerical, approximation, and the simple approx-
imation ‘mg R � 1’) are compared in Fig. 4.2. One can see that Eq. (4.23) is in good
agreement with the numerical solution away from the point where mg R = 1. Eq. (4.24),
on the contrary, works only for the regimemgR� 1, as one expects from the assumptions.

4.2.2 Mass estimates from gravitational lensing

As we have just seen, the deflection angle of light in bigravity changes compared to GR
depending on the graviton mixing angle θ according to

∆φ→ ∆φ fGL(θ) , (4.25)

where fGL(θ) is found by performing the integral in Eq. (4.22), and is well approximated
by Eq. (4.23), which yields

fGL(θ) = α(θ) +
1

4
β(θ)e−mgR

(
(3 +mgR)

√
1 +mgR

1−mgR
+mgR arccos (mgR)

)
. (4.26)

Since this function does not depend on the radial variable r, but only on the radius of
closest approach R, derivatives of the deflection angle/ will change by the same factor
fGL.5 Mass estimates from gravitational lensing will hence change as

Mlens →
Mlens

fGL(θ)
. (4.27)

Thus, observing the strength of the lensing effect, we can reconstruct the lensing mass
responsible for the light bending Mlens, which depends on the bigravity parameters mg

and θ. We will now outline an independent method to reconstruct the gravitational
potential in a cluster, namely by X-ray observations. This will give us a handle on the
model parameters of bigravity.

4.2.3 Mass estimates from X-ray emission of galaxy clusters

In Ref. [262] the Planck collaboration analysed 439 galaxy clusters which are identified
via the thermal Sunyaev–Zel’dovich (SZ) effect, where CMB photons scatter off high-

5Strictly speaking this is only true if the radius of closest approach, R, lies outside the mass distribution
under consideration. However, if mg r � 1 the resulting expression is independent of r; while for
mg r � 1 the Vainshtein screening will take effect. In the intermediate regime one should revert to
the numerical procedure, which we leave for future work.
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energetic electrons inside the clusters via inverse Compton scattering [263]. On average,
this transfers energy from the electrons to the photons, reducing the number of low
energetic CMB photons in favour of high-energy photons. This leaves a characteristic
signature on the CMB and can be used to identify and probe galaxy clusters [264, 265].
As it turns out, less clusters are observed than expected, which could be related to
the gas inside the cluster having a lower temperature than expected (hence fewer high-
energy electrons), or a deviation from the assumption of hydrostatic equilibrium, which
is typically assumed. This is quantified by the so-called hydrostatic bias factor, which
will be defined below, and which is found to be smaller than unity, RM = 0.6 . . . 0.99
(depending on the prior distribution chosen) this gives a tension of up to 3.7σ with
other CMB measurements [262]. As we will see shortly, the modifications implied by the
present framework, indeed imply such a deviation from the prediction RM = 1. Let us
now outline the procedure to obtain the mass estimate from X-ray emissions that we will
need to properly define RM .
In order to obtain an analytic expression, we assume that the mass of the galaxy cluster

is dominated by the DM contained in it. With this assumption, the hydrodynamics
of the gaseous cloud emitting X-rays is therefore determined by an independent DM
potential. Following Ref. [265] and assuming a static, spherically symmetric configuration,
the hydrodynamical equation describing this situation reduces to

~∇Pgas
ρgas

= −~∇ΦDM . (4.28)

Taking the divergence and employing Poisson’s equation [see Eq. (4.1)], this yields

~∇
[
~∇Pgas
ρgas

]
= −4πGNρDM . (4.29)

Finally, this equation can be integrated to yield a mass estimate for the dominant dark
component:6

GNMDM(r) = 4πGN

∫ r

0
dr′ r′

2
ρDM(r′) =−

∫ r

0
dr′∂r′

[
r′2

ρgas(r′)
∂r′Pgas(r

′)

]

=− r2

ρgas(r)
∂rPgas(r) , (4.30)

where spherical symmetry was assumed to hold. Furthermore, taking the gas to be ideal,
the equation of state relating its pressure Pgas to the particle number density n = ρgas/m
and temperature T for a gas particle of mass m is Pgas = nkBT =

ρgas
m kBT , where kB is

Boltzmann’s constant. Thus, the mass of the DM component within the cluster, which was

6Here, we use the gradient and Laplace operators in spherical coordinates:

~∇
[
f(r)~∇g(r)

]
=
(
~∇f(r)

)
·
(
~∇g(r)

)
+ f(r)∆g(r) = (êr∂rf(r)) · (êr∂rg(r)) + f(r)

1

r2
∂r
(
r2∂rg(r)

)
=(∂rf(r))(∂rg(r)) + f(r)

1

r2
∂r
(
r2∂rg(r)

)
=

1

r2
∂r
(
f(r)r2∂rg(r)

)
.
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assumed to dominate the mass distribution, is found to be linked to the thermodynamical
quantities T and ρgas as

MDM(r) = −r kBT

mGN

(
d log(ρgas)

d log r
+

d log(T )

d log r

)
. (4.31)

This is the mass estimate we obtain from X-ray observations via the measurement of the
right-hand side of this equation, cf. Ref. [266]. Let us now discuss how this mass estimate
is modified in a theory with additional spin-2 DOF.
From the metric in Eq. (4.11) (or the more detailed discussion in Sec. 2.3.1) we deduce

that the gravitational potential of a point source is modified as7

Φ(r)→ Φ(r) fpot(θ, r) , (4.32)

where the function fpot reads [cf. Eq. (2.84)]

fpot(θ, r) ≡ α(θ) + β(θ) e−mg r . (4.33)

Therefore, the above argument is modified only on the right-hand side of Eq. (4.28):

~∇Pgas
ρgas

= −~∇Φ→ −~∇Φ fpot − Φ ~∇fpot . (4.34)

Since the right-hand side of Eq. (4.31) is measured, we see that with the above modifica-
tion, the inferred kinetic mass is altered as

Mkin(r)→ Mkin(r)

α(θ) + β(θ) (1 +mg r)e−mg r
, (4.35)

such that the ratio of masses inferred from lensing and X-rays becomes

Mkin(r)

Mlens(r)
→ Mkin(r)

Mlens(r)

fGL(θ)

α(θ) + β(θ) (1 +mg r)e−mg r
≡ RM (mg, θ)

Mkin(r)

Mlens(r)
, (4.36)

where fGL is given in Eq. (4.26).
The ratio RM is plotted in the mg−θ plane in Fig. 4.3, where we have replaced θ → θeff

[cf. Eq.(4.10)], in order to phenomenologically implement the Vainshtein mechanism as
discussed above. This is manifest in the contour plot, as for small mg (corresponding to
large rV = (rsm

−2
g )1/3) the entire cluster is contained inside the Vainshtein sphere below

10−31 eV, recovering the predictions of GR, i.e. RM = 1 under the specified assumptions.
Note that we fixed the radial coordinate to a typical galaxy cluster size of approximately
5 Mpc. What we learn from Fig. 4.3 can be summarised quite briefly: For a mass range
10−31 eV ≤ mg ≤ 10−28 eV, and sizeable mixing angles, θ & π/4, a reduction of the
total cluster mass ratio is expected. In fact, as we approach the massive gravity limit

7We remark that this is strictly speaking only true if the mass distribution is confined inside a sphere
r < r0 and mg r0 � 1 such that the exponential can be ignored. Otherwise a more complicated
procedure has to be applied, as the one outlined in Appendix C.1. However, it turns out that for
most of the parameter points considered here, this is a good approximation.
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Figure 4.3.: Mass ratio RM relative to the GR value for a typical cluster size R = 5 Mpc. The
blue hexagon indicates the best fit point from the analysis of the MACS cluster J1206.2-0847,
cf. Fig. 4.4a. Adapted from Ref. [4].

(θ → π/2), the ratio goes to zero for masses mg & 10−28 eV. This is an interesting
observation, as CMB cluster surveys indicate that the ratio RM might deviate from one,
as mentioned above. While it is still an interesting observation that the modification
drives the ratio into the seemingly correct direction, we emphasise once again that this
could be explained more economically, and within GR.

4.2.4 Application to a specific cluster

Let us apply the above findings to a concrete example: the MAssive Cluster Survey
(MACS) galaxy cluster J1206.2-0847, which was identified at redshift z = 0.44 [267–270].
This cluster was analysed in more detail in Ref. [271], determining its mass density profile.
We have chosen this cluster as an appropriate example, because the latter reference con-
tains precisely the required information about both the mass inferred from gravitational
lensing, as well as the reconstructed mass from X-ray emission. These mass estimates for
various radii are shown in Fig. 4.4a. We see that for this cluster the data are compati-
ble with the GR prediction RM = 1. Nevertheless, there appears to be a tendency for
the ratio to decrease, as the radius at which it is evaluated is increased. Applying the
χ2 method outlined in App. B.2, we can now identify viable and non-viable parameter
constellations, as shown in Fig. 4.4b. The red region obtained in this manner shows the
parameter points that are excluded at the 95% confidence level (C.L.).
In the limit of massive gravity, θ = π/2, we find that masses above 5 · 10−31 eV and

below 10−25 eV are excluded. This result is consistent with previous results obtained
from cluster lensing [272]. As the mixing angle decreases, this bound slightly relaxes
and more viable mass ranges emerge. Conversely, for the region θ < π/4, virtually no
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Figure 4.4.: Left: Fit of the bigravity modification RM (mg, θ) to the cluster data. We find the
best fit for mg = 2 · 10−31 eV, θ = 1.2, ∆r = 0.23 rV . Right: Parameter scan of RM in the
(mg, θ) plane. The best fit point is indicated as a blue hexagon. Adapted from Ref. [4].

constraints arise, because the ratioMkin/Mlens, that we take to be of purely non-GR origin,
approaches RM → 1, while at the same time the errors are quite large. Finally, there is
a parameter point, where a reduction of the χ2 compared to the hypothesis RM = 1 is
possible. This is shown in Fig. 4.4a by the blue line, and marked with a blue hexagon
in Fig. 4.4b. Remarkably, this point corresponds to a small mass ∼ 10−31 eV but large,
almost maximal, mixing angle, and it achieves precisely what the tentative deviation from
RM = 1 seems to indicate: The mass ratio is close to RM = 1 for small radii, while it
decreases for larger r, starting at a radius r ∼ 2 Mpc and reaching a reduction of up to
RM = 0.8 for r = 4 Mpc. This can be easily understood from the cluster mass function
which was found in Refs. [270, 271] to be well approximated by

M(r) = M200

log
(

1 + r
r0

)
− r

r+r0

log (1 + c200)− c200
1+c200

, (4.37)

with parametersM200, r0, and c200 determined therein. Thus, we see that the mass grows
slower than linearly with the radius, such that the Vainshtein radius grows slower than
r1/3. Starting inside the Vainshtein sphere and increasing r, one is therefore bound to
leave it at some radius determined by the spin-2 mass mg, and the reduction sets in.
With this observation, we conclude our discussion of galaxy cluster lensing and turn to
the discussion of galaxy rotation curves.

4.3 Galaxy rotation curves

Since the early days of astronomy, the dynamics of galaxies have been used to infer the
macroscopic properties of DM. In this section, we discuss how these dynamics are modified
in the bigravity framework. In doing so we follow Ref. [249], where the authors studied
the galaxy ESO138-G014 both with a DM halo and without one, instead using the MOND
paradigm. There it is found that MOND provides a worse fit than the DM halo models.
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4.3.1 Components of a spiral galaxy

Spiral galaxies, such as the Milky Way, are usually understood to be composed of three
distinct matter components: a gaseous cloud consisting mostly of hydrogen, a stellar disk,
and a DM halo. For each class of matter one assumes a separate density profile, which,
by virtue of the linear Poisson equations (4.1) and (4.5), can be added linearly to obtain
the total mass density. While some galaxies also exhibit a so-called bulge, a spherical
region of stars near the centre, we focus here on examples that are (mostly) devoid of
such bulges. Most of the galaxies we consider are so-called low surface brightness (LSB)
galaxies which, as the name suggests, have a low light emission, and are thus assumed
to be DM dominated [273], making them ideal laboratories to explore the properties
of DM on galactic scales. In order to draw conclusions for the mass of a galaxy from
its light emission, it is assumed that the stellar mass is proportional to the brightness,
where the proportionality factor is given by the mass-to-light ratio, which is treated as
a free parameter in our study. We emphasise that the present analysis is merely a first
step towards a comprehensive understanding of the phenomena bigravity would induce
in galaxies.
The gas component is modelled according to the hydrogen 21cm line emission, and is

assumed to have an exponentially decreasing surface density,

Σ(r) = Σ0e
−r/r0 ⇒ Mgas(r) = LΣ0 ×

∫ r

0
dr′Σ(r′) = LΣ0

(
r0 − (r + r0)e−r/r0

)
,

(4.38)
with the mass-to-light ratio L. The radius r0, which characterises the size of the gaseous
cloud, is used as an input parameter for the stellar disk, whose mass distribution reads [274,
275]

Mdisk(x) = 0.5M0
D(3.2x)3(I0K0 − I1K1), (4.39)

with x ≡ r/Ropt and Ropt ≡ 3.2 r0. The modified Bessel functions I0/1 and K0/1 are
evaluated at 1.6x, respectively. Notice that assuming an axisymmetric mass density
instead of a spherically symmetric mass density leads to some difficulties; most notably,
we cannot simply integrate the potential analytically for most cases. We discuss this issue
in Appendix C.1, but remark here that the the outcome is rather insensitive to a change
in the procedure.
Finally, we include a DM halo, taken to have a density profile as proposed by Navarro,

Frenk, and White (NFW) in Ref. [244],

ρNFW(r) =
M0

DM
r (r + rh)2

⇒ MDM(r) = M0
DM

[
log

(
1 +

r

rh

)
− r

r + rh

]
, (4.40)

with the free parameters M0
DM and rh.

We emphasise once again that the relation v2(r) = GNM(r)/r does not hold in general.
In order to obtain consistent results, we have to employ Eq. (4.7) wherever possible.
Unfortunately, the resulting expressions are not very compact and thus not shown here.
The reader interested in the full expressions for the velocities v(r) for the individual
components is referred to Appendix C.1.
Having fixed the characteristic radius r0 from the HI emission, we are left with a total
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of five free parameters (per galaxy) to fit the rotation curve data. Turning on bigravity
adds another three parameters to this, yielding an eight-dimensional parameter space. It
is certainly not impossible but also not very insightful at this point to perform a global
fit of the parameter space. This would require a maximisation of the likelihood as a
function of these eight parameters, cf. Appendix B.2. Here, we are only interested in a
first picture of the compatibility of bigravity with the data, which for our purposes can be
parametrised by the mass parameter mg and the mixing angle θ. Therefore, we choose a
hybrid approach in which we compute for a given pair of values (mg, θ) the best fit to the
data via a least squares algorithm. This approach also makes sense from a physical point
of view: While the masses and characteristic radii of the galactic matter components are
properties of that individual system, the values of mg and θ would be considered natural
constants, if Nature was to be described bimetrically. Therefore, we believe that it is
justified to treat these sets of parameters on different footings.8 Let us now exemplify
this approach for a particular galaxy.

4.3.2 In-depth fitting of a rotation curve

Now that we have a model of a spiral galaxy, let us consider an example to illustrate
our procedure. To this end we use data of the spiral galaxy ESO138-G014, located at
a distance of 18.57 Mpc [276, 277]. As stated in Ref. [249], this galaxy has a number of
favourable properties that make it an ideal example: HI brightness measurements over
the entire visible disk, no significant bulge component, large number of data points with
small errors, and finally the fact that its distance is well determined.
We assume that the HI-emission brightness of the galaxy is directly proportional to the

mass of the gaseous component, and therefore, this fit is easily obtained, cf. Fig. 4.5a.
In order to perform the fit, we utilise a least-squares routine of the Python SciPy library.
Thereby, we find for the gas component that MHI(20 kpc) = 6.4 · 109M�, in concordance
with Ref. [249].
Disregarding at first the modifications induced by the presence of a massive spin-2

field, we obtain a fit to the observed velocities under the GR hypothesis. This is shown in
Fig. 4.5b, where one can observe two important features: One is the well-known decrease
of the visible matter components’ contribution (green, dotted line labelled ‘disk+gas’).
This is to be expected as towards the edge of a galaxy the mass is approximately constant,
M(r > r0) = const, which by virtue of Eq. (4.4) leads to v(r > r0) ∼ 1/

√
r. This

behaviour needs to be counteracted by a DM halo, which dominates the mass of the
galaxy, constituting the second important observation. The DM dominance is evident
from the dashed, magenta curve in Fig. 4.5b.
Using the χ2 estimator introduced in Appendix B.2, we can repeat this procedure for

each point on a grid in the (mg, θ) plane. What we obtain is summarised in Fig. 4.6. In
the left panel of this figure, we show in red the region that is excluded at the 95% C.L.,
while the red hexagon indicates the point in the (mg, θ) plane which yields the best fit.
The velocity profile obtained from this set of model parameters is shown in Fig. 4.5c.

8A future survey might want to improve on this, and we refer the inclined reader to Ref. [259], where this
approach was chosen. However, another simplification was made in that reference by assuming the
modification of the potential to occur exclusively in the dark sector. At the same time no Vainshtein
effect was considered.
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(b) GR, θ = 0
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(c) (mg, θ,∆r/rV ) = (1.4 · 10−30 eV, 0.7, 0.5)
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(d) (mg, θ,∆r/rV ) = (2 · 10−27 eV, 1.2, 0.04)
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(e) (mg, θ,∆r/rV ) = (2 · 10−29 eV, 1.0, 0.4)

Figure 4.5.: Rotation curve of ESO138-G014 in GR and bigravity. Top: Fit to the gas mass of
ESO138-G014. The total mass contained in the fiducial volume is MHI(20 kpc) = 6.4 · 109M�,
as found in Ref. [249]. Centre: Panel (b) shows the GR fit to the data with error bars, and the
three components making up the galaxy (χ2

0 = 26). Panel (c): best fitting point found in our
analysis for which ∆χ2 ≡ (χ2

0−χ2) = 4.3. This corresponds to a mild 1.5σ improvement. Bottom:
Rotation curves fitted with lowest possible DM mass fraction (d) and no DM component (e). We
find ∆χ2 = 0.7 and ∆χ2 = −6.2, respectively. Therefore, the bigravity without DM scenario is
excluded at the 95% C.L., while the minimal DM scenario yields a fit of equal quality than the
GR fit to the data. Figures Adapted from Ref. [4].
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Figure 4.6.: Left : Parameter scan for the bigravity parameters (mg, θ). The best fit point is
marked in red, while the parameter point with the least DM content is marked in orange. Right :
Mass ratioMDM/Mtot(20 kpc) with the central region of the galaxy. Figures adapted from Ref. [4].

We may also want to ask if the amount of DM needed to fit the rotation curve is
reduced compared to GR. To this end we need to quantify the amount of DM contained
in the galaxy. This is in principle not a simple question to answer because we can only
infer the DM mass distribution from the visible part of the galaxy. For our purposes it
suffices to consider the ratio MDM/Mtot(20 kpc), i.e. the amount of DM mass relative to
the total mass inside a fiducial volume bounded by the radius r = 20 kpc. This should
not be confused with the total DM mass, which could be much larger. This is shown in
Fig. 4.6b, and we see that a significant reduction of the DM mass is feasible for a set of
parameters that are not ruled out, cf. the orange hexagon.
For the best fit point, we observe that the DM halo mass is slightly reduced compared

to the GR fit, while the χ2 is slightly improved compared to GR thanks to the Vainshtein
mechanism which sets in towards the outer edge of the galaxy, allowing the model to
better fit certain features in the data. In contrast, the orange hexagon in Fig. 4.6b marks
the parameter values which minimise the DM mass needed to fit the rotation curve. This
is shown in Fig. 4.5d, where the DM mass is reduced by a factor 15 compared to GR,
while simultaneously a fit as good as the GR fit is found (χ2

0 − χ2 = 0.7). Finally, we
can ask if the data can be fitted without any DM component. The result is depicted in
Fig. 4.5e and gives a worse fit than GR (χ2 − χ2

0 = −6.2).
In conclusion, we find that for sufficiently small mixing angles, we cannot exclude

any mass range as of yet. However, when the mixing angle becomes large, θ & π/4, a
stringent limit mg . 10−30···−29 eV can be deduced. The origin of this disagreement with
the data lies in the Yukawa-nature of the bigravity potential, induced by the presence of a
massive spin-2 field. Too large graviton masses induce a strong, exponential suppression
of the potential, schematically v2(r) ∼ M(r)/r(1 + mg r)e

−mg r. This, in turn, makes
it necessary to add more mass in the form of DM to the galaxy model, in disagreement
with the data at smaller distances from the centre, where the exponent approaches unity
and/or the Vainshtein screening sets in. For masses mg > 10−25 eV, it turns out that the
entire galaxy suffers from this exponential suppression, and one must allow for a larger
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Figure 4.7.: Mass profile of NGC1052-DF2 (left) and exclusion region (right) derived from our
analysis and the data in [278].

mass-to-light ratio in order to comply with the data. We have therefore excluded this
region, which critically depends on this choice, from Fig. 4.6a. Conversely, in the mass
rangemg � 10−30 eV the galaxy is contained in the Vainshtein sphere and no modification
arises, cf. Fig. 4.6.
These non-trivial results highlight the importance of the interplay between the mixing

of the two modes, the Vainshtein screening and the specific form of the modification of
the potential. This is confirmed by the study of a set of LSB galaxies, whose fits are
shown in Appendix C.2.

4.3.3 A galaxy lacking dark matter

Finally, we wish to discuss a rather recent observation. In March 2018, astronomers
announced the discovery of the galaxy NGC1052-DF2, whose dynamics suggest that it
contains very little or no DM, see Ref. [278]. Clearly, the absence of a significant DM
component in NGC1052-DF2 severely challenges models that try to replace the DM by
an altered gravitational law on galactic scales. In these models, e.g. MOND, one would
always expect to see an effect once the system under consideration is sufficiently massive
and large. We note that this is the subject of an ongoing discussion, cf. Refs. [279–281].
For the present study, we use the data from Ref. [278] to calculate the mass contained

in the galaxy. We then impose the 90% C.L. upper limit quoted in this reference, Mtot <
3.2·108M�, as illustrated in Fig. 4.7a. The red points are data inferred from the dynamics
of NGC1052-DF2 which were translated into a mass via the Newtonian relation v2(r) =
GNM(r)/r. One can fit the velocity data as before, and then translate back to the mass;
however, this time using the relation for the mixed Newton-Yukawa potential, Eq. (4.8).
This yields the grey curve which should remain below 3.2 · 108M� for all r. The example
shown is therefore ruled out! Finally, the right panel of Fig. 4.7 shows the exclusion
region obtained by repeating this procedure in the (mg, θ) plane. In conclusion, the
‘ultra-diffuse galaxy’ reported in Ref. [278] provides some constraints on a range of masses
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10−30 eV ≤ mg ≤ 10−27 eV and mixing angles θ > π/3 of the spin-2 fields. Nevertheless,
it is not able to rule out significant parts of the parameter space, as one might have
suspected.

4.4 Discussion

In the study of weak gravitational lensing of galaxy clusters and rotation curves of galaxies
in bigravity, we have found important constraints on the model’s parameter space. While
we have adapted a phenomenological approach to the Vainshtein mechanism, it turns
out that this is a crucial ingredient to the phenomenology of massive spin-2 fields on
astrophysical scales. Given that the radius rV , below which the predictions of GR are
restored, is a function of the enclosed mass, systems of very different scales can yield
similar constraints on the spin-2 mass. For example, we have studied the weak lensing
induced by a cluster with a total mass of the order of 1015M�, and the rotation curve of a
galaxy with a mass of roughly 1010M�. Both systems, although very different in size and
mass, give strong constraints of the mass parameter of approximately mg . 10−31...−30 eV
when the mixing angle θ is large, i.e. when gravity is mediated mostly by a massive spin-2
field. While our analysis method is rather rudimentary, and the details of the results are
subject to slight changes, the complementarity of systems of different size and mass is
the key result of this chapter. The results encourage further investigations, in which the
Vainshtein mechanism should be taken into account numerically in order to fully capture
its phenomenological consequences.



Chapter 5

Discussion and Outlook

Let us put the results of the previous chapters into perspective and highlight how future
work could tie in with them. First, we recapitulate the constraints that were obtained
and summarise them in a single summary plot, Fig. 5.1. Next, we discuss which other
bounds on massive spin-2 fields exist and which conceptual flaws such models yet have to
overcome. We give an outlook on future work, where we highlight possible connections
to current research in particle physics. Finally, we speculate about a possibility to find
an ultraviolet completion of bimetric gravity. From this, one can appreciate that the
bigravity framework is generic enough to represent a sizeable class of models that give
rise to massive spin-2 fields at low energies, while being sufficiently specific in order to
reduce the complexity of the available parameter space to the massive graviton’s mass mg

and the mixing angle with the massless graviton θ. This angle is defined such that θ = 0
yields GR, while θ = π/2 corresponds to a theory of gravity being mediated by a massive
spin-2 field alone. Hence, any intermediate value represents a theory where gravity is
mediated by an admixture of both massive and massless spin-2 fields. We remark that
this is a convenient parametrisation for the purposes of this thesis, because the relevant
constrains arise when the mixing angle is large. However, there is no a priori reason for
the ratio of the masses Mg̃/Mg = tan(θ) to be of order unity, such that a large part of
the parameter space with tan(θ)� 1 remains viable. Interestingly, this is also the regime
where most of the conceptual flaws of massive gravity can be evaded.

5.1 Discussion

In Fig. 5.1 we present the collection of constraints on the parameter space in the mg − θ
plane, which have been obtained in the course of this thesis. In the following we discuss
these bounds beginning with higher masses and then going towards lower masses.
First, we should remark that the grey, hatched region in Fig. 5.1 represents the con-

straint on the graviton mass derived from solar system tests, mg < 7.2 · 10−23 eV [216],
which has been known for quite some time. Nevertheless, we have decided to include it in
our summary plot, since it represents the strongest model-independent bound on the spin-
2 mass, relying exclusively on the planetary orbits in our solar system [205]. As explained
in Sec. 3.2, we have adapted it to the case of non-zero mixing asmg×sin(θ) < 7.2·10−23 eV.
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Figure 5.1.: Summary of the constrains derived in this work. We also indicate the best fit points
and a global best fit region obtained from a combination of all the data (∆χ2 ≡ χ2

0 − χ2 > 1;
light green region bounded by a dashed line). Furthermore, the contours of the DM mass of
the ESO138-G014 galaxy relative to the GR value (cf. Fig. 4.6b) are included to highlight which
regions tend to require less DM than under the GR hypothesis.

Moreover, the emergence of GW astronomy has sparked new ways to test GR in its
strong-field and relativistic regime, which previously could only be done indirectly, e.g. by
studying the energy-loss due to GW emission of pulsars, see e.g. Refs. [282–284]. This is
not only of conceptual interest, but as we can see from the green and magenta regions in
Fig. 5.1, it allows to probe parameter regions that are neither accessible by astrophysical
observations, nor solar system tests. As we discussed in Chapter 3, the presence of
multiple spin-2 fields leads to interference effects similar to the phenomenon of neutrino
oscillations. It is interesting to observe further that it is this class of constraints that
probes the lowest mixing angles, down to roughly θ ' 0.25. While the discussion of
decoherence did not yield any reliable bound at present, we have pointed out that the
observation of a GW echo could find an interpretation in this picture. We refer the reader
to Chapter 3 for more details.
Next, the red (‘high-res LSB’), orange (‘LSB’), and yellow (‘ESO138-G014’) regions

are found from the study of galaxy dynamics. Studying rotation curves of spiral galaxies
allows one to determine areas in parameter space where a massive spin-2 field disrupts
the galactic dynamics so violently, that no satisfactory fit to the data can be found due to
the strong exponential suppression of the Yukawa potential, cf. Sec. 4.3. Furthermore, the
recent detection of the galaxy NGC1052-DF2, which seems to be devoid of DM [278], can
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be employed to derive the grey shaded area at the upper centre of Fig. 5.1. Furthermore,
the bounds represented by the blue region are of extragalactic origin, namely due to weak
lensing of a galaxy cluster, and yield the strongest bound on the graviton mass obtained
in this work, mg < 5 · 10−31 eV for θ = π/2. This is discussed in Sec. 4.2 alongside the
derivation of the light deflection angle in bigravity.
Finally, we have restricted the mass to lie above 1.6 · 10−33 eV, the mass scale which

corresponds to the Hubble constant today, H0 ≈ 70 km
s Mpc [12]. While this is indeed a

strict, theoretical limit in the case where gravity is mediated by a massive field (θ = π/2),
this bound, dubbed Higuchi bound, is relaxed if the second tensor becomes dynamical,
cf. the discussion in Sec. 2.3.2. It is still included in Fig. 5.1 as a phenomenological bound,
as lower spin-2 masses would not have any consequences within the observable Universe.
An interesting conclusion can be drawn from Fig. 5.1: Naively, one would assume

a massive but light field to modify the force laws at a scale l ∼ 1/m, where m is its
mass. However, the Vainshtein mechanism adds yet another scale to the problem. Most
notably, this scale depends on the enclosed mass, and is thereby intrinsic to the physical
system itself. This allows one to probe a certain mass scale in the parameter space,
say 10−29 eV by physical systems of various sizes, e.g. galaxy dynamics and gravitational
lensing due to galaxy clusters, as is evident from the yellow and blue regions in Fig. 5.1.
This complementarity is an important means to derive robust bounds on the parameter
space and a key result of this thesis.
As an exercise for future work, we also include a best fit region. It should be emphasised

though that in this region the fits improve only slightly (χ2
0 − χ2 > 1), and we are not

led to the conclusion that GR should be rejected. Already at the 1σ level, we find that
the green region spans most of the remaining viable parameter space. Interestingly, while
the individual best fit points prefer lower masses, the combined data seem to exhibit a
preference for larger masses around 10−27 eV. This is also in agreement with the recent
investigations of Ref. [259], which found a preferred mass region around 10−25 eV from
the study of a set of galaxy rotation curves. This value, although some two orders of
magnitude larger than the best fit region found here, is by no means in conflict with
our analysis. Apart from the low significance we have found, there are also systematic
differences in the analyses, namely the inclusion of the Vainshtein mechanism, which
was not included there. Furthermore, we studied a modification of the gravitational
potential relating the strength of the Newton and Yukawa forces via the mixing angle θ
[cf. Eq. (4.8)], instead of a generic, dark sector modification only. We believe that these
results should be understood as a motivation to conduct further research in this direction,
refine the analysis method, and include more data samples. An interesting observation is
that the best fit region seems to require less DM mass than the GR hypothesis (θ → 0)
indicated by the dash-dotted contour lines.
A final question we would like to address is how far the grey, hatched region in Fig. 5.1

extends towards the right. Laboratory experiments that use a torsion balance to test
gravitational interactions suggest that gravity follows the laws of GR on scales as low as
85µm, or energy scales up to approximately 10 meV [285]. At the same time, the bound
becomes weaker as the Yukawa potential’s prefactor is decreased [285] (in our language
the mixing angle θ → 0). This tells us that above 10−2 eV, no significant bounds exist
and we enter a viable, heavy spin-2 regime for mg & 10 meV. However, the exact shape
of the exclusion region is not known for bigravity. In fact, it has been argued that for a
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mass mg & 1 TeV the heavy spin-2 state could constitute a weakly interacting massive
particle (WIMP)-type DM candidate, if the mixing is very small in order to be stable
against decay [286–288]. This interesting idea remains phenomenologically viable in the
context of our survey, as it does not affect gravity on (extra-)galactic scales.

5.1.1 Other graviton mass bounds

While we have considered a number of constraints on massive spin-2 fields here, the list
of available bounds is clearly not exhausted, see Ref. [76] for a compilation of various
bounds. For the case of gravity being mediated by a massive spin-2 field alone (i.e. dRGT
gravity), very strong constraints apply, most notably by gravitational lensing, mg <
6 · 10−32 eV [272]. However, we have seen that lowering the mixing between a massive
spin-2 field and the massless mediator of gravity, the bounds can be evaded. This is also
true for the solar system tests mg < 7.2 · 10−23 eV [216], and pulsar timing constraints
mg < 7.6 · 10−20 eV [289], the latter of which have not been included in this work.
Furthermore, CMB B-mode polarisations, once measured, would display a plateau at

low multipoles, ` . 100, with a high sensitivity to the spin-2 mass [290, 291]. Thus, a
deviation from the GR prediction could be seen as a smoking gun for a massive spin-
2 field, or would yield strong constraints of the order mg ∼ 10−30 eV [290]. See also
Refs. [292–295] for related work in bigravity and beyond. Complementary to this, a peak
in the stochastic GW background would be expected in this case, as was studied for a
generic time-varying spin-2 mass in Refs. [187, 291].
Lastly, it should be mentioned that many theories of modified gravity predict GW prop-

agation speeds different from the speed of light. In such theories the cosmological back-
ground solution acts as a diffractive medium [296]. This is different in the present setting,
where the background medium is such that at late times we obtain c̃ = 1, cf. Sec. 2.3.2.
Here, the only modification is the dispersion relation of the massive mode that propagates
and mixes with the massless mode. Theories with such an effective background medium
do not easily withstand the joint observation of GW170817 and GRB170817A [297], a
short gamma-ray burst that could be associated with the merger of a NS binary system,
which led to the former GW signal [298]. As discussed at length in Refs. [299–302], this
renders many such models non-viable under the assumption of simultaneous or delayed
emission of GWs and their electromagnetic counterpart. For a modified dispersion rela-
tion, these observations imply a mass bound, which is similar to, but independent of the
solar system bound, mg < 1 · 10−22 eV [303].
We have summarised the existing and presently obtained bounds in Tab. 5.1. While

solar system tests clearly give the least model dependent bound, it is quite remarkable to
observe that our bound for the graviton mass at maximal mixing (θ = π/4) derived from
oscillations of GWs is very competitive highlighting once more the importance of GW
astronomy. Furthermore, this bound is due to a modification of the propagation of GWs
and therefore an important complementarity test, as a force mediated by an admixture
of a massless and a massive spin-2 field is expected to display both a modified potential,
and a modified dispersion relation. In this sense, the projected bounds from the CMB
B-modes would constitute an important cross-check for the bounds derived from weak
lensing and rotation curves.
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Yukawa potential

mg [eV] description & comments references

7.2 · 10−23 solar system tests (Mercury) [205, 216]
6 · 10−32 weak lensing of a cluster at redshift z = 1.2 [272]
5 · 10−31 weak lensing of a cluster at z = 0.44 (θ = π/2) Sec. 4.2.4
3 · 10−30 ESO138-G014 rotation curve (θ = π/2) Sec. 4.3.2
5 · 10−30 NGC1052-DF (galaxy without DM; θ = π/2) Sec. 4.3.3
4 · 10−27 LSB galaxies (θ = π/2) App. C.2

Modified propagation

mg [eV] description & comments references

7.7 · 10−23 GW170104 with a modified dispersion relation [58, 205]
1 · 10−22 coincidence of GW170817 and GRB170817A [303]
7.6 · 10−20 pulsar timing (PSR B1913+16 & PSR B1534+12) [289]
6 · 10−23 GW oscillations of GW150914 (max. mixing: θ = π/4) Sec. 3.2
10−30 B-mode polarisation in the CMB [290]
10−26 104 . . . 107M� binary merger (eLISA) [205]
10−23 pulsar timing array (100 ns accuracy, 10 yr observation) [304]
10−20 combined gamma ray and GW Supernova observation [305]

Table 5.1.: Summary of existing upper graviton mass bounds (boldface) and some projected
constraints (italic) in comparison to our work. If not stated otherwise, these apply to the case of
massive gravity (θ = π/2). For a more exhaustive list see Ref. [76].

5.1.2 Persisting issues of massive gravity

We have already commented on some of the conceptual questions that remain to be
clarified in the context of massive spin-2 fields, cf. Sec. 2.3.2. Most of these issues
arise in the context of cosmology, such as the Higuchi instability, which can be remedied
by considering the bimetric setup, as was done here. Furthermore, stable cosmological
solutions seem to exist only for fine-tuned initial condition, as pointed out in Ref. [184].
Further, the scale Λ3 = (m2

gMPl)
1/3 in Eq. (2.21), which characterises the onset of

strong coupling, can be very low. At the same time it is indispensable to the emergence
of the Vainshtein regime, as we discussed in Chapter 2. While some authors have used
this to find lower bounds on the spin-2 mass from the validity of the effective field theory,
see e.g. [306–308], others pointed out that this scale is not to be understood as a cut-off
limiting the theory’s validity, but merely a strong coupling scale, above which perturbation
theory breaks down [309–312]. Whether the two coincide or not is then a question of the
nature of the high-energy completion of the effective theory, see Sec. 10 of Ref. [53],
which contains a discussion of these and related questions. This issue, too, can be cured
by considering the bimetric setup close to GR. There, the strong coupling scale is found
to be Λ3/ tan1/3(θ), which can be made large by taking the θ → 0 limit [168].
Finally, some authors have raised the concern that the theory might be acausal, because
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it, in principle, admits superluminal propagation [313–318]. However, it is not clear which
type of velocity is considered, and if, indeed, information is propagating superluminally.
If this were the case, one could construct closed time-like curves in violation of causality.
However, it has been shown that local closed time-like curves cannot be constructed in
the perturbative regime [319], while the strong coupling regime is believed to restore GR,
and that some of the constructions relied on unphysical backgrounds [320]. We remark
that in a bimetric framework, the null surfaces of the hidden sector could be space-like
w.r.t. the physical metric g. However, these superluminalities w.r.t. the g light cone do
not necessarily imply acausality, if the field equations allow a well-posed initial value
problem [321], see also Ref. [322] (note especially Figs. 1 and 2 of this reference). Of
course, if acausalities do arise in the theory, its viability is strongly challenged, but as of
writing of this manuscript no conclusive verdict has been reached. The reader is referred
to Sec. 10.6 of Ref. [53] for a thorough confrontation of arguments.
In conclusion, we see that while some issues yet need to be resolved, many conceptual

obstacles can be overcome by giving dynamics to the hidden sector tensor field. This
observation was our initial motivation to study a bimetric setup in favour of the dRGT
framework, which can be obtained as a limit of bigravity.

5.2 Outlook

This work, in accord with most of the literature, has found that the Yukawa-type modi-
fications of the gravitational law on galactic scales is not apt to render a DM component
obsolete. Therefore, it is of great importance to investigate how particle DM could be
realised in bigravity. This is, indeed, a very active field of research, and the proposed mod-
els range from very light spin-2 DM candidates considered in [323, 324], via intermediate
masses [325–328], to the aforementioned TeV-scale models [286–288].

Instead of considering spin-2 DM, one could speculate about a hidden matter sector
coupling exclusively to the hidden sector tensor as its metric. This would allow one to
construct a model of ordinary particle DM along the lines of WIMPs, and at the same
time evade the notorious hierarchy problem of SM extensions that involve heavy particles.
Recently, there has been some interest in particle DMmodels, which couple to the SM only
via their gravitational interactions, see e.g. Ref. [329]. While it is certainly no necessity
to incorporate such a setup into a bimetric framework, this could have some interesting
consequences, both for the DM phenomenology and possibly improve the stability of the
cosmic evolution [171]. Furthermore, such a setting would immediately follow from our
approach to the action from a discretised extra dimension, as outlined in Chapter 2.
Lastly, let us speculate about possible high-energy extensions of bigravity and related

theories. Continuous, periodic extra dimensions give rise to an infinite tower of massive
excitations, dubbed the Kaluza-Klein tower [330, 331]. It was shown in Ref. [113], that
the deconstruction of an extra space-like dimension is equivalent to a truncation of that
tower at a given order. Therefore, we might think of bi- or multi-metric theories simply as
an effective field theory of models that introduce compact extra dimensions. Moreover, it
is a well-established idea to restrict matter to a slice of the higher-dimensional space-time,
a so-called brane, in order for the extra dimension to be large. Effectively this is done via
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a delta-function, see e.g. Refs. [31–35],

S =

∫
d4x

∫
dy

(√
−detG

M3
5

2
R(5)
g +

√
−det g δ(y)LSM

)
, (5.1)

where G is the 5D metric and g its physical d = 4 components. This is interesting because
in this setting the 4D Planck mass emerges from the higher dimensional Planck mass, say
in d = 5, as M2

Pl = M3
5 × `, where ` is the ‘volume’ of the extra dimension. In Eq. (2.48),

we had found that ` = m−1. Thus, a large volume, or small m, can be used to explain the
weakness of gravity compared to the other known forces in Nature. While a dynamical
mechanism to stabilise the matter brane by means of a bulk scalar field is known in
these settings [332], it is found that its backreaction onto gravity is negligible [333].
Interestingly, the low-energy phenomenology of such frameworks is similar to what was
found here, cf. Refs. [32, 334]. To dynamically discretise the entire action including
the curvature, one would have to find a way to let δ(y) emerge dynamically and have
it react back onto gravity. This could be done, e.g. via an approximation of the kind
δε(y) ≡ 1

εe
−y2/(2ε), which approximates δ(y) as ε → 0. If a mechanism can be conceived

in which such a term emerges from the 5D action, e.g. from the determinant, and where
one could think of ε as time dependent or depending on a (bulk) field, the action would
be dynamically deconstructed at late times. Whether such a mechanism exists or not, is
unknown to us, and we leave this for future work.1

A final remark we would like to make is a possible connection of conformal gravity to
bimetric gravity [335]. Interestingly, the former is found to propagate six DOF (cf. foot-
note 5 of Ref. [336]), which can be thought of as the massless and massive spin-2 fields
of linearised bimetric theory with a non-propagating scalar mode – a phenomenon known
as partial masslessness [337]. While conformal gravity can address the issue of the non-
renormalisabilty of GR, it turns out that the massive mode is tachyonic [336]. Conversely,
in a linearised theory one can decouple the helicity-0 mode on a de Sitter background by
saturating the Higuchi bound (2.96), m2

g(H
2) = 2H2 [335]. This is interesting because it

relates the CC to the mass scale which turns out to be protected by a symmetry in this
limit, and can thus be as small as observed. To date, it is unknown if one can construct
a non-linear theory that keeps this scalar mode non-dynamical and cure the tachyonic
states in conformal gravity, as discussed at length in the reviews [53, 54].

1I would like to thank Kevin Max for many interesting discussions about this mechanism and acknowl-
edge contributions to attempts at its implementation.





Chapter 6

Conclusions

In this work we examined the phenomenological implications of massive spin-2 fields
present in addition to the massless spin-2 field predicted in general relativity (GR). We
have taken a point of view inspired by particle physics, where the standard model of par-
ticle physics (SM) successfully describes most interactions observed in experiments, but
suffers from some conceptual and observational shortcomings such as non-zero neutrino
masses, the identity of dark matter (DM), late-time acceleration, and the gauge hierarchy
problem. In addressing one or several of these lapses, phenomenologists are challenged to
bring these extensions of the SM into agreement with observations, i.e. evade experimental
bounds arising from the non-observation of new physics.
In this very spirit we have considered bimetric gravity, or simply bigravity, a framework

which in the present form dates back to the years 2010/11 and which describes precisely
the above: two interacting spin-2 fields, one massive and one massless. While the inter-
action term is chosen to comply with consistency criteria – also at the non-linear level –
it induces very interesting phenomenological effects, both at the linear level and beyond:

• Cosmological solutions encompass late time acceleration if the mass of the heavy
spin-2 field is of the order of the Hubble rate today. Such small values have been
found to be technically natural as they do not suffer from large quantum corrections.

• If the mass of the heavy spin-2 field is some ten orders of magnitude larger than
the Hubble rate, it presents an interesting alternative to light scalar or vector DM
models.

• However, the mass might even be allocated in the TeV scale, which allows one to
construct a DM candidate along the lines of weakly interacting massive particles
(WIMPs).

• Alternatively, it naturally allows the introduction and gravitational decoupling of
a hidden matter sector, thereby evading the notorious hierarchy problem of many
models beyond the SM.

These rather favourable features should be contrasted with some of the persisting issues
that remain to be addressed. Among them is the question of causality, which arises
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because the framework seems to allow parameter choices that induce superluminal prop-
agation. However, one might object that the SM allows a scalar potential that is un-
bounded from below if the Higgs self-coupling were negative. Clearly, Nature does not
choose such unphysical parameters. Furthermore, the limit where the hidden sector ten-
sor field becomes non-dynamical, cosmological solutions no longer admit solutions that
entail late-time acceleration since new tachyonic instabilities arise. This is, in fact, reme-
died by giving dynamics to the second tensor field, as we have assumed throughout the
present manuscript. Nevertheless, cosmological perturbations appear to generally induce
non-perturbative behaviour, either at late or at early times in cosmic history. While the
former is, of course, ruled out, the latter option is an interesting observation that needs
further attention as it could seed and/or affect structure formation, or the formation of
primordial black holes. These, in turn, could serve as the observed DM in the Universe,
or at least a fraction of it. Another open question is the issue of matter couplings. We
have mostly evaded this discussion by an extra-dimensional top-down derivation of the
action that immediately leads to a diagonal matter coupling, i.e. each matter Lagrangian
couples to its own metric tensor. However, choosing instead a bottom-up approach, other
matter couplings appear to be consistent, while others render the model unstable. This
issue remains unsettled and the results of the present manuscript have no implications
on this (maybe somewhat philosophical) question. In the end, this issue can only be set-
tled by finding appropriate ultraviolet completions and testing them against each other
phenomenologically, ruling out all of them or singling out a candidate theory.
The recent advent of gravitational wave (GW) astronomy has enabled us to discuss in

detail how to probe the model via the modified propagation of GWs and allowed us to
constrain the available parameter space of the model. Using these and existing bounds
from solar system tests gives an upper bound for the viability of the low-mass regime con-
sidered here. Moreover, we have discussed how the distribution of merging black hole and
neutron star binary systems could be affected by the modified propagation in the regime
where the mass of the spin-2 field is sufficiently large for the wave packets to decohere such
that any interference pattern is lost. At present, this does not yield reliable constraints on
the parameter space. In the future, however, this could prove to be a valuable handle on
the viability of the model. In an attempt to study the implications of the non-linear na-
ture of the interactions present in this setting, we have phenomenologically implemented
the Vainshtein screening mechanism, which restores GR predictions inside a sphere of a
certain radius depending on the spin-2 mass and the enclosed mass distribution. This
has interesting implications for the predictions on gravitational lensing, because the light
deflection angle changes, and the gravitational interactions inside galaxies and clusters of
galaxies. In our analysis, we have not found any preference for the bigravity framework
over GR to better describe the data on galactic or extragalactic scales. Nevertheless, it
does allow to address some tentative anomalies in cluster mass estimates that appear to
systematically deviate depending on the assumptions. It is found that bigravity would
induce precisely the required bias, lowering one mass estimate, while increasing the other.
Nevertheless, this could very well be explained by the departure from the equilibrium
assumptions that are made. However, at present, the data do not allow for a conclusive
statement. Finally, we have also made contact with recent observations in astronomy by
considering a galaxy whose discovery was reported in March 2018, and which appears to
be devoid of DM. This provides additional constraints on the parameter space, as does
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the study of other galaxies which do contain significant amounts of DM.
Our findings are summarised in Fig. 5.1, which contains all relevant constraints we

have derived in Chapters 3 and 4. Furthermore, it states a lower bound on the graviton
mass, which should be understood as a phenomenological bound, given that below it,
no observable effects are expected. In concordance with the literature, we find that
gravity with only one massive mediator is highly constrained and only masses well below
10−30 eV are allowed. The situation changes dramatically when relaxing this assumption
and introducing on top of the standard, massless graviton a massive graviton, allowing
both to mix. While the region above 10−22 eV remains to be excluded due to solar
system tests and our analysis of GW oscillations, a vast region of the parameter space
remains to be tested. In some regions, certain tentative anomalies can be explained,
and a region, where the combined data yields a better fit emerges – albeit at very low
statistical significance. It should be highlighted that this, by no means, complies with
Occam’s razor due to the many complications the description necessitates. Therefore,
the standard model of cosmology (ΛCDM) and GR clearly survive our analyses as the
preferred description of Nature on large scales. Finally, we wish to remark that while
our analyses provide a first insight into the phenomenology of massive spin-2 extensions
of ΛCDM, there remains plenty of work, both in theory and phenomenology, for future
studies as we have highlighted in Chapter 5.
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Appendix A

Gravitational Field Equations in
Bigravity

This appendix is dedicated to the detailed study of the field equations, similar to the
Einstein equations in GR. Initially, we will present the exact form of these equations
in such a manner, that enables the reader to directly implement these in a concrete
calculation. This requires the derivation of the interaction terms V (i)(g)

µ

ν and V (i)(g̃)
µ

ν

from the action, which was given in Eq. (2.58). In a next step, we show an example how to
solve these equations, stating from the ansatz (2.83). Finally, we discuss the linearisation
of the field equations around an asymptotically flat, cosmological background. This will
allow us to assess that, indeed, bigravity propagates seven DOF, and moreover will be
the basis for our discussion in Chapter 3.

A.1 Field equations in bigravity

Let us derive the analogue of Einstein’s field equations for the theory describing the
interactions of two tensor fields g and g̃, starting from the action (2.58):

Sbi =
M2
g

2

∫
d4x
√
−det g R(g) +

M2
g̃

2

∫
d4x
√
−det g̃ R̃(g̃)−

−m2M2
eff

∫
d4x
√
−det g

4∑
n=0

βnen(
√
g−1g̃) +

∫
d4x
√
−det g Lmatter .

(A.1)

The en are symmetric polynomials of the eigenvalues of the matrix X =
√
g−1g̃, i.e. they

are defined via
en(X) ≡

∑
i1<i2<...<in

λi1λi2 · · ·λin . (A.2)
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A more convenient way to express these for most practical purposes (avoiding the explicit
calculation of the eigenvalues) reads

e0(X) = 1 , e1(X) = [X] , e2(X) =
1

2

(
[X]2 −

[
X2
])
,

e3(X) =
1

6

(
[X]3 − 3 [X]

[
X2
]

+ 2
[
X3
])
, e4(X) = det X ,

(A.3)

where we have used the notation [·] ≡ tr (·). The variation of the interaction potentials in
the action (A.1) w.r.t. g will give us the interaction terms that enter the field equations
of bigravity (2.60). Let us outline how these expressions are obtained from the action,
Eq. (2.58). To this end we compute

δg
√
−det g = − 1

2
√−det g

δg
√
−det g =

1

2
√−det g

det g tr
(
g−1δg

)
= −1

2

√
det g gµν δg

µν , (A.4)

where we have invoked Jacobi’s rule for the differential of a determinant, d detA =
detAtr

(
A−1dA

)
, and the identity δgg−1 = −g−1δgg−1, which follows from δg

(
g−1g

)
= 0.

Moreover we need to vary the trace of the matrix X =
√
g−1g̃:

δgtr
(√

g−1g̃
)

= tr
(
δg
√
g−1g̃

)
=

1

2
tr

((√
g−1g̃

)−1
δg
(
g−1g̃

))
= −1

2
tr

((√
g−1g̃

)−1
g−1δg

(
g−1g̃

))
= −1

2
tr
(√

g−1g̃ g−1δg
)

=
1

2
Xµα gµν δg

αν , (A.5)

where we have used the linearity of the trace and the variation as a differential opera-
tion, the cyclicity of the trace, and the above identities. We are now ready to vary the
polynomials en(X) w.r.t. g. As an example, we compute the variation δg

√
det g e2(X):(

δg
√

det g
)
e2(X) +

1

2

√
det g δg

(
tr (X)2 − tr

(
X2
))

= −1

2

√
det g e2(X) gµνδg

µν +
√

det g tr (X) δgtr (X)− 1

2

√
det g δgtr

(
g−1g̃

)
= −1

2

√
det g

{
e2(X) gµν δg

µν − tr (X) Xµα gµν δg
µν − tr

([
g−1 δg g−1

]
g̃
)}

= −1

2

√
det g gµα

{
(X2)αν − tr (X) Xαν +

δαν
2

[
tr (X)2 − tr

(
X2
)]}

δgνµ , (A.6)
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where we used that X2 = g−1g̃ by definition. Dividing by the conventional 1
2

√−det g, we
arrive at

V (0)(g)µν = δµν , V (1)(g)µν = tr (X) δµν − Xµν ,

V (2)(g)µν =
(
X2
)µ
ν
− tr (X) Xµν +

δµν
2

[
tr (X)2 − tr

(
X2
)]
,

V (3)(g)µν =−
(
X3
)µ
ν

+ tr (X)
(
X2
)µ
ν
− 1

2

[
tr (X)2 − tr

(
X2
)]

Xµν+

+
δµν
6

[
tr (X)3 − 3 tr (X) tr

(
X2
)

+ 2 tr
(
X3
)]
.

(A.7)

In order to derive the corresponding expressions for the g̃ tensor, we need to vary the
action w.r.t. g̃. We observe that the variation of the

√−det g term no longer contributes,
such that the δαν terms in Eq. (A.7) must be dropped. Furthermore, the potentials
V (1,2,3,4)(g̃) will carry an additional minus sign, because we find that

δg̃ tr
(√

g−1g̃
)

= +
1

2
tr

((√
g−1g̃

)−1
g−1δg̃

)
= −1

2
Xµα g̃µν δg̃

αν , (A.8)

having used δg̃−1 = −g̃−1 δg̃ g̃−1. Therefore, one obtains after dividing by 1
2

√−det g̃,

V (1)(g̃)µν = Xµν , V (2)(g̃)µν = −
(
X2
)µ
ν

+ tr (X) Xµν ,

V (3)(g̃)µν =
(
X3
)µ
ν
− tr (X)

(
X2
)µ
ν

+
1

2

[
tr (X)2 − tr

(
X2
)]

Xµν ,

V (4)(g̃)µν = δµν ,

(A.9)

where indices are raised and lowered using g̃.
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A.2 Solving the bimetric field equations of a Schwarzschild-
type black hole

We can now apply these findings to a practical problem. In order not to obscure the
main message, we did not explicitly show the solution to the BH ansatz formulated in
Eq. (2.83),

gµνdxµdxν = −eν1(r)dt2 + eλ1(r)dr2 + r2dΩ2 , (A.10a)

g̃µνdxµdxν = −eν2(r)dt2 + eλ2(r)(r + rµ(r))′
2
dr2 + (r + rµ(r))2dΩ2 . (A.10b)

Will will now solve the resulting field equations, first in a linearised regime, and later
confirm under which circumstances this assumption is valid. As it turns out, some of the
linearity assumptions must be dropped when the radial coordinate becomes smaller than
a certain critical radius, i.e. the Vainshtein radius.

Linear regime. Let us first consider the linearised equations, which will be justified a
posteriori. To this end, we assume that the exponentials can be expanded in powers of λ
and ν; furthermore, let us assume that µ� 1. To obtain compact expressions, we define
α1 ≡ β1 + 2β2 + β3, α2 ≡ 3β1 + 3β2 + β3, and α3 ≡ β2 + 2β3, and set β4 = 0 for now. We
will return to discussing this assumption below. Plugging our ansatz into Eqs. (2.60), we
obtain the following set of linearised equations for the g-type functions:

λ1

r2
+
λ′1
r

= Λg +m2
g sin2(θ)

[
1

2
(λ2 − λ1) +

(
3µ+ rµ′

)]
, (A.11a)

λ1

r2
− ν ′1

r
= Λg +m2

g sin2(θ)

[
1

2
(ν2 − ν1) + 2µ

]
, (A.11b)

1

2

(
λ′1
r
− ν ′1

r
− ν ′′1

)
= Λg +m2

g sin2(θ)

[
1

2
(λ2 − λ1 + ν2 − ν1) +

(
2µ+ rµ′

)]
. (A.11c)

We have introduced the mass m2
g ≡ m2α1 and the cosmological constant Λg ≡ Λ +

m2α2 sin(θ)2 for the g metric. Analogously, we find for the g̃-type functions:

λ2

r2
+
λ′2
r

= Λf +m2
g cos2(θ)

[
1

2
(λ1 − λ2)−

(
3µ+ rµ′

)]
, (A.12a)

λ2

r2
− ν ′2

r
= Λf +m2

g cos2(θ)

[
1

2
(ν1 − ν2)− 2µ

]
, (A.12b)

1

2

(
λ′2
r
− ν ′2

r
− ν ′′2

)
= Λf +m2

g cos2(θ)

[
1

2
(λ1 + ν1 − λ2 − ν2)−

(
2µ+ rµ′

)]
, (A.12c)

with Λf = m2(α1 + α3) cos2(θ). In addition, the constraints (2.61) give

λ(−) − r

2
ν(−)′ = 0 , (A.13a)

λ(−)′ + ν(−)′ − 8µ′ − 2rµ′′ = 0 , (A.13b)
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abbreviating λ(−) ≡ λ1 − λ2 and ν(−) ≡ ν1 − ν2. Integrating Eqs. (A.13b) and (A.13a)
yields (

r3µ
)′

=
r

4

(
r2ν(−)

)′
+
C0 r

2

2
, (A.14)

which we use to simplify the expressions in square brackets in Eqs. (A.11a) and (A.12a):

∓ 1

2
λ(−)±

(
3µ+ rµ′

)
= ∓r

4
ν(−)′± 1

4r

(
2rν(−) + r2ν(−)′

)
± C0

2
= ±1

2
ν(−)± C0

2
. (A.15)

This allows us to combine the first lines of Eqs. (A.11, A.12) into a single differential
equation:

1

r2

(
rλ(−)

)′
=

1

r2

(
r2

2
ν(−)′

)′
=
m2
g

2
ν(−) , (A.16)

where we used the integration constant C0 to set

Λ +m2
(
α1C0/2 + sin2(θ)α2 − cos2(θ) (α1 + α3)

)
= 0 . (A.17)

Eq. (A.16) is solved by

ν(−)(r) =
C2

r
e−mg r ⇒ λ(−)(r) = −C2 [1 +mg r]

2r
e−mg r . (A.18)

Notice that we did not consider the unphysical exponentially growing type of solution.
The orthogonal linear combination to λ(−) is λ(+) ≡ cos(θ)2λ1 + sin2(θ)λ2, which obeys
the differential equation

1

r2

(
rλ(+)

)′
= cos(θ)2

[
Λ +m2 sin2(θ)(α1 + α2 + α3)

]
, (A.19)

and is easy to solve (Λeff ≡
[
Λ +m2 sin2(θ)(α1 + α2 + α3)

]
),

λ(+)(r) =
C1

r
+
r2

3
cos(θ)2Λeff ⇒ ν(+)(r) = −

[
C1

r
+
r2

3
cos(θ)2Λeff − C3

]
, (A.20)

for ν(+) ≡ cos(θ)2ν1 + sin2(θ)ν2. Going back to the original functions, let us summarise
the results:

ν1(r) =−
[
C1

r
+
r2

3
cos2(θ)Λeff

]
+ sin2(θ)

(
C2 e

−mg r

r

)
+ C3, (A.21a)

λ1(r) =
C1

r
+
r2

3
cos2(θ)Λeff − sin2(θ)

C2e
−mg r [1 +mg r]

2r
, (A.21b)

ν2(r) =−
[
C1

r
+
r2

3
cos2(θ)Λeff

]
− cos(θ)2

(
C2 e

−mg r

r

)
+ C3, (A.21c)

λ2(r) =
C1

r
+
r2

3
cos2(θ)Λeff + cos(θ)2C2 e

−mg r [1 +mg r]

2r
. (A.21d)
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By virtue of Eq. (A.14), we finally obtain

µ(r) =
C2 e

−mg r
[
1 +mg r +m2

g r
2
]

4m2
g r

3
+
m2
g C0

6m2
g

+
C4

r3
. (A.22)

As we had claimed earlier, this function blows up as C2
m2
g r

3 grows. Eventually, we will iden-
tify this with the onset of the Vainshtein screening and the restoration of (the Newtonian
limit of) GR. To arrive at this conclusion we must include non-linear effects.

The non-linear regime. The crossing into the region, where µ & 1 signals that our
approximations must be adopted. We could, of course, try to solve the full set of equations
at the fully non-linear level, as was done in Refs. [145, 146]. However, the purpose of this
section is to gain some physical insight into the solutions, and hence we make a minimal
change to our assumptions, by relaxing the requirement µ � 1. This yields a slightly
more complicated set of equations, now including non-linear terms in µ:

ν ′1(r) =
rS
r2
− 2

3
Λgr +

1

3
m2r sin2(θ)µ(r)

[
−3α1 + (α3 − α4)µ(r)2

]
, (A.23a)

λ1(r) =
rS
r

+
1

3
Λgr

2 +
1

3
m2r2 sin2(θ)µ(r)

[
3α1 + 3α4µ(r) + (α3 − α4)µ(r)2

]
, (A.23b)

ν ′2(r) = −
[

2

3
Λf r +m2r cos2(θ)µ(r)

(
α1 + 2α3 + 2α3µ(r) + (α3 − α4)µ(r)2

)]
×

× (r + rµ(r))′

(1 + µ(r))2
, (A.23c)

λ2(r) =

[
1

3
Λf r

2 +m2 cos2(θ)r2µ(r) (α3 + (α3 − α4)µ(r))

]
1

1 + µ(r)
, (A.23d)

while the independent constraint equation (2.61) gives

2 (r + rµ(r))′ (λ1(r)− λ2(r))

(r + rµ(r))′ ν ′1(r)− ν ′2(r)
= r

α1 + 2α4 µ(r) + (α3 − α4)µ(r)2

α1 + α4 µ(r)
. (A.24)

Here, we have defined α4 ≡ β2 + β3 and take β4 = 0. This last assumption is justified as
β4 can only influence the hidden sector directly, while the visible sector to which matter
couples, is insensitive to β4. We will comment on the effect of β4 6= 0 below. Following
Ref. [91], the integration constants have been fixed according to the matching to the
matter distribution with Schwarzschild radius rS ≡ 2GNM , where M is the total mass.
Combining Eqs. (A.23, A.24), one arrives at an algebraic equation for µ, which we do
not show explicitly. We highlight that the equation can always be solved if α3 = 0 and
α4 = −α1, which leads to µ = 1. In fact, Ref. [91] shows that any other branch of solution
with µ 6= 1 can be compensated for by a simple redefinition of the physical quantities rS
and Λ. The simple branch of solution (µ = 1) leads to the familiar result obtained in GR:
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ν1(r) = −λ1(r) = −rS
r
− r2

3
Λeff , (A.25a)

ν2(r) = −λ2(r) = −2

3
α1m

2r2 cos2(θ) . (A.25b)

A final step is the matching of both regimes by fixing the integration constants at r = rV ,
a procedure which yields

C1 = rS cos2(θ)

(
1 +

2

3
sin2(θ)

)
, C2 = −2 rS

Λ +m2α1 +m2 sin2(θ)(3α1 + α2)

3m2α1
,

C3 = − cos2(θ)m
√
α1C2, C4 = rS

5Λ + 3α1m
2 +m2 sin2(θ)(7α1 + 5α2)

6α2
1m

4
,

(A.26)
under the assumption that rV mg � 1. Notice that we have already assumed implicitly
that C2 ∼ rS , an assumption which is now justified by virtue of Eqs. (A.26) and (A.22).
We conclude this section by discussing the implications of non-zero β4. At the level of

the field equations, this amounts to a modification

Eqs. (A.12)→ Eqs. (A.12) +m2 cos2(θ)β4

[
1

2
(λ1 − λ2) +

1

2
(ν1 − ν2)−

(
3µ+ rµ′

)]
.

(A.27)
Subtracting these new Eqs. (A.12) from Eqs. (A.11) results in the same expression we
had in Eq. (A.18), if we choose the integration constant C0 appropriately. Finally, the
(+) labelled functions need to be modified as

ν̂(+) ≡ α1 + β4

α1
cos(θ)2ν1 + sin2(θ)ν2 , (A.28)

which in general will display both 1/r and Yukawa-like behaviour. More importantly, the
solutions approach Eqs. (A.20) in the limit where cos(θ)→ 0.
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A.3 Linearised interaction potentials in FLRW background

In order to derive the linearised EOM in bigravity, which allow us to deduce which
of the DOF are propagating, we need to linearise the interaction terms presented in
Appendix A.1. We consider the background solution (2.85) found in Sec. 2.3.2, but only
at late times where c̃ = 1 and y = y∗ = const (see Ref. [171] for a more general approach).
This will be the case relevant for the discussion in Chapter 3. The expansion parameter
is a small fluctuation around this background, where ηµν is the flat Minkowski metric and
ηµν its inverse [171],

gµν = a2(η)

(
ηµν +

hµν(η, ~x)

Mg

)
, gµν = a−2(η)

(
ηµν − hµν(η, ~x)

Mg

)
, (A.29a)

g̃µν = b2(η)

(
ηµν +

h̃µν(η, ~x)

Mg̃

)
, g̃µν = b−2(η)

(
ηµν − h̃µν(η, ~x)

Mg̃

)
, (A.29b)

where indices are raised and lowered w.r.t. η. and we defined the inverse perturbation
with an appropriate minus sign in order to ensure that gµαgαν = δµν to linear order.
Given that the interaction terms are functions of X, defined to satisfy

XµαXαν =
(
g−1g̃

)µ
ν
, (A.30)

we find that the naive expansion is a suitable choice:

Xµν =

√
b2

a2

[
δµν +

1

2

(
h̃µα(η, ~x)

Mg̃
ηαν − hαν(η, ~x)

Mg
ηµα

)]
, (A.31)

which satisfies Eq. (A.30) linearly. For later convenience let us define

uµν ≡
1

2

(
h̃µν(η, ~x)

Mg̃
− hµν(η, ~x)

Mg

)
. (A.32)

Let us now linearise the interaction terms (A.7):1

β1V
(1)(g)

µ

ν =β1 [tr (X) 1− X]µν = β1y [tr (1 + u) 1− (1 + u)]µν
=β1y [3 1 + tr (u) 1− u]µν , (A.33a)

β2V
(2)(g)

µ

ν =β2

[
X2 − tr (X) X +

1
2

(
tr (X)2 − tr

(
X2
))]µ

ν

=β2y
2

[
1 + 2u− (4 + tr (u))(1 + u)+

+
1
2

(
(4 + tr (u))2 − tr (1 + 2u)

) ]µ
ν

=β2y
2 [3 1 + 2tr (u) 1− 2u]µν , (A.33b)

1V (0) only yields a CC contribution.
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and after some algebra,

β3V
(3)(g)

µ

ν = . . . = β3y
3 [1 + tr (u) 1− u]µν , (A.33c)

where we used the notation y ≡ b/a. Notice that the mass term naturally gives rise to a
y-dependent CC Λ(y) = m2(β0 + 3β1 y + 3β2 y

2 + β3 y
3), even in the absence of a bare

CC ∼ β0.
For the corresponding g̃ equations, we make use of the following property of the inter-

action terms, which follows from Eq. (A.2) [48]:

det X en
(
X−1

)
= e4−n(X) , (A.34)

with
en
(
X−1) =

∑
i1<i2<...<in

1

λi1λi2 · · ·λin
. (A.35)

Thus, a more symmetric way to express the interactions in Eq. (2.60) is found to be [54]

Rµν −
1

2
gµνR+m2 sin2(θ)

3∑
n=0

βnV
(n)(X)µν =

1

M2
g

Tµν , (A.36a)

R̃µν −
1

2
g̃µνR̃+m2 cos2(θ)

3∑
n=0

β4−nV
(n)
(
X−1

)
µν

= 0 , (A.36b)

and we merely have to prepend a minus sign, and take into account a global factor y−4

relative to Eqs. (A.33). Omitting the CC, we end up with the following linearised set of
equations:

Eαβµν hαβ +
m2
g

2
a2 sin(θ)

[
sin(θ) (hµν − h ηµν)− cos(θ) (h̃µν − h̃ ηµν)

]
=
δTµν
Mg

,

(A.37a)

Eαβµν h̃αβ +
m2
g

2
a2y−2 cos(θ)

[
cos(θ) (h̃µν − h̃ ηµν)− sin(θ) (hµν − h ηµν)

]
= 0 , (A.37b)

where
m2
g ≡ m2(β1 y + 2β2 y

2 + β3 y
3) , (A.38)

in agreement with Refs. [54, 171, 202]. Further, we remark that we work with canonically
normalised fields. These equations can be diagonalised by means of an modified rotation,(

h

h̃

)
≡
(

cos(θ) −y2 sin(θ)
sin(θ) cos(θ)

)(
h(1)

h(2)

)
. (A.39)

This is a true rotation only in the case y = 1; albeit we can define the inverse transfor-
mation as

Ũ ≡
(

cos(θ) y2 sin(θ)
− sin(θ) cos(θ)

)
, (A.40)

such that UŨ = ŨU = cos2(θ) + y2 sin2(θ). This achieves precisely the sought after
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diagonalisation of the mass terms:

Eαβµν h(1)
µν =

cos(θ)

Mg
δTµν , (A.41a)

Eαβµν h(2)
µν + a2

m2
g

2y2

(
h(2)
µν − h(2) ηµν

)
=

sin(θ)

Mg
δTµν . (A.41b)

This set of equations shows that the theory propagates a massless and a massive spin-2
mode in a FLRW background. Together with our analysis of the BD mode in Sec. 2.2.3,
we conclude that the theory is healthy, up to the issues discussed in Chap. 5.
From Ref. [171], we can now infer the equations governing the tensor mode dynamics

in vacuum,

2h(1),TT
µν + 2H h′(1),TT

µν = 0 , (A.42a)

2h(2),TT
µν + 2H h′(2),TT

µν − a2(η)
m2
g

y2
h(2),TT
µν = 0 . (A.42b)

These equations are the starting point for our analysis of GW oscillations in Chapter 3.



Appendix B

Mathematical Appendix

In this appendix we summarise some of the more formal concepts we have made use
of during the course of this work, namely the calculus of differential forms, which is
introduced in the context of manifolds. Further, we discuss how to draw statistically
well-founded conclusions from a set of data points and a mathematical model which is
believed to describe the data. Lastly, we illustrate how to select a model, if two alternative
hypotheses are considered.

B.1 Differential geometry essentials

GR is just one example of a theory of gravitation formulated in the language of differential
geometry. However, as should become clear from this work, it is not the only one. The
study of any theory of gravity in terms of geometry requires the concept of a manifoldM.
In this appendix we set the stage for the discussions of Chapter 2, without attempting
to provide a mathematically rigorous introduction. For a detailed treatment we refer the
reader to Ref. [106], which we follow closely in this section.
An n-dimensional manifoldM is a set of points that locally looks like Euclidean space,

while the global structure of the manifold can be very different from Rn. This local
equivalence to Euclidean space is established in the following manner. Consider a point
p and an open subset p ∈ U ⊂M. If for each p ∈ M such a subset in combination with
a homeomorphic map ψ : U → ψ(U) ⊂ Rn exists, M is said to be locally Euclidean.
Conventionally, the pairs (U,ψ) are called charts and define coordinates in Rn by assining
to each point p ∈ U an n-tuple (x1, . . . , xn) in Rn. If the union of the subsets Ui spansM,
i.e.
⋃
i∈I Ui =M where I is a set of indices, the collection of charts establishes an atlas on

M. Furthermore, the transition functions φ ◦ ψ−1 allow us to change charts/coordinates
in the overlapping subsets of M, i.e. (U,ψ) and (V, φ) with U ∩ V 6= 0. If an atlas
exists, in which all pairs of overlapping charts define a differentiable transition function,
M is called a differentiable manifold. Differentiable manifolds are the foundation of
differentiable geometry and thereby GR.

Tangent and cotangent spaces. Consider a curve on a manifold, γ : [0, 1]→M. We
can geometrically define a tangent vector to that curve, by taking a derivative w.r.t. to
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the quantity that parametrises it, say t. Then, γ(0) = p ∈ M is a point on the manifold
and the tangent vector to γ in p is

v ≡ dγ

dt

∣∣∣∣
t=0

. (B.1)

The tangent space TpM is then defined in terms of the equivalence classes of tangent
vectors to all curves passing through p, where equivalence is established in Rn if two
curves α and β satisfy d

dt(ψ ◦ α)(0) = d
dt(ψ ◦ β)(0) for all charts (U,ψ) that contain p.

One can show that TpM is an n-dimensional vector space. It is customary to identify
the vector v with the derivative d

dt , which establishes the notion of vectors as differential
operators. This becomes more transparent when considering differentiable functions f on
M, whose directional derivative along γ in p:

∇γf(p) =
d(f ◦ γ)

dt
(0) ≡ v(f)

∣∣
p
. (B.2)

This leads to an equivalent definition of the tangent space, proof of which can be found
in Ref. [106]. Let us make contact with physics, where it is customary to express such
vectors in terms of generalised coordinates, e.g. induced by a chart ψ = (x1, x2, . . . xn),
as

v =
d

dt
=

dxµ

dt

∂

∂xµ
. (B.3)

This is a generalised coordinate expression in the sense that we display the coordinates,
but without having specified them. Thus, for a different coordinate chart, say ψ̃ =
(x̃1, x̃2, . . . x̃n), we have

v =
d

dt
=

dx̃µ

dt

∂

∂x̃µ
=

dx̃µ

dt

∂xν

∂x̃µ
∂

∂xν
. (B.4)

We read off that, under a change of coordinates, the components of the vector v transform
as

vµ ≡ dxµ

dt
= ṽν

∂xµ

∂x̃ν
, (B.5)

which follows from the chain rule and agrees with the notion of a vector transforming
contravariantly, i.e. with an upper index. In this spirit, we see that a canonical choice
for the basis of TpM is given by the derivatives w.r.t. to the coordinates themselves,
{∂1, ∂2, . . . , ∂n}, where ∂µ ≡ ∂

∂xµ .

Moreover, we will need to introduce the cotangent space T ∗pM, which is the vector
space dual to TpM, i.e. it is the space of maps w : TpM → R. To find a suitable
representation for the elements of the cotangent space, note that the differential dpf of
a function f :M→ R is the linear approximation of that function around p, f(p+ v) =
f(p) + dpf(v) + . . .. Thus,

dpf(v) =
d(f ◦ γ)

dt
(0) ≡ v(f)

∣∣
p
∈ R and df(∂µ) =

∂f

∂xµ
(B.6)

are the components of dpf . In coordinate language, we can see that the differentials of
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the coordinate functions themselves satisfy

dxµ(∂ν) =
∂xµ

∂xν
= δµν , (B.7)

such that in generalised coordinate language,

w(v) = wµdxµ(vν∂µ)
(B.7)
= wµv

µ , (B.8)

which is invariant under a change of coordinates, and shows that the components of w
transform covariantly,

wµ = w̃ν
∂x̃ν

∂xµ
, (B.9)

i.e. opposite to vectors. Furthermore, this means that (dx1, . . . .dxn) is a basis in T ∗pM:

w = wµdxµ . (B.10)

Finally, if the manifold is endowed with a metric, say a tensor g, one can define a scalar
product of vectors v1, v2

〈v1, v2〉 ≡ vµ1 gµνvν2 , (B.11)

which is independent of the choice of coordinates by virtue of the metric transforming
as a tensor of rank 2. The scalar product allows one to identify with each vector v, a
covector v̂ via

v̂ = 〈v, ·〉 . (B.12)

Using the definition of the scalar product, we see that this is what is referred to as lowering
an index with the metric:

v1, µv
µ
2 = v̂1(v2) = 〈v1, v2〉

(B.11)
= vµ1 gµνv

ν
2 , (B.13)

thus, v̂1, µ ≡ gµνvν1 . The generalisation to higher-rank tensors is straightforward.

Differential Forms. A useful generalisation of covectors are differential forms, which
are defined as multilinear maps ω : V ×V × . . . V → R, with the property that it vanishes
if two arguments are linearly dependent. Here, V is a vector space (identified with a
tangent space for our purposes) and there are r factors of it. Form this property, it
follows that ω is odd under the exchange of arguments, i.e.

0 =ω(v1, v2, . . . , vi + vj , . . . , vi + vj , . . . , vr)

=ω(v1, v2, . . . , vi, . . . , vj , . . . , vr) + ω(v1, v2, . . . , vj , . . . , vi, . . . , vr) . (B.14)

Thus, ω(vσ(1), . . . , vσ(r)) = sgn(σ)ω(v1, . . . , vr) for any permutation σ. The components
of ω in a specified coordinate system are found by application to the basis vectors,

ω(v1, . . . , vr) = ω(vµ1
1 ∂µ1 , . . . , v

µN
r ∂µr) = vµ1

1 · · · vµNr ω(∂µ1 , . . . , ∂µr)

≡ ωµ1...µrv
µ1
1 · · · vµrr , (B.15)
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where the linearity was used in the second equality. A convenient way of expressing these
alternating forms is to construct an antisymmetric product of an r form ωr with an s
form ωs, in such a way as to yield an (r + s) form by construction:

(ωr ∧ ωs)(v1, . . . vr+s) ≡
1

r!s!

∑
σ

sgn(σ)ωr(vσ(1) . . . vσ(r))ωs(vσ(r+1) . . . vσ(r+s)) . (B.16)

This has precisely the required attributes, most importantly antisymmetry and linearity.
Noticing that this implies

dx1 ∧ dx2 ∧ · · · ∧ dxr(∂1, ∂2, . . . , ∂r) = 1 , (B.17)

we can write any r form as

ω =
∑

µ1<µ2<...<µr

ωµ1µ2...µrdx
µ1 ∧ dxµ2 · · · ∧ dxµr . (B.18)

Next, we define the exterior derivative which is a map that increases the rank of a dif-
ferential form, d : ω 7→ dω, where ω is an r form, dω an (r + 1) form, and which for a
function f reduces to a simple differential:

df = (∂µf)dxµ . (B.19)

This is straightforwardly generalised to r-forms, e.g. Eq. (B.18):

dω = d

( ∑
µ1<...<µr

ωµ1...µrdx
µ1 ∧ . . . ∧ dxµr

)
≡

∑
ν<µ1<...<µr

∂ωµ1...µr

∂xν
dxν∧dxµ1∧. . .∧dxµr .

(B.20)

Integration of differential forms. In defining the integral of a differential form, one
is challenged to reduce it to an integral in Rn. However, one needs to ensure that the
result is unique and independent of the choice of coordinates.
On a manifold of dimension n, an n form has only one independent component, due to

the antisymmetry requirement, ω = 1
n!ωµ1...µndxµ1 ∧ . . . ∧ dxµn = ω1...ndx1 ∧ · · · ∧ dxn.

We define its volume integral as∫
U
ω =

∑
i

∫
Ai

ω1...n(x)dx1 ∧ . . . ∧ dxn ≡
∑
i

∫
ψi(Ai)

dnxω1...n(x) , (B.21)

where U =
⋃
iAi is a decomposition of the region to be integrated over with disjoint sub-

sets Ai, which in turn are constructed from charts (Ui, ψi). Ref. [106] gives the following
prescription for such a decomposition:

A1 = U1, and Ai+1 = Ui+1 \
i⋃

k=1

Ak , for i ∈ I in some index set. (B.22)

Thus, the integration is reduced to the integral of the component function in Rn.
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B.2 Statistical analysis method

In this work, we will frequently make use of parameter scans in order to assess certain
parameter choices given the experimental data. In order to draw quantitative conclusions
and enable the reader to reproduce the results in this work, we now outline our approach
in some detail, following Ref. [338] unless indicated otherwise.

In order to find the best fit for a given model with a number of parameters Θ to the
measured data ~x, we aim at maximising the probability to find the parameters Θ, given
the measured outcome ~x. By virtue of Bayes’ theorem, this equals

P (Θ|~x) =
L(~x|Θ)P (Θ)

P (~x)
. (B.23)

Thus, we need to find the maximum w.r.t. Θ of the product of the so-called likelihood
function L(~x|Θ) and P (Θ). Notice that since P (~x) is independent of Θ, it can be dis-
regarded. In the above expression, P (Θ) is often called the prior distribution since it
parametrises the prior knowledge of how probable a given parameter choice is. It is then
customary to call P (Θ|~x) the posterior probability distribution. In this work, we will take
only ‘flat priors’, i.e. disregard any bias for certain parameter choices.

Let us be more specific and consider the relevant cases where the data will consist of
pairs (xi, yi) (0 ≤ i ≤ N), for known xi and the yi are the result of a measurement
with error σi. Furthermore, we know that the yi follow some mathematical model, say
yi = f(xi,Θ0). This model will be given in terms of parameters Θj (0 ≤ j ≤ M), whose
correct values are given by Θ = Θ0, but which are unknown. The likelihood function
represents the probability of a certain outcome (~x, ~y) in a model parametrised by Θ,
and which asymptotically (i.e. when the sample size N → ∞) will approach a normal
distribution if the measurements are independent and uncorrelated. Here, we will make
the assumption that the data are independent and follow a normal distribution, even for
smaller sample sizes. We then find that maximising

L(~y|Θ) ∝ exp

(
−

N∑
i=1

[yi − f(xi,Θ)]2

2σ2
i

)
, (B.24)

is equivalent to finding the minimum w.r.t. Θ of the function

χ2(~y,Θ) = −2 logL =

N∑
i=1

[yi − f(xi,Θ)]2

σ2
i

. (B.25)

For given Θ, the values χ2 can be shown to follow a χ2 distribution. Thus, we have
achieved two important things. Firstly, we have justified the application of a least squares
method under the specified assumptions; and secondly, having done so in the language of
probability (densities), we may now compute confidence regions. We do so by calculating
the probability for the outcome to be χ2 or worse, and demand it not to exceed a pre-
defined threshold, or p-value. We can then draw confidence regions in parameter space
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as regions of constant χ2 satisfying [242]

Fν(χ2)
!

= 1− p = Erf(n/
√

2) . (B.26)

Here, Fν is the cumulative χ2 distribution for ν DOF, Erf is the cumulative normal
distribution, or error function, and n determines the C.L. in Gaussian standard deviations.
For the present analyses, we will adapt that ν = dim(~x)−dim(Θ) = N −M [338]. As an
example for ν = 1, we obtain the n = 2σ confidence intervals (95% C.L.) as the contours
where χ2 = 3.84, or p = 0.05.
Moreover, we usually test a given alternative model (e.g. bigravity parametrised by

n parameters, say, Θ1) against the null hypothesis (e.g. GR with m parameters Θ0).
Therefore, we can make use of Wilks’ theorem [339], which states that for a test statistics
comparing the log-likelihood ratio of the two alternative hypotheses,

Λ = −2 log

(L(~x|Θ1)

L(~x|Θ0)

)
' χ2

0 − χ2 , (B.27)

approaches a χ2 statistics when the sample size goes to infinity. In practice this means
that we can apply Eq. (B.26), however, replacing χ2 → Λ and using ν = |m−n| DOF, in
order to assess whether we should keep or reject the null hypothesis, given a predefined
significance, or C.L.



Appendix C

Circular Velocity and LSB
Rotation Curves in Bigravity

Here, we present the expressions for the circular velocities, calculated in the bigravity
framework, which we have used in Sec. 4.3 to fit the rotations curves of the ESO138-G014
galaxy. Moreover, the fits to another set of LSB galaxies will be presented below.

C.1 Circular velocities

Our starting point is the expression for the gravitational potential in terms of a matter
distribution ρ(~r), together with the relation v(r) =

√
r dΦ

dr . In Chapter 4, we had found
for the potential

Φ(~r) = GN

∫
d3~r ′ ρ(~r ′)

[
α(θ)

|~r − ~r ′| +
β(θ)e−mg |~r−~r

′|

|~r − ~r ′|

]
. (C.1)

Due to the linearity of Poisson’s equation (4.1) and (4.5), we can calculate v2(r) for each
component separately, and add up the individual components. For the gas component,
we find

v2
gas(r) = GN

[
α(θ)

Mgas(r, r0,m0)

r
+ β(θ)

m0

2

(e−mg r (1 +mg r)− e−r/r0 (r + r0)/r0)

1−m2
gr

2
0

]
,

(C.2)
where we assumed the mass density given in Eq. (4.38), relating the mass to the brightness
via the mass to light ratio L = m0/Σ0.
For the visible disk, we have chosen two distinct approaches, finding that choosing one

over the other has no significant influence on the outcome of the parameter scan which
enters the analysis underlying Fig. 5.1.
The axisymmetric mass density which leads to Eq. (4.39) is ρ(r, φ, z) = δ(z)

M0
D

2πr2
0
e−r/r0,

cf. Ref. [275]. Unfortunately, upon insertion into Eq. (C.1), this integral cannot be eval-
uated analytically, forcing us to resort to numerical methods. Instead we have chosen to
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accept the small error that results from choosing

v2
disk(r) =

Mdisk(r)

r

[
α(θ) + β(θ) (1 +mg r)e

−mg r] . (C.3)

On the other hand, assuming that the visible disk has a spherically symmetric density
allows us to find an analytical expression for v2

disk(r). Using a density inspired by the
Burkert halo model, ρ(r) = M0

D/(r + r0)/(r2 + r2
0) [340], we find

v2
disk(r) = GN

{
α(θ)

Mdisk(r, r0,M
0
D)

r
+ β(θ)

M0
D

2

[
1 +mg r

x0 r
e−mg r

(
− e−x0

2
Ei(mg (r + r0))

+ cos(x0) Si(x0)− sin(x0) Ci(x0) + cosh(x0) Shi(x0)− sinh(x0) Chi(x0)− π

2
sin(x0)

+ cos(x0) Re

{
ei
π
4√
2

Ei(mg (r + ir0))

}
+ sin(x0) Re

{
ei
π
4√
2

Ei(mg (r − ir0))

})

+
1−mg r

2x0 r
emg r

(
π[cos(x0) + sin(x0)]− Re

{
ei
π
4√
2

Ei(−mg (r + ir0))

}

+ sin(x0) Re

{
ei
π
4√
2

Ei(−mg (r − ir0))

}
+ ex0 Ei(−mg (r + r0))

)]}
,

(C.4)
where we have used the short-hand notation x0 ≡ mg r0, and the exponential integral
function is defined as

Ei(x) = −
∫ ∞
−x

dt
e−t

t
, (C.5a)

and

Ci(x) =
1

2
(Ei(ix) + Ei(−ix)) , Si(x) =

1

2i
(Ei(ix)− Ei(−ix)) , (C.5b)

Chi(x) =
1

2
(Ei(x) + Ei(−x)) , Shi(x) =

1

2
(Ei(x)− Ei(−x)) . (C.5c)

For the DM component, we use the NFW halo model, ρNFW = M0
DM/r/(r + rh)2 [244],

v2
DM(r) =

GN
r

{
α(θ)MDM(r, rh,M

0
DM) + β(θ)

M0
DM
2

[
2/r

r + rh
− (1−mg r) e

mg (r+rh)×

× Ei(−mg(r + rh)) + (1 +mg r)
(
e−mg (r−rh) Ei(−mgrh) + e−mg (r+rh)×

× [Ei(mg rh)− Ei(mg (r + rh))]
)]}

, (C.6)

which is consistent with results in the literature [259].
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C.2 Low surface brightness galaxy rotation curve fits

The summary plot Fig. 5.1 contains, besides the exclusion region derived from the ESO138-
G014 galaxy, contours that were obtained from more rotation curve data.
One of these data sets includes 17 LSB galaxies presented in Ref. [341]. We focus on this

particular type of galaxy, as it is known to have a dominant DM component, cf. Ref. [273],
and therefore we expect the largest discrepancies with the GR-only predictions. However,
for most of these galaxies no independent measurements of the HI emission are available,
and hence we have to perform a combined fit to the data.
For galaxies found in the data sample of Ref. [341], we perform the fits to the rotation

curves shown in Fig. C.1, which represent the best fitting parameter point when the data
for all galaxies are combined. For the galaxies UGC 4325, NGC 4395, and UGC 1551
changes at the Vainshtein radius are clearly visible, and indeed we find that the fits
have improved compared to the GR-only hypothesis. Nevertheless, we find that the
combination of all 17 galaxies results in a χ2 which is only marginally smaller than the
χ2

0 obtained in GR.
Continuing with the data sample of Ref. [273], where another 26 ‘high-resolution’ [342]

LSB galaxies are taken from, we obtain Figs. C.2 and C.3. There, we also show the best
fit and highlight that in the galaxies F579-V1, F730-V1, U6614, and U11648 the effects
due to the present modifications are clearly visible at small radii. Simultaneously, we find
that the fits do improve; however by no means with a statistical significance large enough
to draw any final conclusions.
In summary, the fits do improve somewhat but not enough to conclude that the null-

hypothesis GR should be rejected. At the same time, it is interesting to observe that
certain features in the data can be better described due to the transition at the Vainshtein
radius. This should be understood as a motivation to study this phenomenon in more
detail and with more refined methods.
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Figure C.1.: Fits to the LSB rotation curves of Ref. [341] at the best fitting parameter point
(mg, θ) = (4.0 · 10−31 eV, 1.42). The colours indicate combined disk & gas (dotted green), DM
(dashed magenta), and total (solid black) components. Notice that most galaxies are DM domi-
nated, as expected. We conclude that the fits slightly improve compared to GR, ∆χ2 = 1.5.
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Figure C.2.: High resolution LSB rotation curves from Refs. [273, 342]. These are shown at the
best-fitting parameter point (mg, θ) = (8.7 · 10−30 eV, 1.47). Continued in Fig. C.3.
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Figure C.3.: High-resolution LSB rotation curves from Refs. [273, 342] continued. We find that
the fits slightly improve, but at ∆χ2 = 1.44 (< 1σ) it is not justified to reject the GR hypothesis.
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