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1  | INTRODUC TION

Splitting a population of universally compatible gametes into two or 
more self‐incompatible mating types can potentially limit inbreeding 
depression, control the spread of selfish organelles and help mate 
searching (Billiard et al., 2011; Charlesworth, Vekemans, Castric, & 
Glémin, 2005; Hadjivasiliou & Pomiankowski, 2016; Hoekstra, 1982; 
Hurst & Hamilton, 1992). Although the origins and exact benefits 
of producing different mating types remain controversial (Perrin, 
2012), the costs are clear: self‐incompatibility reduces the number 
of potential mating partners and increases the potential for subfer‐
tility (Fisher, 1930; Power, 1976). However, if gametes are compati‐
ble with any class but their own, new (and therefore extremely rare) 
mating types do not pay this cost: they can mate with any member of 
the population. Hence, novel mating type mutants should increase in 

frequency until all types are equally represented. The deterministic 
outcome of mating type evolution is the inexorable rise in the num‐
ber of different types driven by negative frequency‐dependent se‐
lection for rare mutants, also referred to as the “rare sex advantage” 
(Iwasa & Sasaki, 1987). Few studies have considered the flip side of 
the rare sex advantage in the context of haploid self‐incompatible 
mating types, that is rarer types are at much greater risk of being 
lost from finite populations by random genetic drift (Constable & 
Kokko, 2018; Douglas, Strassmann, & Queller, 2016). These stochas‐
tic extinction events not only hinder invasion of rare mating types, 
they also prevent the population from maintaining too many low‐fre‐
quency mating types.

Multiple different genetic mechanisms of mating type deter‐
mination have evolved, including those regulated by two unlinked 
loci like the tetrapolar mating systems of many fungi hypothetically 
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Abstract
Sexually reproducing populations with self‐incompatibility bear the cost of limiting 
potential mates to individuals of a different type. Rare mating types escape this cost 
since they are unlikely to encounter incompatible partners, leading to the determinis‐
tic prediction of continuous invasion by new mutants and an ever‐increasing number 
of types. However, rare types are also at an increased risk of being lost by random 
drift. Calculating the number of mating types that a population can maintain requires 
consideration of both the deterministic advantages and the stochastic risks. By com‐
paring the relative importance of selection and drift, we show that a population of 
size N can maintain a maximum of approximately N1/3 mating types for intermedi‐
ate population sizes, whereas for large N, we derive a formal estimate. Although the 
number of mating types in a population is quite stable, the rare‐type advantage pro‐
motes	turnover	of	types.	We	derive	explicit	formulas	for	both	the	invasion	and	turno‐
ver probabilities in finite populations.
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capable of generating hundreds of compatible mating types, and 
the more widespread single‐locus incompatibility systems. Here, 
we focus on a system of mating type determination typified by 
the yeast Saccharomyces cerevisiae where a single haploid locus is 
responsible. Despite the very strong negative frequency‐depen‐
dent selection for rare mating types, most single‐locus haploid 
incompatibility systems are binary. They produce only two mating 
types, similar to the two sexes found in many animals, despite a 
population with only two types experiencing the highest rate of 
incompatible	matings	 (Hurst,	 1996).	 Even	 in	 nonbinary	 systems,	
only	 a	 few	additional	mating	 types	 are	 typically	 present	 (James,	
2015). For example, heterothallic populations of slime moulds, in‐
cluding the social amoeba Dictyostelium discoideum, can contain 
2–13 different mating types (Bloomfield, Skelton, Ivens, Tanaka, 
& Kay, 2010; Clark & Haskins, 2010; Douglas et al., 2016). Similar 
numbers, 2–12 different mating types, have been observed in cil‐
iates from the genus Tetrahymena	 (Doerder,	Gates,	 Eberhardt,	&	
Arslanyolu,	1995;	Eduardo	&	James,	1964;	Phadke	&	Zufall,	2009).	
A high diversity of mating types has been reported for certain 
mushroom‐forming fungi: the global population of fairy inkcap 
Coprinellus disseminatus is estimated to have 123 mating types, but 
the number found in a single population would inevitably be con‐
siderably	 smaller	 (James,	 Srivilai,	 Kües,	 &	 Vilgalys,	 2006).	 There	
is an upper limit to the number of different mating types that can 
be maintained by a finite population – a number low enough for 
the strength of negative frequency‐dependent selection to not 
be overwhelmed by genetic drift. Here, we set out to determine 
where this threshold lies.

We	present	a	model	of	haploid	self-incompatibility	that	allows	
estimation of the number of mating types in a finite population 
by comparing the deterministic and stochastic dynamics of mating 
type frequencies. The simplicity of this heuristic approach, that is 
a nonrigorous analysis under simplifying assumptions, results in 
an analytical solution, generating a straightforward estimation of 
the maximum number of mating types that can be maintained in a 
small population. Furthermore, this approach allows derivation of 
the probabilities of invasion of a rare mating type and the turnover 
of mating types. This method relies on the assumption that large 
stochastic deviations from the stationary distribution result in 
extinction, an assumption which becomes less tenable when rare 
mating types have larger absolute representation. To evaluate the 
accuracy of our heuristic approach, we compare it to a rigorous 
derivation	of	extinction	probabilities	in	the	spirit	of	Wright	(1939)	
which	cannot	be	solved	analytically	for	our	model.	We	show	that	
our approximate analysis agrees with the numerical evaluation 
arising from the rigorous approach for small‐ to intermediately 
sized populations. Our approach is similar to a recent analysis 
(Constable & Kokko, 2018) where an estimate for the upper and 
lower bounds for the number of mating types was derived, ex‐
cept that instead of building on the estimation of the stationary 
distribution on the level of mating types, we are able to provide 
a precise numerical estimate by building on the estimation of the 
stationary distribution of a focal mating type.

2  | MATERIAL S AND METHODS

2.1 | Model

In order to quantify the effects of stochastic drift, mutation and 
negative frequency dependence, we consider a haploid population 
of N individuals in its demographic equilibrium, that is N is constant 
over	time.	Each	 individual	 is	of	a	certain	mating	type,	M1,…,MR for 
some positive integer R. The total number of individuals of type Mi is 
denoted by Xi. Individuals of type Mi can only mate with individuals 
of a different type Mj≠Mi. Hence, gametes are self‐incompatible and 
cannot reproduce asexually.

We	 implement	 changes	 in	 the	 population	 configuration	 by	 the	
Moran process, that is generations are overlapping. A transition in the 
population configuration consists of both a birth and a death event in 
order to maintain a constant population size. The order of events does 
not affect the overall dynamics and can be exchanged, as can be seen 
by reordering the terms in the transition rates below. In the birth step, 
two randomly chosen individuals have the opportunity to mate with 
each other. If the two individuals have different mating types, they 
give birth to an offspring which randomly inherits the mating type 
of one of its parents. In case the two parents carry the same mating 
type, reproduction is not possible and the system remains in its cur‐
rent state. In the death step, a third randomly chosen individual gets 
replaced by the newly born offspring, thus leaving the population size 
unchanged. Note that instead of drawing a third individual here, we 
could also choose an arbitrary individual of the whole population in‐
cluding the parents. Since we will work with intermediate to large pop‐
ulation size approximations, this does not alter the results. Also, the 
dynamics remain the same except for the case of exactly two mating 
types where our implementation ensures that the population is always 
able to reproduce, thus producing a distinct boundary behaviour. For 
an illustration of our haploid self‐incompatibility system, see Figure 1.

The described dynamics translate into the following transition 
rates: the change from k to k + 1 individuals of mating type Mi hap‐
pens at rate

The single terms emerge as follows:

• The two terms in the first line arise due to reproduction events 
where either a Mi individual chooses a non‐Mi individual or vice 
versa.

• The factor 1/2 is due to the offspring inheriting its mating type 
uniformly at random from one of the two parents. In half of the 
successful reproduction events including a Mi‐type parent, it will 
inherit type Mi.

• The k‐term (or (N −	k)‐term) is the rate of drawing an individual of 
type Mi (or non‐Mi). The idea is that all of the N individuals have a 
random waiting time (exponential waiting time with rate 1) until 
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they start the reproduction cycle which is independent of all the 
other individuals. Thus, having k type Mi individuals yields a rate k. 
This might seem to introduce a bias towards more frequent mat‐
ing types but effectively does not since reproductive success is 
still coupled to finding a compatible mating partner.

• (N −	k)/(N −	1)	 is	 the	probability	of	drawing	a	non-Mi individual 
from the remaining N −	1	individuals.

• The last fraction (N −	k −	1)/(N −	2)	is	the	probability	of	a	non-Mi in‐
dividual dying and thus being replaced by the offspring. Note that 
the parents are excluded from this set of individuals. This assures 
that there are always at least two mating types in the population.

Arguing analogously, we can write down the decrease rate, which is the 
rate to transition from k to k −	1	individuals	of	mating	type	Mi:

Again, we can disentangle the transition rate into single terms. 
The structure of the terms that are summed up is similar to the ones 
obtained for Ti+

k
. Furthermore, the sums are interpreted as follows:

• The first sum describes matings which happen between non‐Mi 
mating types resulting in a replacement of an Mi individual.

• The second sum is the rate at which a mating between a Mj 
and a Mi individual causes a Mj offspring to replace another Mi 
individual.

We	note	that	instead	of	using	transition	rates,	we	could	also	im‐
plement the model by transition probabilities per unit time step. 
Here, we would replace the factor k by its frequency k/N. Another 
possibility is to condition on successful reproductive events which 
would introduce a factor 1

(1−
∑

j

(Xj∕N)
2)

. Both of these alternative imple‐

mentations would result in the same qualitative dynamical be‐
haviour, however, on a different time‐scale. Our implementation is 
motivated by aligning the time‐scale of the individual‐based model 
with the corresponding deterministic system.

Using our defined transition rates, Ti+
k

 and Ti−
k

, and assuming large 
population sizes N, we can derive a stochastic differential equation 
(diffusion approximation—see the Supplementary Information (SI), 
Section	1)	describing	the	dynamics	of	our	model.	Writing	xi=

Xi

N
 as 

the frequency of mating type Mi in the population, the stochastic 
differential equation reads as

where (Wi)i=1,…,R are independent standard Brownian motions. The co‐
variances between the focal mating type i and another mating type j 
are given by

and the variance reads

The	 stochastic	 diffusion	 (Equation	 (2.3))	 can	 be	 interpreted	 as	
follows: the first part describes the deterministic dynamics of the 
system which were already studied in (Iwasa & Sasaki, 1987) and 
more recently adapted in the framework of asymmetric mating 
choices in (Hadjivasiliou & Pomiankowski, 2016). The second term 
consisting of the sum over the non‐Mi mating types describes the 
covariances which influence type‐Mi individuals due to the restric‐
tion of a constant population size, whereas the last term can be at‐
tributed to random births and deaths of type‐Mi individuals, that is 
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F I G U R E  1   Mating between compatible 
individuals produces an offspring that 
replaces a randomly selected member of 
the population. In each time step, three 
different individuals are chosen from 
the population. Two of them mate and 
produce a zygote which generates a large 
amount of gametes. One of these gametes 
is randomly chosen to replace the third 
initially drawn individual. The mating type 
of the offspring is chosen uniformly at 
random from the parental mating types. 
However, reproduction is only successful 
if the parents have different mating types 
because the gametes are self‐incompatible
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the dynamical development of the variance of xi. These make up the 
stochastic fluctuations of the finite‐size population, commonly re‐
ferred to as genetic drift.

It	 is	 worth	 noting	 that	 using	 a	 Wright-Fisher	 implementation	
of the process with nonoverlapping generations, yields the same 
dynamics (under an adequate time‐rescaling), see for instance 
Etheridge	 (2012)	on	that	 issue.	 In	 the	following,	we	choose	to	use	
the Moran process since the analysis of invasion and turnover prob‐
abilities in Section 3.2 derives more naturally in this framework. The 
analysis of the mean number of mating types in Section 3.1 can be 
done	analogously	assuming	Wright-Fisher	dynamics.

In Figure 2, we show the temporal evolution of the system with 
four mating types in a population of (a) 100 and (b) 1,000 individuals. 
The dashed lines represent the corresponding deterministic dynam‐
ics which all quickly collapse to the globally attractive equilibrium 
which is located at (1/4, 1/4, 1/4, 1/4), a uniform distribution of mat‐
ing types. As can be seen, the stochastic trajectories remain closer 
to these lines in larger populations, whereas smaller systems are 
more prone to random fluctuations. In Figure 2a, eventually, due to 
a random fluctuation, one of the mating types goes extinct at which 
point the internal equilibrium shifts to 1

3
. For a detailed study of the 

deterministic system, we refer to the “Mating kinetics I” model in 
Iwasa & Sasaki (1987).

2.2 | Model including mutations

So far, we have described the dynamics of a population in which no 
new mating types emerge. Hence, the number of mating types is de‐
creasing over time due to stochastic extinction events as expected 
in a finite population. These dynamics are illustrated in Figure 3a. 
Eventually,	 the	 number	 of	mating	 types	will	 collapse	 to	 two.	Now,	
we proceed by randomly introducing new mating types (mutations) 

into the population. More formally, at every replacement step a new 
mating type (or mutant) emerges with probability u. The equations 
describing the model with mutations are stated in the SI. Since in the 
following we restrict ourselves to the case with low mutation rates, for 
the analysis it is sufficient to consider the previously derived formulas.

3  | RESULTS

3.1 | Number of mating types in a finite population

The maximum number of mating types that a population can support 
depends on the balance between the deterministic and stochastic 
dynamics. In a finite population, the number of mating types R can‐
not exceed the total number of individuals N. Negative frequency‐
dependent selection will drive the frequency of each mating type 
towards the mixed equilibrium where all types are at equal frequency 
1/R. The global stability of this equilibrium not only attracts the tra‐
jectories but also makes it unlikely, though not impossible, for mating 
types to die out by stochastic fluctuations once they are established.

The likelihood that a mating type is lost through stochastic 
fluctuations depends on the absolute number of individuals of that 
mating type in a population (Figure 3a) which becomes smaller for 
increasing numbers of mating types R; the stochastic dynamics are 
therefore responsible for the low number of mating types (small R) 
we expect to observe in small populations (small N). New mating 
types can appear through mutation. In a deterministic model, this re‐
sults in an endless increase of the number of mating types over time 
(Figure 3b). However, in a finite population, adding a new mutant 
will increase the number of mating types in the population above 
the	 number	where	 the	 risk	 of	 extinction	 is	 negligible.	 Eventually,	
a mating type will be lost by extinction and the system will return 
to the previous number of mating types where the stochastic and 

F I G U R E  2   Mating types are driven to equal frequencies in large populations but more easily lost to genetic drift in small populations. 
Stochastic evolution of the number of mating types is plotted by solid lines in a population with (a) 100 and (b) 1,000 individuals. Although 
in small populations genetic drift overcomes the stabilizing deterministic effect, the contrary is true for larger population sizes. Dashed lines 
are deterministic (infinite population size limit) trajectories of the system

(a) (b)
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deterministic dynamics are balanced (selection‐extinction balance). 
When	mutants	appear	infrequently	(small	u), this balance is restored 
before another mutant appears and the mutation rate will have no 
effect on the predicted number of mating types. However, if the 
mutation rate exceeds the extinction time of the population with 
a certain number of mating types, then new mating types will ac‐
cumulate in the population faster than they can be purged by sto‐
chastic fluctuations, and the observed number of mating types will 
increase up until a mutation‐extinction balance is reached.

We	show	that	in	a	finite	population	of	size	N with a low mutation 
rate, we would expect a maximum of order N1/3 different mating types 
for intermediate values of N (Figure 4), see the derivation in SI, Section 
2.1. That is, despite the selective advantage enjoyed by rare mutants 
– which depends on the resident number of mating types R as we will 
see later – a population of 1,000 individuals could only support ap‐
proximately	10	different	mating	 types.	We	obtain	 this	prediction	by	
employing an order analysis of the dynamics of a focal mating type. 
We	first	calculate	the	highest	order	terms	in	the	deterministic	and	sto‐
chastic	parts	of	Equation	(2.3),	and	then	determine	the	transition	point	
where the deterministic dynamics are of higher order than the stochas‐
tic dynamics causing the population to stabilize.

In order to assess the validity of this result, we also derived 
a theoretically rigorous estimate. The method again relies on the 
analysis	of	 the	dynamics	of	a	 focal	mating	 type,	 that	 is	Equation	
(2.3),	 see	 also	Wright	 (1939)	 for	 the	methodology.	However,	 in‐
stead of comparing the single components of the equation we ex‐
plicitly compute the stationary distribution f of this equation, a 
Gaussian. Its values f(k/N) represent the probabilities of observing 

k individuals carrying the focal mating type in the total popula‐
tion.	We	then	identify	the	extinction	rate	of	a	mating	type	as	the	
product of f(1/N), the probability of having exactly one individual 
of that mating type, and the death rate of this individual T−

1
, see 

Equation	 (2.2).	The	 'birth	 rate'	of	novel	mating	 types	 is	given	by	
the product of mutation rate u and the overall reproduction rate 
of the population (cf. SI, Section 2.2 for details). Comparing these 
two quantities for a given population size N and a certain number 
of mating types R yields

as the mutation rate necessary to maintain R mating types in that 
population.

We	find	that	for	low	mutation	rates	and	intermediate	population	
sizes, the heuristic and rigorous estimate are very similar, see the 
corresponding lines in Figure 4a and SI, Section 2.3. Intermediate 
refers to the population sizes where Brownian deviations from the 
stationary distribution will result in a mating type extinction. This 
intuition is violated for large population sizes where a mating type is 
carried by several hundred (or even thousands) of individuals, mean‐
ing that deviations from stationarity do not imply the extinction of a 
certain mating type allele.

3.2 | Invasion of new mating types

New mutants, as the sole representatives of their mating type, are 
subject to both the strongest selection and the greatest risk of being 

(3.1)u=
(R−2)

N

(

R

R−1

)2

f

(

1

N

)

F I G U R E  3   The balance between stochastic and deterministic effects determines the maximum number of mating types. (a) In a 
population of 100 individuals and initially 30 mating types, genetic drift causes many of the initially present alleles to disappear within the 
first few generations. However, once a critical number of mating types is reached, the stabilizing deterministic dynamics take over such that 
extinctions become rare. Subfigure (b) shows the evolution of the number of mating types under deterministic and stochastic dynamics in a 
system with mutations. Although in the deterministic model (dashed line) the number of mating types is a monotonically increasing function 
over time, new mutants do not necessarily invade the population in the stochastic model (solid line). Further, due to extinctions the number 
of mating types can also decrease in the stochastic set‐up. The mutation rate is chosen as u = N−1 with N = 1,000, meaning that on average 
there is one mutation per generation (=1,000 updates). The choice of this rate solely serves illustrative purposes in this plot. In subsequent 
figures, it will be significantly reduced

(b)(a)
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lost by drift. So what is the probability that a novel mating type 
becomes established in a population? If the rare mutant can avoid 
immediate extinction, negative frequency dependence will drive it 
to higher and higher frequencies, and the risk of extinction will de‐
crease until the mutant reaches a high enough frequency that its sur‐
vival is guaranteed by the deterministic dynamics (Figure 5a). A small 
increase in frequency causes a large drop in the risk of extinction 
but has little effect on the likelihood of encountering an incompat‐
ible	mate.	Even	in	relatively	small	populations,	the	risk	of	extinction	
will become negligible long before the frequency of the mutant is 
high enough that the risk of encountering an incompatible mating 
partner becomes problematic; the selective advantage at these low 
frequencies (i.e. below the stochasticity threshold) remains essen‐
tially constant.

Computing the establishment probability therefore means calcu‐
lating the survival probability of the rare mating type at frequencies 
small enough that the risk of encountering an incompatible mate can 
be ignored. Given R different mating types in the population, we find 
that the probability of establishment of the (R + 1)‐th type is (the 
detailed derivation is given in SI, Section 3)

The inverse relationship between the establishment probabil‐
ity � and the number of resident mating types can be explained by 

the selective advantage of a rare mutant when compared to a res‐
ident type. Although a rare type will successfully reproduce with 
probability 1, a resident mating type has only probability 1 −	1/R 
resulting in a fitness difference of 1/R. Thus, when the number 
of resident types is low, 1/R is large, and thus, the extinction risk 
of the mutant is small. Contrarily, when the number of resident 
mating types is high and 1/R becomes very small, the reproductive 
advantage of the mutant becomes smaller and hence its extinction 
risk	 increases.	 Additionally,	 Equation	 (3.2)	 implies	 that	 for	 very	
large numbers of resident mating types, the invasion probability 
is essentially zero resulting in no novel mating types establishing 
in the population.

Figure	5b	shows	a	comparison	of	Equation	(3.2)	with	stochastic	
simulations in a population with N = 250 individuals. The accuracy of 
our prediction is limited to the region where deterministic dynamics 
dominate the system. Otherwise, the intuition that frequency‐de‐
pendent selection stabilizes the rare mutant fails and no analytical 
approximation is available. Hence, larger population sizes N not only 
improve the quality of our approximation but also increase the range 
for R where our estimate is applicable.

3.3 | The turnover probability of mating types

We	have	shown	that	finite	populations	will	eventually	reach	a	rela‐
tively stable number of mating types. However, the stability of the 

(3.2)�R≈
1

R
.

F I G U R E  4   Simulations support the analytical solutions. (a) Comparison between the heuristic and rigorous prediction to simulations 
which started with 50 (down arrowheads), 20 (squares) or 3 (up arrowheads) mating types. Besides the mean, we also plot the 95% 
confidence intervals for each initial condition. The mutation rate was chosen as u= 1

50N
, that is one mutation every 50 generations on 

average. Further details on the simulation can be found in the SI. The heuristic prediction N1/3 works well for lower population sizes but 
underestimates the number of mating types for larger population sizes where the system becomes very stable due to the larger number 
of individuals of each mating type in equilibrium. In this regime, the heuristic argument that extinctions can be described by fluctuations 
around the stationary value is violated. On the other hand, the formal prediction (red line) follows the increase observed in the data. For 
large population sizes, the computation of this prediction does not give results. Therefore, it ends at around a population size of 8,000. 
The dashed lines are bounds on the number of mating types obtained in (Constable & Kokko, 2018) (their equation (3)) which envelope our 
prediction. (b) Varying the mutation rate u=N−� affects the predicted number of mating types. Although for low mutation rates the number 
of mating types is well approximated by our prediction, for higher mutation rates (more than one mutation per generation) we see that 
the number of mating types increases rapidly and is not covered by the N1/3 prediction, whereas the rigorous estimate still captures the 
simulated data. The initial number of mating types in the simulations is set to 10

(a) (b)
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number of mating types does not imply evolutionary stasis. Resident 
mating types can be continuously replaced by new mating types in a 
process referred to as the “turnover of the sexes” (Figure 6; see also 
Iwasa & Sasaki (1987)).

Computation of the probability for such a turnover to happen 
is straightforward in our setting. Since it can be seen as a two‐step 
process, invasion of a mutant type followed by extinction of a resi‐
dent mating type, the probability is given by

The invasion probability as calculated in the previous section in 
Equation	(3.2)	is	1/R, whereas the extinction probability of a resident 
type is given by R/(R + 1) (all mating types behave equally).

As demonstrated in Figure 5b, our estimate of the turnover prob‐
ability fits the data points derived from stochastic simulations. For 
populations far below the maximal number of mating types (R = 2,3), 
the population is too stable such that effectively no turnover takes 
place indicating large extinction times for low resident numbers. If 
anything, the new mating type establishes and by that increases the 
overall number of mating types in the population. This explains the 
missing data points for R = 2,3. Once again, our estimate improves 
for larger values of N, similar to the estimate of the invasion prob‐
ability. The simulations are restricted to N = 250 since for larger 
population sizes extinction times of a mating type exceed the com‐
putational time constraints.

(3.3)�R≈�R

R

R+1
=

1

R+1
.

F I G U R E  5   New mating types can invade if they overcome the stochasticity threshold. (a) A typical invasion behaviour of a new mating 
type is plotted. Although in low frequency the invading type is prone to stochastic fluctuations, eventually causing extinction, for higher 
frequencies (above the stochasticity threshold) the deterministic dynamics carry the new mating type towards the new deterministic 
equilibrium at 

(

1

3
,
1

3
,
1

3

)

. (b) Choosing the population size as N = 250 (larger values improve the fit), we plot our predictions for the invasion 
(blue) and turnover (red) probability and compare them with simulation results. Invasion data points are derived from 10,000 runs with the 
resident population being close to its equilibrium 

(

1

R
,...,

1

R

)

 and one single new mating type individual. The same initial state is assumed for 
the 1,000 turnover simulations. Simulation results for R = 2,3 are missing for the turnover probability since populations consisting of that 
few mating types are too stable for a mating type to go extinct. This is consistent with our prediction that below 2501∕3≈6 deterministic 
dynamics outweigh stochastic drift meaning extinctions are very rare

(a) (b)

F I G U R E  6   The number of types in a population remains stable 
but mating types are rapidly lost and replaced in small populations. 
The	process	'turnover	of	sexes'	is	plotted	in	a	population	of	size	
N = 50. Initially, three mating types are present at equal frequencies 
(red, green, cyan). After two unsuccessful invasions (grey), a new 
mating type invades the resident population (blue). This invasion 
is followed by a second invasion (orange) before an established 
mating type is lost (blue). Due to an excess of mating types, 
eventually also the green mating type is lost from the population 
resulting in a new population consisting of the orange, red and cyan 
type. The inset shows the number of mating types present in the 
population over time
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4  | DISCUSSION

Even	 though	 rare	mating	 types	have	a	 significant	 selective	advan‐
tage in a sexually reproducing organism with self‐incompatible 
gametes, most species have a very small number of mating types 
–	typically	only	 two	 (James,	2015).	Here,	we	present	an	analytical	
explanation for the discrepancy between the low number of types 
observed in natural populations and the deterministic prediction. 
Heuristically identifying the point at which the deterministic dy‐
namics – which maintain all types at equal frequency – are balanced 
by the stochastic dynamics – which can cause rare types to be lost 
from the population, we find that the maximum number of mating 
types that can be supported by a finite population is of order N1/3 
which falls within previously identified bounds (Constable & Kokko, 
2018).	We	show	that	this	value	is	a	good	approximation	for	small	to	
intermediate population sizes using a rigorous numerical evaluation 
adapted from models developed for investigating gametophytic self‐
incompatibility	in	plants	(Ewens,	1964;	Fisher,	1958;	Nagylaki,	1975;	
Slatkin	 &	 Muirhead,	 1999;	 Wright,	 1939,	 1960,	 1964;	 Yokoyama	
& Hetherington, 1982), reviewed in Clark & Kao (1994). Thus, ac‐
counting for both deterministic negative frequency dependence and 
genetic drift reveals that the number of mating types in real popula‐
tions is far below the naïve deterministic expectation (Billiard et al., 
2011; Constable & Kokko, 2018).

Still, when considering biological reality our model only accounts 
for the competing influences of mutation, negative frequency‐de‐
pendent selection and genetic drift. The number of mating types 
supported by the balance of these forces should therefore be con‐
sidered a maximum. Many other factors, not included in our model, 
could drive the number of types in a population below this limit. 
Chief among these factors is that our model assumes that newly 
arising mating types are fully compatible with all resident types. This 
could be unrealistic if resident types have co‐evolved strong interac‐
tions. New mutants suffering reduced compatibility will be less likely 
to invade, limiting the number of types in a population to be below 
our calculated maximum (Hadjivasiliou & Pomiankowski, 2016; 
Power, 1976). Indeed, in systems where compatibility is determined 
by highly specific ligand‐receptor interactions, it seems unlikely that 
a random mutant would not experience reduced mating efficiency 
(Hoekstra, 1987). Nevertheless, pheromone receptor mate recogni‐
tion systems involving multiple ligands do exist. The ciliate Euplotes 
raikovi can at least partially distinguish between self‐pheromones 
and up to eight different non‐self‐pheromones (Luporini, Pedrini, 
Alimenti, & Vallesi, 2016). Nieuwenhuis et al. (2013) suggested that 
these functional restrictions might be reduced in tetrapolar systems 
(mating types are defined by two loci) where pheromone receptor 
compatibility is uncoupled from heterodimerizing homeodomain 
proteins that regulate the expression of mating types, allowing both 
loci to evolve independently. Indeed, multiallelic haploid incompati‐
bility found in certain bipolar fungi may have evolved in their tetrap‐
olar	ancestors	(James	et al., 2006). Of course, the number of possible 
combinations of compatible homeodomain proteins is almost cer‐
tainly limited as well (Perrin, 2012).

Our model is based on the life cycle of S. cerevisiae, but for sim‐
plicity we have only examined sexual reproduction. These yeast 
are actually facultatively sexual, and alternate between sexual and 
asexual modes of reproduction, although the relative frequencies 
of	these	two	modes	remain	highly	controversial	 (Kelly	&	Wickner,	
2013). As reported by Constable and Kokko (2018), populations 
with a high frequency of asexual reproduction are expected to 
carry fewer mating types than equivalent sexual populations. By 
decreasing the contribution of sexual reproduction to fitness, asex‐
uality effectively weakens the deterministic dynamics relative to 
the stochastic dynamics, shifting the balance between these two 
forces to a lower number of mating types. S. cerevisiae is also ca‐
pable of switching between mating types when compatible part‐
ners are rare. Previous simulation studies found that mating type 
switching is mostly favoured when allele frequencies, due to low 
population sizes or high mating type numbers, are prone to strong 
fluctuations so that the most common type frequently fails to find 
a compatible partner (Hadjivasiliou, Pomiankowski, & Kuijper, 2016; 
Paixão,	Phadke,	Azevedo,	&	Zufall,	2011).	The	exact	consequences	
of switching on the number of mating types that can be maintained 
in a population remain to be explored. Further issues that might limit 
the number of mating types are reviewed by Billiard et al. (2011).

Comparing our results to empirical observations is further hin‐
dered by difficulties in accurately estimating effective population 
sizes,	particularly	in	microbes.	Estimates	of	the	effective	population	
sizes of a single species can vary by several orders of magnitude 
(Katz,	 Snoeyenbos-West,	 &	 Doerder,	 2005)	 but	 some	 unicellular	
protists are thought to have very small effective population sizes: 
temporal estimates from a single geographical location of the marine 
dinoflagellate Pentapharsodinium dalei revealed an effective popula‐
tion	size	in	the	order	of	100	(Watts,	Lundholm,	Ribeiro,	&	Ellegaard,	
2013).

In large populations, or in populations with low mutations rates, 
we show that the number of mating types will be stable. However, 
this should not be confused with evolutionary stasis. As originally 
suggested by Iwasa and Sasaki (1987), the identity of mating types 
present in a population may change over time. As a first step towards 
an analytical solution for this turnover rate, we derive the probability 
of invasion of a rare mating type. It is given as the inverse of the num‐
ber of resident mating types. This can be interpreted as the fitness 
advantage of a novel mutant when compared to a resident mating 
type: low resident numbers yield large selective benefits to the rare 
mutant, whereas large resident numbers lower the fitness of a mu‐
tant. Together with the mutation rate, this invasion probability gives 
the establishment rate of newly arising mating types. Still, to predict 
the turnover rate one would additionally need the extinction time of 
a resident mating allele. Previous studies in the context of the major 
histocompatibility complex and of plant self‐incompatibility systems 
have estimated the extinction time of alleles under constant balanc‐
ing selection (Takahata, 1990; Vekemans & Slatkin, 1994). An exten‐
sion and application of these techniques to our model is beyond the 
scope of this study but see Czuppon & Constable (2019) for an as‐
sessment of extinction times in the setting studied here.
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In conclusion, our findings add new theoretical results and mech‐
anistic insights on the evolutionary dynamics of mating type alleles 
in a haploid self‐incompatibility system. Investigations of the evo‐
lution of multiallelic loci subject to negative frequency‐dependent 
selection have been studied extensively. Applying these previously 
developed methods to our Moran model of haploid self‐incompati‐
bility, we provide two estimates on the maximum number of alleles 
in a finite population. The simplicity of the heuristic derivation has 
the advantage of obtaining an explicit prediction of the number of 
mating types while coming at the cost of being restricted to low mu‐
tation rates and intermediate population sizes. The formal analysis 
on the other hand, provides a more robust estimate for the muta‐
tion‐selection‐drift balance, whereas being reliant on numerical 
evaluation since no closed‐form solution is attainable. Moreover, we 
compute invasion and turnover probabilities of newly arising mating 
types which, to the best of our knowledge, have not been studied 
for any highly polymorphic system before. This latter approach can 
be extended to the investigation of alleles conferring differential fit‐
ness, allowing the study of more complex mating systems, meiotic 
drive or other multiallelic systems subject to balancing selection in‐
cluding certain gamete recognition proteins (Tomaiuolo & Levitan, 
2010).
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