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Abstract

Small cell lung cancer (SCLC) patient-derived xenografts (PDX) can be generated from biopsies 

or circulating tumor cells (CTC), though scarcity of tissue and low efficiency of tumor growth 

have previously limited these approaches. Applying an established clinical-translational pipeline 

for tissue collection and an automated microfluidic platform for CTC enrichment, we generated 17 

biopsy-derived PDXs and 17 CTC-derived PDXs in a 2-year timeframe, at 89% and 38% 

efficiency, respectively. Whole-exome sequencing showed that somatic alterations are stably 

maintained between patient tumors and PDXs. Early-passage PDXs maintain the genomic and 

transcriptional profiles of the founder PDX. In vivo treatment with etoposide and platinum (EP) in 

30 PDX models demonstrated greater sensitivity in PDXs from EP-naïve patients, and resistance 

to EP corresponded to increased expression of a MYC gene signature. Finally, serial CTC-derived 

PDXs generated from an individual patient at multiple time points accurately recapitulated the 

evolving drug sensitivities of that patient’s disease. Collectively, this work highlights the 

translational potential of this strategy.

INTRODUCTION

Small cell lung cancer (SCLC) is a high-grade neuroendocrine malignancy with a 5-year 

overall survival of approximately 5%. Among patients diagnosed with metastatic (extensive 

stage) disease, the median overall survival is approximately 9 to 11 months with standard 

treatment (1–4). Because neither surgical resection nor repeat tumor biopsies are standard of 

care in metastatic SCLC, access to clinically relevant tissue is limited. Instead, SCLC 

research has relied heavily on preclinical models such as established cell lines, genetically 

engineered mouse models (GEMM), and more recently, patient-derived xenografts (PDX; 

refs. 5–8).
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PDX models, generated via direct implantation of patient tumor tissue into a recipient 

mouse, have several theoretical advantages over other preclinical models. First, bypass of an 

in vitro intermediate potentially avoids bottleneck events or selection for fitness in the in 
vitro environment (9). Second, molecular and functional phenotypes can be correlated 

directly with patient characteristics and clinical response to therapies. The increasing use of 

PDX models in SCLC research underscores their importance to the field (5, 10, 11).

Many solid tumors shed malignant cells into circulation, and collection of these rare 

circulating tumor cells (CTC) enables noninvasive serial tumor sampling (12–15). CTCs are 

highly abundant in patients with SCLC compared with patients with other solid tumor 

malignancies (16–18), and CTC number is prognostic and reflects the changing burden of 

disease over the course of treatments (19). The development of PDX models from CTCs 

isolated by Ficoll density gradient marked a significant advance for generation of SCLC 

preclinical models (20), eliminating the need for surgical resection or invasive biopsy. To 

date, a handful of CTC-derived SCLC PDX models have been described (11, 20). These 

were generated from samples that had a minimum of 400 CTCs per 7.5 mL blood, but the 

widespread application of this methodology to generate SCLC models is yet to be reported. 

Although live CTC enrichment can be achieved through application of microfluidic devices 

(21), this approach has not yet been used for PDX generation.

Although the application of SCLC PDXs for preclinical studies is increasingly common, 

further characterization is needed to assess how accurately these models reproduce 

properties of the human disease. SCLC tumors are known to have extensive genomic 

alterations and a high mutational burden (22–24). Furthermore, biallelic inactivation of TP53 
and RB1 is nearly universal in SCLCs (22). These changes may undermine genomic 

stability, raising the concern that SCLC genomes may acquire additional genomic alterations 

and evolve rapidly when passaged in mice. The recent finding that PDX models of diverse 

tumor types acquire mutations with serial passages underscores this concern (25). Although 

copy-number variations appear conserved between CTCs and CTC-derived PDXs in a 

limited number of cases examined (20), whether the genomes of CTC-derived PDX models 

of SCLC accurately mirror the patient’s biopsy has not yet been rigorously investigated.

Functional characterization of SCLC PDXs is also a critical metric of the utility of these 

models. SCLC tumors are classically highly sensitive to etoposide and platinum (EP; ref. 1). 

Among three PDX models treated with EP (20), responses in the models correlated with 

those in the donor patients. However, more extensive testing of how well SCLC PDXs 

recapitulate chemotherapy sensitivity and acquired resistance, and how these profiles 

correlate with underlying molecular signatures, is needed.

Here, we describe the efficient generation of 34 PDX models of SCLC in a 2-year 

timeframe, utilizing both tissue biopsies and blood samples processed with an automated 

microfluidic device. We show that these models can be generated at high efficiency from 

CTCs, irrespective of enumeration, and that they faithfully recapitulate both the genomic 

and functional features of patient tumors at the time of model generation. We quantified in 
vivo sensitivity to EP in 30 PDX models and found that models derived from EP-naïve 

patients were more sensitive than models from patients previously treated with EP. Further 
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transcriptome profiling of models revealed that increasing EP resistance correlates closely 

with activation of a MYC transcription program. Finally, serial models derived from an 

individual patient at multiple time points reflect the evolving clinical response of that 

patient’s tumor, emphasizing the potential application of these approaches toward studying 

acquired resistance.

RESULTS

Construction of an SCLC PDX Panel

Biopsy- and CTC-derived PDX models from patients with SCLC have been described (5, 

20, 26), but there remains a paucity of SCLC models from patients with detailed correlative 

clinical data. PDXs generated after patient relapse are especially scarce because these 

patients rarely undergo a clinically indicated biopsy. Currently, there are no published sets of 

sequential PDX models from patients with SCLC that can be used to study disease 

evolution. The key parameter, as yet uncertain, is the success rate of PDX generation from 

routine blood samples and tissue biopsies. We therefore focused on a population of patients 

with SCLC selected only on the basis of having clinically progressive disease at the time of 

tissue or blood collection.

Between June 2014 and June 2016, we enrolled patients with known or suspected SCLC on 

Institutional Review Board (IRB)-approved protocols for collection of clinical data, blood, 

and tissue. Blood samples for PDX development were taken at the time of initial diagnosis 

or progression after a prior therapy, but not while a patient’s disease was currently 

responding to treatment. For each patient, SCLC CTCs were isolated from a 15 to 20 mL 

whole blood sample with the CTC-iChipneg device (27), with a typical transport time from 

patient to laboratory of 60 to 90 minutes. The CTC-iChipneg first excludes plasma, unbound 

antibody-coated beads, platelets, and red blood cells through microfluidic size-based 

separation, and then directs nucleated cells (leukocytes and CTCs) into a single-cell stream 

through inertial focusing microfluidic channels, thereby enabling the highly efficient 

magnetic separation of anti-CD45/CD66b-tagged leukocytes (27, 28). The resulting product 

is highly enriched (104–105-fold) for unmanipulated and potentially viable CTCs (Fig. 1A). 

CTC-enriched products were immediately prepared for subcutaneous injection into NOD/

SCID gamma (NSG) mice. Animals were then monitored for tumor growth over a period of 

at least 6 months. From 42 processed blood samples, 16 animals developed palpable tumors, 

for an overall tumor growth efficiency of 38% [95% confidence interval (CI), 24–54] and a 

median latency of 115 days (Fig. 1B-D). Following previously described protocols as done 

in ref. 20, we generated one model from CTCs isolated by Ficoll gradient (Supplementary 

Table S1).

In a parallel effort, we also sought to generate PDX models of SCLC from patients 

undergoing a tissue biopsy. One extra core tumor biopsy was collected from patients with 

known or suspected SCLC when they were undergoing a biopsy for clinical purposes. Core 

tumor specimens, generally 19 to 22 gauge and approximately 4 to 8 mm in length, were 

obtained from patients and implanted into the flanks of NSG mice within 2 hours of the 

biopsy procedure (Fig. 1A; Supplementary Table S2). From 18 implanted specimens from 

patients with confirmed SCLC, 16 developed into xenograft tumors within 6 months, for an 
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overall growth efficiency of 89% (95% CI, 74–99) and a median latency of 78 days (Fig. 1B 

and C; Supplementary Table S1). In addition, one PDX model was generated from a 

malignant pleural effusion.

Once the founder (P0) PDX tumors reached a size of approximately 1 to 1.5 cm in diameter, 

they were dissected, portions of the tumor material were passaged into additional NSG mice, 

and tissue was preserved for further analyses (Fig. 1A). The latency for growth of passaged 

tumors was typically 2 to 6 weeks, considerably shorter than for P0 tumor growth. There 

were no model failures after initial P0 tumor emergence; all xenografts were successfully 

maintained for at least two passages, and all attempts at regrowth from cryopreserved 

specimens were successful (Supplementary Table S1). In total, within the specified 

timeframe for tissue collection, 34 SCLC models were established from 27 separate patients 

(Fig. 1B). These models were generated from patients with a range of time points in their 

clinical course of SCLC, including 15 models from patients prior to receiving any SCLC-

directed therapy, and 19 from patients after at least one line of therapy. From 3 patients, 

serial models were developed at multiple points over the course of their treatments (Fig. 1B).

To confirm that the PDX tumors were pathologically consistent with SCLC, histologic and 

immunohistochemical analysis of the P0 PDX models was performed by a thoracic 

pathologist (M. Mino-Kenudson) and compared with the patient biopsy when available. In 

all cases examined, the PDX model demonstrated histologic and immunohistochemical 

features consistent with SCLC, including neuroendocrine marker expression and absence of 

nuclear RB (representative examples are shown in Fig. 1E and Supplementary Fig. S1). 

Detection of CD45 was used to rule out lymphoproliferation and was negative in all 30 

models tested (Fig. 1E; Supplementary Fig. S1, data not shown). Histologic comparison of 

PDX and corresponding patient biopsy samples showed strong similarity across the models 

(Supplementary Table S1).

Genomic Characterization of SCLC PDX Models

We selected seven PDX models for whole-exome sequencing (WES; Table 1) and examined 

the somatic alterations in these models (Supplementary Tables S3 and S4). To account for 

contaminating mouse tissue DNA in the PDX tumor samples, computational analyses 

excluded mouse reference sequencing reads (Methods). Consistent with the known genomic 

hallmarks of SCLC (22–24, 29, 30), WES aided in the identification of inactivating 

alterations of TP53 and RB1 in all models and confirmed biallelic loss of these 

tumorsuppressor genes in most cases (Fig. 2A; Supplementary Table S4). MGH1514–1 and 

MGH1512–1 were only found with heterozygous loss of TP53 and RB1, respectively, which 

may be due to the technical limitations of WES in detecting larger complex genomic 

rearrangements that commonly affect these loci in SCLC. However, paired-end 

transcriptome sequencing of MGH1514–1 revealed an out-of-frame chimeric transcript 

harboring TP53 exon 1 fused to ITNL2 exon 8 (Fig. 2B), thus implicating biallelic genomic 

loss of TP53 in this tumor. Although biallelic genomic alterations of RB1 were not detected 

in MGH1512–1, this tumor had low abundance of RB1 transcripts (Fig. 2D) and lack of RB 

staining in IHC (Fig. 1E), indicating a functional loss of RB1 in this tumor.
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Additional alterations were found in genes encoding chromatin-modifying enzymes (e.g., 

CREBBP, EP300, and MLL3), SLIT2, and NOTCH1 (Fig. 2A; Supplementary Table S4), 

which were previously identified as significant alterations in SCLC (22–24). Although 

events that augment MAP kinase pathway activity are thought to be unusual in SCLC, two 

models harbored alterations in this pathway (Fig. 2A): MGH1525–1 had a point mutation in 

the DFG motif of BRAF thought to activate MEK/ERK signaling (BRAF=596C; refs. 31, 

32); and MGH1514–1, which was derived from a never-smoker with de novo SCLC, 

harbored an activating EGFR mutation (EGFRdel_exon19). Neither case had any histologic 

evidence of concurrent non-SCLC. All tumors with the exception of MGH1514–1 revealed a 

high rate of cytosine to adenine (C:A) nucleotide transversions (Fig. 2A; Supplementary 

Table S3), which reflects tobacco-induced mutagenesis (33) and which is consistent with the 

smoking history of the patients.

To complement the genomic study of the models, transcriptome sequencing was performed 

to determine the expression profiles of serial passages (P0 and P2; Supplementary Table S5). 

In order to assess the fidelity of these expression profiles within a given model, we 

compared the transcripts with the highest variability across all samples to generate a 

correlation matrix (Fig. 2C). Paired samples from the same model correlated tightly and 

were uncorrelated with samples from other PDX models, which emphasize reproducible 

expression profiles among biological replicates from different passages of the same PDX. 

Although paired-end transcriptome sequencing could not be performed on the matched 

patient biopsies, the PDX mRNA expression profiles were mapped to a previously published 

database of 20 human tumors (22). Using the defining features of the dominant clusters 

within this dataset, six of seven PDX models showed strong similarity with the 

neuroendocrine-high profile, with only one PDX, MGH1515–1, clustering with the 

neuroendocrine-low tumors (Fig. 2D). Although the dominant PDX expression profiles 

mapped to primary tumor clusters, each model harbored distinct and patient-specific 

transcriptional signatures (Supplementary Fig. S2D). To investigate these PDX-specific 

features, we identified transcripts that correlated strongly with either high expression in one 

model or absent expression in one model, and then filtered through the Molecular Signatures 

Database (MSigDB V6.0) preset gene families’ lists for cancer-related genes 

(Supplementary Fig. S2; Supplementary Table S6). Interestingly, this analysis highlighted 

changes in the expression in pathways known to be important in SCLC. None of the models 

showed high-level amplification of any MYC family genes, but each MYC family member 

displayed elevated expression in one specific PDX model (Supplementary Fig. S2). 

Although the Notch signaling pathway has been implicated in the development of SCLC 

(22, 34–36), transcriptome sequencing revealed model-specific expression of NOTCH 
receptors and ligands. MGH1514–1, which harbors an activating EGFR mutation, is 

distinguished by elevated expression of EGFR as well as other MAP kinase pathway 

components including ARAF, CRAF, and MEKK1 (Supplementary Figs. S2 and S3). 

Notably, EGFR mutations have been described in rare cases of SCLC in never-smokers (37), 

and SCLC transformation is an established mechanism of acquired resistance to EGFR 

tyrosine kinase inhibitors in EGFR-mutant non-SCLC (38–41). Thus, activated pathways 

and gene families vary across models, suggesting that the outcome of functional studies may 

greatly depend on the specific PDX model used for investigation.
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Genomic Fidelity of PDX Models Compared with Patient Biopsies and Over Serial 
Passages

We conducted comparative genomic analyses on patient-derived biopsies versus PDX 

models to address three important topics: (i) the genomic fidelity of the PDX models 

compared with patient tumor specimens collected at the same time point, (ii) the question of 

whether CTC-derived models are more divergent from the primary tumor than biopsy-

derived models, and (iii) the question of whether genetic drift occurs during serial passaging 

of SCLC tumors in NSG mice.

To address the fidelity with which the xenograft models reflect primary tumors, we 

compared the exomes of CTC- or biopsy-derived PDX models with patient tumor biopsies 

collected from the patients at the same time point (Fig. 3A). WES was performed on patient 

tumor biopsy tissue, xenograft tumors at passage 0 (P0), xenograft tumors at P1 or P2, and 

patient-matched germline DNA. Among the selected series, there were four sets of PDX 

tumors derived from CTCs and two sets derived from biopsies. For one of our sequenced 

PDX models, MGH1528–1, no corresponding patient tumor biopsy material was available 

(Table 1).

Comparison of copy-number alterations between patient biopsy and PDX samples 

demonstrated a high degree of similarity, and comparison of successive PDX passages 

showed few changes in copy number (Fig. 3B). Consistent with previous observations (24), 

the copy-number profile of most SCLC tumor models pointed to LOH or copy-neutral LOH 

affecting 3p, 13q (harboring RB1), and 17p (harboring TP53) as well as frequent broader 

chromosomal gains on 3q and 5p (Fig. 3B). Notably, MGH1514–1 did not share these 

canonical genomic characteristics of SCLC tumors, despite confirmed inactivation 

alterations of TP53 and RB1 (Fig. 2).

There was an approximate 10-fold range in mutational burdens across the subset of 

sequenced PDX models, from 27 mutations in MGH1514–1 (<1 mut/Mb) to over 500 

mutations in MGH1528–1 (>10 mut/Mb; Fig. 3C). Despite this wide range, we found 

minimal variation in mutational burden or the distribution of mutation types between patient 

biopsy and PDX. There was also no significant accumulation of mutations across two PDX 

passages (<1%). We further analyzed the retention of individual mutations between patient 

biopsy and PDX models at separate passages. In 5 of the 6 cases (with the exception of 

MGH1514), at least 95% of all somatic alterations were shared between the tissue biopsy 

and PDX models (Fig. 3D; Supplementary Fig. S4). The rare differences between tissue 

biopsy and PDX samples included an in-frame deletion in MTOR, present in the MGH1504 

patient tumor biopsy but not in the CTC-derived PDX; a heterozygous PIK3CA splice-site 

mutation acquired in the MGH1514–1 PDX model; and single-copy gain of the MYCL1 
locus in the MGH1515–1 PDX that may be reflected in the increased transcript levels (Fig. 

2D; Supplementary Table S5). The fraction of shared mutations between PDX P0 and the 

patient biopsy was not significantly different from the fraction shared between P0 and 

subsequent passages. This held true for both biopsy- and CTC-derived models, indicating 

that the CTCs collected at the time of the biopsy share the same genomic features as the 

sampled solid tumor. This result is consistent with the low degree of clonal heterogeneity in 

SCLC that has been previously reported (22). In summary, SCLC PDX models retain a 

Drapkin et al. Page 7

Cancer Discov. Author manuscript; available in PMC 2019 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stable genome and maintain their somatic alterations between initial model generation (P0) 

and serial passages (P1/P2; >95%), thus faithfully recapitulating SCLC patient tumors at the 

time of model generation.

Functional Fidelity of PDX Models to Patient Response to Chemotherapy

To further assess the capacity of the PDXs to accurately model characteristics of the patient 

tumor, we sought to quantify their responses to EP. Acquired resistance to EP is commonly 

observed in the clinic. However, there was no correlation between patient treatment histories 

and sensitivity to chemotherapeutics in vitro across a panel of 63 human SCLC cell lines 

(42), suggesting inadequacy of the cell lines for modeling clinical behavior. PDXs may 

better recapitulate patient treatment histories.

To assess EP response in our models, we first optimized an EP regimen to distinguish 

between serial PDX models derived from the same patient (MGH1518) prior to first-line 

chemotherapy and after subsequent lines of therapy (Fig. 4A and B). This regimen consists 

of cisplatin 7 mg/kg intraperitoneal (i.p.) day (d)1 and d8 plus etoposide 10 mg/kg i.p. d1, 

d2, d3, and d8, d9, d10. Significant tumor shrinkage was induced in the EP-naïve model, but 

not the model derived after the patient had received prior EP, recapitulating the evolving 

resistance of the patient’s tumor (Fig. 4B).

We then applied this EP dosing strategy to 30 PDX models, including 12 treatment-naïve 

models and 18 post-relapse models (Fig. 4C; Supplementary Fig. S5). Using large numbers 

of mice for each model would limit the feasibility of a population-based approach, and 

recent studies of hematopoietic and solid-tumor PDX model populations have shown that 

small numbers of animals are sufficient to accurately compare tumor responses (43, 44). 

Models were therefore treated in biological duplicate or triplicate, and consistent with these 

studies, our results show highly concordant tumor volume curves between different mice 

carrying the same PDX (Fig. 4B; Supplementary Fig. S5). Responses were quantified by 

measuring the maximum depth of tumor response [minimum percent initial tumor volume 

(ITV) in the days 14–28 window of the treatment], as well as the time to progression (TTP; 

days to 2x ITV; Fig. 4A). Response and TTP were strongly correlated across the model 

panel (Fig. 4D), and these metrics were applied to assess the fidelity of the models to patient 

responses.

To determine whether prior patient exposure to chemotherapy correlated with EP sensitivity 

in the models, the metrics of PDX response were compared between models derived from 

EP-naïve versus EP-treated patients (Fig. 4E). Maximum tumor response was significantly 

different, with nearly uniform sensitivity of models from EP-naïve patients and a range of 

responses in the models from previously treated patients (Fig. 4F). Clinically, first-line 

chemotherapy is administered for a finite number of cycles, as opposed to ongoing 

administration until resistance emerges. Therefore, this range of responses in post-relapse 

models is expected. When we examined TTP as a metric of model sensitivity to EP, we 

observed a trend toward prolonged TTP in the models from treatment-naïve patients 

compared with models from previously treated patients (Supplementary Fig. S6). Notably, 

assessment of xenograft TTP can be complicated by differences in intrinsic xenograft 

doubling times (Supplementary Fig. S7). To correct for this, the doubling times of each 
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model (Tdbl) were calculated for each model in untreated xenografts. Doubling times were 

uncorrelated with patient treatment history (Fig. 4G; Supplementary Fig. S8). The corrected 

TTP [calculated as the ratio of TTP (doubling time in the presence of EP) to intrinsic 

doubling time; TTP/Tdbl ratio] was significantly different between models derived from EP-

naïve versus EP-treated patients (Fig. 4H; Supplementary Fig. S8).

We next sought to assess whether the relative TTP of each PDX model was consistent with 

the TTP of its donor patient. Patient TTP was measured as the number of days from the last 

dose of EP to the date of first radiographic progression of disease. Although many variables 

can affect TTP in the clinic, we found that the model EP response was moderately correlated 

with patient TTP among PDXs derived from previously treated patients (Fig. 4I). This is 

consistent with the clinical observation that TTP following EP correlates with likelihood of 

response to next-line DNA-damaging therapy (45). Clinical TTP data for models from EP-

naïve patients were limited to a smaller number of cases, and as a result, a thorough 

comparison to model TTP could not be performed.

Collectively, these results show that PDX responses and TTPs correlate with the patient 

treatment histories. These results stand in contrast to results from established cell lines, 

where chemotherapy sensitivity is uncorrelated with patient treatment history (42), and 

suggest that PDXs more accurately model the clinical behavior of these cancers. 

Importantly, they also support the application of PDXs for studying clinically relevant EP 

resistance, acquired in patients rather than in an experimental laboratory system.

We therefore next sought to identify potential molecular features that correlate with 

chemoresistance. Transcriptome sequencing was performed on a subset of 19 models treated 

with EP and analyzed for signatures that correlated with treatment sensitivity versus 

resistance (Supplementary Table S7). In parallel, quantitative Western blots for selected 

proteins with potential impact on chemoresistance were performed across the 30-model EP 

cohort. Transcript and protein levels were closely matched for most models in which both 

could be compared (Fig. 4J; Supplementary Fig. S9).

Recently, the putative RNA-DNA helicase SLFN11 has been associated with sensitivity to a 

number of DNA-damaging therapies, including EP (42, 46). In our PDX cohort, neither 

SLFN11 transcript levels (19 models) nor protein levels (30 models) correlated with EP 

response or TTP (Fig. 4K; Supplementary Fig. S9). Furthermore, SLFN11 levels were 

approximately equivalent in models derived from treatment-naïve and previously treated 

patients (Fig. 4L; Supplementary Fig. S9). A similar lack of correlation with EP response 

was observed for ASCL1 and NEUROD1 (Supplementary Fig. S9).

A systematic analysis of the transcriptome sequencing dataset was performed to identify 

features and pathways that best correlated with EP response (Supplementary Fig. S10). The 

best-correlated transcripts (absolute Spearman coefficient >0.6, 359 genes) were analyzed by 

gene set enrichment analysis (GSEA; MSigDB v6.0) using only the Hallmark gene sets, a 

curated collection with small numbers of elements in each set, compiled from multiple 

independent databases (47, 48). No gene sets were positively correlated with sensitivity to 

EP (FDR q-value cutoff <0.01), reflecting the high stringency of the analysis. However, 10 
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gene sets scored for EP resistance, including genes upregulated in response to UV and 

reactive oxygen species exposure, and genes involved in drug detoxification (“xenobiotic 

metabolism”; Fig. 4M; Supplementary Table S8).

Also among these were two distinct MYC target lists containing 14 genes in total, which we 

term the “small MYC” regulon. A MYC target signature was of particular interest given 

recent data that overexpression of Myc in an SCLC GEMM promotes tumor growth and 

may confer relative chemotherapy resistance (49). Given the number of potential MYC 
targets that contain a canonical E-box, we performed a secondary assessment of whether 

these 14 genes represented a MYC transcription signature. We identified the 200 transcripts 

that most closely mirrored the expression pattern of the small MYC regulon. These 

transcripts were compared by enrichment analysis (Enrichr) with the ENCODE collection of 

transcription factor chromatin immunoprecipitation sequencing (ChIP-seq) datasets (50, 51). 

A total of 807 ChIP-seq datasets from 181 transcription factors contained at least 1 

overlapping gene with the query set (Fig. 4N; Supplementary Table S8). MYC and MAX 
ChIP-seq datasets were among the most enriched for the 200-gene query set, as well as the 

MYC family transcription factor USF1, supporting the conclusion that the 14-gene signal 

initially detected by GSEA does represent a MYC target signature (Fig. 4M). Indeed, 155 of 

200 genes in the large MYC set were contained within the top 8 ChIP-seq datasets 

(Supplementary Table S8). This “large MYC” regulon, composed of E-box-containing genes 

that are directly bound by MYC, was strongly anticorrelated with EP sensitivity, measured 

by both response and TTP (Fig. 4P; Supplementary Fig. S11). These results support the 

conclusion that upregulation of a MYC signature may be a biomarker of EP resistance. 

Furthermore, this analysis demonstrates that this large panel of PDX models and their 

quantified EP sensitivities can be applied for novel discovery of transcriptional profiles 

correlated to chemotherapy sensitivity or resistance.

Correlation between Patient and Model Responses to an Experimental Therapy

To address the capacity of serial PDXs to model tumor evolution from a single patient over 

multiple time points, we focused on models derived from MGH1528. The patient was a 58-

year-old male who had received several prior lines of therapy (MGH1528, Table 1). He was 

enrolled onto an ongoing phase I/II clinical trial of combination olaparib and temozolomide 

(OT) in patients with SCLC that has progressed following at least one prior line of 

chemotherapy (NCT02446704). At the time of enrollment on the clinical trial, the patient 

had widely metastatic disease including a large left axillary mass (Fig. 5A). He was treated 

with OT and had a partial response by RECIST 1.1 criteria, with a nadir at day 89. He 

remained on study 6.5 months, but ultimately developed progressive disease.

Serial PDX models were generated from CTCs immediately prior to enrollment onto the OT 

trial (MGH1528–1) and at the time of relapse (MGH1528–2), which allowed for 

pharmacologic interrogation in vivo with the mouse model and in vitro with PDX-derived 

short-term cell cultures (STC; Fig. 5B and C). We first assessed the in vivo response of the 

tumors to the combination treatment with OT. Mice bearing tumors from MGH1528–1 were 

treated with one cycle of OT, which resulted in dramatic tumor regressions, whereas tumors 

in vehicle-treated mice progressed rapidly (Fig. 5B). However, the PDX tumors derived after 
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the patient’s progression on OT (MGH1528–2) did not respond to this treatment and in fact 

demonstrated similar growth kinetics to the vehicle- treated animals (Fig. 5B). These serial 

CTC-derived PDX models therefore reflected the evolving treatment sensitivities of the 

patient tumor at the time of CTC collection.

Although PDX models permit functional analysis of patient drug responses, the requirement 

for in vivo experiments may limit both throughput and assay variety. STCs could greatly 

expand the range of analyses of PDX models while generating fewer in vitro artifacts than 

long-term cell line establishment. STCs were initiated from the MGH1528 serial models and 

treated with two-dimensional titrated combinations of olaparib and temozolomide (Fig. 5C). 

Cultures were initiated on the day of tumor resection and treated within 24 hours of cell 

seeding. The MGH1528–1 culture demonstrated high sensitivity to both olaparib and 

temozolomide, as well as the combination. By contrast, MGH1528–2 was significantly less 

sensitive to the OT combination (Fig. 5C). Thus, OT responses in STCs derived from serial 

PDX models show concordance with both in vivo responses and the patient clinical course. 

We anticipate that these types of serial models will enable detailed mechanistic studies of 

how resistance to therapy evolves in patients.

DISCUSSION

Numerous model systems for studying SCLC exist, including cell lines, GEMMs, and 

PDXs. Although each has its relative merits and limitations, the purpose of any model 

system is to enable clinically relevant and impactful discoveries. Here, we report the 

efficient production of a large panel of PDX models and demonstrate the high genomic and 

functional fidelity of these models when compared with the patient tumors from which they 

were derived. These findings support a prominent role for PDX models in SCLC 

translational science. The high efficiency of our PDX development platform (38% for CTCs 

and 89% for biopsies) suggests that the generation of large model populations, as well as 

serial models from the same patient, may ultimately become routine, particularly in the 

context of clinical trials.

Importantly, our experience generating SCLC PDXs from biopsies and effusions 

demonstrates that model development is highly efficient from a wide variety of metastatic 

sites (including lymph nodes, subcutaneous nodules, brain metastases, adrenal metastases, 

and pleural fluid) and using a variety of modalities (including CT-guided biopsy, ultrasound 

guided biopsy, endobronchial ultrasound, surgical resection, thoracentesis, and 

pericardiocentesis; Supplementary Table S2). PDX development was more efficient from 

biopsies than from CTCs, likely due to larger numbers of starting tumor cells and 

preservation of tumor microenvironments. At Massachusetts General Hospital (MGH), core 

biopsies at the time of diagnosis are standard, even for suspected SCLC. This provides an 

opportunity to consent patients to a research protocol prior to their diagnostic biopsy and to 

collaborate with interventional colleagues to collect tissue for PDX development. At the 

time of progression after a prior therapy, repeat biopsies are not the standard of care, and 

thus tissue collection is restricted to those patients undergoing a biopsy as a requirement for 

a clinical trial or for unusual clinical circumstances. We therefore encourage the 

incorporation of pretreatment and posttreatment biopsies into SCLC clinical trials, as these 
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tissues can be used not only for direct assays, but also for efficient generation of PDX 

models representative of the disease at the matched time point.

The CTC-iChip or similar automated technologies may further help to standardize the 

generation of SCLC PDX models, particularly in situations when a biopsy is not otherwise 

clinically indicated. In addition to our own technology, there are multiple similar 

technologies currently available including Clearbridge, Apocell, and CytoScale (reviewed in 

ref. 21). The CTC-iChip technology is also currently being commercially developed. We 

anticipate that the high efficiency of PDX generation from CTCs will be reproducible with 

other microfluidic CTC isolation technologies, though this remains to be directly tested.

SCLC tumors have extremely complex genomes with extensive copy-number alterations and 

a high mutational burden. Furthermore, these tumors harbor recurrent alterations that can 

promote genome instability, most notably inactivation of TP53 and RB1. Initial studies on 

PDX models of SCLC have confirmed that they share the genomic and molecular hallmarks 

of the human disease (5, 10, 15). However, the extent to which an individual model 

faithfully recapitulates the specific molecular and functional characteristics of the donor 

patient tumor has been uncertain.

Here, we performed a comprehensive genomic study of SCLC PDX models, which for the 

first time demonstrates that the somatic mutational landscapes of the models closely match 

synchronous tumor biopsies and remain stable over early passages in mice. These features 

are true of both biopsy- and CTC-derived PDX models and stand in contrast to other solid 

tumor types. For malignancies such as lung adenocarcinoma (52), colorectal cancer, and 

melanoma (53, 54), marked genomic heterogeneity has been observed between anatomically 

distinct metastases, especially following the emergence of resistance to therapy. For PDX 

models of breast cancer, retention of intratumor heterogeneity has been demonstrated, as 

well as the evolution of new subclones over serial passages (55). Furthermore, a recent 

comprehensive study of PDX models derived from diverse tumor types, but excluding 

SCLC, demonstrated marked genomic evolution over early passages (25). Therefore, the 

fidelity of the CTC-derived SCLC models was particularly surprising: A small number of 

tumor cells with high mutational burdens, shed into circulation, collected, grown into 

xenografts, and repeatedly passaged, were found to have nearly superimposable genomes 

with patient tumor biopsies taken from anatomically distinct locations (Fig. 3D). This 

supports the idea that despite a high mutational burden (>8 mutations per Mb), clonal 

homogeneity is a distinguishing feature of SCLC (22) and, in addition, suggests relative 

genomic stability. The genomic fidelity of CTC-derived models has important implications 

for the utility of SCLC CTCs in translational research, and for the validity of molecular 

diagnostics that use live cells and cell-free DNA. We do note that there are handful of 

somatic alterations that differ between the PDX models and the biopsies (<5%). It remains 

to be understood how these subtle differences affect the functional fidelity of the PDX to the 

patient’s tumor, and further assessments of SCLC PDX models are undoubtedly warranted.

A large panel of PDX models, derived from both treatment-naïve and previously treated 

patients, enables well-powered functional in vivo studies. Here, among 30 PDX models, we 

observe a range of sensitivities to standard-of-care chemotherapy, EP. Unlike in SCLC cell 
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lines (42), EP sensitivity in our PDX models correlates with patient treatment history, 

supporting the conclusion that these models more accurately recapitulate the behavior of 

patients’ tumors. The breadth of this collection of PDXs also enables analysis of correlative 

transcription signatures. Across 19 models, we identify several expression signatures that 

correlated with relative EP resistance, many of which warrant further study. Notably among 

this list, we observe that expression of a subset of MYC targets emerges as a marker of EP 

resistance. This observation is consistent with recent work in GEMMs, where 

overexpression of Myc promotes growth of tumors that rapidly relapse after EP treatment in 
vivo (49). In GEMMs, Myc overexpression drives a Neurod1-high, Ascl1-low (so-called 

“neuroendocrine-low”) profile, though this dichotomy is less prominent across a panel of 

human cell lines and tumors. Similarly, we find that some tumors exhibit distinct expression 

of these two transcription factors (Supplementary Fig. S9A), though others do not fit this 

pattern of mutually exclusive expression. Thus, although the interplay between expression of 

MYC, NEUROD1, and ASCL1 may be more complex in human tumors than in GEMMs, 

our findings support the conclusion that a MYC expression signature is a marker of greater 

chemotherapy resistance in SCLC, and we provide a demonstration of this observation in 

unperturbed samples from patients.

SLFN11 has also been described as a potential biomarker of sensitivity to DNA-damaging 

agents (5, 10, 46, 56). In a study by Gardner and colleagues, acquired EP resistance in PDX 

models derived from chemotherapy-naïve patients led to down-regulation of SLFN11. By 

contrast, we found SLFN11 expression levels (mRNA or protein) did not correlate with 

either PDX EP response or history of prior chemotherapy exposure for the donor patients. 

These differences likely arise from the fact that these are orthogonal experiments: one 

testing the effect of induced high-level EP resistance within the same model and the other 

comparing expression with intrinsic chemotherapy response and clinical history. Additional 

work is warranted to elucidate the role of SLFN11 and its potential applications, but in our 

dataset, it was not a biomarker of EP sensitivity.

In summary, we introduce here a new strategy for efficient development of a panel of SCLC 

PDX models, validate the genomic and functional fidelity of these models, and use the panel 

to assess markers of chemotherapy response. We believe that these advances lay the 

foundation for further functional analyses across large panels of SCLC PDX models in 

which experimental results can be directly compared with patient clinical outcomes. In 

addition, reliably efficient generation of PDX models enables generation of isogenic models 

from patients with SCLC at multiple times in their treatment course. We anticipate that these 

types of models will be a powerful resource in the context of SCLC drug development, 

facilitating the identification of biomarkers and mediators of sensitivity and acquired 

resistance to therapy.

METHODS

Extended methods are available in Supplementary Materials.
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PDX Model Generation

All tissue and blood samples from patients were collected per IRB-approved protocols with 

written informed consent from the patients and in accordance with the Declaration of 

Helsinki. All mouse studies were conducted through Institutional Animal Care and Use 

Committee-approved animal protocols in accordance with MGH institutional guidelines. To 

initiate a PDX model (P0), SCLC tumor material (CTCs, leukocyte/RBC-depleted effusion, 

or tumor core needle biopsy or surgical sample) was resuspended in 1:1 ice-cold HITES 

media and Matrigel (Corning), and injected subcutaneously via large bore (18G) needle into 

the right flank of an NSG mouse (NOD.Cg-Prkdcscid I/2rgtm1Wjl/SzJ; Jackson Laboratories). 

Whole blood and pleural or pericardial effusions were collected and transported at room 

temperature, and core biopsy samples on ice. Biopsy samples were diced by scalpel prior to 

resuspension and injection. Effusion samples were red blood cell (RBC)-depleted 

(BioLegend RBC lysis buffer) and leukocyte depleted (Miltenyi Biotec anti-CD45 IgG 

microbeads) per standard protocols. SCLC CTCs were enriched from fresh peripheral blood 

samples using either the CTC-iChip microfluidic device, as described previously for 

negative depletion of leukocytes and enrichment of untagged CTCs (27, 28), or the manual 

Ficoll gradient method previously described (20). After tumor emergence, palpable tumors 

were measured with electronic calipers weekly until tumors exceeded 1,500 mm3, at which 

point animals were euthanized and tumors were resected. Scalpel-dissected xenograft 

fragments were either immediately implanted into NSG mice for passaging, cryopreserved 

for later passaging, fixed in 10% neutral buffered formalin (Sigma) for pathologic analysis, 

or fresh-frozen in liquid nitrogen for molecular analysis. For pathologic review, 5 μm 

sections of formalin-fixed, paraffin-embedded (FFPE) tissue were stained with hematoxylin 

and eosin as well as antibodies against chromogranin, synaptophysin, CD56, CD45, and RB 

(antibody details in Supplementary Methods). The histologic diagnosis of small cell 

carcinoma was rendered in accordance with World Health Organization Classification of the 

Lung, Pleura, Thymus and Heart, 4 th edition (57).

WES and Transcriptome Sequencing

Total DNA and RNA were isolated from fresh-frozen or FFPE tumor tissue, and germline 

DNA was obtained from matched normal donor blood or FFPE tissue histologically 

confirmed to be free of tumor cells. DNA from FFPE tissue was extracted with the Maxwell 

FFPE DNA Purification Kit on a Maxwell 16 MDx instrument (Promega). Nucleic acids 

were extracted from fresh-frozen tissue and patient-derived blood by standard protocols 

(Supplementary Methods). For WES, DNA was fragmented by sonication, end-repaired, and 

adaptor ligated with incorporation of index barcodes, size-selected and enriched with Sure 

select XT (Agilent), and sequenced with a paired-end 2 × 75 bp protocol for an average 

coverage of 100–120× (Supplementary Table S3). For paired-end RNA sequencing (RNA-

seq), cDNA libraries were prepared with the Illumina TruSeq kit and sequenced with a 

paired-end 2 × 75 bp protocol on an Illumina HiSeq instrument. For single-end RNA-seq, 

cDNA libraries were prepared with the Kapa Stranded RNA-seq Kit with Ribo-Erase HMR 

method and sequenced with a single-end 75 bp protocol on a NextSeq 500 instrument. 

Sequence alignments were performed against both human and mouse reference genomes to 

filter mouse-specific reads. Somatic mutations and copy-number alterations were determined 

as previously described (22, 24). Transcript expression levels were determined using 
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Cufflinks and expressed as reads per kilobase million (RPKM; paired-end RNA-seq) or 

using Kallisto and expressed as transcripts per million (TPM; single-end RNA-seq). 

Downstream bioinformatic analyses are described in the Supplementary Information. Paired-

end whole-exome and transcriptome sequencing data are deposited at the European 

Genome-phenome Archive, which is hosted by the EBI (EGA; http://www.ebi.ac.uk/ega/), 

under accession number EGAS00001002853. Single-end transcriptome sequencing data are 

deposited in the NCBI’s Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/

geo/), under accession number GSE110853.

lmmunoblotting

Fresh-frozen xenograft samples were lysed in RIPA buffer using a TissueLyzer II (Qiagen) 

homogenizer. SDS-PAGE was performed by standard methods, and PVDF membranes were 

probed with the following antibodies: from Cell Signaling Technology: alpha-tubulin, beta-

actin, NeuroD1, total EGFR, pAKT (S473), pERK1/2 (T202/Y204); from Abcam: Ascl1 

(MASH1); from Santa Cruz Biotechnology: Slfn11. Membranes were imaged with a 

Syngene G:BOX, and band densitometry was performed using Syngene GeneSys software. 

Ratio to loading control (alpha-tubulin) was calculated, and lysates from established SCLC 

cell lines (CORL88, CORL279, NCIH82, NCIH1048, and DMS273) were used as interblot 

standards. Cell lines were obtained between 2015 and 2017 from the MGH Center for 

Molecular Therapeutics, which performs routine authentication by single-nucleotide 

polymorphism and short tandem repeat analyses, and were passaged in HITES media + 2% 

FBS for less than 3 months prior to lysate preparation.

Mouse Treatment Studies

Trials were initiated at xenograft volumes of 400 to 600 mm3 for 3 to 5 mice per model per 

treatment arm, and tumors were measured 2 to 3x weekly. EP: cisplatin 7 mg/kg i.p. d1,8 + 

etoposide 10 mg/kg i.p. d1–3,8–10. OT: olaparib 50 mg/kg oral gavage (OG) d1–5 + 

temozolomide 25 mg/kg OG d1–5. EP trial tumor metrics: TTP = days from start of 

treatment to 2x ITV, response = change in tumor volume between ITV and d14–28 

minimum, TTP/Tdbl = ratio of TTP to tumor doubling time in untreated mice. Endpoints: 

tumor volume > 2x ITV or 80 days after start of treatment.

PDX Short-Term Cultures

Xenografts were resected, fragmented, and rapidly dissociated with a gentleMACS Octo 

Dissociator (Miltenyi Biotec). Live cells were enriched by Ficoll gradient and depleted of 

murine cells with anti-mouse IgG microbeads (Miltenyi Biotec). PDX culture suspension 

was seeded in 96-well format in HITES media + 2% FBS + 10 μmol/L ROC kinase inhibitor 

(Y-27632; Selleckchem). Titration of olaparib and temozolomide was performed with a 

D300e digital drug dispenser (Tecan Life Sciences). Viability was assessed after 5 days 

using CellTiter-Glo (Promega).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE:

Effective translational research utilizing SCLC PDX models requires both efficient 

generation of models from patients and fidelity of those models in representing patient 

tumor characteristics. We present approaches for efficient generation of PDXs from both 

biopsies and CTCs, and demonstrate that these models capture the mutational landscape 

and functional features of the donor tumors.
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Figure 1. 
Generation of a population of SCLC PDX models. A, Strategy for SCLC PDX development. 

PDX models were initiated from whole blood via CTC isolation (red, top), core tumor 

biopsies (blue, bottom), or effusion specimens. Whole blood samples were processed via the 

CTC-iChipneg device, which enriches CTCs in a three-step process: (1) separation of 

nonnucleated cells and plasma by size hydrodynamic diameter using a microarray of posts, 

(2) inertial focusing through an asymmetric serpentine channel to position cells in a single 

line, and (3) negative selection of leukocytes decorated with anti-CD45/CD66b magnetic 
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beads by magnetic separation (yellow arrow = magnetic deflection). Biopsy, effusion, and 

CTC samples were injected s.c. into the flanks of NSG mice, monitored for tumor 

emergence (P0 latency), and then serially passaged (P1, P2). Tumor samples were obtained 

for molecular and pathologic analysis and for cryopreservation of the model. B, Panel of 

SCLC PDX models with abstracted patient clinical courses. Models derived from either 

CTCs (red circles) or biopsies/effusions (blue circles) were generated at various time points 

throughout the treatment of the patient (arrows). Arrows are not drawn to scale with respect 

to time on treatments. C, Latency to (P0) tumor emergence for models initiated from June 

2014 to June 2016. D, Efficiency of PDX generation from CTCs and biopsies (Bx)/effusions 

(Eff). Total attempts in gray, successful in color. E, Pathologic confirmation of SCLC. 

Shown are SCLC histology (hematoxylin and eosin staining) comparison between biopsy 

and PDX derived from either CTCs (MGH1504–1) or biopsy (MGH1512–1), as well as IHC 

stains for neuroendocrine markers and of nuclear RB1. Direct comparison of histology and 

IHC stains in a patient sample and corresponding CTC-derived PDX model (MGH1515–1) 

are also shown. Additional examples are shown in Supplementary Fig. S1. Chrg., 

chromogranin; FFPE, formalin-fixed, paraffin embedded; RBC, red blood cell; Syp., 

synaptophysin; WBC, white blood cell.
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Figure 2. 
Genomic alterations and expression profiles in SCLC PDX models. A, Spectrum of genomic 

alterations in the panel of 7 PDX models. Top plot, biallelic genomic inactivation of TP53 
and RB1. Bottom plot, notable alterations in PDX models beyond TP53 and RB1 referring 

to previously identified significantly mutated genes in SCLC (*; ref. 22) and to mutated 

cancer census genes of therapeutic relevance (#). The bottom plot displays the type of base-

pair substitution referring to the representative data of PDX P0 (Supplementary Table S2). 

B, Detection of the out-of-frame fusion transcript TP53-ITNL2 in MGH1514–1 by paired-
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end RNA sequencing (RNA-seq). C, Pearson correlation matrix for passage 0 and passage 

1–2 tumors from each model, using genes with highly variable transcription levels across all 

samples (max RPKM > 3, coefficient of variation > 1, 1,568 transcripts). Source of each 

PDX model (C, CTC; B, biopsy) is indicated in parentheses next to the model number. D, 
Clustering analysis on transcriptome sequencing data of PDX models (n = 13 from 7 

patients) and human SCLC tumors (n = 20, from ref. 22) selected to represent the 

neuroendocrine-high and -low groups as previously described. Clustering performed on 

genes that distinguish human primary tumors to avoid signatures associated with human 

immune and stromal infiltrates. All data processed with RNA-seq pipeline for human

+mouse reads.
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Figure 3. 
High genomic fidelity of SCLC PDX models derived from both CTCs and biopsies. A, 
Comparative genomic analysis on patient biopsy vs. PDX P0 and subsequently passaged 

PDX tumors (P1 for MGH1514–1 or P2 for all other models). B and C, Analysis of the 

copy-number alteration status (B) and of the number and type of somatic mutations (C) is 

displayed for six models. Initial tumor biopsy and derivative PDX models are described 

according to the color panel provided in A. D, Venn diagrams show overlap of mutations 

between patient biopsy, PDX P0 and PDX P1/2 exomes. Diagrams are colored according to 

the annotation in A and are scaled to total number of mutations. Number of private 
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mutations not shared by all three samples is shown in side of the diagrams, with color bar 

below indicating the sample(s). Source of each PDX model (C, CTC; B, biopsy) is indicated 

in parentheses next to the model number.
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Figure 4. 
SCLC PDX model responses to first-line chemotherapy reflect patient treatment histories. A, 
% ITV vs. days after EP start for a single xenograft treated with two 1-week cycles of 

cisplatin 7 mpk i.p. d1 + etoposide 10 mpk i.p. d1–3 (tan bars). Response = minimum %ITV 

between d14 and d28. TTP = time to 2x ITV. B, Differential EP response of serial models 

from patient MGH1518 derived before first-line chemotherapy and after second-line therapy. 

C, Trial of EP across a population of 30 PDX models: 12 from treatment-naïve patients 

(green) and 18 from previously treated patients (purple). Results presented in D-O, with 

same green/purple color code in E-I and L. D, Correlation of PDX EP response and TTP. E, 
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Waterfall plot of PDX best response. F-H, Comparison of tumor metrics following EP 

treatment in PDX models from treatment-naïve vs. post-relapse patients, with unpaired t test 

P values: best response (F), doubling time (G), and ratio of TTP to doubling time (H). I, 
TTP in post-relapse PDX models vs. EP TTP in the donor patients. J, Correlation of SLFN 

transcript abundance in transcriptome sequencing (TPM), and protein levels measured by 

quantitative Western blot (arbitrary units) across 19 models, with logarithmic trend line. K, 
Lack of correlation between EP response (rank 1 = deepest response) and SLFN11 
expression (rank 1 = highest level): protein on left (30 models), transcript on right (19 

models). L, No difference in SLFN11 protein levels between PDX models from treatment-

naïve vs. post-relapse patients. M, Gene set enrichment analysis (GSEA) of transcripts that 

correlate with PDX EP resistance (Spearman ρ > 0.6) using “Hallmark” gene sets (MSigDB 

v6.0). Gene sets with FDR of less than 1% are shown. N, 200 putative MYC targets that 

correlate with GSEA MYC signature were compared with inventory of chromatin 

immunoprecipitation sequencing (ChIP-seq) datasets. A total of 807 datasets from 

ENCODE, covering 181 transcription factors (TF), had >1 intersecting gene. Inset: top 

enriched TFs for these genes, with a Kolmogorov-Smirnov (KS) statistic P value < 0.01. O, 
MYC regulon correlates with EP resistance. MYC regulon = 155/200 putative MYC targets 

that were present in top 7 MYC/MAX ChIP-seq dataset. Regulon expression rank vs. EP 

response rank for 19 PDX models.
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Figure 5. 
SCLC PDX models recapitulate patient responses to an experimental therapy. A, Axial CT 

scan ¡mages from patient MGH1528 at multiple time points: immediately before starting 

treatment on olaparib + temozolomide (OT; left), during treatment at nadir of response 

(middle), and at the time of progression (right). The schematic above indicates prior lines of 

therapy, with carboplatin + etoposide (EC) shown in black arrows, other therapies shown in 

gray arrows, and OT shown as an orange arrow. Arrows are not drawn to scale with respect 

to time on treatments. B, PDX models generated from patient MGH1528 prior to OT 

(MGH1528–1) and at the time of progression (MGH1528–2) were treated with OT (blue) or 

vehicle (gray) for one cycle (5 days, blue shading). Tumor dimensions were measured 3 
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times per week and plotted as percent ITV vs. time. C, STCs generated from untreated PDX 

tumors were treated with OT combinations in vitro. Cultures were seeded on the day of 

tumor extraction (day 0), treatment was initiated within 24 hours (day 1), and viability was 

assayed after 5 days of treatment (day 6). Olaparib doses (9) range from 10 nmol/L to 10 

μmol/L and temozolomide doses (5) from 1 to 300 μmol/L, both on exponential scales.

Drapkin et al. Page 30

Cancer Discov. Author manuscript; available in PMC 2019 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Drapkin et al. Page 31

Ta
b

le
 1

.

C
ha

ra
ct

er
is

tic
s 

of
 P

D
X

 m
od

el
s 

se
le

ct
ed

 f
or

 w
ho

le
-e

xo
m

e 
se

qu
en

ci
ng

M
od

el
P

D
X

 t
yp

ea
B

io
ps

y 
to

 m
od

el
 in

it
ia

ti
on

 (
da

ys
)b

P
0 

la
te

nc
y 

(d
ay

s)
c

P
at

ie
nt

 c
lin

ic
al

 s
ta

ge
P

at
ie

nt
 p

ri
or

 t
he

ra
pi

es

M
G

H
15

04
-1

C
T

C
3

16
0

L
S

N
on

e

M
G

H
15

12
-1

B
io

ps
y

0
60

E
S

E
C

, i
ri

no
te

ca
n

M
G

H
15

14
-1

C
T

C
4

13
0

E
S

N
on

e

M
G

H
15

15
-1

C
T

C
8

13
8

E
S

N
on

e

M
G

H
15

18
-1

B
io

ps
y

0
81

E
S

N
on

e

M
G

H
15

25
-1

C
T

C
1

45
E

S
N

on
e

M
G

H
15

28
-1

C
T

C
-

10
7

E
S

E
C

, t
op

ot
ec

an
, E

C
, p

ac
lit

ax
el

, e
xp

1,
 e

xp
2,

 v
in

or
el

bi
ne

A
bb

re
vi

at
io

ns
: E

C
, c

ar
bo

pl
at

in
 a

nd
 e

to
po

si
de

; E
S,

 e
xt

en
si

ve
 s

ta
ge

; e
xp

, e
xp

er
im

en
ta

l t
he

ra
py

 o
n 

cl
in

ic
al

 tr
ia

l; 
L

S,
 li

m
ite

d 
st

ag
e.

a PD
X

 ty
pe

 in
di

ca
te

s 
if

 th
e 

m
od

el
 is

 C
T

C
-d

er
iv

ed
 o

r 
bi

op
sy

-d
er

iv
ed

.

b Fo
r 

al
l C

T
C

-d
er

iv
ed

 m
od

el
s 

ex
ce

pt
 M

G
H

15
28

-1
, a

 b
io

ps
y 

w
as

 c
ol

le
ct

ed
 n

ea
r 

th
e 

tim
e 

of
 C

T
C

 c
ol

le
ct

io
n,

 w
ith

ou
t a

ny
 in

te
rv

en
in

g 
th

er
ap

y,
 a

nd
 th

es
e 

w
er

e 
th

e 
pa

tie
nt

 tu
m

or
 s

am
pl

es
 u

se
d 

fo
r 

w
ho

le
-e

xo
m

e 
se

qu
en

ci
ng

. T
im

e 
fr

om
 b

io
ps

y 
to

 m
od

el
 in

iti
at

io
n 

is
 s

ho
w

n.

c P0
 la

te
nc

y 
in

di
ca

te
s 

tim
e 

fr
om

 ti
ss

ue
 im

pl
an

ta
tio

n 
to

 w
he

n 
a 

tu
m

or
 w

as
 f

ir
st

 p
al

pa
te

d 
on

 th
e 

fl
an

k 
of

 th
e 

re
ci

pi
en

t m
ou

se
.

Cancer Discov. Author manuscript; available in PMC 2019 February 11.


	Abstract
	INTRODUCTION
	RESULTS
	Construction of an SCLC PDX Panel
	Genomic Characterization of SCLC PDX Models
	Genomic Fidelity of PDX Models Compared with Patient Biopsies and Over Serial Passages
	Functional Fidelity of PDX Models to Patient Response to Chemotherapy
	Correlation between Patient and Model Responses to an Experimental Therapy

	DISCUSSION
	METHODS
	PDX Model Generation
	WES and Transcriptome Sequencing
	lmmunoblotting
	Mouse Treatment Studies
	PDX Short-Term Cultures

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.

