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1 Introduction

One often encounters various obstructions when trying to explore the world of physical

theories beyond the realm of “standard models” of gravity, gauge theories and matter.

Like the famous example of Coleman-Mandula theorem bypassed by supersymmetry, no-

go theorems reveal their weak points when the key assumptions that they critically rely on
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are pinpointed. In this paper, we examine such weak points of a specific no-go theorem,

which dooms many possibly interesting extensions of gravity, through a relatively simple

example — the partially-massless (PM) gravity.1 Before introducing and reviewing the

problem we want to address in PM gravity, let us first comment on the generality of this

no-go theorem, two classes of examples prohibited by it and weak points of the argument.

Admissibility condition. The gauge invariance of a classical field theory has far-

reaching implications. As shown in [1, 2], general gauge symmetries are not restricted

to the standard affine transformations but allow dependence of fields in higher order. The

invariance can be secured by a set of precise relations between the higher order parts of the

gauge transformation and the Lagrangian. Another consequence of gauge invariance is the

closure of gauge transformation under commutator. This also provides a set of non-trivial

relations, which are simpler to implement in practice than the gauge invariance relations.

Especially focussing on the large gauge transformations with parameters satisfying the

Killing tensor equations, namely the global symmetries, one can easily arrive (see, e.g. [3]

and [4]) to the following two conclusions: first, the global symmetries defined as above

should form a Lie algebra under the bracket defined through this procedure; second, the

linearised on-shell fields should carry a representation of such a global symmetry. This

second condition is what we refer to as admissibility condition, following the nomenclature

of [5].2

Two classes of examples. The admissibility condition is very powerful and often suf-

ficient to rule out many illusive theories. Here, let us mention two classes of examples,

which were the main motivations for revisiting the PM gravity as a toy model, which is

of course interesting on its own. The first class is the higher-spin theories around (A)dS5
background with the global symmetries slN(N+1)(N+2)

6

(more precisely a certain real form of

the latter complex algebra) [6, 7] (see also [8]). The above can be considered as a decent

candidate for the global symmetry of a higher-spin gauge theory: it contains the isometry

algebra sl4 ≃ so6 as a subalgebra and additional generators corresponding to the Killing

tensors of massless fields of spin 3, . . . , N . Since there are only finite number of higher

spin fields, these algebras seem to promise very simple and interesting models for higher

spin gravity. However, the admissibility condition does not allow a theory of massless

fields of spin 2, . . . , N because the corresponding on-shell field space — or Hilbert space

— cannot carry a representation of (a real form of) slN(N+1)(N+2)
6

. Postponing the justifi-

cation of why to the next paragraph, let us introduce the second class of examples: the

PM higher-spin theories around (A)dSd+1 background [9–11] with the global symmetries

sl (d+1)k−1(d+2k)

k!

[12]. Again, it contains the isometry algebra sod+2 as a subalgebra and ad-

ditional generators corresponding to the Killing tensors of partially-massless fields of spin

1We will call PM gravity any unitary theory of gravity that involves PM spin-two field.
2In [5], the authors require unitarity of the corresponding representation. We will use a looser form

of admissibility condition, allowing non-unitary theories in general, even though our eventual goal is to

understand the possibility of unitary theories. We will show, that even without the requirement of unitarity,

the admissibility condition puts very strong restrictions on the space of possible theories.

– 2 –



J
H
E
P
0
7
(
2
0
1
9
)
1
1
6

s and depth 2t+ 13 (hence, 0 ≤ 2t ≤ s− 1) with the relation s− t ≤ k. It is easy to check

that the maximum spin is 2k + 1 . Again these theories cannot satisfy the admissibility

condition if we restrict the field content to the (partially-)massless fields corresponding to

the symmetry generators. We would like to remind here that the real forms of interest for

the algebras in consideration here are non-compact, as they contain the isometry algebra

of (A)dS space, and therefore do not admit finite-dimensional unitary representations.

GK dimension analysis. There is a simple and efficient way to check whether a certain

infinite dimensional vector space is large enough to carry a representation of a given Lie

algebra. The appropriate concept that can be used to assess the “size” of an infinite

dimensional representation is so-called Gelfand-Kirillov (GK) dimension [13]. Its proper

definition is rather formal,4 and for applications in physics, it would be enough to regard

it as the number of continuous variables required for a given representation to be realized

as a space of functions of these variables (see, e.g., [4]). With this concept, it is simple to

see that the GK dimension of a tensor sum representation is the larger one among the GK

dimensions of two representations, and the GK dimension of a tensor product representation

is the sum of the two GK dimensions. Usual one-particle states in D dimension have the

Hilbert spaces with GK dimension D − 1, and the Hilbert space of finite number of such

particles is still of GK dimension D − 1. Therefore, if the theories considered in the

previous examples exist, then the GK dimensions of their Hilbert spaces are respectively

4 and d because their field content is finite. However, the Lie algebras slN(N+1)(N+2)
6

and

sl (d+1)k−1(d+2k)

k!

do not admit representations5 with such small GK dimensions for N ≥ 3

and k ≥ 2. In fact, all the infinite dimensional representations of sln have GK dimensions

not smaller than n − 1. Therefore, this simple dimensional analysis rules out the theories

based on these global symmetries.

Possible bypass. One of the crucial assumption in the above consideration is that the

field content of the theories with the global symmetries slN(N+1)(N+2)
6

or sl (d+1)k−1(d+2k)

k!

is composed of only gauge fields whose Killing tensors correspond to the generators of

the symmetries. In this way, the finiteness of the dimension of the symmetry algebras

implies the finiteness of the number of fields in the theories. In fact, there is no strong

reason that there should be only gauge fields. Indeed, a good example is Vasiliev’s higher-

spin gravity: the theory also requires a scalar field in the field content, which has no

gauge parameter by itself. Therefore, we may possibly bypass the obstruction imposed by

the admissibility condition by constructing a new field content which includes an infinite

number of additional non-gauge fields besides the finite number of the original gauge fields.

In other words, we can induce a faithful representation of the global symmetry algebra

3By this definition, the depth is the number of derivatives in the gauge transformation of PM field, which

is different from [12].
4See, e.g., Wikipedia: Gelfand-Kirillov dimension.
5This does not rule out non-linear realisations of global symmetries. An interesting recent example was

provided in [14], a special Galileon theory in (A)dSd+1 with extended symmetry (a real form of) sld+2,

which is the k = 1 case of the PM HS algebras of [12] mentioned above. The no-go statement here refers

to the possibility of gauging these algebras and realising their global action linearly on the fields.
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starting from the representation of the isometry subalgebra composed of on-shell gauge

fields by adding additional vectors, that is, other fields. This has a clear group theoretical

meaning of “induced representation”, hence the task could be worked out in the standard

framework of the representation theory. But, since our aim is to construct a classical

Lagrangian for such a theory, it would be more useful to study the same problem in a field

theoretical set-up. In the two classes of theories mentioned above, it is likely that we need to

deal with infinitely many fields of infinitely high spins and masses. The PM gravity, which

we shall study in this paper, suffers from the same problem of validating the admissibility

condition but has a much simpler structure. Therefore, it can be a good starting example

to study possible resolutions of the no-go theorem given by the admissibility condition.

Coming back to PM gravity. In de Sitter space, there is a mass gap in the unitary

spectrum of a spin-two particle, as opposed to the flat and anti-de Sitter spaces. The lower

mass bound of the massive spin-two particle is not the massless graviton, but a very special

massive particle, referred to as “partially massless” [15–19]. This mass value is also known

as “Higuchi bound” [20–22]. In four dimensions, the partially-massless spin-two (PM) field

has 4 degrees of freedom (DoF) — more than those of massless field (2 DoF) and less

than those of massive field (5 DoF). The difference from the massive DoF is the scalar

mode, which invokes various problems in the consistency of massive gravity. Recently, the

PM fields attracted a lot of attention [23–62] partly due to their potential relevance in

the cosmological phenomena [63, 64], and there have been various attempts to construct

a consistent gravity theory of PM field with/without massless graviton. However, it turns

out that such a theory is prohibited by several no-go results6 [32, 34, 35, 39, 47, 50, 51, 57].

Here, we revisit the no-go theorem [39]: an interacting theory involving massless and PM

spin two fields in a four dimensional dS background has the so(1, 5) as its global symmetry

algebra, but the analysis of the admissibility condition shows that the same field content

cannot form a representation of so(1, 5). This obstruction can be avoided if the massless

spin two and PM spin two fields have relatively negative kinetic term signs. In such a

case, the global symmetry becomes so(2, 4) and in fact the resulting theory is nothing

but the conformal gravity written in two-derivative form around a constant curvature

background [31]. In the following sections, we shall attempt to fix the problem of PM

gravity with the so(1, 5) (or, as we show, so(1, D + 1) in arbitrary dimensions D ≥ 4)

global symmetry by enlarging the field content with additional fields or relaxing implicit

assumptions of the no-go theorem, such as parity invariance and general covariance.

Organization of the paper.

• In section 2, we shall briefly review how the general gauge invariance gives rise to a

set of conditions — global symmetry condition and admissibility condition — which

shall be used in the later analysis.

• In section 3, we apply such conditions to the theory of interacting massless and PM

spin two fields and show how the global symmetry so(1, D + 1) arises and how the

6For the moment, the only potential exceptions require exotic set-ups like non-local field theory [36, 45,

58].
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admissibility condition, that is the closure of the global symmetry on each fields, is

violated within the setting of massless and PM spin two fields. The content up to

this point is basically a summary of [39], generalised to arbitrary dimensions.

• In section 4, we discuss a possible remedy of the problem by enlarging the field

content of the theory. We show that only the addition of massive spin-two fields can

fix the non-closure problem on the PM field, but then the same problem reappears for

the newly introduced field. This requires an iterative introduction of more and more

massive spin two fields. We find that the non-closure problem becomes incurable

after a few iterations when the mass of added spin two field reaches a certain bound.

This problem is very much analogous to the original problem that we began with: the

admissibility condition imposes a certain algebraic equation for the coupling constants

which have non-trivial solution only when the relative kinetic term sign of massless

and PM spin two fields is negative. This non-unitary resolution is also possible in

any even D, but not in odd dimensions D ≥ 5. In even dimensions, we find that

the minimal possibility is Conformal Gravity, while alternatives are related to the

multiples of the field content of Conformal Gravity. We discuss various aspects of

these putative theories.

• In section 5, we discuss a possible remedy of the problem by relaxing other assump-

tions. First, we relax the parity invariance and show that the so(1, 5) transformation

can be realized in terms of two fields, the massless and PM spin two fields, in four

dimensions. However, the corresponding Lagrangian cubic vertex is obstructed in

the formulation of covariant metric-like fields. Second, we relax the condition of the

general covariance allowing for non-generally-covariant (or, “non-geometric”) inter-

actions between massless and (partially) massive spin two fields. This lets us identify

the problematic non-closure part with the modification of the transformation rule

induced by the addition of the non-generally-covariant interaction vertex. However,

this modification invokes the problem of symmetry non-closure in other commuta-

tors. This can be potentially fixed by introducing yet another field of fourth rank.

The irreducible components of the new field are fully antisymmetric and “window”

Young-diagram type.

• In section 6, we summarize the content of the paper and discuss open directions.

• Appendix A contains various technical details. Appendix B contains details on cubic

vertices with massless, PM and massive spin-two fields. Here we also discuss subtle

aspects of field redefinition freedom and gauge transformation deformations due to

interactions involving (partially) massive fields. In appendix C we study the PM

coupling to matter. We show there that the mass value of matter is constrained by

the requirement that it couples to PM field.

– 5 –
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2 Consequences of gauge invariance

Let us consider a generic theory with a field content {χi} and an action S, which can

be perturbatively expanded around some background field configuration, starting from

linearised quadratic action that is diagonal with respect to all the fields in the theory. The

gauge invariance, δεS = 0 , implies the closure of the gauge symmetry (see, e.g., [1]):

δε δη − δη δε = δ[η,ε] + Cij(η, ε)
δS

δχi

δ

δχj
. (2.1)

Here [η, ε] and Cij are a priori field-dependent and Cij is antisymmetric under the exchange

of i and j. The relation (2.1) is easy to motivate. The left hand side, acting on the action,

should give zero due to gauge invariance of the action. Therefore, the right hand side

should be a gauge transformation, up to a trivial transformation. Expanding all the field-

dependent quantities in the power of fields as

S = S [2] + S [3] + · · · , δǫ = δ[0]
ǫ + δ[1]

ǫ + · · · ,
[η, ε] = [η, ε](0) + [η, ε](1) + · · · , Cij = C(0)

ij + C(1)

ij + · · · , (2.2)

we can derive several conditions which we shall use in the following analysis:

1. From the next-to-lowest gauge invariance condition,

δ[0]S [3] + δ[1]S [2] = 0 , (2.3)

we can find all possible cubic vertices and the corresponding first order gauge trans-

formations,

S [3](χi, χj , χk) −→
[
δ[1]
ǫi
χj

]
χk

and the permutations of i, j, k. (2.4)

Here [ · · · ]χ means the part linear in χ. It is important to note that in this way we find

the linear part of gauge transformation — which will give the global symmetry trans-

formation later — projected to the pre-assumed field content. Therefore, by including

an additional field, say φ, we can have additional cubic vertices S [3](χi, χj , φ) and the

transformation of the original field δ[1]
ǫi χj can acquire an additional term

[
δ[1]
ǫi χj

]
φ
.

2. With δ[1] derived in this way, we can then calculate the lowest order of the

commutator [·, ·][0] from the lowest order part of the closure condition (2.1) as

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (2.5)

3. Focussing on the Killing tensors ε̄ satisfying

δ[0]

ε̄ = 0 , (2.6)

one can verify that the condition (2.5) gives

δ[0]

[η̄,ε̄][0]
= 0 , (2.7)

that is to say that the global symmetry is closed under [η̄, ε̄][0]. Hence, we can take

it as the Lie bracket of this Lie algebra: [[η̄, ε̄]] := [η̄, ε̄][0]. We can also require at this

stage that the Lie bracket defined in this way does satisfy Jacobi identity.

– 6 –
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4. Moving to the next-to-lowest part of the closure condition (2.1) with the Killing

tensors, we find

δ[1]

ε̄ δ[1]

η̄ − δ[1]

η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+ C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
. (2.8)

By applying the above condition to a free one-shell field χi, we get

(
δ[1]

ε̄ δ[1]

η̄ − δ[1]

η̄ δ[1]

ε̄

)
χi ∼ δ[1]

[[η̄,ε̄]] χi . (2.9)

Note that the last term of (2.8) vanishes due to the free on-shell equation

δS [2]/δχi = 0, and the next-to-last term is equivalent to zero where the equivalence

relation ∼ is the usual one of the free on-shell field,

χi ∼ χi + δ[0]
ε χi . (2.10)

Or, equivalently we can apply (2.8) to the quadratic action S [2] ending up with

(
δ[1]

ε̄ δ[1]

η̄ − δ[1]

η̄ δ[1]

ε̄

)
S [2] = δ[1]

[[η̄,ε̄]] S
[2] . (2.11)

The condition (2.9) or (2.11) is what we refer to as admissibility condition. It is

nothing but the condition that the space of on-shell fields carries a representation of

the global symmetry algebra.

Note, that in all of this procedure only in the equation (2.9) we take the fields to be

on-shell, satisfying δS [2]/δχi = 0. This general procedure will be applied to the particular

example in the following sections.

3 Review: no-go on PM gravity

In this section, we shall apply the conditions derived in section 2 to the setting of massless

and PM spin two fields. In [39], the analysis has been carried out in a generic gravitational

background so that one could focus on the PM interaction part, as the general covariance

would ensure that there are no problems with gravitational interaction.

Here, we shall make the set-up simpler by starting from the dS background and by

studying perturbative consistency of both massless and PM spin two fields. The massless

spin two interactions can be completed in a way reproducing Einstein’s gravity, while

the PM interactions will be exposed to severe consistency examinations, generalising the

analysis of [39] to arbitrary dimensions.

Quadratic theory. The theory we shall examine contains two fields: massless spin two

field hµν and PM spin two field ϕµν . Their free action, that is the quadratic part S [2][h, ϕ]

of the conceivable full action S[h, ϕ], is given by

S [2][h, ϕ] =
1

2

∫
dDx

√−ḡ

[
hµν G(0)

µν (h) + ϕµν G( 2Λ
D−1

)
µν (ϕ)

]
, (3.1)

– 7 –



J
H
E
P
0
7
(
2
0
1
9
)
1
1
6

where ḡµν is the dS metric satisfying R̄µν,ρσ = 2Λ
(D−1)(D−2) (ḡµρ ḡνσ − ḡνρ ḡµσ),

7 and all the

indices are raised and lowered with this background metric. Massless and PM spin two

fields correspond to the m2 = 0 and m2 = 2Λ
D−1 ≡ D−2

L2 points of the massive spin two

theory,8 where the two derivative operator takes the form,

G(m2)
µν (φ) =

(
�− 2

L2
−m2

)
φµν − 2∇(µ∇ρ φν)ρ +∇µ∇ν φ

ρ
ρ

− ḡµν

[(
�+

D − 3

L2
−m2

)
φρ

ρ −∇ρ∇σ φρσ

]
, (3.2)

where the d’Alembertian operator � and the covariant derivative ∇ are also defined with

the dS metric ḡµν . The massless spin two action with G(0)
µν is nothing but the quadratic part

of the Einstein-Hilbert action with cosmological constant,
∫
dDx

√−g (R− 2Λ) , expanded

in the metric perturbation: gµν = ḡµν + hµν .

The gauge symmetries of the quadratic action (3.1) are

δ[0]

ξ hµν = ∇(µ ξν) , δ[0]
α ϕµν =

(
∇µ ∂ν +

1

L2
ḡµν

)
α , (3.3)

where the hµν transformation is just linearized diffeomorphism. The PM spin-two field ϕµν

has a two-derivative gauge symmetry with scalar parameter α.

It would be useful to write here the set of on-shell conditions for these spin-two fields.

For a generic mass squared m2, it is

(
�− 2

L2
−m2

)
φµν = 0 , ∇µ φµν = 0 , φµ

µ = 0 . (3.4)

The above mentioned two special cases are supplemented with gauge symmetries. The

massless field hµν satisfies the conditions (3.4) with m2 = 0 together with the equivalence

relation,

hµν ∼ hµν +∇(µ ξν)

[
∇µξµ = 0 ,

(
�+

D − 1

L2

)
ξµ = 0

]
, (3.5)

while the PM field satisfies the conditions (3.4) with m2 = 2Λ
3 and the equivalence relation,

ϕµν ∼ ϕµν +

(
∇µ ∂ν +

1

L2
ḡµν

)
α

[(
�+

D

L2

)
α = 0

]
. (3.6)

Cubic interactions and first order gauge transformations. We move to the cubic

part of the action, S [3], and the corresponding δ[1]. Since we have two fields hµν and ϕµν ,

there are four types of cubic vertices: h−h−h, h−h−ϕ, h−ϕ−ϕ and ϕ−ϕ−ϕ . By focusing

on the two-derivative interactions, we find that h−h−ϕ is not allowed whereas ϕ−ϕ−ϕ

is available only in four dimensions. In principle, we can allow the interactions with more

7Here, we use the convention

[∇µ,∇ν ]V
ρ
λ = R̄µν,λ

σ
V

ρ
σ − R̄µν,σ

ρ
V

σ
λ =

2Λ

(D − 1)(D − 2)

(

ḡµλ V
ρ
ν − ḡνλ V

ρ
µ − δ

ρ
ν Vµλ + δ

ρ
µ Vνλ

)

.

8We use the dS radius 1
L2 = 2Λ

(D−1)(D−2)
. In the case of AdS, one should change 1

L2 → − 1
L2 .

– 8 –
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than two derivatives, but their presence does not affect the consistencies (global symmetry

and admissibility condition) of two derivative couplings. For this reason, we can disregard

these higher derivative couplings at the moment and consider

S [3][h, ϕ] =

∫
dDx

√−ḡ
(
λhhh Vhhh(h, h, h) + λhϕϕ Vhϕϕ(h, ϕ, ϕ) + λϕϕϕ Vϕϕϕ(ϕ,ϕ, ϕ)

)
,

(3.7)

where Vhhh,Vhϕϕ,Vϕϕϕ are the couplings which contain at most two derivatives. The ver-

tices Vhhh and Vhϕϕ are nothing but the ones appearing in the Einstein gravity and the

gravitational minimal coupling for the quadratic PM action. Finally Vϕϕϕ is the vertex

which exists only in four dimensions and can be extracted from the four dimensional con-

formal gravity. In the current context, it is not important whether Vhhh,Vhϕϕ,Vϕϕϕ arise in

specific nonlinear theories but the fact that they form a basis for any gauge invariant cubic

interaction with no more than two derivatives.9 The precise expressions of Vhhh,Vhϕϕ,Vϕϕϕ

are not important here and can be found in appendix B.3. It is also worth to note that up

to this stage the coupling constants λhhh, λhϕϕ, λϕϕϕ are arbitrary. The first order part of

the gauge transformation, δ[1], can be extracted from each of these cubic vertices by taking

a gauge variation with respect to h or ϕ. First, by taking h-variation, we obtain

δ[1]

ξ hµν = λhhh

(
ξρ∇ρ hµν + 2∇(µ ξ

ρ hν)ρ
)
, (3.8)

δ[1]

ξ ϕµν = λhϕϕ

(
ξρ∇ρ ϕµν + 2∇(µ ξ

ρ ϕν)ρ

)
, (3.9)

where ξµ = ḡµν ξν . Second, by taking ϕ-variation, we obtain (λϕϕϕ 6= 0 only for D = 4)

δ[1]
α hµν = 2λhϕϕ

[
∂ρα

(
∇ρ ϕµν − 2∇(µ ϕν)ρ

)
− D − 4

L2
αϕµν

]
,

δ[1]
α ϕµν =

1

2
λhϕϕ

[
∂ρα

(
∇ρ hµν − 2∇(µ hν)ρ

)
+

2

L2
αhµν

]

+2λϕϕϕ ∂ρα
(
∇ρ ϕµν −∇(µ ϕν)ρ

)
. (3.10)

Then we can extract the zeroth order of the commutator as

[ ξ1, ξ2 ]
[0] = λhhh ξ

µ
[1 ∂µ ξ

ν
2] ∂ν ,

[ ξ, α ][0] = λhϕϕ ξµ ∂µ α ,

[α1, α2 ]
[0] = −2λhϕϕ

(
∂ρ α[1∇µ∂ρ α2] +

D − 4

L2
α[1∂

µα2]

)
∂µ . (3.11)

The first and third commutators are vectors, hence close as a h-gauge transformation (dif-

feomorphism). The second commutator is a scalar and closes as a ϕ-gauge transformation.

Killing tensors and global symmetries. The solution space of the Killing equations,

δ[0]

ξ̄
hµν = ∇(µ ξ̄ν) = 0 , δ[0]

ᾱ ϕµν =

(
∇µ ∂ν +

1

L2
ḡµν

)
ᾱ = 0 , (3.12)

9Note that in fact there exists one more h−ϕ−ϕ two-derivative coupling which is independent from the

gravitational one Vhϕϕ. We also disregard this possibility here as it would spoil the general covariance of

the PM field, but will come back to it in section 5.2.
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are generated, respectively, by

MAB

µ = 2L2 X
[A ∂µX

B]

X2
, KA = L

XA

√
X2

, (3.13)

where we used the ambient space formulation (see e.g. [65] for the details of the ambient

formulation): here dS4 is described by the equation X2 = L2 . If we compute the Lie

bracket, [[·, ·]] = [·, ·][0] (where [·, ·][0] is defined in (2.5)), between such generators of Killing

tensors, we find

[[
MAB , MCD

]]
= λhhh (η

ADMBC + ηBCMAD − ηAC MBD − ηBDMAC) , (3.14)
[[
MAB , KC

]]
= λhϕϕ (ηBC KA − ηAC KB) , (3.15)

[[
KA , KB

]]
= −D − 3

L2
λhϕϕMAB . (3.16)

For more details of the derivation, we refer to [39] (section 3.2 of the arXiv version) where

the computation was carried out withD = 4. In the ambient formulation the dimensionality

enters only as the parameter D, so we can straightforwardly generalize the result of [39] to

any D. By asking Jacobi identity to hold, we find

λhhh λhϕϕ = λ2
hϕϕ , (3.17)

whose non-trivial solution is only10

λhϕϕ = λhhh , (3.18)

which is consistent with the universality of gravitational interactions.

The resulting global symmetry algebra in D > 3 is so(1, D + 1), which includes the

dSD isometry subalgebra so(1, D) generated by MAB, the Killing tensors of massless spin

two field. The additional generators KA which uplift so(1, D) to so(1, D + 1) correspond

to the Killing tensors of PM spin two field. It is interesting to note that when D = 3 we

get iso(1, 3) instead of so(1, 4) as the global symmetry algebra.11

In four dimensions, we recover the results of [39]: the corresponding algebra is so(1, 5).

Note that if we consider AdS4 instead of dS4, there are again two possible real forms:

so(2, 4), corresponding to conformal gravity, and so(3, 3), which would correspond to a

positive relative sign for kinetic terms of graviton and PM fields in AdS4 background.12

The generalisation of this statement to arbitrary D > 3 is straightforward: in AdSD,

10The other solution, λ1 = 0 corresponds to a PM field that does not have any interactions with itself

and Gravity, hence cannot interact with matter that couples to Gravity in a generally covariant manner.
11Interestingly, when considering four dimensional Einstein Gravity with a dS3 slicing of the asymptoti-

cally Minkowski space with iso(1, 3) global symmetry, one encounters the “massless” and “PM” degrees of

freedom on dS3 slices [66, 67]. This might indicate that the PM Gravity in three dimensions might be a

consistent sector of Einstein-Hilbert Gravity with zero cosmological constant in four dimensions.
12It was noted in [68] that the free massless fields in AdS4 can manifest not only conformal symmetry

so(2, 4) ∼ su(2, 2) but also so(3, 3) ∼ sl(4,R). A question was raised there whether such a symmetry can

be extended to a non-linear theory. That question would be equivalent to the one this work is attempting

to answer — whether there is a consistent non-linear theory with so(1, 5) ∼ su∗(4) symmetry in dS4.
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relative negative sign corresponds to familiar conformal gravity with a global symmetry

so(2, D), while relative positive sign of PM and massless spin two corresponds to the

global symmetry algebra so(3, D − 1). Perturbative unitarity will not be possible in that

case though, since the PM field is not unitary in AdSD.

Admissibility condition. Finally, we can examine the admissibility condition. The

isometry — corresponding to (3.14) — and the so(1, D) covariance of KA — corresponding

to (3.15) — are simply inherited from their gauge versions, namely the diffeomorphism and

general covariance of ϕµν . They do not cause any problem of the admissibility condition,

as we understand that it is straightforward to write an action S[h, ϕ] in such a manner.

The potential problem is in the PM gauge transformation, which translates here to the

question whether the bracket (3.16) is correctly represented in terms of δ[1]. By computing

the relevant commutators, we obtain
(
δ[1]

ᾱ2
δ[1]

ᾱ1
− δ[1]

ᾱ1
δ[1]

ᾱ2

)
hµν ∼ δ[1]

[[ᾱ1,ᾱ2]]
hµν , (3.19)

(
δ[1]

ᾱ2
δ[1]

ᾱ1
− δ[1]

ᾱ1
δ[1]

ᾱ2

)
ϕµν = δ[1]

[[ᾱ1,ᾱ2]]
ϕµν + (λ2

hϕϕ + λ2
ϕϕϕ) Cµν , (3.20)

where Cµν is given by

Cµν = 4

[
∂ρα[1 ∂

σα2]∇(µ|∇σϕ|ν)ρ +
2Λ

D − 2
α[1∂

ρα2](∇(µϕν)ρ −∇ρϕµν)

]
. (3.21)

Therefore, the admissibility condition requires

λ2
hϕϕ + λ2

ϕϕϕ = 0 . (3.22)

Remind that λϕϕϕ is non-vanishing only in D = 4 dimensions since the associated vertex

Vϕϕϕ exists only there. Anyway, the above condition does not admit any non-trivial real

solution in any dimensions. This is the summary of the no-go theorem reported in [39].

4 Relaxing the assumption on the field content

Let us recapitulate everything one more time with a few new remarks: a generally covariant

unitary theory, involving massless and a PM spin two fields in D ≥ 4 dimensional de Sitter

space, should have the Lie algebra g = so(1, D+1) as its global symmetry. One important

point here is that this conclusion is valid even if the theory contains additional fields besides

the massless and PM spin two fields. If this additional part includes other gauge fields,

then the actual global symmetry will be enlarged in a way to include g as a subalgebra.

Assuming that there is no other field than the massless and PM spin two fields, we derived

the transformation δ[1]

ᾱ acting on the on-shell fields h and ϕ and verified that it does not

close, in other words, it is incapable of forming a representation of g. At this last point,

namely addressing the admissibility condition, it is natural to ask: what would change if

we include other fields, say φi? For the moment, φi can be any kind of fields.

Let us revisit our general analysis of section 2 and section 3 adding new fields φi. Then,

we should take into account the following new cubic interactions.

h−h−φi , h−ϕ−φi , ϕ−ϕ−φi ,

h−φi−φj , ϕ−φi−φj , φi−φj−φk . (4.1)
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For now, we consider only the cubic interactions which induce non-trivial δ[1]. The third

coupling of the second line does not contain any massless or PM field, hence does not

influence the consistency at least at this order. The general covariance of the gauge algebra,

or the so(1, D) covariance of the global algebra, would forbid the first two couplings in the

first line whereas allow only the diagonal one with i = j for the first coupling in the second

line. This diagonal h−φi−φi coupling is simply the gravitational minimal coupling of the

field φi. The obstruction we want to resolve is in the ᾱ transformation, and the relevant

cubic interactions are the third one in the first line and the second one in the second line,

which we rewrite here with coupling constants as

S [3][ϕ, φi] =

∫
d4
√−ḡ

(∑

i

γiWi(ϕ,ϕ, φi) +
∑

i,j

γij Wij(ϕ, φi, φj)

)
. (4.2)

These couplings can induce new terms in the δ[1]

ᾱ transformation as

γiWi(ϕ,ϕ, φi) −→





[
δ[1]

ᾱ ϕ
]
φi

= γiR(ᾱ)ϕφi
φi

[
δ[1]

ᾱ φi

]
ϕ
= γiR(ᾱ)φi

ϕ ϕ
, (4.3)

and

γij Wij(ϕ, φi, φj) −→





[
δ[1]

ᾱ φi

]
φj

= γij R(ᾱ)φi
φj

φj

[
δ[1]

ᾱ φj

]
φi

= γij R(ᾱ)φj
φi
φi

, (4.4)

Note that the above formulas are schematic: R(ᾱ)BA are certain differential operators

sending the tensor field A to the tensor field B. Their precise forms are dictated by

the cubic vertices Wi(ϕ, φi, φj). With these structures in mind, let us come back to our

problem: non-closure (3.20) of the δ[1]

ᾱ transformation on ϕ (remind that the δ[1]

ᾱ closes on h:

see (3.20)). It is clear that among (4.3) and (4.4), only the former may have a chance to fix

this problem, so let us focus on it: the latter will become equally important in subsequent

analysis. The introduction of the ϕ−ϕ−φi cubic interactions will alter the δ
[1]

ᾱ commutator by

[(
δ[1]

ᾱ1
δ[1]

ᾱ2
− δ[1]

ᾱ2
δ[1]

ᾱ1

)
ϕµν

]
φi

= γ2i

([
R(ᾱ2)

ϕ
φi
R(ᾱ1)

φi
ϕ −R(ᾱ1)

ϕ
φi
R(ᾱ2)

φi
ϕ

]
ϕ
)

µν
, (4.5)

where the notation [ · · · ]φi
indicates the terms arising through the field φi. The point is

whether the right hand side can compensate the problematic Cµν terms. In other words

whether R(ᾱ[1)
ϕ
φi
R(ᾱ2])

φi
ϕ can make precisely the same structure as Cµν in (3.21). If it

is the case, then we may solve the problem of the equation (3.22) as it will be modified by

a term proportional to γ2i .

A priori, the field φi can be of any type, but as we will argue below, only symmetric

rank two tensor will be capable of reproducing the structure like Cµν . To understand this,

let us first assume φi be a rank r tensor (φi = φρ1···ρr) of any symmetry type, and write an

ansatz for
[
δ[1]

ᾱ ϕ
]
φi

and
[
δ[1]

ᾱ φi

]
ϕ
as

(
R(ᾱ)ϕφi

φi

)

µν
= Aρ1···ρr

µν (ḡ,∇1,∇2) ᾱ(x1)φρ1···ρr(x2)
∣∣∣
x1=x2

,
(
R(ᾱ)φi

ϕ ϕ
)

µ1···µr

= Bρ1ρ2
µ1···µr

(ḡ,∇1,∇2) ᾱ(x1)ϕρ1ρ2(x2)
∣∣∣
x1=x2

, (4.6)
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Here, Aρ1···ρr
µν and Bρ1ρ2

µ1···µr are tensors made out of the metric ḡµν and the derivatives ∇1,µ

and ∇2,µ acting respectively on the parameter ᾱ(x1) and the field φρ1···ρr(x2) or ϕρ1ρ2(x2).

Let us check how the indices of Aρ1···ρr
µν , Bρ1ρ2

µ1···µr can be distributed to ḡµν , ∇1,µ and ∇2,µ.

Restrictions are imposed by the on-shell conditions of the field and the Killing conditions

of the parameter: ∇ρm
2 and ḡρmρn are forbidden by the traceless-transverse (TT) conditions

of the field, the double derivative ∇ρm
1 ∇ρn

1 is forbidden because the Killing condition would

replace it with ḡρmρn which is forbidden. With these, it is straightforward to see that for

r = 0 and r ≥ 4, there are no candidate structures. There are three remaining possibilities

r = 1, 2, 3. Here, let us consider another condition: since Cµν (3.21) has a four derivative

term, the product of Aρ1···ρr
µν and Bρ1ρ2

µ1···µr should have a four derivative term as well. For

r = 1, such a term can arise only from a single possibility,

Aρ
µν ∼ δρ(µ∇2,ν)∇λ

1 ∇2,λ , Bρ1ρ2
µ ∼ δ(ρ1µ ∇ρ2)

1 , (4.7)

For r = 3, it is also unique up to a symmetrization of the indices of the rank 3 tensor (that

is ρ1ρ2ρ3 and µ1µ2µ3):

Aρ1ρ2ρ3
µν ∼ δρ1(µδ

ρ2
ν) ∇

ρ3
1 , Bρ1ρ2

µ1µ2µ3
∼ δ(ρ1µ1

δρ2)µ2
∇2,µ3 ∇λ

1 ∇2,λ . (4.8)

Note that the derivatives in (4.7) and (4.8) are distributed unevenly in the tensors A

and B even though both should be associated with a single cubic interaction. This is

not a contradiction and they may indeed arise from a three- or five- derivative coupling.

However, such couplings to odd-spin fields vanish identically up to total derivative term by

the symmetry of two PM fields involved in the cubic vertex. Finally for r = 2, there are

two terms which may cancel the four derivative term in Cµν : up to a relative factor and a

symmetrization of ρ1ρ2 and µ1µ2, they are

Aρ1ρ2
µ1µ2

, Bρ1ρ2
µ1µ2

∼ δρ1µ1
∇ρ2

1 ∇2,µ2 + δρ1µ1
δρ2µ2

∇λ
1 ∇2,λ . (4.9)

Let us examine this possibility in more detail:

Cµ1µ2 ∝ Aρ1ρ2
µ1µ2

(∇1,∇2 +∇3) ᾱ[1(x1)B
ν1ν2
ρ1ρ2

(∇2,∇3) ᾱ2](x2)ϕν1ν2(x3)
∣∣∣
x1=x2=x3

. (4.10)

It will be convenient to consider the contraction of the above equation with an arbitrary

symmetric tensor ϕ̃µν . Using the precise form (3.21) of Cµ1µ2 and discarding a total deriva-

tive term, we find the four-derivative part of ϕ̃µν Cµν is proportional to
(
∂µᾱ[1∇µϕ̃

ρ1ρ2
) (

∂νᾱ2]∇(ρ1 ϕρ2)ν

)
, (4.11)

whereas the contraction of the right hand side of (4.10) with ϕ̃µν reads
[
Aρ1ρ2

µ1µ2
(∇1,∇2) ᾱ[1 ϕ̃

µ1µ2
] [
Bν1ν2

ρ1ρ2
(∇1,∇2) ᾱ2] ϕν1ν2

]
. (4.12)

Inside the square brackets, the identification x1 = x2 is understood. By requiring the

proportionality between (4.11) and (4.12), we find that the choice

Aρ1ρ2
µ1µ2

∼ δρ1µ1
δρ2µ2

∇λ
1 ∇2,λ , Bν1ν2

ρ1ρ2
∼ δν1ρ1 ∇

ν2
1 ∇2,ρ2 . (4.13)

gives the structure (4.11). From the structure of Aρ1ρ2
µ1µ2 , we also find the intermediate field

φρ1ρ2 is a symmetric tensor. Therefore, only symmetric rank two, namely spin two fields

have a chance to cure the problem of δ[1]

ᾱ non-closure on the PM field.
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4.1 Adding spin-two fields

Let us study the case we add one spin two field φµν . As we discussed in (2.9), we shall

also impose the on-shell condition (3.4), but the mass value of φµν is not determined yet.

Interestingly, the on-shell condition alone restricts severely possible form of
[
δ[1]

ᾱ ϕµν

]
φ
and[

δ[1]

ᾱ φµν

]
ϕ
. In order to appreciate this point, let us do the analysis for two fields χµν and

ψµν with arbitrary mass values. Eventually, we will apply the result of the analysis to the

problem of adding a new field φµν to the system of massless and PM field. We can first

write the most general form of the relevant δ[1]

ᾱ as

[
δ[1]

ᾱ χµν

]
ψ
= a1

1

2
∇ρ ᾱ∇ρ ψµν + a2∇ρ ᾱ∇(µ ψν)ρ + a3

1

2L2
ᾱ ψµν , (4.14)

[
δ[1]

ᾱ ψµν

]
χ
= b1

1

2
∇ρ ᾱ∇ρ χµν + b2∇ρ ᾱ∇(µ χν)ρ + b3

1

2L2
ᾱ χµν . (4.15)

The first two terms of the right hand sides of (4.14) and (4.15) are nothing but the structures

in (4.9). Here, we have also included the no-derivative last terms for a complete analysis.

4.1.1 On-shell constraints

There are three constraints on on-shell fields given through Fierz equations (3.4): mass-

shell, transversality and traceless conditions. The trace condition does not induce more

conditions on the form of the global transformations (4.14) and (4.15) (we already chose

these transformations to not involve traces of the fields involved) once we impose the

transversality and Klein-Gordon equations.

The transversality condition on the fields imposes the relations,

Da1 + (D + 2 + sψ) a2 + a3 = 0 , D b1 + (D + 2 + sχ) b2 + b3 = 0 , (4.16)

where sχ and sψ are related to the mass values mχ and mψ by

s = m2 L2 . (4.17)

With this choice, the massless and PM spin two fields have s = 0 and D − 2, respectively.

In the case of our main interest, we have sχ = D − 2, but for the moment we can keep it

arbitrary. The tracelessness of the fields are compatible with (4.14) and (4.15). It remains

to check the last on-shell condition:

(
�− 2 + sχ

L2

)[
δ[1]

ᾱ χµν

]
ψ
= 0 ,

(
�− 2 + sψ

L2

)[
δ[1]

ᾱ ψµν

]
χ
= 0 . (4.18)

The first of these conditions translate into

2 (2 + sψ) a1 + 4Da2 + (D − sψ + sχ) a3 = 0 , (4.19)

(D − 2 + sψ − sχ) a1 + 4 a2 + 2 a3 = 0 , (4.20)

2 a1 + (D + sψ − sχ) a2 = 0 . (4.21)
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Together with (4.16) we get four equations for three variables a1, a2, a3. In order to have

non-trivial solutions, all the 3× 3 minors of the following matrix should be zero:




D D + 2 + sψ 1

2 (2 + sψ) 4D D − sψ + sχ
D − 2 + sψ − sχ 4 2

2 D + sψ − sχ 0


 (4.22)

Such condition is equivalent to

(sχ − sψ)
2 + 2 (sχ + sψ) = D(D − 2) . (4.23)

Note that the above equation is symmetric in the exchange of sχ and sψ. This means that

by examining the on-shell conditions for b1, b2, b3, we obtain exactly the same condition for

sχ and sψ. For the solution of (4.23), it is useful to parameterize s as

s = µ (D − 1− µ) , (4.24)

which is invariant under

µ → D − 1− µ . (4.25)

The massless and PM spin two fields corresponds to the points µ = 0 and 1 (or D − 1

and D − 2). The range 0 < µ < 1 (or D − 2 < µ < D − 1) is forbidden by unitarity,

while the range 1 < µ < D − 2 corresponds to a massive field, up to (4.25). With the

parameterization (4.24), the condition (4.23) becomes

(µχ + µψ −D) (µχ + µψ −D + 2) (µχ − µψ − 1) (µχ − µψ + 1) = 0 . (4.26)

For a given µχ, the above clearly has four solutions for µψ:

µψ =





D − 2− µχ

D − µχ

µχ + 1

µχ − 1

, (4.27)

but the first two solutions are in fact related to the last two through (4.25), so it is sufficient

to consider the latter cases only. From now on, let ψ±
µν denote the fields with µψ± = µχ±1

for convenience. Note however that this convention depends on the choice of µχ from sχ:

if µχ → D − 1− µχ, then ψ±
µν → ψ∓

µν . In terms of s, the solution can be expressed as

sχ = µχ(D − 1− µχ) , sψ± = (µχ ± 1)(D − 1∓ 1− µχ) . (4.28)

Remark that the ᾱ-transformations (4.14) and (4.15) are consistent only for the fields whose

µ values differ by 1 up to (4.25). This is a manifestation of the fact that the PM field can

interact with two spin-two fields through a cubic vertex, only if the mass values of the latter

fields differ by one in terms of µ. In particular, the interaction with two identical fields is

only possible for a specific mass, that can be written in two forms (4.24) with two values of µ
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that differ by one. This mass value coincides with the PM mass in four dimensions, allowing

for cubic self-interaction of PM field with two derivatives. We show in the appendix C that

this pattern persists also for matter fields, providing a field-theoretical explanation of why

Conformal Gravity chooses specific mass values for fields that can couple to it.

For the above values of sψ± , or equivalently for µψ± up to (4.25), the equa-

tions (4.16), (4.19), (4.20), (4.21) and their bn counterparts have a non-trivial solution,




a1
a2
a3


 = a+




−(D − 1− µχ)

1

(D − µχ)(D − 3− µχ)


 ,




b1
b2
b3


 = b+




−(µχ + 1)

1

(µχ − 1)(µχ + 2)


 ,

(4.29)

and




a1
a2
a3


 = a−




−µχ

1

(µχ − 2)(µχ + 1)


 ,




b1
b2
b3


 = b−




−(D − µχ)

1

(D + 1− µχ)(D − 2− µχ)


 ,

(4.30)

where a± and b± are undetermined constants. It is worth to note that the + coefficients

and − coefficients are related by µχ → D − 1 − µχ. Let us also remark that the ratio

a±/b± is not physical since one can change it by redefining the field χµν or ψ±
µν with a

multiplicative factor. In the Lagrangian with fixed normalisation of these fields, both a±
and b± are given through the same cubic coupling constant. Hence, only the product

a± b± is remained to be determined. As we discussed in the previous section around (4.3)

and (4.4), it is proportional to the square of the coupling constant of the ϕ−χ−ψ± cubic

interaction. Note that the formula (4.29) does not reproduce (3.10) for µχ = 0. This is

not an inconsistency though, as the difference lies in the lower order gauge transformation

δ[0]

ξ hµν for the massless spin two field with a parameter ξµ ∝ ∂ραϕµρ.

4.1.2 Commutator

Now let us examine the commutator of the transformations (4.14) and (4.15). Straightfor-

ward computations give

[
δ[1]

ᾱ2
δ[1]

ᾱ1
χµν − δ[1]

ᾱ1
δ[1]

ᾱ2
χµν

]
ψ
= c1

1

2
∂ρα[1 ∂

σα2]∇(µ|∇σχ|ν)ρ + (4.31)

+
1

2L2

(
c2 α[1∂

ρα2]∇(µχν)ρ + c3
1

2
α[1∂

ρα2]∇ρχµν + c4 ∂
ρα[1 ∂(µα2] χν)ρ

)

with

C =




c1
c2
c3
c4


 =




−a1 b2 + a2 b1 − a2 b2
a1 b2 + a2 b1 + a2 b2 − a2 b3 + a3 b2

a1 b1 + 2 a2 b2 + a3 b1 − a1 b3
−a1 b1 − 2 a1 b2 + a2 b3


 . (4.32)

As we showed in the previous section, the on-shell conditions restrict ψµν to two possi-

bilities: ψ±
µν with µψ± = µχ ± 1 . About ψ+

µν , the an and bn coefficients are constrained
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as (4.29) and the commutator structure is given with C = C+ where

C+ = a+ b+ (D − 3− 2µχ)




1

D − 1

µ2
χ − (D − 2)µχ −D − 1

1− µχ


 . (4.33)

About ψ−
µν , the coefficients in (4.30) gives C = C− where

C− = − a− b− (D + 1− 2µχ)




1

D − 1

µ2
χ −Dµχ − 2

µχ −D + 2


 . (4.34)

Finally, the entire commutator on the field χµν is simply the sum of the ψ+
µν and the ψ−

µν

contributions:

δ[1]

ᾱ[2
δ[1]

ᾱ1]
χµν =

[
δ[1]

ᾱ[2
δ[1]

ᾱ1]
χµν

]

ψ+
+

[
δ[1]

ᾱ[2
δ[1]

ᾱ1]
χµν

]

ψ−
, (4.35)

and its expression is given as the right hand side of (4.31) with C = C+ + C− .

4.2 Spin-two tower

Let us apply the result obtained in the previous section to the system of massless and PM

spin two fields. If we take χµν as the massless field hµν , then ψ+
µν is the PM field ϕµν

whereas ψ−
µν becomes tachyonic. Therefore, we disregard the link to ψ−

µν by setting ah− = 0

(here, the field under consideration is indicated by the superscript). Then Ch
− = 0 and

Ch = Ch
+ = ah+ bh+ (D − 3)




1

D − 1

−D − 1

1


 . (4.36)

For the closure of the symmetry, the commutator should reproduce a so(1, D) isometry

transformation, that is the Lie derivative with the Killing tensor

ξ̄µ = [[ᾱ2, ᾱ1]]µ = −2(D − 3)

L2
λhϕϕ ᾱ[2 ∂µ ᾱ1] . (4.37)

This requirement translates to the vector C as C = C⋆ where

C⋆ = 2 (D − 3)λhhh λhϕϕ




0

0

−1

1


 . (4.38)

At first look, hµν does not seem to satisfy this requirement since Ch differs from C⋆. In

fact, for the massless field hµν , one should also take into account the linearized gauge

– 17 –



J
H
E
P
0
7
(
2
0
1
9
)
1
1
6

transformation δ[0]
ε with a field dependent gauge parameter εµ. Indeed, the following full

gradient terms can contribute to the commutator:

∇(µ

(
∂ρ α[1 ∂

σ α2]∇σ hν)ρ
)
= ∂ρα[1 ∂

σα2]∇(µ|∇σh|ν)ρ +
1

L2
α[1 ∂

ρ α2]

(
∇(µ hν)ρ −∇ρ hµν

)
,

∇(µ

(
α[1 ∂

ρ α2] hν)ρ
)
= α[1 ∂

ρ α2]∇(µ hν)ρ − ∂ρ α[1 ∂(µ α2] hν)ρ , (4.39)

and we should quotient them out. In terms of the vector C, this amounts to imposing the

equivalence relation,

Ch ∼ Ch + c




1

1

−2

0


+ d




0

1

0

−1


 , (4.40)

where c and d are arbitrary constants. With the above, we can achieve Ch ∼ C⋆ upon the

identification,

ah+ bh+ =
2λhhh λhϕϕ

D − 1
. (4.41)

Therefore, the transformation rule between hµν and ϕµν is completely fixed by asking the

on-shell condition and the closure of the global symmetry. The result coincides with the

one (3.10) obtained from the gravitational minimal coupling of ϕµν .

Now we move to the next player, the PM field ϕµν . Taking the χµν field as ϕµν , the

other two fields ψ±
µν becomes the massless field hµν and a new massive field φµν , respectively.

By asking Cϕ = C⋆, we get

(D − 5) aϕ+ bϕ+ = (D − 1) aϕ− bϕ− = 2λ2
hϕϕ . (4.42)

Note that aϕ− = bh+ and bϕ− = ah+ and the above is consistent with (4.41) since λhhh =

λhϕϕ (3.18).

Since we added the new field φµν , we have to require the closure of the symmetry on

the new field as well. Similarly to the hµν and ϕµν cases, the consistency on φµν would

require to introduce yet another spin-two field. In this way, we involve a multitude of

spin-two fields recursively. For a clear organization of this tower of fields, we label all the

fields involved as φ(n)
µν , where hµν = φ(0)

µν , ϕµν = φ(1)
µν and the newly added field φµν = φ(2)

µν .

In this notation, the mass value of φ(n)
µν is given with µφ(n) = n. By taking now χµν as φ(n)

µν

and ψ±
µν as φ(n±1)

µν , the requirement C(n) = C⋆ gives

a(n)

± b(n)

± =
2 (D − 3)λ2

hhh

(D − 1− 2n)(D − 1− 2(n± 1))
, (4.43)

which is consistent with a(n)

± = b(n±1)

∓ . In this way, we can include more and more fields

φ(n)
µν starting from n = 0 and their ᾱ-transformation rule is determined by (4.29) and (4.30)

with (4.43). However, when n becomes sufficiently large, we encounter a subtlety.
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In odd dimension D, when D > 3 and n reaches the value (D − 3)/2 the coefficient

a(n)

+ b(n)

+ in (4.43) diverges. This is due to the fact that the commutator between ϕ
(D−3

2
)

µν and

ϕ
(D−1

2
)

µν vanishes: C
(D−3

2
)

+ = 0 in (4.33). Note that the field ϕ
(D−1

2
)

µν is the special one with

the symmetry µ(D−1
2

) = D − 1 − µ(D−1
2

), or in other words, it is the heaviest field among

the ones with a real µ. The commutator between ϕ
(D−3

2
)

µν and ϕ
(D−5

2
)

µν alone cannot satisfy

the requirement of the symmetry closure because C
(D−3

2
)

− 6= C⋆ , see (4.34) and (4.38).

Therefore, in this case, the admissibility condition cannot be rescued. We shall comment

on a potential resolution to this problem together with the D = 3 case in the next section.

In even dimension D, when n reaches the value (D−2)/2, the field ϕ
(D−2

2
)

µν will be linked

to ϕ
(D
2
)

µν for the closure of the symmetry. Here, it is important to note that these two fields

have in fact the same mass value: s(
D−2
2

) = s(
D
2
) = D

2 (
D
2 −1). Moreover, the transformation

from ϕ
(D−2

2
)

µν to ϕ
(D
2
)

µν given by the coefficients an and the transformation from ϕ
(D
2
)

µν to ϕ
(D−2

2
)

µν

given by the coefficients bn are the same up to an overall unphysical factor:




a1
a2
a3


 = a+




−D
2

1

(D2 + 1)(D2 − 2)


 ,




b1
b2
b3


 = b+




−D
2

1

(D2 + 1)(D2 − 2)


 . (4.44)

Given this, we will consider two possibilities, either to identify the two fields or to proceed

with the doubled spectra. We will discuss these two possibilities in the next section.

These two possibilities are natural to consider, even though they are not the only

possibilities. In fact, one can introduce an arbitrary number of fields with the mass value

corresponding to s = D
2 (

D
2 − 1). Such a construction may eventually lead to a theory

with a spectrum equivalent to multiple copies of Conformal Gravity. As we will see, in

any of these cases at least one of the fields has to be a ghost. We will restrict ourselves

to the study of two possibilities mentioned above as the other options will not result in

conceptually different models.

4.3 Consistent solutions

4.3.1 Conformal gravity

In even dimensions, we can identify the fields φ
(D−2

2
)

µν and φ
(D
2
)

µν . Then, the recursive intro-

duction of new fields ends with φ
(D−2

2
)

µν , which is mapped to itself under ᾱ-transformation:

the coefficients a
(D−2

2
)

+ and b
(D−2

2
)

+ is also unified as a
(D−2

2
)

+ = b
(D−2

2
)

+ . This leads to the

condition, (
a
(D−2

2
)

+

)2

= −2 (D − 3)λ2
hhh . (4.45)

Since the right hand side is negative, the above equation does not have any real solution

a
(D−2

2
)

+ . However, if we consider the case where φ(n) have alternating kinetic term signs, then

the right hand side of (4.45) will acquire an additional minus sign and the above equation

admits a real solution. In such a case the global symmetry becomes the conformal symmetry
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so(2, D). The resulting theory is nothing but the conformal gravity in D dimensions. It is

usually written as a D-derivative theory of a single metric field, but can be decomposed into

a theory of Einstein gravity coupled to spin-two matter fields of µ = 1, . . . , D−2
2 . Here, the

only gauge fields are the massless and PM fields φ(0)
µν and φ(1)

µν , and the cubic interactions

associated to the global symmetry transformations are the ones involving at least one gauge

field among the three fields entering the interaction. These interactions are:

φ(0)−φ(n)−φ(n) , φ(1)−φ(n)−φ(n+1) , φ(1)−φ(D−2
2

)−φ(D−2
2

) . (4.46)

where n = 0, . . . , D−2
2 and some interactions appear more than once in this list. When

D = 4, the last cubic interaction is the φ(1)
µν = ϕµν self-interaction which exists only in four

dimensions.

In odd dimensions, so far there is no obvious candidate for conformal gravity except for

theD = 3 case where we have the Chern-Simons realization with so(2, 3) gauge algebra [69].

Recently the global conformal invariants — the scalar densities of metric field invariant

under local Weyl rescalings up to a total derivative — are classified both in even and odd

dimensions [70]. This classification has a good chance to provide decent candidates for

what we can call as conformal gravity in dimensions D = 4n− 1. These odd dimensional

candidates for conformal gravity have a parity odd structure, as is obvious in 3D Chern-

Simons case. In fact, the 3D conformal gravity can also be decomposed into the massless

and PM fields, but it has a noteworthy oddity compared to the even dimensional theories:13

the massless spin two is not the usual 3D Einstein gravity, but the parity odd cousin of

it. Its Chern-Simons realization is based on sl(2,R)+1 ⊕ sl(2,R)+1 rather than the usual

sl(2,R)+1 ⊕ sl(2,R)−1 . In other words, the two boundary graviton DoF14 are relatively

ghost breaking the parity symmetry. Here, the point that we want to emphasize is that the

massless spin two which has µ = 0 = D−3
2 needed to be realized in a non-standard manner.

Let us come back to our construction in odd dimensions D ≥ 5, where we found that the

theory of massless and PM spin two fields requires massive spin two fields of higher and

higher µ but when µ reaches the point D−3
2 the consistency breaks down. This may suggest

that a non-standard realization of the massive field with µ = D−3
2 may provide a resolution

to this problem. In D = 3, the general formula (4.43) suggests that our construction allows

a consistent solution with three fields: one PM field φ(1)
µν = ϕµν and two massless fields

φ(0)
µν = hµν and φ(2)

µν = h̃µν . This case is special though, because the general knowledge of

cubic interactions [33] may miss vertices existing only in D = 3. The dedicated study of

3D cubic interactions for massless fields has been carried out in [72, 73], while the vertices

with PM fields are not studied yet.

13Another special feature is that the PM spin two has no-bulk DoF and only two boundary DoF, which

cannot be realized by a two-derivative action but by a one-derivative one. In fact, in 3D all maximal depth

partially-massless fields of any spins admit two descriptions: one is the extrapolation of D > 3 case to

D = 3, which has one bulk DoF (and four boundary DoF) and the other having two boundary DoF only.

The Maxwell and U(1) Chern-Simons theories are the simple examples of this. See [71] for more details.
14In AdS spacetime, we need to impose an appropriate boundary condition in the time-like conformal

boundary and this may break gauge symmetries on the boundary. As a result, some boundary values of the

AdS gauge fields become additional DoF of the theory. These boundary DoF are particularly important

when the bulk DoF are absent, for instance in 3d gravity and 3d conformal gravity.
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A solution with two copies of massless spin-two fields arises also in all even dimensions.

We will study such models in the following. An important difference as compared to the

case of D = 3 is that in even dimensions we will also have two copies of PM fields and that

the massless spin-two fields are propagating in dimensions D ≥ 4.

4.3.2 Doubled spectra

In the even dimensional analysis of the last section, we could opt for proceeding without

identification between φ(D−2
2

) and φ(D
2
). Even in this case, we still face the same problem

as before since we still need to satisfy

a
(D−2

2
)

+ b
(D−2

2
)

+ = −2 (D − 3)λ2
hhh , (4.47)

whereas the sign of a
(D−2

2
)

+ b
(D−2

2
)

+ is given by the relative sign of the kinetic terms of

φ(D−2
2

) and φ(D
2
) (see appendix B for the details). Nevertheless, we can proceed with the

construction, by choosing the kinetic term sign of φ(D
2
) opposite to φ(D−2

2
). Then, we are

led to introduce also φ(D+2
2

) , φ(D+4
2

) , . . . , φ(D−1) with the same kinetic term signs as φ(D
2
) .

When we reach the last field φ(D−1) , which is another massless spin two, we do not need to

introduce the tachyonic φ(D) because the transformation between φ(D−2) and φ(D−1) alone

suffices to satisfy the symmetry closure up the linearized gauge transformation. This is

simply due to the symmetry between (4.29) and (4.30) under µ → D− 1− µ. In this way,

we get exactly doubled spectra: any field in this theory has its equal mass partner. Even

though the field content is symmetric, the cubic interactions responsible for the global

symmetry transformations are not. They are

φ(0)−φ(n)−φ(n) , φ(1)−φ(n)−φ(n+1) , (4.48)

where n = 0, . . . , D− 1 and one vertex falls into both classes. The introduction of another

copies of massless and PM fields φ(D−1) and φ(D−2) requests to enlarge the vector space

of the global symmetry by another copies of massless and PM Killing tensors. Without

explicit calculation, we can asses what might be the resulting global symmetry. For that,

let us make a schematic analysis where M and K denote the original generators forming

so(1, D + 1) and M̃ and K̃ the new generators associated with the fields φ(D−1) = ϕ̃ and

φ(D−2) = h̃ . If we focus on three gauge fields interactions responsible for the Lie brackets

of the global symmetry algebra, then there are

h− h− h , h− ϕ− ϕ , h− ϕ̃− ϕ̃ , h− h̃− h̃ , ϕ− ϕ̃− h̃ . (4.49)

From the above, we can figure out the schematic structure of the Lie brackets as

[[M , M ]] = M , [[M , K ]] = K , [[K , K ]] = M ,

[[M , M̃ ]] = M̃ , [[M , K̃ ]] = K̃ , [[ M̃ , K ]] = K̃ , [[K , K̃ ]] = M̃ ,

[[ M̃ , M̃ ]] = M , [[ M̃ , K̃ ]] = K , [[ K̃ , K̃ ]] = M . (4.50)

The details of the brackets are also under control since they are inherited from the cubic

interactions (4.49) whose forms are indifferent whether each fields are tilded or not. In this
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way, we can conclude the global symmetry of this theory is g ⊗ Z2 , where g is some real

form of so(D+2). It is straightforward to check that the algebra splits into two parts with

generators,

N =
1

2
(M + M̃) , L =

1

2
(K + K̃) , Ñ =

1

2
(M − M̃) , L̃ =

1

2
(K − K̃) , (4.51)

which are mutually commuting:

[[N , N ]] = N , [[N , L ]] = L , [[L , L ]] = N ,

[[N , Ñ ]] = 0 , [[N , L̃ ]] = 0 , [[ Ñ , L ]] = 0 , [[L , L̃ ]] = 0 ,

[[ Ñ , Ñ ]] = Ñ , [[ Ñ , L̃ ]] = L̃ , [[ L̃ , L̃ ]] = Ñ . (4.52)

The consistency of the δ[1] transformation by the tilded generators can be also achieved

thanks to the Z2 structure: the transformation rules by tilded generators are the same as

the untilded one upon interchanging one of the field to its µ → D− 1−µ counterpart. For

this, we would need to include also the cubic interactions,

φ(D−1)−φ(n)−φ(D−1−n) , φ(D−2)−φ(n)−φ(D−2−n) , (4.53)

where n = 0, . . . , D−1 and some interactions are redundant: they may appear in more than

one of the above mentioned classes. Therefore, this theory seems to pass all the consistency

requirements considered in this paper, even though the fields φ(0≤n≤D−2
2

) and φ(D
2
≤n≤D) are

relatively ghost. In fact, there could be a trivial relation between this theory and conformal

gravity. Since the global symmetry g⊗ Z2 can be decomposed into g⊕ g , one can expect

that the theory itself can be also written as a direct sum of two mutually non-interacting

conformal gravity Lagrangians, similarly to the Einstein-Hilbert analog considered in [74].

Let us consider now theD = 3 case. As one could check from the general formula (4.43),

there is a consistent solution with three fields hµν , ϕµν and h̃µν . Since a
(1)

+ b(1)+ = −2λ2
hhh <

0, the third field h̃µν has the opposite kinetic term sign to hµν and ϕµν . Similarly to the

even dimensional case that we discussed just above, the 3d theory under consideration will

have an enlarged global symmetry, so(1, 3) ⊂+ R
1,3+⊃ so(1, 3), the semi-direct sum between

two copies of dS3 isometry and the Abelian PM symmetries. Since the PM field ϕµν is

realized as a two-derivative Lagrangian, its degrees of freedom (DoF) are composed of 1

bulk and possibly 4 boundary DoF. Concerning the boundary DoF, we may consider the

decomposition 4 → 2 + 2 where 2 is the boundary DoF contained in the Chern-Simons

formulation of 3D Conformal Gravity [29]. However, due to the presence of one bulk DoF,

the 3D theory under consideration is different from the direct sum of two copies of 3D

Conformal Gravity. It would be interesting to identify the full interacting theory in 3D

that we found up to cubic order in interaction.

Finally, let us add one more remark on the even dimensional cases. Even though the

direct sum of two conformal gravities should be one of the solutions in this construction,

it is not clear, from the schematic analysis in this section, whether it is the only solution

with the given spectrum. If there is a room for another option, the resulting theory would

be a strange cousin of “doubled conformal gravity”, which itself may admit a non-trivial
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decomposition into two mutually non-interacting theories.15 In four dimensions, it might

be also possible to identify the ghost fields with the electric-magnetic dual of the original

fields imposing extra constraints, thus establishing a unitary theory. These speculations

lead us to consider a decomposition of parity invariant theory into two parity-violating

ones, thus a theory with parity odd couplings.

5 Relaxing other assumptions

5.1 Parity violating theory in D = 4

So far, we have implicitly required the invariance under the parity symmetry, that is,

the interaction vertices do not involve any Levi-Civita tensor ǫµ1···µD
. Now, we examine

the consequences of potential parity odd vertices. We shall restrict the analysis to the

dimension D = 4 because in dimensions D ≥ 6 parity odd vertices are absent for symmetric

fields, while in D = 5 the parity-odd self-interactions of a spin-two field requires Chan-

Paton factors. Let us go back to the set up (3.7). The vertices Vhhh and Vhϕϕ are related

to the general covariance, so we will not attempt to modify them. Vϕϕϕ is the PM self-

interaction, and let us replace it by a parity-odd analogue, say Ṽϕϕϕ. Then, it would

induce a parity-odd first-order deformation on PM gauge transformation. Due to the

antisymmetry of the Levi-Civita tensor, there is only one possible structure for δ[1]
α ϕµν :

δ[1]
α ϕµν = 2 λ̃ϕϕϕ ǫρσλ(µ ∂

ρα∇σ ϕλ
ν) . (5.1)

With the above, the first-order deformations of the gauge symmetries (3.10) will be modified

to

δ[1]
α ϕµν =

1

2
λhhh

[
∂ρα (∇ρhµν − 2∇(µhν)ρ) +

2Λ

3
αhµν

]
+ 2 λ̃ϕϕϕ ǫρσλ(µ ∂

ρα∇σ ϕλ
ν) ,

δ[1]
α hµν = 2λhhh ∂

ρα
(
∇ρϕµν − 2∇(µϕν)ρ

)
, (5.2)

where we have already used the constraint λhϕϕ = λhhh imposed by the Jacobi identity of

the global symmetry. Now we can examine again the closure of the above transformations

by imposing the Killing condition (3.12) and the on-shell conditions (3.4) and (3.6). Note

that one can verify that the parity-odd transformation (5.1) is compatible with the on-shell

conditions:
(
�− 4Λ

3

)[
δ[1]

ᾱ ϕµν

]
= 0 , ∇µ

[
δ[1]

ᾱ ϕµν

]
= 0 , ḡµν

[
δ[1]

ᾱ ϕµν

]
= 0 , (5.3)

which can be shown employing identities from appendix A. Again the commutators [[ξ̄1, ξ̄2]]

and [[ξ̄, ᾱ]] are guaranteed to be consistent by the generally covariant interactions Vhhh and

Vhϕϕ, so we are left with the check of [[ᾱ1, ᾱ2]]µ = −Λ
3 λhϕϕ α[1∂µα2] . First, acting the

commutators on the on-shell massless spin two hµν , we find

(
δ[1]

ᾱ1
δ[1]

ᾱ2
− δ[1]

ᾱ2
δ[1]

ᾱ1

)
hµν = δ[1]

[[ᾱ1,ᾱ2]]
hµν +∇(µξν)(ᾱ1, ᾱ2) ∼ δ[1]

[[ᾱ1,ᾱ2]]
hµν (5.4)

15It is also natural to guess that the “multiple conformal gravity” examples we found can be related to

those studied in [75, 76].
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where the parameter of linearised diffeomorphisms is given exactly as Bµ in [39], except

that its ϕ-dependent part is now

ξν(ᾱ1, ᾱ2, ϕ) = 8λ2
hhh ǫρσλκ∇ρᾱ1∇σᾱ2∇λ ϕκ

ν . (5.5)

Second, acting by the commutator on the PM field, we find

(
δ[1]

ᾱ1
δ[1]

ᾱ2
− δ[1]

ᾱ2
δ[1]

ᾱ1

)
ϕµν ≈ δ[1]

[[ᾱ1,ᾱ2]]
ϕµν +

(
λ2
hhh − λ̃2

ϕϕϕ

)
Cµν , (5.6)

where Cµν is given in (3.21) and we dropped the terms, proportional to free equations of

motion. The full expression is given in appendix A. We can see that for λ̃ϕϕϕ = ±λhhh the

global symmetry transformations represented by δ[1] close. Therefore, the putative theory

with a parity-odd ϕ−ϕ−ϕ interaction giving rise to (5.1) is compatible with unitarity. This

happens only for Minkowski signature, with ǫµνρσ ǫ
µνρσ = −24 < 0 . It is worth noting, that

the δ[1] transformation closes only in the case when there is no parity-even self-interaction

of PM field (or, λϕϕϕ = 0).

Now that the theory under consideration passes the admissibility condition, we would

like to explicitly construct the Lagrangian up to cubic order. Here we encounter a prob-

lem: there is no covariant cubic vertex for parity-odd self-interaction of PM spin two

field.16 In fact, a parity-odd vertex exists in case if there is another PM field involved (see

appendix B.6), but it still cannot help with the closure of the algebra, unless the second

PM field is a ghost. This finding is puzzling, but may indicate that the theory we are after

cannot be consistently formulated in the variables that we chose. It is somewhat similar to

the Metsaev’s findings about massless higher-spin fields in four-dimensional flat space [78]:

for the consistency one has to include vertices that exist in light-cone, but cannot be written

in the manifestly Lorentz-covariant form through Fronsdal fields.

Our results indicate the existence of a unitary theory of massless gravity interacting

with PM spin two field (or, simply unitary cousin of Conformal Gravity), that has a global

symmetry so(1, 5). This theory cannot be written in terms of familiar metric variables in

the standard Lorentz-covariant manner though. We do not exclude the existence of a more

suitable covariant approach, and we hope to address it in future works. For the moment,

we note that the (A)dS light-cone approach [79–82] can be one way to study this problem.

Another possibility is to study the ‘amplitudes’: the spinor-helicity formulation recently de-

veloped for AdS4 [83] and its suitable generalization might be useful. It would be worth to

remark here that the parity-odd cubic self-interaction amplitudes of the massless spin-two

(or higher-spin) fields in flat four-dimensional space exist despite the fact that the corre-

sponding vertices cannot be written in a covariant form in terms of usual Fronsdal variables

(see, e.g., [84]). Therefore, we can speculate that the same happens for the parity-odd cu-

bic self-interaction amplitude of the PM field. To conclude, let us add another speculation

16This situation is similar to the well-known example of the action for the particle on the sphere [77] in

presence of magnetic monopole at the centre of the sphere: we can easily construct the equations of motion,

but the corresponding interaction term, contracted with the field vanishes, therefore the straightforward

candidate Lagrangian vertex is missing. One can try to construct a Wess-Zumino-like interaction term —

we postpone this to a future work.
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that the putative formulation of the parity-violating PM Gravity may exhibit the elec-

tromagnetic duality symmetry manifestly. The manifest duality symmetric formalism is

developed for linearised gravity in [85–87] (see also [88, 89] for a recent generalisation to

massless higher-spin fields). This speculation can be further supported by the observation

of [68] that an analogous symmetry — so(3, 3) in AdS4 — acting on massless fields can be

made manifest at the level of equations of motion using duality-symmetric variables.

5.2 Non-geometric theory

In the analysis above, we assumed that the gravitational interactions of the PM and massive

fields are simply given by covariantising the derivatives in the free action, thus viewing it as

a matter that couples to gravity universally, obeying the general covariance. In that case,

the transformations of these fields with respect to gauge symmetries of the massless spin

two are given by the familiar diffeomorphism. In fact, the analysis of cubic interactions

in (A)dS reveals that there is yet another two-derivative vertex for the interaction among

a massless spin two and two (partially-)massive spin two fields [33]. Introduction of this

vertex would modify the gauge transformations and therefore violate the general covariance

of the PM fields. From here on, we shall refer to this interaction vertex as “non-geometric”.

Once the non-geometric coupling is allowed, one has to start over the full analysis again.

Therefore, this possibility may lead to a resolution to the obstruction imposed by the

admissibility condition.

Now, let us consider the non-geometric h−ϕ−ϕ vertex. It can be written as the current

coupling,

Ṽhϕϕ = λ̃hϕϕ hµν Jµν , Jµν = F(µ
λ,ρ Fν)λ,ρ −

1

4
ḡµν Fλρ,σ F

λρ,σ , (5.7)

where we introduced the linearised curvature of PM field via

Fµν,ρ = ∇µϕνρ −∇νϕµρ . (5.8)

The current Jµν is conserved in any dimensions, but partially conserved in four dimen-

sions only (conserved and traceless currents are automatically partially conserved). The

self-interaction vertex for PM field can actually be written as Vϕϕϕ = λϕϕϕ ϕµν Jµν (see

appendix B) and exists only in four dimensions. The vertex (5.7) is obviously Abelian17

but it induces a deformation of gauge transformation of the PM field. The transformation

of PM field with gauge parameter of massless spin two will be given by

δ[1]

ξ ϕµν = Lξ ϕµν +Dξ ϕµν , (5.9)

where the first term

Lξ ϕµν = λhϕϕ

(
ξρ∇ρϕµν + 2∇(µξ

ρ ϕν)ρ

)
, (5.10)

17We remind the reader, that we call a cubic vertex Abelian, if it does not induce deformation of the

bracket of the parameters, or equivalently, the global symmetry. That is to say, it can induce δ[1], but the

corresponding commutator δ
[0]

[ǫ δ
[1]

η] χi ≡ δ
[0]

[η,ǫ]χi = 0 vanishes.
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is the usual Lie derivative, while the second term is given (up to trivial transformations) by

Dξ ϕµν = −λ̃hϕϕ

(
ξλ Fλ(µ,ν) +

D − 1

2Λ
∇(µ(∇ρξλ Fν)λ,ρ)

)
. (5.11)

Remark that the transformation (5.11) is not analytic in cosmological constant, therefore

does not have a smooth flat space limit. As opposed to the Fradkin-Vasiliev mecha-

nism [90], where the Lagrangian is non-analytic in cosmological constant while the gauge

transformations induced from it are analytic, here the Lagrangian vertex has a smooth flat

limit while the gauge transformation, that ensures consistency, does not. The underlying

interaction vertex Ṽhϕϕ was missed in the previous literature, for instance [91] and [39],

thus questioning the applicability of the light-cone [92] and TT classifications [30] to

the off-shell fields. The implicit assumption of one-derivative transformation lows for

two-derivative vertices was the reason for the omission of the vertex (5.7) in [91]. The

apparent non-cancellations of the trace and divergence terms was the reason of omission

in [39], where the hidden assumption was that the off-shell completion should be similar

to that of massless fields [93]. In fact, we show in appendix B that, thanks to the

presence of infrared regulator — mass or cosmological constant — any TT vertex can be

promoted to a full off-shell vertex for massive fields too, albeit with slightly more general

mechanism than that of massless fields. The special feature of this generic completion is

that higher-derivative terms arise in gauge transformation deformations.

Now in order to test the admissibility condition, we consider the Killing vector ξ̄ and

on-shell field ϕµν . Then we get

Dξ̄ ϕµν = −D − 1

4Λ
λ̃hϕϕ

(
∇ρξ̄σ ∇(µ|Fρσ,|ν) +

4Λ

D − 2
ξ̄ρ Fρ(µ, ν)

)
. (5.12)

Interestingly enough, the above precisely cancels with the problematic piece (3.21) in the

commutator δ[1]

[ᾱ1
δ[1]

ᾱ2]
ϕµν upon the identification,

λ̃hϕϕ =
2 (D − 2)

D − 3
λhϕϕ , (5.13)

in arbitrary dimensions and

λhϕϕ λ̃hϕϕ = 4
(
λ2
hϕϕ + λ2

ϕϕϕ

)
, (5.14)

in four dimensions.18

This is a good news, but not the end of the story: as we modified δ[1]

ξ , we have to

check also the closure [δ[1]

ξ̄1
, δ[1]

ξ̄2
] = δ[1]

[[ξ̄1,ξ̄2]]
. We compute the commutator of two gauge

transformations with the vector gauge parameter, and get

[δ[1]

ξ̄1
, δ[1]

ξ̄2
]ϕµν = δ[1]

[[ξ̄1,ξ̄2]]
ϕµν + δ[1]

ζ̄(ξ̄1,ξ̄2)
ϕµν , (5.15)

18We take into account (4.37) in this derivation, equivalent to ξ̄µ = [[ᾱ1, ᾱ2]]
µ = 2Λ

3
λhϕϕ ᾱ[1∂

µᾱ2] in four

dimensions. Note that the difference between (5.13) and (5.14) comes from the PM self-interaction with

the coupling constant λϕϕϕ which exists only in four dimensions.
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where

[[ξ̄1, ξ̄2]]
µ = ξ̄ρ1 ∇ρ ξ̄

µ
2 − ξ̄ρ2 ∇ρ ξ̄

µ
1 , (5.16)

ζ̄µνρ(ξ̄1, ξ̄2) = ξ̄2µ∇[ν ξ̄1 ρ] − ξ̄1µ∇[ν ξ̄2 ρ] . (5.17)

The right hand side of (5.15) has an extra term δ[1]

ζ̄
ϕµν (whose precise expression is given in

the appendix A), therefore we see that the transformations by vector parameter, deformed

by the non-generally-covariant vertex Ṽhϕϕ are not closed any more. This problem might

be again fixed by introducing another field, say ω, with an interaction Vωϕϕ. If the new

field ω has gauge symmetry with a parameter ζ, then the interaction Vωϕϕ may also induce

a non-trivial transformation δ[1]

ζ ϕµν , which might be identified with the problematic piece

of (5.15). For that to happen, there should exist also a ω−h−h interaction and in such a

case the global symmetry so(1, D + 1) will be enhanced by the Killing tensor ζ̄ such that

the new global symmetry does not include so(1, D + 1) anymore as a subalgebra. We can

notice from (5.17) that the gauge parameter ζµνρ has two irreducible components: a fully

antisymmetric part and a part with the symmetry of (2, 1) hook Young diagram.

A few remarks are in order. The trace of ζ̄µνρ is the usual vector commutator of ξ̄1
and ξ̄2 given by (5.16) (up to terms that vanish for Killing vectors).

In our arbitrary dimensional construction, there are many fields with different mass

values involved, and the space of parameters in the theory is large. In fact, all of the fields

with µ = 1, 2, . . . may couple to gravity non-geometrically (see appendix B). We will not

attempt the most general analysis here. Instead we note that the non-closure term for the

n-th field can be read off from (4.34) and (4.43) and is given by

δ[1]

ᾱ[2
δ[1]

ᾱ1]
φ(n)
µν =

[
δ[1]

ᾱ[2
δ[1]

ᾱ1]
φ(n)
µν

]

φ(n−1)
= Lξ̄ φ

(n)
µν +Dξ̄ φ

(n)
µν , (5.18)

where ξ̄µ is given in (4.37), the Lξ̄ φ
(n)
µν is the diffeomorphism with the parameter ξ̄µ, and

the non-closure term Dξ̄ φ
(n)
µν is given by

Dξ̄ φ
(n)
µν =

2λhhh L
2

D − 1− 2n

{
∇ρξ̄σ ∇(µ|∇σφ

(n)

|ν)ρ+
D − 1

L2
ξ̄ρ∇(µφ

(n)

ν)ρ+
(n−D)(n+ 1)

2L2
ξ̄ρ∇ρφ

(n)
µν )

}
.

(5.19)

This transformation indeed corresponds to a non-geometric two-derivative coupling of the

type φ(0)−φ(n)−φ(n) described in the appendix B. Thus a partial departure from the general

covariance is possible by letting all the fields in the theory couple to the massless one

in a generally covariant manner, except for one of them. The choice of the field can be

arbitrary — the PM field itself, or one of the massive fields in the ladder considered in

previous section. We can stop the ladder at any point and declare the non-closure of the

last field as a new transformation coming from the non-geometric coupling to the massless

spin two. For D = 4 and µ = n = 1, this expression is what we get from (3.21), as expected.

In four dimensions, we do not have any other option except to couple the PM field itself

to gravity non-geometrically via the coupling (5.7). This may lead to a unitary theory of

massless and PM spin-two fields. We remark here that the gauge field corresponding to the
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parameter ζµνρ can be also identified from the definition of ζ (5.17) and the Killing condi-

tions for the vector parameters. It follows then that the Killing condition for ζ should be

∇[µζ̄ν]λρ +∇[λζ̄ρ]µν = 0 , (5.20)

which indicates that the corresponding gauge field is of rank four, with two pairs of

antisymmetric indices, which are symmetric under the exchange of the pairs. There are

two irreducible tensors with such index structure: fully antisymmetric tensor, and the

tensor corresponding to window Young diagram (2, 2). A more natural language for

studying systems with such fields is employing forms, and corresponding deformations of

the gauge structure may be related to some sort of higher gauge theory. In four dimensions

such fields are expected to be topological, and it might be easier to construct interacting

theories there. A priori, we cannot exclude appearance of new propagating degrees of

freedom though, e.g. via a non-standard realisation of the “notivarg” type [94]. A more

detailed study of such theories will be conducted elsewhere.

6 Discussion

In this paper, we have revisited the no-go theorem [39] of interacting and unitary theory

of PM spin two field by identifying and relaxing implicit assumptions therein. We first

relaxed the assumption on the field content: the theory includes only massless and PM

spin two fields. It turned out that only a massive spin-two field can cure the obstruction

for the closure condition on PM field, but the problem reappears on the new field, which

can be avoided again by adding yet another massive spin two field. In this way, we are

led to introduce more and more massive spin-two fields with specific mass values. When

the mass value reaches a certain bound, we find that the closure of the algebra is not

possible unless we give up unitarity. By allowing relative negative signs for kinetic terms

in even D dimensions, we find that the minimal possibility is given by the Conformal

Gravity Lagrangian. We study also an alternative possibility with doubled spectrum of the

Conformal Gravity. In odd dimensions D ≥ 5, we do not find any theory compatible with

general covariance even relaxing the unitarity.

From the global symmetry point of view, three dimensions is special: the corresponding

algebra is not simple, but gives the four dimensional Poincaré algebra, iso(1, 3) in this case.

From field-theoretical point of view, the situation in D = 3 is somewhat similar to the even

dimensional case: by relaxing the unitarity, we close the symmetry with PM fields and

doubled massless spin two fields. Differently from the even dimensional case, this cannot

be a sum of two 3d Chern-Simons Conformal Gravity Lagrangians because of the mismatch

in the global symmetries as well as the bulk degrees of freedom. The existence of two

massless “gravitons” in this model poses new challenges in constructing the full non-linear

theory. The corresponding full non-linear theory, if existing, can be the first example of an

action for Coloured Gravity with bulk propagation. The two gravitons are mutually ghost

but not propagating, whereas the propagating PM degree of freedom has a positive norm.

In the end, we find that relaxing the assumption on the field content alone cannot

overcome the obstruction, so a stronger no-go theorem in arbitrary dimensions is obtained.
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We next consider the possibility to relax another assumption of the no-go theorem —

parity invariance of the theory. This leads us to a theory with parity-odd self-interaction

of PM field in four dimensions, that passes the admissibility condition. The corresponding

parity-odd cubic vertex is missing though, in the metric-like variables. This theory may

exist in another formulations and we hope to come back to it in the future.

Another direction we explored here is involving departure from the generally covariant

gravitational coupling, introducing another vertex (5.7) of interactions with gravity for PM

fields. The special feature of such a coupling is that it induces a gauge transformation that

is non-analytic in cosmological constant. The existence of the cosmological constant as

an infrared regulator can be essential in theories involving such couplings, and the limit

sending the regulator to zero may not be consistent. Note that this is a generic feature of

interactions involving massive fields (see appendix B). This feature might be related to the

subtleties arising in the tensionless limit of the field-theoretical interpretations of String

Theory.19 We delegate investigation of the space of theories with such a non-geometric

coupling to a future work, but comment here about general features of it. Once a non-

geometric coupling is allowed, the algebra of global symmetries changes in a way that the

so(1, D + 1) is not a subalgebra of it any more. If the matter does not couple to the new

mixed-symmetry field ω, then it would not experience this enlarged symmetry — it would

see only the standard Einstein-Hilbert gravity and matter coupled to it minimally and

possibly to the PM field,20 at least at the classical level.

One can, of course, try to look at the possible space of theories where both of the

above assumptions are relaxed — a parity-violating theory with non-geometric coupling

to gravity. We did not study this possibility, as relaxing each of the assumptions already

gives a possibility to construct a unitary theory of PM field, and each of them introduce

technical complications on their own: general covariance of the theory with parity-odd

couplings ensures the closure of the gravitational sector of the gauge symmetries, while

the parity-even structure of the theory with non-geometric couplings allows to hope for

having a simple action principle in metric variables. None of these theories is constructed

completely in this work though. We hope to come back to each of them in the future.

We should note here that the PM field can take a VEV compatible with Lorentz

invariance — constant times dS metric. This is a solution to the PM equations at least

to second order in the fields. Once the PM field has a non-zero VEV, it will have lowest

order gauge transformations with vector parameter, induced from diffeomorphism, and the

mass terms of massless and PM spin-two fields will be mixed. We work in a specific basis,

where a diagonal quadratic action (3.1) is assumed, hence the PM field has a zero VEV.

We cannot exclude that for a certain non-linear theory this basis is singular and one has

to give a non-zero VEV to the PM field and therefore consider non-diagonal mass matrix

for the spin-two fields involved. We did not pursue this direction here.

19If the flat limit of the non-geometric theory may be defined, it will have larger symmetries as the PM

field will split into massless spin-two and massless spin-one fields, with corresponding gauge symmetries.

The distinctive feature of such an elusive theory would be the non-diagonal gravitational coupling — cubic

interaction between the two massless spin-two fields and the massless spin-one field, with three derivatives.
20The coupling to PM field is very constrained for matter fields, see appendix C.
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Even though we do not find any solution for a PM gravity in odd dimensions, there is

a natural candidate to this role in odd dimensions — Chern-Simons (CS) theory with the

algebra so(1, D+1) (or the algebra so(2, D) for Conformal Gravity). Indeed, the conformal

gravity in three dimensions is given by a Chern-Simons action with gauge algebra so(2, 3)

— conformal algebra in three dimensions. The CS conformal gravity in D = 3 uses the

non-propagating PM field, which is different from our set up here. A special feature of the

CS gravity in D ≥ 5 is that it does not admit linearisation around maximally symmetric

background [95], therefore it violates one of the main assumptions in our construction here

— perturbative expansion around dSD background starting from quadratic action (3.1).

Nevertheless, the number of degrees of freedom for such a theory is computed in arbitrary

odd dimensions D = 2n + 1 in [96] (see also [97]). We note here that when the gauge

algebra is taken to be de Sitter algebra in D = 2n + 1 dimensions with an extra u(1)

factor,21 u(1)⊕ so(1, D), the number of degrees of freedom is given by

N = 2n3 + n2 − 3n− 1 . (6.1)

We speculate that these degrees of freedom are a collection of spin-two fields:

N = (2n2 − n− 1)︸ ︷︷ ︸
massless

+(2n2 + n− 2)︸ ︷︷ ︸
PM

+(n− 2)× (2n2 + n− 1)︸ ︷︷ ︸
massive

, (6.2)

with mass values given by µ = 0, 1, . . . , n− 1. Interestingly this collection of fields appears

in Conformal Gravity in one lower, D − 1 = 2n dimensions. Hence, CS theory in 2n + 1

dimensions with so(1, 2n + 1) algebra may be underlying the putative parity-violating

theory of PM gravity in 2n dimensions, through a special dimensional reduction.22 Such

a reduction with the choice of algebra so(1, 5) may suggest the off-shell variables that are

better suited to describe the theory found in section 5.1 and therefore requires further

investigation (see [98–100] for related works).
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A Technical details

Free PM field. Here we collect some formulas that are used in manipulations with linear

expressions involving PM field ϕµν in the gravitational background given by metric ḡµν :

Fµν,ρ = ∇µϕνρ−∇νϕµρ , (A.1)

Gµν(ϕ) =

(
�− 2DΛ

(D−1)(D−2)

)
ϕµν−2∇(µ∇ρϕν)ρ+∇µ∇ν ϕ

ρ
ρ

− ḡµν

[(
�− 2Λ

(D−1)(D−2)

)
ϕρ

ρ−∇ρ∇σϕρσ

]
, (A.2)

Fµν,ρ+Fνρ,µ+Fρµ,ν = 0 , (A.3)

∇ρFµν,σ+∇µFνρ,σ+∇νFρµ,σ = 0 , (A.4)

gµρFµν,ρ = −D−1

2Λ
∇·Gν , (A.5)

∇µFµν,ρ = Gνρ−
D−1

2Λ
∇ρ∇·Gν+

D−1

2Λ
gνρ∇·∇·G , (A.6)

∇ρFµν,ρ = −D−1

2Λ
∇µ∇·Gν+

D−1

2Λ
∇ν∇·Gµ , (A.7)

(
�− 2(2D−3)Λ

(D−1)(D−2)

)
Fµν,ρ = ∇µGνρ−∇νGµρ−

D−1

2Λ
∇µ∇ρ∇·Gν

+
D−1

2Λ
∇ν∇ρ∇·Gµ . (A.8)

Here Gµν is the same as G( 2Λ
D−1

)

µν defined in (3.2). The free equation of motion of the PM

field is Gµν = 0, therefore, anything that is on-shell zero can be expressed through Gµν .

Note that some expressions are on-shell zero, but cannot be written through equations of

motion analytically in cosmological constant.

Killing conditions. The Killing parameters satisfy the following equations:

∇µξ̄ν +∇ν ξ̄µ = 0 , ∇µ ∂νᾱ+
2Λ

(D − 1)(D − 2)
gµνᾱ = 0 , (A.9)

∇µ∇ν ξ̄ρ +
2Λ

(D − 1)(D − 2)
(gµν ξ̄ρ − gµρ ξ̄ν) = 0 . (A.10)

PM commutator in parity-odd theory. In the parity-violating theory of section 5.1,

the commutators of the PM gauge transformations acting on the PM field, are given as

[δ[1]

ᾱ2
, δ[1]

ᾱ1
]ϕµν = 4(−λ̃2

ϕϕϕ + λ2
hϕϕ)[∂ρᾱ[1∂σᾱ2]∇(µ∇ρϕσ

ν) − Λᾱ[1∂
ρᾱ2](∇(µϕν)ρ −∇ρϕµν)]

+ 4λ̃2
ϕϕϕ∇(µ[(ᾱ[1∇ρᾱ2])(Gν)ρ(ϕ)− gν)ρGσ

σ(ϕ))]

−
6λ̃2

ϕϕϕ

Λ
∇(µᾱ[1∇βᾱ2]∇ν)∇σ Gσγ(ϕ)

+ 2λ̃2
ϕϕϕgµνᾱ[1∇αᾱ2]∇βGαβ(ϕ)− 2λ̃2

ϕϕϕᾱ[1∇(µᾱ2]∇αGα
ν)(ϕ)

+ λ̃ϕϕϕ λhϕϕ ǫαβγ(µ∇αᾱ1∇βᾱ2 G(0)γ
ν)(h)

= 4(−λ̃2
ϕϕϕ + λ2

hϕϕ) Cµν +O(G(0)
µν (h), Gµν(ϕ)). (A.11)
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The last expression reduces to the on-shell closure of the algebra discussed in section 5.1

for λ̃ϕϕϕ = λhϕϕ.

Commutator in the non-geometric theory. Once we allow for the additional ver-

tex (5.7) of non-geometric coupling of the PM field to gravity, the gauge transformations

of the PM field with the vector parameter of massless spin-two field is modified to

δ[1]

ξ ϕµν = λhϕϕ(ξρ∇ρϕµν +2∇(µξ
ρϕν)ρ)−

D − 1

4Λ
λ̃hϕϕ

(
∇ρξσ∇(µ|Fρσ|ν) +

4Λ

D − 2
ξρFρ(µν)

)
.

(A.12)

The commutator of two such transformations is given as in (5.15), where

δ[1]

ζ ϕµν =
(D − 1)2

8Λ(D − 2)
λ̃2
hϕϕζ

λτρ∇µ∇λFρτν +
(2D − 3)(D − 1)

8Λ(D − 2)
λ̃2
hϕϕ∇µζ

λρτ∇λFτρν

− (D − 1)2

8Λ(D − 2)
λ̃2
hϕϕ∇µζ

λρτ∇νFτρλ +
(D − 1)(2λhϕϕ − 3λ̃hϕϕ)

8Λ
λ̃hϕϕ∇λζ τρ

τ ∇µFρλν

+
(D2 − 2D + 3)(D − 1)

16Λ(d− 2)
λ̃2
hϕϕ∇τζ

τλρ∇µFρλν −
(2D − 3)

4(D − 2)2
λ̃2
hϕϕζµλρF

ρλ
ν

−(D2 − 3D + 3)

2(D − 2)2
λ̃2
hϕϕζ

λρ
µFνλρ −

(2D2 − 5D + 4)

2(D − 2)2
λ̃2
hϕϕζ

λρ
µFλρν

− (2D − 1)

4(D − 2)2
λ̃2
hϕϕgµνζ

λτρFτρλ

+
3λhϕϕ(D − 1)− λ̃hϕϕ(2D − 1)

2(D − 2)
λ̃hϕϕζ

λρ
λ Fµρν . (A.13)

In four dimensions, we get

δ[1]

ζ ϕµν =
9

16Λ
λ̃2
hϕϕζ

λτρ∇µ∇λFρτν +
15

16Λ
λ̃2
hϕϕ∇µζ

λρτ∇λFτρν

− 9

16Λ
λ̃2
hϕϕ∇µζ

λρτ∇νFτρλ +
3(2λhϕϕ − 3λ̃hϕϕ)

8Λ
λ̃hϕϕ∇λζ τρ

τ ∇µFρλν

+
33

32Λ
λ̃2
hϕϕ∇τζ

τλρ∇µFρλν −
5

16
λ̃2
hϕϕζµλρF

ρλ
ν

−7

8
λ̃2
hϕϕζ

λρ
µFνλρ − 2λ̃2

hϕϕζ
λρ
µFλρν

− 7

16
λ̃2
hϕϕgµνζ

λτρFτρλ +
9λhϕϕ − 7λ̃hϕϕ

4
λ̃hϕϕζ

λρ
λ Fµρν . (A.14)

The free Lagrangian of the fourth rank gauge field with the parameter ζµνρ and its inter-

actions with PM and massless spin-two fields will be identified elsewhere.

B Cubic vertices of spin-two fields

Here we list cubic vertices involving massless, PM and massive spin two fields in arbitrary

space-time dimensions, relevant to our work. We first discuss subtle aspects of general

relevance to the interacting theories involving (partially-)massless and massive fields. These

are the freedom of field redefinitions and deformations of gauge transformations induced

by interactions.
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B.1 Field redefinitions

When writing an ansatz for the cubic interaction one has to take into account the freedom

of field redefinitions. If we redefine a field by

φi → φi + cjki φjφk , (B.1)

where cjki is an operator involving derivatives and tensor contractions in general, then

the free action transforms to another one with cubic terms that are proportional to the

free equations of motion. These type of cubic interaction terms can be always removed

by a field redefinition. This allows to fix a basis for the cubic interaction terms. In case

of massless fields, this is done by removing all contractions between derivatives [93, 101],

which brings these vertices into so-called Metsaev basis [102] (see also [73, 103]). The same

can be done for massive fields: using the wave equations of the massive field, one can

remove all derivative contractions from the cubic vertices (note that this is not possible in

higher order vertices, due to existence of derivative contractions — Mandelstam variables

— that are not related to d’Alembertian operators acting on separate fields up to partial

integrations). In fact, that does not fix all the field redefinition freedom in the case of

massive fields. One crucial difference between massless and massive field equations is that

the divergence and the trace of the field are not gauge degrees of freedom in the massive

case, but can be removed due to second class constraints. This means, that the divergence

and the trace can be expressed in terms of the proper field equations of massive fields. In

this paper we will deal with the spin-two examples, but let us first illustrate this using

massive vector, aka Proca field.

Proca field. The free equations for the Proca field in flat space are given as

Gµ = �Aµ − ∂µ ∂
νAν −m2Aµ = 0 , (B.2)

which has a consequence for m2 6= 0,

∂µAµ = − 1

m2
∂µGµ = 0 . (B.3)

This allows to use field redefinitions to remove all the terms in the cubic vertex, proportional

to the divergence of the Proca field. In order to show this, we start from the free Lagrangian

for Proca field,

L0(A) = −1

4
FµνF

µν − 1

2
m2AµA

µ , (B.4)

where Fµν = ∂µAν − ∂νAµ , and consider a field redefinition of the following kind:

Aµ → Ãµ = Aµ + g
1

m2
∂µ f(A, φi) , (B.5)

where g can be identified with a small parameter of perturbative expansion in fields. Here

f(A, φi) is a polynomial function of the Proca field and all other fields φi (i is a collective

index, which denotes different species of fields) in the theory under consideration, that
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does not contain constant and linear terms in the polynomial expansion. This field redefi-

nition, plugged back into the free Lagrangian for Proca field (B.4), gives the following new

Lagrangian (we ignore boundary terms):

L0(Ãµ) = L0(A) + g f(A, φi) ∂
µAµ + g2

1

2m2
f(A, φi)� f(A, φi) . (B.6)

The Lagrangian (B.6) is a rewriting of free Proca Lagrangian (B.4) in different variables.

One can always use proper field redefinitions of the kind (B.5) to generate any interaction

terms, proportional to divergences at a given order, and possibly terms of higher order. In

particular, any term proportional to the divergence of the Proca field can be removed from

the Lagrangian at any given order. In general, this procedure does not only remove the

interactions containing divergence of the Proca field, but also adds higher order terms. This

is the case also with the field redefinition that brings the cubic vertices of massless fields

into the Metsaev basis: this redefinition may generate higher order terms. While working

in a given perturbative scheme up to certain order in fields, one can always redefine fields

in such a way to remove the terms proportional to divergences from interactions up to the

given order. Moreover, we can fix the field redefinition freedom uniquely by removing the

terms proportional to �Aµ and ∂µAµ. With the assumption of manifest Lorentz covariance

of the Lagrangian, this fixes the field redefinition freedom completely. Note that for the

massless fields we can only get rid of �Aµ, while the ∂µAµ terms will be fixed by gauge

invariance with no extra freedom. Another interesting feature is that the massless limit

might be smooth in one form of the action but not in another. The field redefinition itself

is not necessarily analytic in mass.

Massive spin-two. The argument, given for the Proca field, generalises to the case of

fields with spin two and higher. In fact, for massive fields with spin greater than one and

a general value of mass, not only the divergence but also trace can be removed by field

redefinitions. The reason is that the trace, in the same way as the divergence, can be

locally expressed in terms of the free equation of motion. We will illustrate this for massive

spin two fields, which are of interest in this paper. We will work in a background with

arbitrary cosmological constant. For a spin-two field with mass m we have:

∇µφµν −∇ν φ = − 1

m2
∇µGµν(φ) , (B.7)

φ =
1

m2 ((D − 1)m2 − 2Λ)
((D − 2)∇µ∇νG(φ)µν +m2 ḡµν Gµν(φ)) , (B.8)

where Gµν(φ) was given explicitly in (3.2), φ = ḡµν φµν and ḡµν is the background (A)dS

or flat metric. It is obvious that one can use the first constraint for any massive fields

m2 6= 0, while the second one can be used for all mass values except for massless and PM

fields: 0 6= m2 6= 2Λ
D−1 . In flat space, Λ = 0, there are no partially massless fields, and there

is only one special value: m2 = 0. We first consider the generic massive fields and then

comment on the special PM value of mass.

For the general massive field, there is always a field redefinition, which removes both

divergences and traces of the field in the vertices, up to higher order terms. In order to
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remove an interaction term φ f(φi), containing the trace φ,

L(φ) = 1

2
φµν Gµν(φ) + g φ f(φi) +O(g2) , (B.9)

where f(φi) is a polynomial function of all the fields in the theory, we can employ a field

redefinition:

φ̃µν = φµν + g
1

m2 ((D − 1)m2 − 2Λ)
((D − 2)∇µ∇ν +m2 ḡµν) f(φi) , (B.10)

to arrive at the action,

L(φ̃) = 1

2
φ̃µν Gµν(φ̃) +O(g2) . (B.11)

In general, after the redefinition, the new Lagrangian will contain new terms of order g2,

and possibly higher. In the PM limit, the field redefinition diverges, while the residue

becomes the gauge transformation for the PM field, in the same way as for the Proca field.

In the same way, in the Lagrangian with an interaction term Aν(φi)∇µφµν ,

L(φ) = 1

2
φµν Gµν(φ) + g Aν(φi)∇µφµν +O(g2) , (B.12)

one can implement Stückelberg-type non-linear field redefinition

φ̃µν = φµν+g
1

m2
∇(µAν)(φi)−g

1

m2 ((D − 1)m2 − 2Λ)
((D−2)∇µ∇ν+m2 ḡµν)∇ρAρ(φi) ,

(B.13)

to end up with an action of the form (B.11). Again, in the limit m2 → 0, the redefinition

diverges, while the residue becomes a gauge transformation for the massless field. In a

sense, the redundancy of the divergence and trace terms, that are fixed in the (partially-

)massless case by gauge symmetry, is fixed by field redefinition freedom in the massive case,

where the field redefinition has the same structure as the linearised gauge transformations

of the (partially-)massless field. For example, in the cubic interactions of massless fields,

all the terms with divergences and traces get fixed by gauge invariance, therefore one can

concentrate on the TT part only for classification purposes.

For partially-massless spin-two field, the divergence can be removed by field redefini-

tion, but not the trace. Instead, there is enough gauge freedom to gauge-fix the trace to

zero and consider TT vertex for classification purposes, while trace terms will be fixed by

gauge invariance. In case of the massive fields, TT terms define the vertex fully as both

divergences and traces can be removed by field redefinitions.

This implies that the TT terms for the massive field is sufficient to define interac-

tions, but not for gauge fields. Removing divergences and traces of massive fields from

interaction vertices gives the simplest possible form for the Lagrangian, while the gauge

transformations may be simpler in another field frame.

B.2 Gauge transformation deformations

There is another technical aspect, related to the second class constraints (B.3), (B.7), (B.8),

that we are going to use in this work. While studying constraints imposed by gauge sym-

metries in possible interactions, we are usually led to construct a part of any vertex that
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is given by TT fields, then complete it to full off-shell vertex. The TT vertex is gauge

invariant only up to terms that are divergences, traces and Klein-Gordon operators acting

on all the fields. It is not generally known whether there exists a completion to full off-shell

vertex for a given TT vertex. For the massless symmetric fields this is proven by construc-

tion23 [93, 104]. We will give a simple argument here that the off-shell completion of the

TT vertices is always possible also in the presence of massive fields. When relaxing the TT

conditions, in the variation of TT vertex one encounters terms that contain divergences and

traces of the fields that are supposed to sum up to zero for consistency. In all known exam-

ples, divergences and traces of massless fields conspire to cancel, if we add certain non-TT

terms into the vertex, allowing for off-shell cubic vertices, while for the massive fields they

do not have to. The reason is that, as opposed to massless fields, the divergence and trace

of the massive field can be treated as terms proportional to equations of motion. Therefore,

the would-be obstruction terms are not obstructing anymore, as they can be compensated

by a local field redefinition, which induces deformation of gauge transformations.

There is a non-trivial point here though. The divergence and trace terms are related to

the divergence (B.7) and trace (B.8) of the equation of motion, divided by mass of the field.

This means that whenever a divergence and trace term is treated as equation of motion

in the variation of the vertex and compensated by a deformation of gauge transformation,

the induced gauge transformations for these fields will involve non-analyticity in mass,

therefore will not admit a consistent massless limit. In a particular case of interest in

this paper, for the PM field or other massive fields with mass given through cosmological

constant, the massless limit coincides with flat space limit and may be inconsistent with

the transformations induced in these type of interactions. Indeed, we encounter such an

interaction, given through (5.7), with gauge transformation deformation given by (5.11).

B.3 Cubic interactions for massless and PM fields

In the eq. (3.7), we started from three vertices: Vhhh,Vhϕϕ and Vϕϕϕ. The first of them

is the cubic vertex of Einstein-Hilbert action, the TT part of which can be given in the

following simplest form:24

VTT
hhh =

1

2
hαβ∇α∇βh

µν hµν + hαµ∇αh
νβ∇βhµν +

2Λ

3(D − 2)
hµ

νhνρh
ρµ . (B.14)

23In reference [104] both flat and (A)dS vertices were constructed for Maxwell-like fields carrying either

reducible or irreducible massless representations. The construction of vertices in flat space given there is

complete both for irreducible and for reducible fields. The full off-shell vertex for irreducible Maxwell-

like fields in (A)dS space is also complete, as well as the corresponding generating functions for (A)dS

irreducible Maxwell-like and Fronsdal off-shell vertices. The full off-shell vertex for reducible Maxwell-like

fields in (A)dS space, however, is incomplete. Its full form will be given in future work [105].
24The full off-shell vertex in flat space in this simplest form is given in [101], while the full off-shell vertex

in (A)dS is given in [106], in a different field frame.
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The second vertex, Vhϕϕ, is the vertex of minimal coupling to gravity and can be extracted

from free PM action with full covariant derivatives. Its TT part is given by

VTT
hϕϕ = −1

2
hµν∇µ∇νϕ

λρ ϕλρ + 2∇λh
µν∇µϕνρ ϕ

λρ + 3∇µ∇νhλρ ϕ
λρ ϕµν

+3∇λhνρ ϕ
µν ∇µϕ

λρ +
2Λ

D − 2
hµν ϕνλ ϕ

λ
µ , (B.15)

and is a linear combination of (B.18) and (B.17) for µ1 = 0 and µ2 = 1. The third vertex,

Vϕϕϕ, is the cubic self-interaction of PM field, employed by Conformal Gravity in four

dimensions. Its explicit expressions is given in [39]. Here we provide a simpler expression

for it, which is equivalent to the one there, up to field redefinitions

Vϕϕϕ = ϕµν

(
Fµ

ρ,σFνρ,σ − 1

4
ḡµνFρσ,λF

ρσ,λ

)
. (B.16)

Note, that this vertex is the full off-shell one. One can notice the similarity with the

vertex (5.7) of the non-geometric coupling between PM and massless spin-two.

B.4 Cubic interactions for PM field and two massive fields

We derive the cubic interaction of a PM field with two arbitrary massive fields and its cor-

responding gauge transformation. Here we study only vertices that have two derivatives

and induce gauge transformation deformations found in section 4. Starting from a gen-

eral ansatz for the cubic interactions and imposing gauge invariance we are left with four

vertices for generic values of masses. These vertices do not induce gauge transformation

deformations, and can be expressed in terms of PM curvature:

F λµ,ρφ1µν∇νφ2λρ , ∇µF
νλ,ρφ1λρφ2ν

µ , Fµλ,ν∇νφ1λρφ2µ
ρ , Fµλ,ν∇µφ1λρφ2ν

ρ ,

(B.17)

where the last two vertices are equivalent up to a factor when φ1µν ≡ φ2µν . For general

mass values, these are all the vertices. For a special case of µ2 = µ1 + 1, there is one more

vertex, inducing gauge transformations. This special vertex can be written in the form:

V1, µ1, µ1+1 = λ1,µ1,µ1+1

(
ϕµν∇µ∇νφ1

λρφ2λρ − ϕµν∇ν∇λφ1
λρφ2µρ + ϕµν∇νφ1µλ∇ρφ2

ρλ

− 4Λ

(D − 1)(D − 2)
ϕµνφ1νλφ2

λ
µ − 1

2
ϕµν∇µφ1νλ∇λφ2

ρ
ρ +

1

2
ϕµν∇µ∇λφ1νλφ2

ρ
ρ

−1

2
∇µϕνλ∇λφ1

ρ
ρφ2µν − ϕµν∇νφ1

ρ
ρ∇λφ2λµ − ϕµν∇µ∇νφ1

ρ
ρφ2

λ
λ

− (µ1 − 2)Λ

(D − 1)(D − 2)
ϕµνφ1

λ
λφ2µν +

(µ1 + 4−D)Λ

(D − 1)(D − 2)
ϕµνφ1µνφ2

λ
λ

)

+O(ϕρ
ρ). (B.18)
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and induces the gauge transformations (µ2 ≡ µ1 + 1):

δ[1]
α φ1µν =

1

D − µ2
λ1,µ1,µ2

(
D − µ2

2
∇ρα∇ρφ2µν −∇ρα∇(µφ2ν)ρ

−(D − 2− µ2)(D + 1− µ2)Λ

(D − 1)(D − 2)
αφ2µν

)
(B.19)

δ[1]
α φ2µν =

1

µ2
λ1,µ1,µ2

(
µ2

2
∇ρα∇ρφ1µν −∇ρα∇(µφ1ν)ρ −

(µ2 − 2)(µ2 + 1)Λ

(D − 1)(D − 2)
αφ1µν

)

Note, that the form of the cubic interaction is not minimal, and could be simplified by field

redefinitions to a form:

V1, µ1, µ1+1 = ϕµν∇µ∇νφ1
λρφ2λρ −

4Λ

(D − 1)(D − 2)
ϕµνφ1νλφ2µ

λ +O(ϕρ
ρ) , (B.20)

up to an overall factor. In this field frame, the gauge transformation is modified and

includes also four derivative terms. Nevertheless, the global part of the transformations

cannot be modified by field redefinitions, therefore our analysis of the algebra closure is

independent on the field frame.

It is worth to note that all of the information about the deformations of gauge transfor-

mations induced by non-abelian interactions of PM and massive spin two fields was possible

to derive from on-shell conditions only. We can see now that these transformations indeed

are those induced from cubic vertices and write down the explicit form of these vertices.

Using this identification, we deduce

a+ = − 1

D − µχ − 1
λχ+ , b+ = − 1

µχ + 1
λχ+ ,

a− = − 1

µχ
λχ− , b− = − 1

D − µχ
λχ− ,

a+ b+ =
1

(µχ + 1)(D − µχ − 1)
λ2
χ+ , a− b− =

1

µχ (D − µχ)
λ2
χ− . (B.21)

In the last expressions of a±b±, the overall sign will change if we consider the two fields

with masses µχ and µχ ± 1 to have opposite-sign kinetic terms.

B.5 Cubic interactions of a massless and two massive spin two fields

In order for a cubic vertex inducing deformations of gauge transformations to exist, the two

massive fields should have the same mass. Here we take the two massive fields to be actually

identical — this is the case relevant for us in this work. There are three two-derivative

vertices in this case. Their TT parts are given as

VTT
1 = hµν ∇µ φ

λρ∇ν φλρ +
4Λ

(D − 1)(D − 2)
hµνφνλφ

λ
µ , (B.22)

VTT
2 = hµν ∇µ φ

λρ∇λ φνρ +
(D + 1)Λ

(D − 1)(D − 2)
hµνφνλφ

λ
µ , (B.23)

V3 =

(
∇µ∇νhλρ +∇λ∇ρhµν −∇µ∇λhνρ −∇ν∇ρhµλ

− 4Λ

(D − 1)(D − 2)
(gµλhνρ − gµνhλρ)

)
φµν φλρ , (B.24)
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The first two induce deformations of gauge transformations, while the third one contains the

linearised curvature of the massless spin-two field, therefore does not induce a deformation

of gauge transformations for the fields involved. Only the combination V = −1
2 V1+2V2+

αV3 (α is arbitrary) corresponds to the minimal “geometric” coupling to Gravity, which

induces a gauge transformation in the form of diffeomorphism for the massive field.

B.6 Parity-odd cubic (self-)interaction for PM fields

It is worth noting that the parity-odd vertex exists in case if one introduces another PM

field, say ϕ′
µν . Then, the corresponding vertex is

Vϕϕϕ′ = ϕµνJ ′
µν , J ′

µν = F(µ
ρ,σF̃ ′

ν)ρ,σ − 1

4
ḡµνFλρ,σF̃

′λρ,σ , (B.25)

where F ′
µν,ρ = 2∇[µϕ

′
ν]ρ is the curvature of the new PM field, and F̃ ′

µν,ρ = 1
2ǫµνλσF

′λσ,
ρ is

its dual. The gauge transformations for the fields involved are given as

δ[1]

ᾱ ϕµν = ∂ρᾱ F̃ ′
ρ(µ,ν) , δ[1]

ᾱ ϕ′
µν = −∂ρᾱ F̃ρ(µ,ν) , δ[1]

α′ϕµν = 0 = δ[1]

α′ϕ
′
µν . (B.26)

When identifying the two fields, their gauge transformations sum up to zero, which indicates

the absence of the corresponding vertex for one field ϕµν . Interestingly, when the two

transformations have opposite sign, the corresponding commutator now gives an extra sign

difference, which indicates that the extra field cannot help to close the commutator unless

it is a ghost.

C PM coupling to matter

It is instructive to see how matter can couple to PM field. We can draw several conclusions

from simple scalar coupling. First of all, we can notice easily that if there is a scalar

coupling to PM field, then the closure of the gauge algebra requires massless spin two

in the game. This can be easily seen in the following way. If there is a coupling of the

scalar to PM, the scalar field should transform with the PM parameter. The most general

transformation takes the form:

δ[1]
α φ = b1 ∂

ρα∂ρ φ+ b2 αφ , (C.1)

with the commutator of two transformations giving

(δ[1]
α2
δ[1]
α1

− δ[1]
α1
δ[1]
α2
)φ ∼ 2Λ

(D − 1)(D − 2)
b21 (α1 ∂

ρα2 − α2 ∂
ρα1) ∂ρ φ , (C.2)

which is a diffeomorphism with the parameter,

[α1 , α2]
ρ =

2Λ

(D − 1)(D − 2)
b21 (α1 ∂

ρα2 − α2 ∂
ρα1) . (C.3)

The symbol ∼ stands for equivalence modulo terms that vanish for Killing parameters, or

equivalently, that can be compensated by [δ[0], δ[2]].
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The scalar coupling has additional unexpected property: there is non-trivial PM cou-

pling only for the scalar with mass m2 = DΛ
2 (D−1) , which is nothing but the conformal scalar.

To illustrate this, let us write the most general spin-two current, bilinear in the scalar field:

Jµν = c1∂µφ∂νφ+ c2gµν∂ρφ∂ρφ+ c3gµνφ
2 . (C.4)

The partial conservation condition,

∇µ∇νJµν +
2Λ

(D − 1)(D − 2)
gµνJµν = 0 , (C.5)

implies a system of three equations on parameters ci , i = 1, 2, 3 and the mass m of the

field φ . In particular, this system gives

c2 = −1

2
c1 , c3 = −1

2
c1

(
m2 − Λ

D − 1

)
,

(
m2 − DΛ

2 (D − 1)

)
c1 = 0 . (C.6)

Note that c1 = 0 corresponds to a trivial interaction since the cubic vertex ϕµνJµν vanishes

in that case. A non-trivial interaction exists only for m2 = DΛ
2 (D−1) . In that case, there is

a unique partially conserved current, up to an overall coefficient,

Jµν = ∂µφ∂νφ− 1

2
gµν ∂ρφ∂ρφ− (D − 2)Λ

4 (D − 1)
gµν φ

2 , (C.7)

A conserved current (stress-energy tensor) for a scalar field with mass m is given by

Tµν = ∂µφ∂νφ− 1

2
gµν ∂ρφ∂ρφ− m2

2
gµν φ

2 , (C.8)

for any value of m2, whereas Jµν is partially-conserved only for m2 = DΛ
2 (D−1) . In fact, this

is a particular case of a generic interaction for two scalars with different mass values and

a PM field. As in the case of massive spin two fields, discussed in this paper, for massive

scalar fields also there is a cubic interaction with a PM field only if the two massive scalars

with masses,

m2(µ) =
2Λ

(D − 1)(D − 2)
(µ+ 2) (D − 3− µ) , (C.9)

satisfy µ2 = µ1±1. In particular, the scalar with µ0 =
D
2 −3, can have an interaction with

itself and a PM field, due to the fact that m2(µ0) = m2(µ0 + 1). Note that this value of

the scalar mass coincides with that of the conformal scalar.

We would like to note here that for massless spin one field the conserved current is

also partially conserved in four dimensions only:

Jµν = Tµν = F ρ

(µ Fν)ρ −
1

4
gµν FρσF

ρσ , (C.10)

which is related to the fact that the Maxwell field is conformal in four dimensions. It is an

easy exercise to show that there is no other value of mass for a vector field, for which one

can couple Proca field to a PM spin two field in four dimensions. In arbitrary dimensions,

coupling of the single Proca field (B.4) to PM field is given through a current,

Jµν = F(µ
ρFν)ρ −

1

4
gµν FρσF

ρσ − (D − 4)2 Λ

2(D − 1)(D − 2)

(
A(µAν) −

1

2
gµν A

ρAρ

)
, (C.11)
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that is partially conserved only for m2 = (D−4)Λ
2(D−1) , which is again the mass value of the

conformal Proca field, which coincides with the massless gauge field only for D = 4.

It is therefore expected that a complete non-linear theory of a PM field will define a spe-

cific spectrum of matter that can couple to it, giving a special role to conformal mass values.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[89] M. Henneaux, S. Hörtner and A. Leonard, Twisted self-duality for higher spin gauge fields

and prepotentials, Phys. Rev. D 94 (2016) 105027 [Erratum ibid. D 97 (2018) 049901]

[arXiv:1609.04461] [INSPIRE].

[90] E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin

fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].

[91] Yu. M. Zinoviev, All spin-2 cubic vertices with two derivatives,

Nucl. Phys. B 872 (2013) 21 [arXiv:1302.1983] [INSPIRE].

[92] R.R. Metsaev, Cubic interaction vertices for fermionic and bosonic arbitrary spin fields,

Nucl. Phys. B 859 (2012) 13 [arXiv:0712.3526] [INSPIRE].
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