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Majority-voting and the Condorcet Jury Theorem pervade thinking about collective decision-making. 
Thus, it is typically assumed that majority-voting is the best possible decision mechanism, and that 
scenarios exist where individually-weak decision-makers should not pool information. Condorcet and 
its applications implicitly assume that only one kind of error can be made, yet signal detection theory 
shows two kinds of errors exist, ‘false positives’ and ‘false negatives’. We apply signal detection 
theory to collective decision-making to show that majority voting is frequently sub-optimal, and can 
be optimally replaced by quorum decision-making. While quorums have been proposed to 
resolve within-group conflicts, or manage speed-accuracy trade-offs, our analysis applies to groups 
with aligned interests undertaking single-shot decisions. Our results help explain the ubiquity of 
quorum decision-making in nature, relate the use of sub- and super-majority quorums to decision 
ecology, and may inform the design of artificial decision-making systems. 

  

Impact Statement 

Theory typically assumes that majority voting is optimal; this is incorrect – majority voting is typically 
sub-optimal, and should be replaced by sub-majority or super-majority quorum voting. This helps 
explain the prevalence of quorum-sensing in even the simplest collective systems, such as bacterial 
communities.  
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Effective decision-making is essential in all areas of human society and, more generally, for 
all organisms. A fundamental question in this context is when a group of decision-makers is 
superior to individual decision-makers and vice-versa [1-6]. Both in human and animal 
collective decision making, the Condorcet Jury Theorem is one of the key principles guiding 
our thinking about this question [7-14]. In a nutshell, for pairwise decision problems (e.g. 
disease-, lie- or predator detection), Condorcet’s Jury Theorem states that a group of 
decision-makers employing the majority rule is superior to individual decision-makers in 
contexts where individuals are relatively accurate (i.e. accuracy > 50%); conversely, 
individual decision-makers are superior to majority voting groups in contexts where 
individuals are relatively inaccurate (i.e. accuracy < 50%). Consequently, across a diverse 
range of fields ranging from organismal behaviour and human psychology to political 
sciences, two heuristics are commonly employed [7-12]: (i) groups of decision-makers 
outperform individuals only in contexts where individuals are relatively accurate and (ii) the 
majority rule is a powerful mechanism to reap the benefits of collective decision making. We 
here show that both statements are not true, and in doing so explain the ubiquity of quorum 
decision rules in the collective behaviour of humans and other organisms [15-21]. 

Over the past few decades, substantial research effort has focussed on two key explicit 
assumptions underlying Condorcet’s Jury Theorem, independence (i.e. judgments/votes by 
different members of the group are assumed to be independent from each other) and 
homogeneity (i.e. all decision-makers within a group are assumed to be identical, both in 
competence and in goals) [12, 16, 22-25]. We here focus on a third, implicit, assumption of 
Condorcet’s Jury Theorem, namely that decision-makers make only one type of error. This 
assumption stands in contradiction to the well-known fact that, when confronted with a 
pairwise decision problem like the one studied in Condorcet’s Jury Theorem, two different 
types of error are possible (i.e. false positive and false negative). Surprisingly, up to now, this 
basic and well-known feature of pairwise decision problems has not been taken into account 
when investigating Condorcet’s Jury Theorem.  

We proceed as follows. We start by providing a brief summary of the basic model considered 
in Condorcet’s Jury Theorem. We then introduce an extended model that takes into account 
the fact that decision-makers can make two types of errors. Based on this extended model, 
we then show that Condorcet’s Jury Theorem makes several important predictive errors, 
which apply to the majority of decision scenarios. Moreover, majority voting is frequently 
suboptimal, whereas quorum-based voting with an appropriate quorum is always optimal. 
Thus, the simple majority threshold is only a special case of the more general quorum 
decision mechanism, in which optimal sub-majority or super-majority quorums are the rule 
rather than the exception. 

 

CONDORCET’S JURY THEOREM: THE BASIC MODEL 
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Condorcet’s Jury Theorem considers a binary (pairwise) choice situation, in which decision-
maker can choose between two actions, labelled +1 and –1. Each decision-maker is 
characterised by a single parameter a, corresponding to the probability of making a correct 
decision, or decision accuracy. Importantly, the decision accuracy a of each decision-maker is 
assumed to be conditionally-independent of the realised decisions of all other decision-
makers.   

Condorcet’s Jury Theorem now considers a group of identical decision-makers of size N that 
performs a majority vote. A simple combinatorial argument shows that if the accuracy of 
decision-makers is above 50% (i.e. a > 0.5), then the probability of making a correct choice 
increases with increasing group size and asymptotically approaches 1 [22]. Conversely, if the 
accuracy of individual decision-makers is below 50% (i.e. a < 0.5), then the probability of 
making a correct choice decreases with increasing group size and asymptotically approaches 
0 [10]. This is because, as group size increases, the probability of the more probable decision 
(+ or -) also being the majority decision rapidly increases towards one. 

These results have led to three key interpretations: first, pooling independent judgements is 
beneficial (i.e. improves decision accuracy) whenever individuals are relatively good 
decision-makers (a > 0.5). Second, pooling judgements is detrimental (i.e. decreases decision 
accuracy) whenever individuals are poor decision-makers (a < 0.5). Third, the majority rule is 
the appropriate mechanism to reap the benefits of collective decision making. 

In the following, we show that each of these interpretations is incorrect. In particular, we 
show that (i) in cases where decision-makers are good (a > 0.5) majority decisions may 
decrease decision accuracy, (ii) in case where decision-makers are poor (a < 0.5) majority 
decisions may increase decision accuracy, and (iii) pooling independent decisions is always 
beneficial as long as an appropriate quorum-based decision rule is used. Taken together, 
these results show that, for a large proportion of decision scenarios, the simple majority 
decision rule performs poorly and gives incorrect predictions about group decision accuracy. 

 

CONDORCET’S JURY THEOREM: AN EXTENDED MODEL 

Condorcet’s Jury Theorem implicitly assumes that decision-makers can make only one error, 
that is, the probability of making an incorrect decision is 1 – a. This is in contrast to the well-
known fact that – in pairwise decision problems – decision-makers can make two type of 
errors, false positives and false negatives [26, 27]. For example, an animal under predation 
risk may run away in the absence of a predator (false positive) or it may not run away in the 
presence of a predator (false negative) [28]. Similarly, a doctor screening for a disease may 
diagnose in the absence of a disease (false positive) or not diagnose in the presence of a 
disease (false negative) [29]. As we discuss below, the implicit assumption of Condorcet’s 
Jury Theorem is equivalent to assuming that decision-makers have an identical probability of 
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committing the two errors – this is an important assumption that does not reflect the vast 
majority of real world decisions. 

We here consider an extension of the above-described model, which takes into account the 
fact that decision-makers can make two types of errors. Again, decision-makers can choose 
between two actions, +1 and –1. Unlike in the basic model above, however, and consistent 
with standard decision theory for pairwise decisions, we now assume that the world can be 
in two states, state + and state –, corresponding to, for example, the presence and absence 
of a predator or the presence and the absence of a disease; state + holds with probability p 
and state – thus holds with probability 1 – p. Action +1 is the better choice in state + (i.e. it 
achieves a higher payoff), while action –1 is the better choice in state –; for example, running 
away is better than staying in the presence of a predator, while staying is better than 
running away in the absence of a predator. Consequently, and in contrast to the basic 
Condorcet model above, each decision-maker is now characterised by two parameters a+ 
and a–, corresponding to the probabilities of making correct decisions in state + and state –, 
respectively; this inevitably implies that individuals make two types of errors. As in the 
simple model above, where decision-makers have equal accuracies a and are independent, 
for any individual in a group of N individuals the probability of making a correct decision 
based on the true state of the world is conditionally-independent of the probabilities of 
other group members making the correct decision, given that same state of the world. 

To relate our analysis to predictions made by applying Condorcet, we must define expected 
individual accuracy a, as used in Condorcet, in terms of our state probability p and state-wise 
accuracy parameters a+ and a–. The expected individual accuracy is thus 

! = #!$+	(1 − #)!*.  (1) 

From equation 1 we can see that Condorcet implicitly assumes that accuracies in the two 
states of the world are equal since then p disappears from the equation; as shown in 
Supplementary Information, this occurs when both states of the world are equally likely, and 
the costs and benefits of classifications in the two states of the world are equal, although 
asymmetric decision problems can also result in equal accuracies (as can be confirmed with 
reference to Supplementary Information for Figure 1). Later, we explain how signal detection 
theory determines optimal values of a+ and a– for a given decision scenario where these 
assumptions are violated. 

 

 

RESULTS 

We are now ready to formalise when Condorcet gives incorrect predictions, and when 
simple majority voting is suboptimal. We begin by determining optimal values of a+ and a–. 
Given the prior probability p, the cost and benefits associated with the two states of the 
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world, and the state-dependent characteristics of the cue(s) decision-makers base their 
decisions on, the optimal realised individual accuracies a+ and a– are derived by solving a 
signal detection problem (Figure 1). Signal detection theory has been applied repeatedly to 
hypothetical and real world decision problems, for example predator detection by foraging 
animals [28, 30]; diagnostic decision making [4, 31]; and lie detection [32]. As described in 
the appendix, for simplicity and tractability our analysis is conducted for the simplest signal 
detection problem, determining which of two distributions a single scalar random variable is 
drawn from; this could, in the example of a predator detection problem, be the 
instantaneous volume of a sound heard by a forager. In this case signal detection theory 
enables us to find a Receiver Operating Characteristic (ROC) curve of optimal a+, a– value 
pairs, dependent on decision difficulty (Figure 1; [26, 33]); the optimal point of this curve 
gives us a unique pair of a+ and a– values dependent on costs and benefits of different 
decision outcomes, and the prior probability of the + state, p. 

We next make the observation that, to simultaneously improve both true positive and false 
positive rates, a group must choose a quorum q that lies between these two values [29]; that 
is, an optimal group must choose q such that 

1 − !* < , < !$          (2) 

The intuition behind this result is that group accuracy will converge on the appropriate 
accuracy for the true state of the world, as group size increases; thus, by setting a quorum 
between these two accuracies the true state of the world can be determined with high 
probability for sufficiently large groups. For further details see [29]. Since the simple majority 
quorum q = 1/2, assumed by Condorcet, only satisfies this inequality when both !$ > 1/2 
and !* > 1/2, when either of these conditions are violated then both simple majority 
decisions and Condorcet-based reasoning will be deficient. Furthermore, we should never 
see true positive rate (!$) less than false positive rate (1 − !*) (dark grey region of ROC 
space in Figure 1), since such a decision-maker could simultaneously improve both their true 
and false positive rates simply by inverting their decisions and moving above the diagonal. 
Therefore, the ROC space is divided into two meaningful regions: in the first !$ > 1/2 and 
!* < 1/2 (white region in Figure 1), so simple majority voting is asymptotically-optimal as 
group size increases, and Condorcet-based predictions are correct. In the second, !$ < 1/2 
and !* > 1/2, or !$ > 1/2 and !* < 1/2, while ensuring !$ > 1 − !* (light grey regions in 
Figure 1); in these regions simple majority decisions will be sub-optimal, and Condorcet-
based reasoning will be erroneous. 

We now describe the systematic errors Condorcet leads to when faced with these decision 
scenarios. These errors can also be described in terms of false positive (frequently referred 
to as type I) and false negative (type II) errors, in predicting the performance of the 
Condorcet majority rule, hence we label the errors in such terms. 

Error Ia: Condorcet predicts group accuracy approaches 1, but majority groups do not 
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This error occurs when majority voting is sub-optimal (!$ < 1/2 and !* > 1/2, or !$ > 1/2 
and !* < 1/2; light grey regions in Figure 1, as described above), and when expected 
individual accuracy ! > 1/2, since under this last condition individuals on average make 
more correct decisions than incorrect decisions, and Condorcet thus predicts that group 
accuracy approaches 1 as group size increases [10, 22]. From equation 1 this requirement is 
thus that 

#(!$ − !*) + !* > 1/2.  (3) 

While Condorcet predicts group accuracy (denoted !2) approaches 1, that is 

lim
6→∞

!2 = 1,  (4) 

in fact since the majority quorum q = 1/2 is either below 1 – !*, or above !$, contra 
inequality 2; thus the group converges to making completely correct choices in one state of 
the world, and completely incorrect choices in the other state of the world [29]. Hence, 
group accuracy converges to 

lim
6→∞

!2 = 9
# if	!$ >

;

<
	and	!* <

;

<

1 − # if	!$ <
;

<
and	!* >

;

<

.  (5) 

The wide range of decision scenarios in which Condorcet makes this predictive error are 
illustrated in Figure 2a. An example of this error is presented in Figure 3a; Figure 3b 
illustrates how the error can be avoided by choosing an appropriate quorum, in this case a 
super-majority quorum. 

Error Ib: Condorcet predicts group accuracy approaches 1, but majority groups are worse 
than individuals 

In error Ia, while group accuracy does not converge to 1 with increasing group size, nothing 
is said about whether or not groups are better than individuals. Error Ib refines error Ia, by 
showing that there are cases where Condorcet predicts group accuracy approaching 1, but 
groups actually have lower accuracy than individuals. These cases are found by refining the 
conditions given in error Ia to include the additional condition that the group accuracy 
converged to (equation 5 above) is less than individual expected accuracy (equation 1). This 
gives the conditions 

# < @A
;*@B$@A

	if	!$ >
;

<
	and	!* <

;

<
  (6) 

and 

# > ;*@A
;$@B*@A

	if	!$ <
;

<
	and	!* >

;

<
.  (7) 

The wide range of decision scenarios in which Condorcet makes this predictive error are 
illustrated in Figure 2b. An example of this error is presented in Figure 3c; Figure 3d 
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illustrates how the error can be avoided by choosing an appropriate quorum, in this case a 
super-majority quorum. 

Error II: Condorcet predicts group accuracy approaches 0, but majority groups do not 

In error II individual expected accuracy is below 1/2, thus Condorcet predicts that group 
accuracy should converge to 0; while groups using the majority decision rule do decrease in 
accuracy, they converge to a non-zero group accuracy given by equation 5 above. To find 
cases where this occurs we simply solve for when individual expected accuracy a < 1/2. From 
equation 1 this gives us the conditions 

# < ;/<*@A
@B*@A

	if	!$ >
;

<
	and	!* <

;

<
  (8) 

and 

# > ;/<*@A
@B*@A

	if	!$ <
;

<
	and	!* >

;

<
.  (9) 

Decision scenarios in which Condorcet makes this predictive error are illustrated in Figure 2c. 
An example of this error is presented in Figure 3e; Figure 3f illustrates how the error can be 
avoided by choosing an appropriate quorum, in this case a sub-majority quorum. 

Note that it is not possible to find an ‘Error IIb’ case that parallels Error Ib; that is if 
Condorcet predicts that group accuracy approaches 0, majority groups will always be worse 
than individuals and never better, even if their group accuracy remains positive. This is 
because it is not possible simultaneously to satisfy the conditions just given (inequalities 8 
and 9), and the opposite of the conditions (inequalities 6 and 7) given in Error Ib (i.e. the 
conditions that group accuracy converged to is greater than individual expected accuracy), 
as can be confirmed by algebra. 

Majority voting is usually suboptimal 

Combining the cases in which Condorcet makes one of the above described predictive 
errors, Figure 2d illustrates when Condorcet will make at least one error in predicting the 
performance of decision-making groups using majority decision-making. This set also 
corresponds to the set of decision scenarios in which majority decision-making is sub-
optimal, and is outperformed by an appropriately set sub- or super-majority quorum. Figure 
2d shows that Condorcet is optimal in far fewer decision scenarios than those in which it is 
outperformed by an appropriate quorum rule. Furthermore, our analysis also relates 
decision-ecology to the requirement for sub- or super-majority quorums. From inequality 
(2), sub-majority quorums are required whenever a+ < 1/2, which corresponds to the upper-
left area of Figure 2d; in contrast, super-majority quorums are required whenever 1 – a+  > 
1/2, which corresponds with the lower-right area of Figure 2d (see Supplementary 
Information). Thus, whenever the positive state of the world + is rarer, and / or false 
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positives are relatively expensive compared to false negatives, then a sub-majority quorum 
should typically be employed, while the converse holds for super-majority quorums. 

 

DISCUSSION 

We have shown that simple majority-based collective decisions are often suboptimal, and 
that consequently sub- or super-majority quorums should frequently be employed by groups 
of ‘like-minded’ individuals combining independent decisions. Our results are important for 
two reasons. First, the majority-based decision rule, and Condorcet-based reasoning, has 
been widespread in several major branches of collective decision theory. In the animal 
behaviour community the Condorcet prescription on individual accuracy exceeding ½ has 
been used to recommend when opinions should be pooled [10], and when experts should be 
favoured over group opinions [34]. Other authors have also invoked Condorcet and majority 
voting as the gold-standard for collective decision-making [7, 12, 35, 36]. All such studies 
implicitly neglect the reality that most decisions have two types of errors. 

Second, while quorums have been widely studied in collective decision theory, we here 
present a comprehensive theory that may help explain their prevalence. Sub- and super-
majority quorums have been considered theoretically [16]; Sumpter and Pratt implicitly 
assume only one type of error need be considered, and proceed from that point with their 
analysis, referring to quorum functions such as managing speed-accuracy trade-offs [37]. 
Conradt and Roper [38] in their review refer to true and false positives, but in explaining 
quorum usage refer back to earlier analysis as a mechanism to avoid extreme group 
decisions where individual fitness interests do not completely align [39]. Ward et al. [40] 
consider quorum use for facilitating information transfer in shoaling fish, yet ignore the 
possibility of different error types despite their great asymmetry in the scenario studied, 
predator detection. In contrast to these previous analyses here we have shown the 
fundamental importance of quorums in one of the simplest possible collective behaviour 
scenarios, single-shot collective decisions in homogenous groups, where individuals’ 
interests are aligned, and decision-making abilities do not differ. Thus, we might expect the 
use of quorums to be widespread in the natural world, even in the simplest of decisions. The 
widespread use of quorum sensing in bacteria provides evidence of this [41], and may prove 
a particularly good testbed for our theory given its binary nature and asymmetric state priors 
and error costs, although evolutionary conflicts of interests within bacterial communities 
may result in confounds. Moreover, as humans have been shown to employ quorum rules 
and adaptively adjust the associated quorum thresholds, human decision-making 
experiments may also provide a powerful approach to test our predictions [42, 43]. 

It is surprising that signal detection theory has seen relatively scant application to collective 
decision-making. Wolf et al. [29] noted the potential for different error types in identifying 
how quorums can improve collective decision accuracy; while motivated by signal detection 
theory they did not directly apply it to optimise the individual decision-makers and relate 
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this back to group behaviour. Kirstein & Wangenheim [44] also noted the possibility for 
independent error types, again with reference to signal detection theory; they noted the 
potential for Condorcet to make the same qualitatively incorrect predictions that we note 
here, however they did not apply the relevant theory to delineate the situations under which 
Condorcet reasoning is incorrect, nor did they consider the possibility for quorum-based 
decision rules to rescue these situations. Sorkin et al. [45] applied signal detection theory to 
Condorcet-like models with varying super-majority quorums, but did not find the mechanism 
by which group decisions can be optimised [29]. Laan et al. [46] noted that Condorcet and 
majority voting can be suboptimal, and considered ways in which voting can be improved; 
while they discussed signal detection theory and voting mechanisms they neither explicitly 
considered error types, nor quorum thresholds, focussing mainly on correlations between 
decision-makers and the impact of the cost function used, as well as suggesting a data-drive 
machine learning approach to improving collective decision-making rules. 

In contrast to earlier work, by applying signal detection theory we have simultaneously 
shown here both how fragile Condorcet and majority-voting are, and how the use of sub- or 
super-majority quorums should relate to decision ecology. Although simple collective 
behaviour models have been well studied and highly influential, our results, and others 
relaxing other assumptions of such models [25], indicate the subtlety that may be revealed 
in collective decision-making by a richer consideration of individual decision theory. Our 
work may additionally have the potential to inform work in the design of artificial decision-
making systems machine learning and robotics; for example, in the field of ensemble 
learning, in which predictions from multiple weak classifiers such as neural networks are 
combined to improve decision accuracy, variable quorums, referred to as ‘threshold shift’, 
are used [e.g. [47]; however majority voting is still among the simplest and most ubiquitous 
vote fusion rules discussed [[48, 49]]. Hence, we suggest that our simple perspective on how 
to combine votes may also yield technological insight. 
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Appendix – Signal Detection Theory Reveals Cases where Condorcet Predictions are 
Incorrect 

To determine if a group of optimal decision-makers could exist such that simple application 
of Condorcet would lead to erroneous predictions, but a quorum rule would allow optimal 
opinion pooling, we consider groups of identically-capable individual decision-makers (as 
assumed in Condorcet), modelled as making optimal decisions using signal detection theory 
in order to classify continuous signals arising from one of two possible normal signal 
distributions of equal variance [26]. That is, decision-makers are faced with a signal 

C~ E
F(G$, H)																	with	probability	#
F(G*, H)									with	probability	1 − #

  (A.1) 

and must choose an optimal signal threshold, x, in order to classify signals as being drawn 
from either of the two possible normal distributions. Each distribution has a different mean 
(G$ versus G*) but the same standard deviation (H). In a natural setting the signal could 
represent information as to whether a predator is present or not, for example, with the two 
states of the world, predator present versus predator absent, having different distributions 
for this signal. 

The optimal decision threshold x is chosen to minimise the expected loss for the decision-
maker (or maximise the expected gain). The expected loss from a decision is  

Q(Loss) = #(!$TUV + (1 − !$)TWX) + (1 − #)(!*TUX + (1 − !*)TWV),  (A.2) 

where TUV, TWX, TUX  and TWV are respectively the costs of true positives (correctly classifying 
state +), false negatives (incorrectly classifying state –), true negatives (correctly classifying 
state –) and false positives (incorrectly classifying state +). Thus, an optimal decision-maker 
should minimise equation A.2 by appropriately choosing the decision threshold x. Since, 
given x, 

!$ = 1 −Φ(G$, H, Z)  (A.3) 

and 

!* = Φ(G*, H, Z),  (A.4) 

where Φ is the cumulative distribution function for the normal distribution, the optimal x 
can be found by substituting (A.3) and (A.4) into (A.2), differentiating the resulting equation 
and solving for zero [26] . Note that the optimal threshold x, and thus the optimal accuracies 
under state + and state – of the world, !$ and !* respectively, are affected both by class 
imbalance (# ≠ 1/2), and by asymmetric error costs (TUV − TWX ≠ TUX − TWV). 
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Figure Legends 

 

Figure 1. Receiver Operating Characteristic (ROC) curve plot showing the optimal 
compromise between true positive rate (TPR = a+) and false positive rate (FPR = 1 – a–). The 
shape of the ROC curve is determined by the difficulty of the decision problem (e.g. [33]), 
with hard decision curves lying close to the dashed diagonal, and easy decision curves 
approaching the left and top edge of the plot. According to prior probability of states, and 
relative cost of errors, an optimal decision-maker then selects a point on the ROC curve that 
gives the best possible expected decision performance; points that do not prioritise accuracy 
in either state of the world (a+ = a– ⟺ TPR = 1 – FPR; dotted diagonal, and filled circle) are 
implicitly assumed by the Condorcet Jury Theorem, as discussed in the main text and Figure 
2. The white square represents the region of ROC space in which simple majority decisions 
are best, and Condorcet predictions are fulfilled (note the equal accuracy dotted line 
described above always occupies this region). Light grey triangles represent regions of ROC-
space which, if selected by optimal individual decision-makers, lead to sub-optimal collective 
decisions when combined by simple majority decision rules; in this region Condorcet 
predictions are systematically incorrect. The dark grey lower-right triangle represents 
combinations of TPR and FPR that should not be observed, since in these decision-makers 
are systematically wrong and could simultaneously improve both their TPR and FPR by 
simply inverting their predictions to move above the dashed diagonal. ROC parameters: μ– = 
0, μ+ = 1, prior = ½, ratio = 1. 

 

Figure 2. Decision scenarios in which Condorcet will make different kinds of inaccurate 
predictions about groups of individually-optimal (see Figure 1) decision-makers (a-c), and in 
which majority voting is sub-optimal (d); prior probability of state + is on x-axis, ratio of cost 
of false positive to cost of false negative is on y-axis, so values larger than 1 indicate 
classifying – as + is relatively worse than classifying + as –, and vice versa. Grey regions show 
decision scenarios in which Condorcet leads to at least one predictive error: (a) As group size 
increases Condorcet incorrectly predicts that majority group accuracy will asymptotically 
increase towards 1, whereas it actually does not (Error Ia, main text); (b) As group size 
increases Condorcet incorrectly predicts that majority group accuracy will asymptotically 
increase towards 1, whereas groups actually make worse decisions than individuals (Error Ib, 
main text); (c) As group size increases Condorcet incorrectly predicts that majority group 
accuracy will decrease towards zero, whereas it actually converges to a positive level (Error 
II, main text); (d) Condorcet makes at least one of the errors just described; this plot also 
corresponds to decision scenarios in which majority decision making is suboptimal, and 
should be replaced by a sub- (upper-left area) or super- (lower-right area) majority quorum 
rule as described in Results. Signal detection analysis for individual decision-makers is 
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described in the Appendix; parameters for the analysis are G* = 0, G$ = H = 1, TUV =
TUX = 0, TWX = 1, TWV = ratio. 

 

Figure 3. Illustrative failures of simple majority voting and Condorcet predictions (left 
column) and their remediation through appropriate use of sub- or super-majority decision 
quorums (right column); group size increases on x-axis, while group accuracy increases on y-
axis; red-dashed line indicates individual decision accuracy, black dot-dash line represents 
prior probability of state + (panels a and c) or of state – (panel e), solid blue line represents 
group accuracy. (a) Error Ia: Condorcet predicts that increasing group size will result in group 
accuracy converging to 1, but it converges to p which is above the individual accuracy level. 
(b) Choosing a super-majority quorum leads group accuracy to converge to 1 with increasing 
group size. (c) Error Ib: Condorcet predicts that increasing group size will result in group 
accuracy converging to 1, but it converges to p which is below the individual accuracy level, 
hence groups perform worse than individuals. (d) Choosing a super-majority quorum leads 
group accuracy to converge to 1 with increasing group size. (e) Error II: Condorcet predicts 
that increasing group size will result in group accuracy converging to 0, but it converges to 1 
– p which is below the individual accuracy level. (f) Choosing a sub-majority quorum leads 
group accuracy to converge to 1 with increasing group size. Simulations comprise 10,000 
replicates with individual accuracies derived from signal detection analysis with parameters 
G* = 0, G$ = H = 1, TUV = TUX = 0, TWX = 1 and: (a) TWV = 4, # = 0.9, , = 0.5, (b) TWV =
4, # = 0.9, , = 0.7, (c)	TWV = 1, # = 0.7, , = 0.5, (d)	TWV = 1, # = 0.7, , = 0.75, (e) TWV =
10, # = 0.7, , = 0.5, (f)	TWV = 10, # = 0.7, , = 0.035. 
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