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Abstract

Motivation: Full-order partial correlation, a fundamental approach for network reconstruction, e.g.

in the context of gene regulation, relies on the precision matrix (the inverse of the covariance ma-

trix) as an indicator of which variables are directly associated. The precision matrix assumes

Gaussian linear data and its entries are zero for pairs of variables that are independent given all

other variables. However, there is still very little theory on network reconstruction under the as-

sumption of non-linear interactions among variables.

Results: We propose Distance Precision Matrix, a network reconstruction method aimed at both lin-

ear and non-linear data. Like partial distance correlation, it builds on distance covariance, a meas-

ure of possibly non-linear association, and on the idea of full-order partial correlation, which allows

to discard indirect associations. We provide evidence that the Distance Precision Matrix method

can successfully compute networks from linear and non-linear data, and consistently so across dif-

ferent datasets, even if sample size is low. The method is fast enough to compute networks on hun-

dreds of nodes.

Availability and implementation: An R package DPM is available at https://github.molgen.mpg.de/

ghanbari/DPM.

Contact: vingron@molgen.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene network reconstruction is an instance of a generic problem

which has become ubiquitous in many fields of science: Network re-

construction generally refers to representing associations between

variables in the form of a graph, where nodes correspond to varia-

bles and edges to associations postulated by the chosen network re-

construction method. Besides the biological Gene Regulatory

Networks (GRNs) (Markowetz and Spang, 2007), other examples

comprise co-authorship networks among researchers (Newman,

2004), connectivity networks between brain regions Smith et al.

(2011), or social networks among people (Carrington et al., 2005).

In machine learning, graphical models have been introduced for this

purpose (Bishop, 2006; Koller and Friedman, 2009).

Typical input data for network reconstruction would be either a

similarity matrix or a set of vectors, one per variable. The latter is

the standard input for GRNs, where each gene is described by a vec-

tor containing its expression values (centered to mean 0) under

many conditions (D’Haeseleer et al., 2000). Let us call W the matrix

containing these vectors as columns. WT �W is the sample covari-

ance matrix for those variables and can be seen as a measure of simi-

larity among them. This is the basis for many network

reconstruction applications, though not for all.
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To better understand the problem it is helpful to focus not on the

edges, but rather on the lack thereof. For example, in Relevance

Networks, no edge is drawn between two variables if their correl-

ation is close to 0. The rationale behind this is that, for Gaussian

data, a correlation coefficient of 0 is equivalent to stochastic inde-

pendence of the variables. Therefore reconstructing a network

becomes determining the pairs of variables that are independent and

leaving out those edges.

Using correlation to determine the presence or absence of edges

highlights another important aspect of network reconstruction.

When a variable X is correlated with another one Y, which is in turn

correlated with a third variable Z, a correlation will likely also be

observed between X and Z. For the purpose of simplicity and inter-

pretability however, we would much prefer to display direct associa-

tions only and discard such transitive ones. This issue was already

identified by Fisher, Pearson and Yule [see Aldrich (1995)] who

introduced the concept of partial correlation to weed out correla-

tions that can better be explained by a third variable. de la Fuente

et al. (2004) used first- and second-order partial correlation (i.e. cor-

relation conditioned on 1 and 2 variables respectively) for gene

networks.

In machine learning, this has become the basis for Gaussian

Graphical Models (GGMs) (Bishop, 2006; Lauritzen, 1996). Those

rest on the mathematical observation that the entries of the inverse

of the covariance matrix (the precision matrix) are related to the

corresponding full-order partial correlation coefficients. The term

full-order refers to partial correlation between two variables given

all other variables. In practice, based on the assumption that data is

Gaussian, the absence of an edge in a GGM corresponds to a very

small entry in the precision matrix, i.e. to conditional independence

given the other variables. Conditional independence can be seen as

an extension of independence that is able to model knowledge con-

text. Two variables X and Y might only appear to be linked where

in reality the association is explained by a set of variables Z.

Formally, X and Y are conditionally independent given Z if

pðX;YjZÞ ¼ pðXjZÞpðYjZÞ. For Gaussian variables, a partial correl-

ation of 0 between two variables is equivalent to their conditional

independence. In the context of epigenetics, Lasserre et al. (2013)

use GGMs to determine direct interactions among chromatin modi-

fications, and Perner et al. (2014) to extend the chromatin network

to chromatin-associated proteins.

GGMs and the precision matrix are at the core of many network

reconstruction methods, even sometimes of those that appear to ap-

proach the problem differently. Indeed Feizi et al. (2013) recently

proposed a network deconvolution method to estimate direct inter-

actions based on an inversion formula in analogy to the summation

of a geometric series. A comment on the original paper by Alipanahi

and Frey (2013) notes the similarity to the precision matrix.

Likewise, the Maximum Entropy approach to network reconstruc-

tion (Weigt et al., 2009; Zhou and Troyanskaya, 2014) has been

shown under certain conditions to correspond closely to the use of

the precision matrix [see Appendix in Morcos et al. (2011)].

How can we now detect independence when data is non-linear?

So far we have discussed the concept of independence in the context

of Gaussian linear data, but if this assumption is false, standard cor-

relation based methods are no longer suitable. Supplementary

Figure S3 shows examples of possible relationships among variables,

many of which are non-linear. In practical applications such as gene

regulation, this is a realistic scenario (Atkins and de Paula, 2002;

Marbach et al., 2009), and low sample size can make it even more

difficult as shown in Supplementary Figure S1. In principle, mutual

information can detect non-linear relationships (Dykstra, 2014)

since it is 0 for two independent distributions, regardless of their

form. However, sample mutual information requires density estima-

tion and is therefore notoriously difficult to compute accurately

Steuer et al. (2002). In recent years, some progress has been made

(Kinney and Atwal, 2014), for example Reshef et al. (2011) try to

solve the binning problem associated with density estimation

through optimization, but it remains unpractical.

A promising alternative to mutual information is distance covari-

ance introduced by Székely et al. (2007). For two random variables

X and Y, the distance covariance is 0 if and only if X and Y are stat-

istically independent. The original data is mapped onto an induced

high-dimensional space where the square sample distance covariance

can be computed as a standard inner product of vectors. The

induced space has dimensionality n2 where n is the number of

samples.

How can we now detect conditional independence when data is

non-linear? There have been attempts to introduce the concept of

conditional mutual information such as Wyner (1978), which

however do not alleviate the density estimation problem posed by

mutual information. In fact, the problem takes much larger pro-

portions for conditional independence as the size of the condition-

al set increases and with it the number of possible conditions, since

the variables of interest get less and less populated for each condi-

tion, making full-order conditional information measures mostly

intractable with standard sample sizes. Recently, Zhao et al.

(2016) introduced Part Mutual Information (pmi), a measure

which is 0 if and only if two variables are independent. This is

clearly a big step forward, and yet inherits the problems of estima-

tion of all information based measures. In the realm of biological

networks, Margolin et al. (2006) used information inequality for

this purpose.

In the search for a non-linear conditional independence measure,

distance covariance is a good starting point because it maps the ori-

ginal data into a new, higher-dimensional space where linear corre-

lations can be computed. It thus appears natural to proceed in the

high-dimensional space as in the linear case and compute partial cor-

relations among the high-dimensional vectors. Not only can one

compute partial correlations, one can also stack the high-

dimensional vectors into a matrix D, the high-dimensional analog of

the matrix W. We can then compute the covariance matrix DT �D

and invert it. We thereby handle non-linear associations via distance

correlation and compute full-order partial correlations via what we

call the ‘Distance Precision Matrix’ (DPM).

Székely and Rizzo (2014) also discuss this approach in their con-

sideration of how to partialize distance correlation. They propose a

modified, more sophisticated definition of partial distance correl-

ation (pdcor) based on the consideration that the projection of one

vector onto another one need not fall into the inner-product

(Hilbert-)space which harbors the high-dimensional images of the

data, and that the naı̈ve estimator introduces a statistical bias. In

this work, we will develop the DPM approach for network construc-

tions and compare it, among others, with pdcor, which we will dis-

cuss in more detail in Section 2.

While Guo et al. (2014) use distance correlation for gene net-

work reconstruction, pdcor is considered as a network construction

method in (Zhao et al., 2016). We are not aware of other work that

would have applied a partial version of distance correlation to bio-

logical data. Here, we will present extensive simulations to show

that it is the merge of the two elements, distance correlation as a

non-linear association measure and the partial correlation to elimin-

ate transitive effects, which together form a practical method for

gene network reconstruction, not requiring any parameter tuning
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and totally parsimonious in its underlying logic. So far, such an ana-

lysis has been missing in the literature.

In biological applications, one frequently encounters a situation

where one has many more genes (nodes) than samples available for

constructing a network. This lack of information results formally in

the inversion of a singular matrix. This is a known problem in statis-

tics and it is generally advantageous to compute the inverse of the

covariance matrix using a regularization method like, e.g. Schäfer

and Strimmer (2005). By reducing our problem to the inversion of a

(distance) covariance matrix, we also open the path to adding regu-

larization on top of our non-linear network reconstruction method.

Section 2 will provide definitions of the notions mentioned and

introduce the Distance Precision Matrix together with partial dis-

tance correlation. Section 3 will summarize data and methods used

for validation and testing. Section 4 will provide evaluation results

for our method as well as for a number of competing methods on

both simulated data and real data from DREAM challenges.

2 Approach

2.1 Distance correlation
Distance correlation was introduced as a measure of association be-

tween random variables, and denoted dcorðX;YÞ (Székely et al.,

2007).

For distributions with finite first moments, dcorðX;YÞ 2 ½0;1�
and is 0 if and only if X and Y are independent. Note that this holds

true in general and not only for Gaussian data, which makes the

method applicable to the detection of non-linear associations.

Furthermore, it is defined for X and Y in arbitrary and not necessar-

ily equal dimensions, rather than for univariate quantities. Here we

recapitulate the definition for univariate variables that we will need.

The sample distance correlation for two random variables X and

Y with n given samples Xi;Yi; i ¼ 1; . . . ;n is calculated as follows.

First, the entries of the distance matrices A0 and B0 are obtained

using a0
ij ¼ kXi �Xjk2 and b0

ij ¼ kYi � Yjk2. Then the double cen-

tered (D-centered) distance matrices A and B are obtained from A0

and B0 by subtracting the row- and column-means and adding the

grand mean using

aij ¼ a0
ij �

1

n

Xn

k¼1

a0
ik �

1

n

Xn

k¼1

a0
kj þ

1

n2

Xn

k;l¼1

a0
kl (1)

An analogous definition is used for B. The sample distance co-

variance is then defined as the square root of

dcov2ðX;YÞ ¼ 1

n2

Xn

i;j¼1

aijbij (2)

and the sample distance correlation as the square root of

dcor2ðX;YÞ ¼ dcov2ðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dcov2ðX;XÞdcov2ðY;YÞ

q (3)

2.2 Partial distance correlation based on D-centered

vectors
Partial distance correlation, in analogy to partial correlation, should

be a version of distance correlation which controls the associations

between two variables for the effect of other variables in the system.

Let A, B and C be the D-centered distance matrices corresponding

to the variables X, Y and Z obtained above from n samples. Let

vA; vB and vC be the vector versions of the respective matrices

(obtained by concatenating their columns into a vector), and

referred to as double centered (D-centered) vectors. Since the matri-

ces are n�n, the vectors contain n2 elements. It is easy to show that

dcov2ðX;YÞ ¼ covðvA; vBÞ, which leads to

dcor2ðX;YÞ ¼ corðvA; vBÞ (4)

This form of sample distance correlation offers a possible defin-

ition of sample partial distance correlation, by applying standard

partial correlation to the D-centered vectors of the correspondent

variables. vA and vB can be regressed on vC to obtain the residuals

rA;C and rB;C respectively. Partial distance correlation between X

and Y given Z can then be defined as

partial-dcorðX;YjZÞ ¼ corðrA;C; rB;CÞ (5)

Székely and Rizzo (2014) argue that this definition introduced a

bias, which, however, our simulations below and in Supplementary

Material show to be small.

2.3 Distance Precision Matrix
Let us assume we are given a n�p matrix W, which contains as col-

umns n samples from p random variables, and where columns have

been centered to mean 0. WT �W is the sample covariance matrix

and the precision matrix K is defined as its inverse (Bishop, 2006).

The entries of K are related to the full-order partial correlation coef-

ficients by pcorði; jÞ ¼ � kijffiffiffiffiffiffiffi
kiikjj

p .

Our Distance Precision Matrix method (DPM) is based on apply-

ing the same mechanism in the n2-dimensional space of D-centered

vectors. For each Xi, a D-centered vector is computed. Let D be the

matrix with the D-centered vectors as columns. The Distance

Precision Matrix is then the inverse of DT �D.

2.4 Partial distance correlation as introduced in Székely

and Rizzo (2014)
For the purpose of introducing partial distance correlation, Székely

and Rizzo (2014) defined an unbiased version of distance matrix

called unbiased double centered (U-centered) matrix ~A, where

~aij ¼ a0
ij � 1

n�2

Pn
k¼1

a0
ik � 1

n�2

Pn
k¼1

a0
kj þ 1

ðn�1Þðn�2Þ
Pn

i;j¼1

a0
ij. Note that the di-

agonal of this matrix is not integrated in the sum of the estimator.

Based on this unbiased version that we will refer to as udcor, they

put forward and defined partial distance correlation (pdcor) that,

similarly to DPM, uses the high-dimensional space induced by the

distance matrices to perform linear operations (Székely and Rizzo,

2014).

In the definition of DPM however, we keep all variables separ-

ate, and as a result only consider univariate variables (for example

the expression of one gene), and apply full-order partial correlation.

In the definition of pdcor, all control variables are merged into one

single high-dimension variable, i.e. they define a multivariate control

variable that includes the expressions of all control genes). Pdcor is

then defined as the first-order partial correlation. In Supplementary

Material Section S15, we deconstruct DPM and compare each stage

with pdcor using Spearman correlation between the respective

scores. For example, when sample size is large, merging variables

makes the most difference. We also compare DPM using D-centered

vectors and U-centered vectors (referred to as uDPM). D-centered

vectors yield better or equal results.

Pdcor is designed for multivariate variables, which makes U-cen-

tering the method of choice. However, gene expression vectors are

univariate variables, raising the question whether the U-centering is
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actually a necessity. Besides studying the results of both approaches

in simulations and on real data, we provide in Supplementary

Material Section S16 a numerical analysis of the bias discussed in

Section 4.

2.5 Network reconstruction and regularization of the

Distance Precision Matrix
For network reconstruction purposes, following the principle of

Gaussian Graphical Models, only edges with a ‘large’ absolute value

in the precision matrix are considered, ‘large’ being defined here as

above a certain threshold. Below we will discuss how to choose such

a threshold. For comparison purposes however, we use precision-

recall and ROC curves based on edge rankings and no threshold is

needed.

Inverting the matrices WT �W or DT �D can be challenging. In

many applications one has to deal with the case when p� n, i.e.

when the number of variables is much larger than the number of

samples. This results in a singular or ill-conditioned matrix WT �W

or DT �D. The increased size of the row-space of D from n to n2

does not necessary alleviate those problems for DT �D. Significant

efforts in many parts of science, including biology, economics and fi-

nance, have in recent years produced regularization based inversion

routines for the covariance matrix [see Pollak (2012) for a review].

In this study we use the method of Schäfer and Strimmer (2005) to

estimate and invert the covariance matrices WT �W or DT �D,

leading to regularized partial correlation and regularized DPM (reg-

DPM) respectively.

3 Materials and methods

3.1 Data simulation
In order to study the behavior of methods in a controlled setting, we

use simulated data. For Gaussian data, a random graph is easily

obtained in R using various packages as described in Supplementary

Material Section S3. Our results are averaged over data sampled

from 100 different simulated graphs. To test the methods on non-

linear data, we designed an 11 node directed graph shown in

Figure 1. The graph contains all possible connections: a chain ðx!
y! zÞ; a fork ðx y! zÞ, a collider ðx! y zÞ and a feed-

forward loop (ðx! y! zÞ together with ðx! zÞ). The value of

each node is obtained from its parents using arbitrarily defined non-

linear functions given in Supplementary Material Section S2, and

Gaussian noise is added. Supplementary Figure S3 shows the scatter

plots of one realization of the simulated data with direct interactions

highlighted in blue.

3.2 Data from DREAM challenge
DREAM (Dialogue for Reverse Engineering Assessments and

Methods) challenge (Marbach et al., 2009, 2012; Prill et al., 2010)

provides gene expression data with various numbers and types of

variables together with a gold standard network for each dataset to

benchmark methods. We use data from editions DREAM3,

DREAM4 and DREAM5. Note that simulated data in DREAM

challenges does display non-linear interactions due to the physico-

chemical laws that were taken into account for data-generation

(Marbach et al., 2009; Schaffter et al., 2011), an example of which

is shown in Supplementary Figure S2.

Note that DREAM5 also contains real data from E.coli and S.

cerevisiae. The networks are very large with thousands of nodes and

come with relatively very few samples. The full networks are com-

puted, however, following the rules of the challenge, performance is

reported on edges between regulators and transcription factors only

(transcription factors are also regulators). DREAM5 time series data

was not used.

3.3 Competitor methods
In this study, we compare the performance of DPM and reg-DPM

with nine other methods (implementation details are given in

Supplementary Material Section S5):

• Pearson correlation (cor), partial correlation (pcor) and regular-

ized partial correlation following Schäfer and Strimmer (2005)

(reg-pcor).
• Network deconvolution (Feizi et al., 2013) with the absolute

value of the correlation matrix as input (nd).
• Mutual information (mi), part mutual information (Zhao et al.,

2016) (pmi) and ARACNE (Margolin et al., 2006) (arac).

Note that pmi had to be used using the Gaussian assumption

since it has no non-linear version available for multivariate

conditioning.
• distance correlation (Székely et al., 2007) (dcor) and partial dis-

tance correlation (Székely and Rizzo, 2014) (pdcor).

3.4 Evaluation methodology
In this study, we only consider undirected edges, i.e. A! B and

B! A are treated equally. We compare our method to others using

the area under the precision-recall curve (AUPRC). The correspond-

ing figure for the area under the receiver-operating characteristic

curve (AUROCC) will be shown in Supplementary Material. More

details about these curves can be found in Supplementary Material

Section S4. All methods are assessed equivalently, no parameters are

tuned, and if parameters are required (for example in arac), they are

set to their default value. The precision-recall (PR) and receiver-

operating characteristic (ROC) curves are computed based on the

ranking of edges, not by changing the parameters.

4 Results and discussion

4.1 Performance comparison on Gaussian data
DPM should perform comparably to partial correlation. We gener-

ate 100 random 10-nodes networks and, for each of them, simulate

100 samples of Gaussian data and univariate Gaussian noise. False

positive rate (FPR), recall and precision are averaged over all

networks.

Figure 2a shows the average AUPRCs of all selected methods on

a 10-node/100 samples example. The corresponding PR curves can

be found in Supplementary Figure S4.

Fig. 1. Directed graph H used to generate non-linear data
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Mutual information based methods (mi and arac) perform worst

on this task, probably because of the discretization step. pmi is

solved analytically and does not suffer. pcor, reg-pcor, pmi, nd,

DPM and reg-DPM (overlapping) perform best. Regarding ROC

curves and AUROCCs (see Supplementary Fig. S6), all methods are

roughly comparable except those based on mutual information

which never perform as well. The same experiments were run on 50

nodes networks (Supplementary Fig. S5), and on 10/50 nodes net-

works using 200 samples (Supplementary Fig. S7); results are shown

and discussed in Supplementary Material Section S6.

Overall, DPM performs well and does not lose out over partial

correlation (pcor), which was developed for Gaussian data. DPM

even performs better when the number of samples is limited com-

pared with the number of nodes. Network deconvolution (nd) also

performs well especially on the larger networks. We note that partial

distance correlation (pdcor) yields edge-rankings inferior to the ones

produced by DPM.

4.2 Performance comparison on non-linear data
DPM should be able to detect non-linear associations. We generate

100 samples from the network H in Figure 1 and add univariate

standard Gaussian noise to each variable. FPR, recall and precision

are averaged over 100 replicates.

Figure 2b shows the average AUPRCs of all selected methods.

The corresponding PR curves can be found in Supplementary Figure

S8. pcor and pmi, which are geared towards Gaussian data and re-

quire a larger number of samples, perform worst on this task. DPM,

reg-DPM (overlapping) perform best. While regularization dramat-

ically improves the performance of pcor, there is no visible differ-

ence between DPM and reg-DPM with 100 samples. Regarding

ROC curves and AUROCCs (see Supplementary Fig. S9), mi, dcor,

pdcor, DPM and reg-DPM perform best. The same experiments

were run using 200 samples; results are shown and discussed in

Supplementary Material Section S7.

In conclusion, distance correlation-based and mutual

information-based methods perform best, with a slight advantage

for DPM and reg-DPM. Partial distance correlation (pdcor) per-

formance follows after mi, aracne and (reg-)DPM.

4.3 Application to gene regulatory networks (DREAM

data)
We show results on null-mutant (and wild-type) data for DREAM3,

knockout (and wild-type) data for DREAM4 and all three official

DREAM5 networks, but results on all other subsets of DREAM3

and DREAM4 data are shown in Supplementary Material Sections

S8 and S9 for completeness.

Figure 3a, b and c show the AUPRCs obtained on DREAM3, for

a total of (number of nodes þ 1) samples for each network, which is

rather low. In 10 nodes and 50 nodes networks, DPM and reg-DPM

are in some cases the best, in all cases competitive. In 100 nodes net-

works, DPM and reg-DPM are slightly outperformed by reg-pcor

and nd, suggesting that DPM might suffer on larger networks. pcor

and pdcor consistently underperform. The performance of pcor is

not surprising since, as discussed above, it generally does poorly

with small sample sizes. pmi requires even more data and could not

run properly on 100-nodes networks with 101 or 201 samples (it

was assigned random performance).

Figure 3d and e show the AUPRCs obtained on DREAM4, for a

total of (number of nodes þ 1) samples for each network. In 10

nodes networks, DPM and reg-DPM are almost never the best but

are always competitive. Here again, pcor, mi, arac and pdcor con-

sistently underperform, and pmi could not handle the 100-nodes

networks with 101 or 201 samples. In 100 nodes networks, DPM

and reg-DPM are slightly outperformed by reg-pcor, nd and even

cor.

Figure 3f shows the AUPRCs obtained on data from DREAM5.

We have zoomed into the AUPRC plot and added the AUROCC

plot in Supplementary Figure S15. On simulated data, nd performs

best, with an AUPRC around 0.18. DPM and reg-DPM are below

but still competitive with the other methods. For E.coli data, pcor,

nd, DPM and reg-DPM perform better. For S.cerevisiae data, the

AUPRCs are all comparable but too low to be of any use.

In conclusion, DPM and reg-DPM are competitive on the the

DREAM datasets with the exception of simulated DREAM5 data,

and perform really well on DREAM3 data. As seen before on our

own simulated data, DPM and reg-DPM perform better than their

direct competitor pdcor, which may outweigh the theoretical advan-

tages of pdcor when it comes to practical application.

4.4 Detection of direct edges only
To verify that direct edges are favored, we repeat the experiments

described above, however performance is computed using as nega-

tives the indirect edges only. More details can be found in

Supplementary Material Section S12.

Figure 4 shows the AUPRCs of all selected methods on linear

and non-linear data, and on DREAM3 null-mutant (and wild-type)

data. For linear data (Fig. 4a), all methods based on partial methods

(pcor, reg-pcor, pmi, nd, DPM and reg-DPM) perform best except

pdcor, which stays at the level of cor and dcor. For non-linear data

(Fig. 4b), arac, DPM and reg-DPM perform best. pdcor performs

only slightly better than dcor. On DREAM data (Fig. 4c), DPM and

reg-DPM are always competitive.

In conclusion, DPM and reg-DPM are able to discard indirect

edges on all the datasets used in this study at least as well as other

methods. Similar results using larger networks can be found in

Supplementary Figure S12.

4.5 Effect of sample size
We repeat the simulations for Gaussian and non-linear data

described in their respective subsections, and vary the number of

samples drawn from the networks. This important analysis tests the

consistency of a method, i.e. its ability to reconstruct the correct net-

work if given enough data. Figure 5 shows the evolution of the aver-

age AUPRCs for all selected methods as sample size increases. The

ROC counterpart is shown in Supplementary Figure S21.

(a) (b)

Fig. 2. Performance on simulated data. The plots show the average AUPRCs

of all selected methods. Error bars show one standard deviation. (a) Gaussian

data. The expected AUPRC on this task is 0.27. (b) Non-linear data. The

expected AUPRC on this task is 0.2
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For Gaussian data (Fig. 5a), cor and dcor overlap at the top for

very small amounts of samples (here up to 8), nd takes slightly over

for small amounts of samples (here up to 25), DPM and reg-DPM

catch up for large amounts of samples (here up to 250) while pcor,

reg-pcor and pmi take over for very large amount of samples. DPM

and reg-DPM are always just below the top performers, if not the

top performers themselves. Note that pdcor, even under large

sample sizes, remains below these methods and appears to level out

at around 0.8. All methods improve as the number of samples

increases, but reg-DPM and reg-pcor are the most consistent across

various numbers of samples.

For non-linear data (Fig. 5b), none of the methods approaches

the perfect score of 1, but the best ones level out slightly above 0.8.

reg-DPM is clearly the best method, improving over DPM for small

(a) (b) (c)

(d) (e) (f)

Fig. 3. Performance on DREAM data. The plots show the AUPRCs of all selected methods on various DREAM datasets. (a, b, c) DREAM3 wild-type and null-mutant

data. (d, e) DREAM4 wild-type and knockout data. (f) DREAM5

(a) (b) (c)

Fig. 4. Performance on direct vs indirect edges. The plots show the average AUPRCs of all selected methods for distinguishing direct edges from indirect ones.

Error bars show one standard deviation. DPM and reg-DPM are among the top-performers. (a) Gaussian data. The expected AUPRC on this task is 0.26. (b) Non-

linear data. The expected AUPRC on this task is 0.2

1014 M.Ghanbari et al.



sample sizes and the two versions being equally good for large sam-

ple sizes. The next best methods in terms of consistency are mi and

pdcor, followed by nd.

In conclusion, reg-DPM improves with more samples like all

other methods but is consistently among the top performers for both

types of data. The methods requiring the most samples are pcor, mi,

pmi and arac.

4.6 Effect of noise
We repeat the simulations for Gaussian and non-linear data

described in their respective subsections, and vary the variance of

the univariate Gaussian noise that is added to the data drawn from

the networks. Supplementary Figures S22 and S23 show the evolu-

tion of performance for all selected methods as noise increases, using

respectively 150 and 500 samples. Insights are discussed in

Supplementary Material Section S14. DPM and reg-DPM are meth-

ods of choice for small amounts of noise, but do not perform as well

as mi or arac for large amounts of noise on non-linear data.

However mi and arac do not perform well on Gaussian data, while

DPM and reg-DPM are reliable on both types of data.

4.7 Bias in DPM and pdcor
The use of dcor as opposed to udcor to build the double centered

vectors raises the question of a potential bias in the values of the

edge scores given by DPM. We argue that using dcor for DPM in

our context does not pose a problem since we are only interested in

the ranking of the edges and not in the actual values of the edge

scores. In Supplementary Material Section S16, we present a bias

analysis for Gaussian networks and for our non-linear network. On

a 3-nodes network, DPM shows a small bias but this decreases as

sample size increases, and is negligible in comparison with the bias

in dcor. Moreover DPM seems to deal better with transitive associa-

tions than pdcor, and to separate edges from non-edges more which

is consistent with results from Figures 2b and 4.

4.8 DPM in practice
PR and ROC curves are useful to compare methods in the presence

of a gold standard, but provide little guidance as to which edges to

include in the network when the method is applied to a novel data-

set. In the absence of an analytic theory on threshold selection for

our method, Supplementary Material Section S11 compares possible

heuristics for setting a threshold. In particular, a simple k-means

clustering of edges into two classes—included and discarded edges—

works well and this has been implemented in our R-package. We are

not pursuing simulating the p-values of edge-scores since it would be

too computationally demanding.

Supplementary Material Section 17 also shows runtimes for various

algorithms. DPM is not the fastest but it is fast enough to be applicable

to most situations. In particular, on one CPU, DPM and reg-DPM are

much faster than pdcor. Experiments on DREAM5 data took several

hours for DPM (using 1 CPU) but several weeks for pdcor.

5 Conclusion

Since relationships among interacting genes need not be linear, there

has always been a sense of frustration about the lack of network re-

construction methods for non-linear data. On the side of the infor-

mation based methods, part mutual information constitutes

substantial progress, although the estimation problem for informa-

tion measures remains hard. Distance correlation has offered both

an analytical measure and an estimator, and has been extended to a

partial version both in pdcor and in our DPM. We think that with

these developments the theory bottleneck in gene network recon-

struction has largely disappeared.

In this work we have tried to show that DPM can detect both lin-

ear and non-linear associations among variables. Our results on

simulated non-linear data confirm that the distance correlation

based methods are well suited to such general relationships because

they build on the concept of full-order partial correlation used in

GGMs (Bishop, 2006). In GGMs, i.e. in the context of Gaussian lin-

ear data, full-order partial correlations are computed via linear re-

gression or via inversion of the covariance matrix. Distance

correlation maps non-linear data into a high dimensional space

where linear operations make sense again, and DPM simply uses

full-order partial correlation in that space. We have shown in our

simulations that DPM can indeed discard non-direct associations.

(a)

(b)

Fig. 5. Effect of sample size on performance on simulated data. The plots

show the evolution of the average AUPRCs as sample size increases. reg-

DPM is the most consistent method on this task
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In spite of the theoretical advances concerning the non-linear rela-

tionships, it remains a truism that for gene networks one frequently

studies networks on many more nodes than we have data samples. This

is generally known as the p� n problem, where n corresponds to the

number of samples. The established remedy of regularization can be

easily emulated using the DPM. We have introduced reg-DPM as one

option how DPM can handle small sample numbers. Our simulations

show that reg-DPM is robust to small sample sizes.

A fair comparison of methods relies on the presence of a gold

standard. For simulated data this is easy and this is why we have

presented extensive tests of the properties of the methods on simula-

tion scenarios testing Gaussian data, non-linear data and in terms of

consistency and stability with respect to random noise. After all, one

would preferably apply a method to real data which has already per-

formed well on controlled scenarios.

No method performs best on all the datasets presented in this

study. However, in contrast to many other methods, the distance

correlation based approaches, in particular DPM and reg-DPM,

yield good results across all datasets. Notably, (reg-)DPM, like

pdcor, has no parameters to tune and DPM was not optimized in

any way for particular test data. At the same time, we have

observed that DPM runs faster than pdcor and makes computation

of even large networks feasible. Taken together, our performance

comparison has not only quantified the success of the various

methods on simulated and real test data, but we also studied in

great detail the behavior of many approaches and methods upon

changing sample sizes, under the influence of noise, etc. We think

that an analysis like this has been long overdue and we hope that

it will aid in laying a rational basis for the further development of

the field.

We have observed mutual information to work well on non-

linear data but not on Gaussian data. We speculate that this is due

to the difficulty of binning-based estimation in the Gaussian do-

main. Regularized partial correlation works well on Gaussian data

but not so much on non-linear data. Methods such as conditional

mutual information or part mutual information require estimation

by binning making them more vulnerable to small sample numbers.

Having to discretize also makes the conditioning on many variables

computationally extremely demanding, which is why, e.g. pmi then

resorts to a Gaussian assumption again.

We observed partial distance correlation often to perform below

DPM on our controlled simulation settings. We speculate that this is

due to the merging of control variables into a single variable done

by pdcor, rather than the full-order partial correlation implicitly

computed by DPM. Why this makes a difference may be a subject

for further investigation.
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Székely,G.J. et al. (2007) Measuring and testing dependence by correlation of

distances. Ann. Statist., 35, 2769–2794.

Weigt,M. et al. (2009) Identification of direct residue contacts in proteinprotein

interaction by message passing. Proc. Natl. Acad. Sci. USA, 106, 67–72.

Wyner,A. (1978) A definition of conditional mutual information for arbitrary

ensembles. Inf. Control, 38, 51–59.

Zhao,J. et al. (2016) Part mutual information for quantifying direct associa-

tions in networks. Proc. Natl. Acad. Sci. USA, 113, 5130.

Zhou,J. and Troyanskaya,O.G. (2014) Global quantitative modeling of chro-

matin factor interactions. PLoS Comput. Biol., 10, e1003525.

The Distance Precision Matrix 1017


