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Abstract

The phase-space structure of resonances between fast ions and an Alfvénic mode and the

associated modification of density profiles in tokamaks are studied as a function of particle collisions.

Guiding-center simulations in a realistic tokamak equilibrium are employed to address the resonance

broadening parametric dependencies with respect to changes in the pitch-angle scattering rate.

The rate of collisional replenishment, along with resonance strength, given by the combination of

eigenmode and resonance structures and equilibrium parameters, determine saturation amplitudes

for a given damping rate. As seen from the distribution function flattening, collisions have an effect

of broadening the resonances while the absolute value of δf decreases with increasing collisionality.

It is observed that the collisional broadening can be comparable to the collisionless resonance

width due to the mode amplitude alone. The resonance broadening coefficients are compared

with the existing theory based on analytically expected saturation levels, showing fair agreement.

The results can be useful in assisting reduced kinetic models, such as quasilinear models, when

prescribing the effective resonance phase-space width i.e., the mode-particle interaction platform,

due to collisional or turbulent processes.
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I. INTRODUCTION

In large tokamaks, the partial pressure due to energetic particles (EPs) is comparable to

the pressure due to the thermal plasma population. The EP pressure gradient is capable

of severely destabilizing magnetohydrodynamic modes through resonant interactions, which

poses concerns for the operation of ITER [1, 3]. In the absence of collisions, the separatrix

of the phase-space resonant island structure, although possessing a small stochastic width,

is a robust barrier that delimits resonant and non-resonant particles. Collisions can,

however, redistribute particles across the separatrix and possibly alter the mode energy

extraction and the scalings of phase mixing dynamics [4–6]. In this paper we employ

guiding-center-following ORBIT [8] simulations to address a basic question regarding the

degree to which the Alfvénic mode particle resonance is effectively broadened upon the

introduction of collisional scattering.

The width of an isolated linear resonance, as observed with a kinetic Poincaré plot,

is proportional to the square root of the perturbation amplitude. If the mode structure

does not change considerably within the resonance [9] and the perturbation amplitude is

small enough to prevent significant higher-order Fibonacci resonances, the dynamics of a

resonant particle can be described by a nonlinear pendulum framework [10]. In this case,

the maximum resonance width in terms of frequency ∆Ω can be shown to be ∆Ω = 4ωb,

where ωb is the bounce (or trapping) frequency [1, 10, 11]. Since full simulation of the

dynamics of fast ions resonating with Alfvén waves has proven costly, we wish to be able to

model the kinetic interaction by means of reduced approaches, such as a quasilinear (QL)

theory[12, 13], where other unexplored mechanisms can as well contribute to the broadening.

In particular, we are interested in further developing the physics basis of the RBQ code

[7, 30].

Dupree [14] showed that background turbulent fields act to diffuse particle orbits in such

a way as to increase the effective resonance width. In that case, it has been shown that the

resonance platform can be written as a window function, expressed in an integral form. In the

limit of zero turbulent-induced diffusion and small mode amplitude, this window function

approaches the usual delta function. In principle, any mechanism that leads to resonant

particle phase randomization such as pitch angle scattering[16, 17] should contribute to the

broadening.
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Along the lines of Dupree’s reasoning of stochasticity-induced broadening, it has been

suggested [18] that the resonance width in QL theory should also scale with the effective

pitch-angle scattering frequency felt by the resonant population. The underlying reason is

that scattering leads to non-resonant particles being kicked into resonance while kicking

resonant particles out of resonance. Therefore, intuitively, scattering increases the effective

resonance extension and allows for enhanced release of energy from the particle distribution.

The dimensionality reduction of the full kinetic phase space (involving actions and

their canonically conjugated angles) to a reduced QL diffusive approach along the actions

of the unperturbed motion[19] requires an appreciable level of phase randomization in

order to destroy phase space correlations and to average over the ballistic response. This

randomization is often associated with the overlap of resonances described by the Chirikov

criterion [20]. A QL approach was proposed[18, 21] in order to cover both regimes of isolated

and overlapping resonances. The former case is only within the assumptions required by the

underlying QL applicability if collisions are strong enough to prevent particles from staying

in phase with a resonance for several bounce times, which in practice forbids coherent

nonlinear phenomena such as chirping and avalanches from taking place [15, 17]. The

proposed approach, called the line broadened QL model [18, 21], relies on tuning the constant

coefficients a and c of the resonance broadening recipe

∆Ω = aωb + cνeff (1)

in such a way that the evolutions of single modes are forced to meet the expected saturation

levels resulting from analytic theory [4–6, 22] in both limiting cases of very close to and very

far from linear marginal stability. In this paper we use a guiding center following code to

examine on a more fundamental level whether the collisional broadening implies an actual

broadening, in the sense of extending the flattened region of the distribution function. In

the presence of collisions Poincaré plots become blurred and therefore cannot be used as a

diagnostic tool for the resonance width. For that purpose, instead, we perform the analysis

by means of density plots, using the flattening as an indication of the resonant extension.
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FIG. 1: Equilibrium and q profile using Boozer coordinates.

II. KINETIC POINCARÉ PLOTS IN ACTION AND ANGLE VARIABLES

The unperturbed orbits in an axisymmetric tokamak are uniquely determined by values

of toroidal canonical momentum Pζ , energy E and magnetic moment µ. The guiding center

dynamics formalism we employ exploits the particle actions, which are invariants of the

unperturbed motion, as the relevant variables to describe the effects of the perturbation.

For the interaction of EPs with low-frequency Alfvénic modes, µ is approximately conserved

and the other two actions are the toroidal and poloidal canonical momenta, defined as

Pζ = gρ‖ − ψp and Pθ = ψ + ρ‖I [8, 23], respectively, where ψ and ψp are the toroidal and

poloidal fluxes, dψ/dψp = q(ψp) is the field line helicity. g(ψp) and I(ψp) are the toroidal

and poloidal covariant components of the equilibrium magnetic field and ρ‖ is defined as the

parallel velocity divided by the strength of the magnetic field. Hamilton’s equations are

θ̇ =
∂H

∂Pθ

Ṗθ = −∂H

∂θ

ζ̇ =
∂H

∂Pζ

Ṗζ = −∂H

∂ζ
, (2)

where the poloidal and toroidal angles are θ and ζ. The Hamiltonian is H = ρ2
‖B

2/2 + µB.

In order to examine the collisional effects on a resonance, we searched through a number
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of equilibria and mode spectra to find a case exhibiting a single isolated resonance[24, 25],

well surrounded by good KAM surfaces [26], existing within the co-passing particle domain.

Cases with well isolated resonances allow the study of large scale islands without interaction

with other nearby resonances which complicate the particle transport. We use a tokamak

equilibrium with a field on axis of 4.9 kG. The major radius was 215 cm and the minor

radius 62 cm. The equilibrium and q profile are shown in Fig. 1. The perturbation was an

Alfvén mode with a simple broad Gaussian radial form. The particle distribution consisted

of 85 keV to 98 keV deuterium ions.

The Alfvén polarization mode is chosen with a given toroidal mode number n and with

an eigenfrequency ω without loss of generality. This is because in the present study we do

not specify detailed plasma parameters but rather adjust them to investigate the resonant

ion broadening near the isolated resonance. The Alfvén velocity is a function of the plasma

density and our choice for the toroidal and poloidal mode numbers is to have the mode

located near the q = 1 surface. Such modes as toroidal Alfvén eigenmodes (TAEs) and

reversed shear Alfvén eigenmodes (RSAEs) are well suited to such conditions [1].

Assuming the Hamiltonian to be a function of ψp, θ and nζ−ωt, we have from Ṗζ = −∂ζH,

and Ė = ∂tH that there is a constant of the motion given by [23]

K = ωPζ − nE, (3)

simply related to the particle energy in the frame rotating with the mode. The kinetic

Poincaré recurrence plots are produced at constant values of µ and K. Those plots involve

either Pζ or E as a function of θ on the orbit. Each point in the Poincaré plot is obtained

when the recurrence condition nζ − ωt = 2πk, k integer is satisfied.

A passing population was chosen with all particles having the same value of magnetic

moment µ and K. The equations of motion are easily generalized to include flute-like

perturbations of the form δ ~B = ∇ × α~B with ~B the equilibrium field and α =
∑

m,n αm,n(ψp)sin(nζ −mθ−ωnt). The perturbation α has units of a length, simply related

to the cross field ideal displacement produced by the mode. A well isolated resonance was

found for µB0 = 50 keV with B0 the on-axis field strength, with a perturbation with a single

harmonic with poloidal and toroidal mode numbers of m/n = 6/5, and a frequency of 130

kHz. The plane of E, Pζ in Fig. 2 shows a radially isolated resonance extending from 80 keV

upwards in the co-passing domain, and the particle distribution is shown as a line at fixed
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FIG. 2: The plane of E, Pζ for µB0 = 50keV , showing an isolated resonance in the co-passing

domain, extending from 80 keV upwards, for amplitude A = 4 × 10−5, with a frequency 130 kHz,

and poloidal and toroidal mode numbers m/n = 6/5. The nearly vertical strip in the center is the

resonance, and the particle distribution is the near horizontal line cutting across it near the plasma

center. The right edge of this line is the magnetic axis, and the left end is near the plasma edge.

K intersecting the resonance approximately at mid radius, for Pζ = 0.31ψw and E = 93

keV. The mode can move particles only along this line, not across it. The amplitude A is

the maximum value of the ideal eigenfunction of the perturbation, normalized to the major

radius of 210 cm. For a discusssion of plots of this type see[23].

III. SATURATION DYNAMICS

A density gradient in energy E or Pζ drives the mode amplitude. Particle rotation within

the resonance at the bounce frequency partially flattens the distribution within the island,

a process which delivers energy to the mode, causing growth. An example of this flattening

is shown in Fig. 3. The resonance is at Pζ = 0.31ψw, where ψw is the poloidal flux at the

last closed flux surface. Without particle collisions to replenish the density gradient within

the resonance, mode growth ceases within roughly one average particle bounce time within

the resonance. Mode saturation occurs when the rate at which the resonance is flattened,
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FIG. 3: The flattening of the distribution due to a resonance without collisions. The positive

gradient in Pζ , corresponding to a negative gradient in the minor radius, is destabilizing. The

resonance is located at Pζ = 0.31ψw and the mode amplitude is A = 2 × 10−4.

represented by the internal rotation (mixing) frequency ωb, becomes linearly proportional

to the effective frequency of collisional replenishment of the density gradient, represented

by the effective scattering frequency νeff , which was introduced theoretically to combine

the effect of Coulomb collisions and the rate of particle decorrelation from the resonance

location coming from other stochastic mechanisms such as turbulent scattering and RF

diffusion. The exact proportionality constant between the two is determined by the initial

linear drive and background damping rates [4–6, 22, 27, 28].

The dynamics of this process can be observed by launching particles within the resonance,

both with and without collisions, at single values of energy E, µ, and canonical momentum

Pζ , but with different values of θ and ζ. In the unperturbed equilibrium all these particles

describe the same orbit - they are distinguished only by their phase relations with respect to

the mode. The position of the initial particle launch to determine the mean internal rotation

and the time for local diffusion to replenish the density gradient in the resonance is at E =

93 keV and Pζ/ψw = 0.31.

Without collisional scattering one observes a simple damped oscillation, as the initial

distribution is mixed by the internal rotation, and the energy and Pζ spread out to the

7



FIG. 4: Collisionless evolution and collisional diffusion, A = 2 × 10−4, ν⊥ = 10−4/T , dP 2
ζ =

7.8 × 10−4, S = 8 × 10−5 with T the on axis particle transit time. S is the slope of the diffusive

plot. The mixing time Tm is given by the first crossing of the collisionless curve with the asymptotic

value, Tm = 10, in units of toroidal transits. Td, the time to diffuse across the resonance, is given

by < dP 2
ζ > /S.

bounding KAM surfaces. The oscillation can be observed either through the mean square

energy or the mean modification of P 2
ζ of the particle distribution. We choose to examine

dP 2
ζ , but these variables are simply related through the conservation of K. The magnitude

of the final distribution width gives the mean width of the resonance. Since the rotation rate

is a function of the distance between the O-point and the separatrix, dropping to zero at the

separatrix (where the bounce period diverges logarithmically), as time goes on the mixing

occurs at smaller and smaller scale lengths, and becomes an irreversible process, increasing

the entropy of the system due to dissipation.

The collisionless simulation determines the mean bounce time of particles in the resonance

and the width of the resonance. The collisional simulation determines the time it takes for

particles to diffuse across the resonance, giving the time for replenishment of the local

distribution. Note that the diffusion rate is given by motion away from the isolated

resonance, it is collisional diffusion across the surrounding good KAM surfaces. Collisions

in the ORBIT code are given by energy conserving pitch angle scattering, in a Monte Carlo
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FIG. 5: An example of the estimation of the saturation amplitude A. A plot of the mixing period

Tm and the diffusion period Td vs A showing intersection giving an estimation of the saturation

amplitude. Collisions are fixed at ν⊥ = 10−4/T for each value of A.

representation [31].

Fig 4 presents a determination of effective mode width and the local diffusion time. The

unit of time T in these plots is the unperturbed toroidal transit time of a particle near

the major axis, equal to 4.7 µ s in this case. Replenishment of the density gradient within

the island is provided by collisions, with a characteristic time given by the time for nearby

particles to diffuse across the width of the resonance Td, and is given by the square of the

resonance width divided by the slope of the collisional plot S, which in this case is 10 transits

or 47 µ s. The period of rotation in the resonance, approximately given by the first crossing

of the collisionless plot with its asymptotic value, is also 10 transits, indicating that this

mode amplitude corresponds approximately to a saturation amplitude for this value of the

collision frequency.

For a fixed value of collision frequency ν⊥ a plot of the mixing time Tm and the diffusion

time Td versus mode amplitude A shows a crossing of these values. This occurs because

for increased amplitude the mixing time decreases, whereas because of the increased width

of the resonance the time to diffuse across the resonance increases. In Fig. 5 is shown

an estimate of the saturation value using this method. Note that this estimation is best
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FIG. 6: Values at saturation. Tm vs ν⊥, showing Tm ∼ ν
−1/3
⊥ , and A vs ν⊥, showing A ∼ ν

2/3
⊥ .

The red lines are Tm = 0.57ν
−1/3
⊥ , and A = 0.36ν

2/3
⊥ .

applicable for the strongly driven scenario as it ignores mode damping, which can modify

the long time behavior and the saturation value. In the fast excitation regime, the mode is

expected to saturate not far from the level instantaneously reached after the first bounce,

i.e. on a timescale faster than those associated with damping and collisional effects. Large

values of damping, i.e., in the marginal stability case, can produce very different behavior,

with large amplitude mode oscillations and possibly intermittency[4–7], which is expected

to break down the validity of the saturation level estimate provided by Fig. 5. In addition,

we observe that in the marginally stable case, the slope of the distribution function is very

slightly changed with respect to the equilibrium one. This prevents the identification of the

resonance extension, and the marginal regime is not explored in the remainder of this paper.

The scaling of the saturation level with collisions can be determined by equating Tm and

Td. Since Tm ∼ 1/ωb and ωb ∼
√

A we have Tm ∼ 1/
√

A. The time to diffuse across the

resonance is given by Td = dP 2
ζ /S with S the slope of the diffusion curve and the resonance

width dPζ ∼
√

A. The diffusion across the nearby unperturbed KAM surfaces is given by

dP 2
ζ ∼ ν⊥t giving S ∼ ν⊥. Thus setting Tm = Td gives Asat ∼ ν

2/3
⊥ . The linear dependence

on A of Td and the 1/
√

A dependence of Tm can be seen in Fig. 5.

For each value of the collision frequency a number of determinations of Tm and Td are
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performed in order to find an estimate for the saturation amplitude. In Fig. 6 are shown

the values of Tm and A vs collision frequency ν⊥ for the values at saturation given by this

method. We see that Tm ∼ ν
−1/3
⊥ , giving ωb ∼ ν

1/3
⊥ and A ∼ ν

2/3
⊥ . Thus, dynamically, the

effect of collisions is to increase the saturation level by supplying the drive given by the

density gradient.

IV. PROFILE FLATTENING

The effect of particle collisions on resonances has been the subject of a number of

theoretical investigations, and in particular it has been suggested that the collisions

effectively broaden the resonance by allowing the communication of particles within and

near a resonance [14, 18].

To examine the effect of collisions on the resonance associated with a fixed amplitude

perturbation, a particle distribution is initiated with a range of ψp, energy and Pζ , all with

the same values of µ. Particles are launched along a value of constant K, with a strong

density gradient in Pζ , corresponding to a gradient in minor radius, and in energy E. The

profile is produced using standard Monte Carlo methods. We examine the modification of

the resonance width in Pζ .

In Fig. 7 are shown the Poincaré plots for the two amplitudes used for our examination

of profile flattening. The mode was chosen to produce an isolated resonance near the center

of the distribution with wide ranges of unperturbed KAM surfaces on each side of the

resonance.

The collisions are energy conserving pitch angle scattering, and directly change the value

of Pζ through ρ‖. The gradient must be maintained in time by re-injecting lost particles

using the Monte Carlo procedure. The action of the resonance produces a modification of

the particle density n(Pζ , t), consisting of a local flattening in the vicinity of the resonance

at Pζ = Pres as shown in Fig. 3. For small amplitude the profile is maintained in the vicinity

of the resonance hyperbolic point, so the flattening is only partial. For larger amplitude, the

stochastic layer about the separatrix is sufficiently large to destroy KAM surfaces around the

hyperbolic point, so a more complete flattening can be observed. To study this flattening

we perform a time average of the density given by the particle distribution, using a coarse

graining in the variable Pζ , in order to cancel out the periodic density oscillations occurring
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FIG. 7: Poincare plots for A = 10−4 and A = 2×10−4. The mode frequency is 130 kHz, with m/n

= 6/5. The mode is chosen to have a large region of relatively undisturbed KAM surfaces on each

side of the resonance.

on undestroyed KAM surfaces and to improve the statistics of the data.

The modifications of the density profile are shown in Fig. 8. Six hundred thousand

particles are launched using standard Monte Carlo methods to produce the initial density

profile. After a delay to allow phase mixing, a time average of the density using five hundred

toroidal transits is taken in each of the 50 bins in Pζ , to reduce statistical noise. This

simulation is difficult because of limitations on mode amplitude and collisionality. If the

amplitude is too small the flattening is weak and statistically difficult to observe accurately.

If the amplitude is too large the large island and associated nearby nonlinear resonances

cause global chaos and large scale particle loss. If the collision rate is too large, the density

profile is strongly modified, making the observation of the local flattening impossible. We

choose to show δf , the difference between the distribution with and without the presence

of the mode, giving a much clearer picture of the effect of the resonance. However, for each

value of the collision rate, the density profile is modified in time also in the absense of the

mode so a determination of the collisional mode free density profile must be made using the

same time interval as used in the presence of the mode, and the unperturbed density profile

subtracted from the perturbed one to give δf . Note that in these plots, density flattening
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FIG. 8: Left: Density profile modification with perturbation A = 10−4. The collisionality values

shown are ν⊥ = 0 (black), 0.6 Hz (blue), 6 Hz (red), and 22 Hz (green). Right: For A = 2 × 10−4

shown are ν⊥ = 0 (black), 2Hz (blue), 15 Hz (red) and 22 Hz (green).

appears as a negative slope. Thus with no collisions, the negative slope occurs only between

the edges of the Poincaré resonance. Outside, on the two sides of the resonance, the slope

of δf is in fact positive. Collisionless flattening of the density profile occurs only within the

island structure, due to the bounce frequency mixing. Outside the resonance island, the

KAM surfaces are distorted outward, as seen in Fig. 7, leading to a local increase in the

density, visible as a positive slope in the plot of δf in Fig. 8. This increase is adiabatic,

since there is no mixing occuring in these distorted surfaces, and the density and particle

energy will return to their initial values upon decay of the mode.

The collisionality values shown are, for A = 10−4 the values ν⊥ = 0 (black), 0.6 Hz (blue),

6 Hz (red), and 22 Hz (green). For A = 2 × 10−4 shown are ν⊥ = 0 (black), 2 Hz (blue),

15 Hz (red) and 22 Hz (green). The collisions are seen to initially decrease the depth of the

density modification but to extend the width.

Note that these collision rates are all below the values needed for mode saturation at

these amplitudes, as can be seen in Fig. 6, but the final value of 22 Hz is very near the

saturation value for these amplitudes. Note also that the mean bounce time in the resonance

is about 10 transit times, but the collision time is more than 1000 times this.
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FIG. 9: Left - Poincare plot showing a particle trapped in the resonance for amplitude A = 10−4.

Right - Time evolution of the trapped bounce motion for A = 10−4.

V. THEORETICAL ANALYSIS

The collisionless resonance widths and the bounce frequencies of particles well trapped

in the resonance are found from Figs. 9 and 10. There is some variation of the width

from island to island, but these figures include the separatrices, so a reasonably accurate

determination of the width can be made.

In Fig. 11 is shown the scaling of the collisional broadening with collision frequency. The

calculated estimates of the broadening involves processing output data, which naturally

incurs errors. Numerically, the error bars for ∆Pζ/ψw come from two main sources, namely

the visual inferences of the broadening from the perturbed distribution (from Fig. 8) and

of ωb, which is calculated from the spacing of two consecutive peaks in Figs. 9 and 10.

Therefore the propagation of uncertainty can be estimated as

δ (∆Pζ/ψw) ≃

√

[

∂ (∆Pζ/ψw)

∂ωb

δωb

]2

+

[

∂ (∆Pζ/ψw)

∂ (∆f)
δ (∆f)

]2

where
∂(∆Pζ/ψw)

∂(ωb)
≃ ∂(∆Pζ/ψw)

∂(∆Ω)
∂(∆Ω)

∂ωb
≃ 4

∂(Pζ/ψw)
∂Ω

, which is then calculated from Fig. 12. In

Fig. 8, note that the curves do not go to zero at ν⊥ = 0, but approach the collisionless width

(aωb). The value
∂(∆Pζ/ψw)

∂(∆f)
is extracted from Fig. 8 and changes according to the level of
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FIG. 10: Left - Poincare plot showing a particle trapped in the resonance for amplitude A =

2 × 10−4. Right - Time evolution of the trapped bounce motion for A = 2 × 10−4.

collisionality.

We now fit the results of the simulations to existing theory for the collisional broadening

of resonances as well as possible. The collision frequency used was ν⊥ = 15 Hz, giving

ν⊥ = 94rad/s. From Eq. 6 of Ref. [15], we have

ν3
eff ≃ 2ν⊥R2

[

E
B2

pol

B2
+ µB

]

(

∂Ω

∂Pζ

∣

∣

∣

∣

K,µ

)2

. (4)

The sub-index that accompanies the derivative indicates that it is taken along a path that

preserves the values of K (Eq. 3) and µ at which a particle is launched. Given the constancy

of K and µ for particles resonating with a mode whose frequency is much smaller than the

cyclotron frequency, it is convenient to project the resonant dynamics onto the remaining

free variable. The definition of the effective scattering νeff is useful in order to express the

kinetic equation in terms of the relevant variable Ω(E , Pϕ, µ) describing the one-dimensional

resonant particle motion, for which case the scattering term can be expressed as ν3
eff∂

2f/∂Ω2

instead of in three-dimensional velocity space. We note that, in addition to collisions, a

number of stochastic effects that influence resonant particle dynamics can be incorporated

into νeff , such as turbulence, RF heating and energy diffusion [16, 17].
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FIG. 11: Scaling of collisional width with ν⊥, for A = 10−4 (squares) and A = 2 × 10−4 (disks).

The lines are fits to the data using ν
1/3
⊥ for each amplitude. To avoid ambiguities in the definition

of the effective collisional broadening, we take as a reference the location of the peaks of δf , inside

which the gradient is negative, i.e., where phase mixing due to inverse Landau damping takes place.

FIG. 12: Plot of Ω = nωζ − pωθ versus Pζ for fixed K, where ωζ is the mean value of ∆ζ/∆t and

ωθ is the mean value of ∆θ/∆t for particles launched along the line K = ωPζ − nE, all with µB

= 50 keV, and p = 4 is the number of islands in the resonance, see Fig. 7.
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From Fig. 12,

∂Ω

∂Pζ

∣

∣

∣

∣

K,µ

= 9 × 106,
∂Ω

∂Pζ/ψw

∣

∣

∣

∣

K,µ

= 2.5 × 106, (5)

and using µB = 50 keV, R = 215cm, Bpol/B = 1/4, we have νeff = 1.63 × 105rad/s

for the collision frequency used. We find νeffTrun = 600 for the largest value of collision

frequency used, and 20 for the smallest, with Trun the length of the simulation, giving time

for equilibration of the collisions with the resonance.

From Fig. 9 we have for A = 10−4 the bounce period to be 0.1 ms, giving ωb = 6.28×104

rad/s. The resonance for A = 10−4 has width δPζ/ψw = .1. For the collisionless frequency

width of the resonance we have using Eq. 1, ∆Ω = aωb = 2.5×105rad/s, giving a = 3.9±0.1.

Including collisions, using Eq. 1 and the total width of the flattening δPζ/ψw = 0.36, and

again using Eq. 5, we have for the frequency width including collisions ∆Ω = 9× 105rad/s,

giving c = 4 ± 0.5, with the error determined from Fig. 11.

From Fig. 10 we have for A = 2 × 10−4 the bounce period to be 0.06 ms, giving ωb =

1.04 × 105 rad/s. The resonance for A = 2 × 10−4 has width δPζ/ψw = 0.15. For the

collisionless frequency width we have ∆Ω = aωb = 3.7 × 105rad/s, and using Eq. 5 we find

a = 3.7 ± 0.2.

Including collisions we have using Eq. 1 and the total width of the flattening δPζ/ψw =

0.45, and again using Eq. 5 we have ∆Ω = 9.×105rad/s giving c = 3.2±0.4, with the error

determined from Fig. 11.

Ref. [11] reported a systematic study of the value of a with changing mode amplitude.

It has been found that the maximum nominal value a = 4 is only achieved when mode

amplitude is small enough in order to ensure that nonlinear resonances, island coupling

effects and mode structure non-uniformities do not play an appreciable role in modifying

the resonance structure. As the amplitude is increased, a decreases. We note that the values

obtained for a presented here are in agreement with [11]. We employ a broad eigenstructure

that introduces a minor degree of island asymmetry. As the amplitude is increased from

A = 10−4 to A = 2 × 10−4, a transitions from 3.9 to 3.7.

If to define the modification of the density profile the full extent of the modification of f

is used instead of the flattening then both a and c are approximately doubled, to a = 8 and

c = 6.

In the RBQ code [7, 30], the coefficient c is calculated exploring the situation in which

17



the system reaches a steady saturation. In this limiting case, a previously known saturation

level [10] can be exploited with the purpose of obtaining the value of c that would need to

be used in the quasilinear system to replicate the expected saturation level. At saturation,

∂f/∂t = 0 and the broadened quasilinear diffusion equation implies ∆Ω = π
2

ω4

b

ν3

eff

γd

γL−γd
[7],

where γL is the initial linear growth rate of the mode in the absence of damping and γd

is the mode background damping rate. Close to marginal stability, γL & γd, the expected

saturation level is ωb ≈ 1.18
[

1 − γd

γL

]1/4

νeff [10], which implies ωb ≪ νeff . Substituting the

broadening recipe, Eq. 1, one finds c = 1.184π/2 = 3.05. We note that in Ref. [7] the value

of c was erroneously typed as 2.7 although the calculation that led to that value was correct.

The results reported here for the collisional broadening coefficient c show a remarkable

similarity, within the error bars, with the value of c that follows from the saturation level

embedded in quasilinear asymptotic quasi-steady steady. We note that the contribution

to the broadening due to the growth rate is neglected in RBQ1D [7, 30] to account for

Kaufman’s revision of the QL theory [32].

Consider the resonance dynamics being described by the variable Ω = ξ̇, where ξ is the

angle associated to the system action. The resonance condition can be expressed as Ω = ω

and the deeply trapped particles satisfy the pendulum equation
..

ξ +ω2
b sin (ξ − ωt − ξ0) = 0

[11]. The resonance island is parameterized by Ω2 = 2ω2
b [1 + cos(ξ − ωt − ξ0)]

We note that there is a broadening conversion factor between full nonlinear and

quasilinear methodologies. In quasilinear theory the angular dynamics is not resolved which

implies that the resonance interaction only takes place within a rectangle of width ∆Ω = aωb

in action space and a width of 2π in the generalized angle. In ORBIT the resonance platform

has an elliptic parametrization. Considering δf = −Ω ∂f0

∂Ω

∣

∣

Ωres
, the momentum exchange in

the kinetic framework can be calculated as

∫

dΩΩdζδf (Ω, ζ)
∫ π

π
dζ

= −
∫ 2ωb

−2ωb

dΩΩ2

(

1 − 1

π
arccos

[

1 − Ω2

2ω2
b

])

∂f

∂Ω

∣

∣

∣

∣

Ωres

= −64ω3
b

9π

∂f

∂Ω

∣

∣

∣

∣

Ωres

(6)

In the quasilinear framework,
∫

dΩΩdζδf (Ω, ζ)
∫ π

π
dζ

= −
∫ ∆Ω/2

−∆Ω/2

dΩΩδf (Ω, ζ) = −
∫ ∆Ω/2

−∆Ω/2

dΩΩ2 ∂f0

∂Ω

∣

∣

∣

∣

Ωres

= −a3ω3
b

12

∂f0

∂Ω

∣

∣

∣

∣

Ωres

(7)

equating the two expressions, it follows that a quasilinear broadening of a = 3 (constant
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FIG. 13: Fit of δf for amplitude of 2 × 10−4, no collisions and ν⊥ = 22 Hz.

for all angles) replicates the same momentum exchange with respect to an elliptic island in

kinetic theory that has a maximum width of a = 4 (at the elliptic point) and a minumum

width of a = 0 (at the hyperbolic points). One needs to have the conversion factor of

∼ 0.75 in mind when extrapolating ORBIT guiding center simulations to reduced quasilinear

models.

We wish to parameterize the form of the modification of the resonance due to collisions,

since a simple functional form is useful for further studies. The displacement of particles

due to the resonance, with or without collisions, is conservative, so we need
∫

dPζδf = 0 in

either case. To this end, and with no theoretical basis other than that diffusion from a point

source takes the form of a Gaussian, we fit the data for δf with the derivative of a Gaussian

δf =
δmp

√
e

W
e−p2/(2W 2) (8)

with p = (Pζ − P0)/ψw. The extrema of this function appear at p = ±W , with the local

maxima (minima) being δm.

All the parameters appearing in this representation are functions of the mode amplitude

A and the collision frequency ν⊥. The width is given by W = W0(A) + W1(A)ν
1/3
⊥ as seen

from Fig. 11. The fit of this representation of δf is shown in Fig. 13 for an amplitude

of 2 × 10−4, for no collisions and for the maximum collision frequency used, ν⊥ = 22 Hz.

The fit is best for these cases, there is a minimum of noise in the data when the collisions
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FIG. 14: Profile maxima δm for mode amplitudes of 10−4 and 2×10−4 and flattening as a function

of collision rate.

are either absent or strong enough to smooth the distribution. Note that the center of δf ,

P0, shifts leftward ( down the density gradient) with increasing collision rate. Clearly the

real situation is more complicated than what is given by this simple form, undoutedly the

actual Poincaré particle resonance with its original width is still somewhat present, although

distorted by the collisions, and produces modifications of the distribution function near the

resonance edges, which the collisions are unable to completely smooth out. Nevertheless,

this function captures the major shape of the profile modification, in particular when the

collision rate is near that corresponding to the mode saturation level. The behavior of the

maximum amplitude δm is not simple, dropping as a function of collision rate from the

collisionless value to a minimum and then increasing, shown in Fig. 14. Note that the

maximum value of the collision rate in this plot is very near the expected rate for saturation

at this amplitude, and that the maximum value of δf is more than half the original maximum

without collisions.

Although the collisions produce significant broadening of the resonance, and for a rapid

collision rate the maximum value of δf is comparable to that with no collisions, the relative

flattening of the profile over the extended structure is not nearly as strong as that given by

the initial collisionless resonance. In Fig. 14 we see that the initial collisionless flattening,
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equal to δm/W , is about 0.8, but this value drops to about 0.1 as the resonance broadens with

increasing collision rate. Interestingly, this behavior appears to be only weakly dependent

on the mode amplitude, at least within the limited range of values considered.

VI. CONCLUSION

The resonance broadening of a high energy particle distribution with an ideal MHD

mode is examined using guiding center analysis, including the effect of collisions. Collisional

broadening of a resonance is directly observed, with the flattening scaling as ν
1/3
⊥ and fit to

the analytic expression ∆Ω = aωb+cνeff with a ≃ 4 and c ≃ 3.3. Although our investigation

is limited to a specific resonance, the theoretical underpinning of the broadening expression

indicates that this is a universal result, applicable in general to other resonances, and useful

for models of the effect of resonances on high energy particle distributions.

The visual identification of the resonance width can be challenging when more than one

peak appears in δf . Numerical noise arising from the stochastic layer that forms around

the island and resonance asymmetries also contribute to limit the accuracy with which one

can extract the coefficient c. The results, however, show undoubtedly that the collisional

broadening can be comparable, and even exceed, the collisionless broadening. Fig. 11 shows

that the scaling ∆Ω ∝ νeff ∝ ν
1/3
⊥ proposed in [7, 29] is consistent with the present results.
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