
PHYSICAL REVIEW E 99, 022305 (2019)

Population size changes and extinction risk of populations driven by mutant interactors
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Spontaneous random mutations are an important source of variation in populations. Many evolutionary
models consider mutants with a fixed fitness, chosen from a fitness distribution without considering microscopic
interactions among the residents and mutants. Here, we go beyond this and consider “mutant interactors,” which
lead to new interactions between the residents and invading mutants that can affect the population size and
the extinction risk of populations. We model microscopic interactions between individuals by using a dynamic
interaction matrix, the dimension of which increases with the emergence of a new mutant and decreases with
extinction. The new interaction parameters of the mutant follow a probability distribution around the payoff
entries of its ancestor. These new interactions can drive the population away from the previous equilibrium and
lead to changes in the population size. Thus, the population size is an evolving property rather than an externally
controlled variable. We calculate the average population size of our stochastic system over time and quantify the
extinction risk of the population by the mean time to extinction.

DOI: 10.1103/PhysRevE.99.022305

I. INTRODUCTION

Evolution is the outcome of the birth and death of indi-
viduals changing the population composition in time. Types
with faster reproduction and slower death increase their abun-
dances in the population. In natural populations, the birth
and death rates are determined by interactions between single
individuals as these dictate who will get a piece of food [1,2],
who will mate [3], who will be fed and who will be eaten.
As such, studying the impact of individual interactions on
the ecological and evolutionary dynamics of the population
is critical for the understanding of evolution. We present
a stochastic ecological model capturing interactions at the
individual level in the spirit of the Lotka-Volterra dynamics.
This model shapes the ecological dynamics of competing
types and consequently featuring the long-term evolution of
the community with multiple types.

Conventionally, most evolutionary models are based on
fixed or infinite population size and thus only reflect changes
in the frequencies of types. However, as an increasing body of
research has shown that evolutionary and ecological processes
can happen on comparable timescales [4–11], considering
both the evolutionary processes arising from mutations [12]
and the ecological effects due to an associated change of the
total population size is important [13–23].

Ecoevolutionary dynamics, however, has been mostly ex-
plored based on deterministic equations, either from the per-
spective of theoretical ecology or evolutionary game theory.
Although many models allow fluctuations in the population
size, the continuum limit for the population size is usually
considered. These approaches are traditionally described by
the competitive Lotka-Volterra equation [24–28] or extensions

of the replicator dynamics and adaptive dynamics [29–32].
They cannot naturally describe the discrete nature of the
abundances such as the emergence of mutants or population
extinction. Instead, individual-level models can capture these
events better by using microscopic reactions in populations
of finite size [21,22,33,34]. The corresponding deterministic
equations can often be derived in the limit of large populations
[21,35–37]. Although the stochastic dynamics of systems
driven by pre-defined microscopic reactions have been tradi-
tionally studied in mathematical biology [38], the stochastic
dynamics of an evolving population driven by random mu-
tants with novel interactions has been studied much less so
far.

We model mutations leading to new interactions repre-
sented by the death rates from competition. By interpreting
the death rates as a function of payoffs, it is possible to con-
nect the competitive Lotka-Volterra dynamics to evolutionary
game theory [21]. Then, the evolution of the interaction pa-
rameters in the Lotka-Volterra dynamics can be viewed as the
evolution of the payoff matrix of an evolutionary game [12].
The emergence of mutants and extinction of existing types
are captured by the extension or reduction of the interaction
matrix, where the new entries related to the mutant are ran-
domly drawn from the corresponding entries of the maternal
type. This dynamic interaction matrix provides a powerful
framework for studying individual interactions.

Mutations leading to new interactions, and it causes the
changes in the population size. Therefore, the population size
naturally evolves from the evolution of interactions. This pro-
vides us a general framework to study the long term evolution
of a population of interacting individuals. We specifically
focus on the evolution of the population size driven by mutant
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interactors and their impact on the ecoevolutionary dynamics.
It can be helpful to take a perspective of evolutionary game
theory on this system: For example, if a mutant type with a
smaller self-payoff (or, equivalently, a larger self-competition
term) outcompetes the resident type with a higher self-payoff
(or, equivalently, a smaller self-competition term), a social
dilemma situation arises and the population size decreases.
If the population size consecutively decreases due to the
invasion of such mutants, then the population may even go
extinct. We analyze the changes of the carrying capacity,
which is defined as the average population size when the pop-
ulation composition reaches a stable state. Thus, the carrying
capacity is an evolving rather than a predefined property of our
stochastic processes and emerges naturally from interactions.

We also obtain the long time behavior of the population
size and estimate the mean time to extinction by mapping
the problem to a random walk. Counterintuitively, we find
that the carrying capacity and the mean time to extinction
do not monotonically increase with the probability θ that a
new payoff for the mutant is larger than the maternal payoff.
Especially, for small probability θ there is a tradeoff between
a large decrease in the population size and a small chance of
such a mutant reaching fixation.

This manuscript is structured in the following way: we
introduce our model in detail in Sec. II and present an analysis
of the properties of the model in Sec. III. First, we calculate
the population size changes induced by one mutation event
in a single-type population. Then, we assess the evolution
of the carrying capacity in the long run and estimate the
extinction risk based on the mean time to extinction. Finally,
we summarize and discuss our results in Sec. IV.

II. MODEL

We study the stochastic population dynamics with a mu-
tation process that constantly creates new types in the pop-
ulation. A mutation occurs with probability μ during repro-
duction. Reproduction and intrinsic death occur at constant
rates, λb and λd , respectively (λb > λd ). The interactions
between individuals affect the death of individuals due to,
say, the competition for a limited resource. Following a game
theoretical interpretation introduced in Ref. [21], we use the
death rates from competition as the inverse of individual’s
payoffs connecting the game theoretical approach and the
competitive Lotka-Volterra equation. The interpretation of
death rates due to competition means that individuals who
obtain higher payoff are less likely to die. These microscopic
reaction rules define a stochastic process that can be expressed
as

I → I + I reproduction at rate λb(1 − μ),

I → I + I ′ mutation at rate λbμ,

I → ∅ intrinsic death at rate λd ,

I+J → J death from competition at rate 1
ai j M

, (1)

where the parameter M controls the scale of the population
size. The payoff of a type i interacting with a type j is denoted
as ai j . Mutation occurs with probability μ during reproduction
and leads to an extended payoff matrix. New elements in the

FIG. 1. There are three possible outcomes from a mutation event:
(i) the mutant spreads through the population and replaces the
residents, (ii) the mutants coexist with the residents, or (iii) the mu-
tants go extinct. When the waiting time for the emergence of the
next mutant is long, the population has enough time to reach one
of these outcomes. After equilibration, the population size fluctuates
around the new carrying capacity before the next new mutation event.
Hence, the population size between two successive mutation events
is characterized by the carrying capacity calculated from interactions
between individuals. We discretize time by mutation events and use
the carrying capacity as a characteristic population size in the weak
mutation regime. While most of our analytical results are carried out
under the weak mutation assumption, equilibration before the next
mutation is not necessary for stochastic simulations. Details for the
stochastic simulations are available in Appendix A.

payoff are drawn from the exponential distribution. We will
explain the detailed sampling procedure below. For μ = 0,
starting from a single type would lead to logistic growth.

In the limit of large population without mutations, the
change of the abundance of type i, xi is described by a
competitive Lotka-Volterra equation in the form

dxi

dt
= (λb − λd︸ ︷︷ ︸

λ

)xi − 1

M

n∑
j=1

xix j

ai j
, (2)

where n is the current number of types in the population
and ai j is the payoff of a type i from the interaction with
a type j. When the population size is of the order of M,
the reproduction and death occur at similar rates, such that
the population neither grows nor shrinks. Accordingly, the
population size scales in M. For single-type populations with
the single payoff a, population size is fluctuating around the
fixed point K = aMλ. The population size K at the stable
fixed point of Eq. (2) is considered as the carrying capacity
of the population.

For our analytical results, we assume that mutations occur
so rarely that the equilibration time of the population compo-
sition after the emergence of a mutant is much shorter than the
waiting time between consecutive mutations; see Fig. 1. Thus,
the population either stays close to one of the monomorphic
populations or becomes polymorphic and fluctuates around a
coexistence equilibrium in between two successive mutation
events. The population size between two successive mutation
events is characterized by the carrying capacity calculated
from interactions between individuals. We use a discretized
time t based on mutation events. Once a new mutant emerges,
the mutant event time t increases by one. Then, we use K ,
the carrying capacity at the equilibrium, as the characteristic
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population size. While this assumption is very convenient for
our analytical approach, our stochastic simulations are not
limited by this; see Appendix A.

Once a mutant emerges in a population with n types,
the payoff matrix extends its size from n × n to (n + 1) ×
(n + 1). For example, if the mutant emerges in a single-type
population with payoff a11, we can write down the change of
the payoff matrix as

(a11) →
(

a11 a12

a21 a22

)
. (3)

The payoff a11 is for the interaction between residents,
and a22 is for the interaction between mutants. The payoffs
a12 and a21 are for the interaction between a resident and a
mutant. New payoffs are randomly drawn from a distribution
controlled by the probability θ that a new payoff is larger than
the maternal payoff. In principal, we can use any distribution
here [39,40], but for simplicity we focus on the exponential
distribution. In the example Eq. (3), there is only one maternal
payoff a11, and hence, new payoffs a12, a21, and a22 are
independently drawn from the same exponential distribution
pa11 (x) given by

pa11 (x) = − ln(θ )

a11
θ

x
a11 , (4)

which satisfies θ = ∫ ∞
a11

pa11 (x)dx. Since the majority of mu-
tations give less fit mutants in terms of interactions, the case
of small θ seems most relevant. In addition, the exponential
distribution form itself leads to higher probability densities
for smaller payoffs.

When a mutant emerges in populations with several types
(n > 1), it is denoted as the (n + 1)th type. The payoffs ai,n+1

of a resident type i from the interaction with this mutant type
are based on the payoffs aim from the interaction of the same
resident type with the maternal type m [12]. In other words,
the last row entries ai,n+1 are drawn from the distribution
paim

(x) and the last column entries an+1,i are drawn from
pami

(x). Therefore, an+1,n+1 is drawn from pamm
(x). The emer-

gence of a mutant may lead to a change in the equilibrium, and
the population size fluctuates around a new carrying capacity
if the mutant establishes itself in the population.

III. RESULTS

Each time a mutant emerges in the population, the mutation
event time t increases by one, and either new mutants establish
themselves in the population or they die out; see Fig. 2. Due
to the new interactions from mutants, fixation of mutants or
coexistence between mutants and residents induce a change
of the carrying capacity. Here, we focus on the short and
long term dynamics of the carrying capacity, which emerges
from such new interactions. Since the probability θ is directly
connected to the new payoffs, we use θ as a key control
parameter. For the short time evolution, we look at the average
carrying capacity changing due to the emergence of a single
mutant type in Sec. III A. For the long term evolution, we
obtain the asymptotic behavior of the carrying capacity and
calculate the mean time to extinction in Sec. III B.

FIG. 2. One realization of the stochastic simulation showing
abundances xi in mutation event time t . During reproduction, mu-
tations occur with probability μ, extending the payoff matrix as in
Eq. (3). We use a single-type population as an initial condition.
Lines of different colors indicate abundances of different types. Here,
we only shown successful mutants which establish themselves in
the population. The abundances xi fluctuate around the equilibrium
before the successful invasion. There are three possible situations
after a mutant emerges from a single-type population. (1) Mutants
die out, as in the vast majority of mutation events. (2) Mutants take
over the whole population, as the green type emerging at t = 19.
(3) Mutants and residents coexist, as the green and cyan types after
t = 32. We used a11 = 1, M = 1000, λb = 0.9, λd = 0.4, θ = 0.2,
and μ = 5 × 10−5.

A. Changes of carrying capacity induced
by a single mutation event

In a large population containing a single resident type
with the payoff a11, the population size fluctuates around
K = a11Mλ. Once a mutant emerges, new equilibria may
arise depending on the payoffs from Eq. (5); see Table I and
Fig. 3. For the possible new carrying capacities, we look
at the stability of new equilibria. For a21 < a11, a mutant
receives a smaller payoff than the resident as long as the
mutant type is rare. Thus, either the resident type dominates
the mutant type (resident dominance game) or both homoge-
neous populations are stable (coordination game). In these two
cases, a mutant typically gets lost. For a21 > a11, the mutant
type is likely to invade from rare. Here, the mutant either
dominates the resident type (mutant dominance game) or they
coexist (coexistence game), and a new equilibrium is achieved
[21]. In summary, if the population successfully reaches their

TABLE I. Game types according to stable fixed point(s) deter-
mined by payoffs; see Fig. 3. There are four categories: resident
dominance, coordination, coexistence, and mutant dominance.

Game type Condition

Resident dominance a11 > a21 and a12 > a22

Coordination a11 > a21 and a12 < a22

Coexistence a11 < a21 and a12 > a22

Mutant dominance a11 < a21 and a12 < a22
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FIG. 3. (a) Fixed points in each game type and (b) proportions
of them in sampled payoffs at a given θ . The filled and open circles
in (a) indicate stable and unstable fixed points. Left and right circle
mean homogeneous resident and mutant populations. In principle,
the fixed points are on a two-dimensional space (mutant and resident
abundances space) with demographic fluctuation, but we only plot it
in a fixed population size for clarity. (b) At a given θ , new payoff
matrices are classified into four game types, and we calculate the
probability of occurrence of each game type. The resident dominance
and coordination games occur with probability 1−θ

2 and the others
happen at probability θ

2 . A region denoted by deviant crease lines in
the dominance of mutants indicates the prisoner’s dilemma games,
θ (1 − θ )/2.

new stable equilibrium, the new carrying capacity after the
mutation becomes

K ′ =

⎧⎪⎨
⎪⎩

a11Mλ, for resident dominance game,

acoexMλ, for coexistence game,

a22Mλ, for others,

(5)

where acoex = a11a21(a12−a22 )+a12a22(a21−a11 )
a12a21−a11a22

is the average payoff
in the coexistence equilibrium. For coordination games, both
homogeneous populations, resident and mutant, are stable
(bistability). In the new stable equilibrium of the coordination
game, the carrying capacity K ′ is a22Mλ. Resident dominance
games have no new equilibrium, and thus we set K ′ to a11Mλ

for convenience.
Note that these equilibria are not guaranteed to be reached.

In a stochastic process, the abundance of the mutant type can
have large random fluctuations especially at the beginning be-
cause it starts from a single individual. These fluctuations can
lead to the extinction of the mutant type even if it has higher
payoffs (a21 > a11 and a22 > a12). Therefore, to calculate the
carrying capacity changes, we have to estimate the probability
φ of a mutant to successfully establish itself in the population.
Hence, φ for mutant dominance and coordination games are
equivalent to the fixation probability while it is the invasion
probability for a coexistence game. Once φ is known, the
average change of the carrying capacity is given by

�K = 〈φ(K ′ − K )〉, (6)

where K = a11Mλ and bracket 〈. . .〉 represents the averaging
over all mutant types which are distinguished by a different
payoff matrix.

The risk of stochastic extinction becomes negligible when
the mutant type reaches a large abundance. Thus, φ is deter-
mined mainly in the early stage of an invasion. For a21 >

a11, the extinction risk of mutants is quickly reduced with
increasing abundance of the mutants, y. We assume that the

mutants successfully escape from stochastic extinction and
settle in the population if their abundance reaches y∗, 1 	
y∗ 	 M. During this change, we also assume that the total
population size and the abundance x of the resident type do
not change significantly, x ≈ a11Mλ = O(M ). Therefore, we
use the fixation probability of mutants in a population with a
constant size to estimate φ as [41,42]

φ = 1

1 + ∑y∗−1
i=1

∏i
y=1

T −
y

T +
y

, (7)

where T −
y and T +

y are the rates of decrease or increase the
number of mutants by one, starting in y. For large M and small
y, y 	 M, these can be approximated by

T −
y = λd + 1

a21

x

M
+ 1

a22

y

M
≈ λd + λ

a11

a21

= λb

(
1− a21 − a11

a21

λ

λb

)
,

T +
y = λb, (8)

such that r = T −
y

T +
y

becomes independent of y and constant.

From this, we obtain an approximated expression of the
probability φ for a21 > a11,

φ ≈ 1

1 + ∑y∗−1
i=1 ri

= 1 − r

1 − ry∗ ≈ 1 − r = λ

λb

a21 − a11

a21
, (9)

where in the last step we took into account that y∗ � 1 and
r < 1.

For a21 < a11 and a12 > a22, the homogeneous resident
population is stable against invasions, and the mutant cannot
settle in the population. However, for a21 < a11 and a12 < a22,
both single-type populations are stable and have their own
basins of attraction [43,44]. Taking a closer look at Eq. (2)
and its vector field, we find that when a12 is sufficiently small,
an emergence of a single mutant is enough to put the popu-
lation into the basin of attraction of another equilibrium—the
homogeneous mutant population.

In coordination games, T −
y is greater than T +

y at the be-
ginning (x ≈ a11Mλ and y ≈ 1), so the mutant population y
is more likely to shrink rather than increase in numbers. If
a12 is small enough, then the same is true for the resident
population and the abundance of residents will decrease much
faster than the abundance of mutants. Once x becomes smaller
than a21Mλ, T +

y becomes larger than T −
y , and after this point

the mutant population begins to grow. Hence, if the mutants
survive until the abundance of residents x decreases to a21Mλ,
they will fixate in the population.

The probability that the single mutant does not die during
the time ts, while x decreases from a11Mλ to a21Mλ, can be
approximated by e−tsT −

y . We calculate the time ts by looking
at the rates of increasing or decreasing the abundance of the
resident type,

T −
x = λd + 1

a11

x

M
+ 1

a12

y

M
,

T +
x = λb. (10)

When a12 is very small, a12 = O(1/M ), the third term in T −
x

is not negligible even if y is small. Given the large initial
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abundance of the resident type, its dynamics can be described
by the deterministic Eq. (2). Then, we get the decrease rate of
the resident’s population size

dx

dt
≈ λ x

(
1 − 1

a11

x

Mλ
− 1

a12

y

Mλ

)∣∣∣∣
x=a11Mλ,y=1

= −a11

a12
λ.

(11)

From the estimation, we calculate the time ts it takes
from a11Mλ to a21Mλ as ts = −(a21Mλ − a11Mλ) a12

a11

1
λ

=
Ma12

a11−a21
a11

. Thus, the fixation probability of mutants in a
coordination game can be approximated by

φ ≈ e−T −
y ts = e− (a11−a21 )(a11λ+a21λd )

a11a21
Ma12 . (12)

Note that although these mutants have a very small chance to
reach fixation in the population, the coordination game (a21 <

a11 and a12 < a22) plays an important role for small θ . In this
regime, the fixation of dominant mutants in the population
is becoming very unlikely—instead fixation in coordination
games becomes the dominant factor of evolution. Most im-
portantly, this small probability strongly influences the long
time behavior for small θ . In summary, the probability φ can
be approximated as

φ ≈

⎧⎪⎪⎨
⎪⎪⎩

λ
λb

(
1 − a11

a21

)
, a11 < a21,

e− (a11−a21 )(a11λ+a21λd )
a11a21

Ma12 , a11 > a21 and a12 < a22,

0, otherwise.

(13)

As the probability φ of the mutant establishing in co-
ordination games becomes relevant only if a12 ∼ 1/M, we
only consider mutant dominance and coexistence games in
calculating �K for the short time behavior. Hereafter, we
refer to the mutant dominance game as dominance game
because the resident dominance game does not play a role for
changing the carrying capacity. In Fig. 4(a), we numerically
show that an invasion of a coexisting mutant leads to much
smaller changes in the carrying capacity than a fixation of
a dominant mutant without stochasticity. Hence, we make a
further approximation assuming that only dominant mutants
contribute to the change of the carrying capacity. Under this
approximation, the change in the carrying capacity after a
single mutation event can be calculated analytically

�K = 〈φ(K ′ − K )〉
≈ 〈φ(K ′ − K )〉dm

= Mλ

∫ ∞

0
da12

∫ ∞

a11

da21

∫ ∞

a12

da22[(a22 − a11)φPa11 (a)]

= Kλ

2λb
[θ − ln(θ−1)�(0, ln(θ−1))]

[
3

2 ln(θ−1)
− 1

]
,

(14)

where subscript “dm” indicates that the averaging is
performed only across dominance games, and Pa11 (a) =
pa11 (a12)pa11 (a21)pa11 (a22) with a = (a12, a21, a22). The in-
complete � function is given by �(a, z) = ∫ ∞

z t a−1e−t dt .
Our stochastic simulations agree with this approximation; see
Fig. 4(b).

FIG. 4. Relative changes in carrying capacity induced by a single
mutation event. (a) The changes �KG of the relative carrying capac-
ity without stochasticity for a given game type are shown (dominance
and coexistence games). From 50 000 independent samplings, we
obtain distributions for the new carrying capacity. The distributions
are unimodal without long tail. The standard deviation of each
distribution is shown in the respective shade. The changes induced
by coexisting mutants are typically much smaller in magnitude
than changes from dominant mutants. (b) The average change of
the carrying capacity after a single mutation event in stochastic
simulations (brown circles), a numerical integration of Eq. (6) (green
triangles), and our analytical approximation Eq. (14) (solid line) are
shown. The results of stochastic simulations are well matched by
our approximation. We used an initial payoff a11 = 1, M = 1000,
λb = 0.9, and λd = 0.4. Since we obtain our analytic prediction for
large M, we used moderately large M also for simulations to allow
comparison with the analytical approximation.

For a given game type, once mutants that decrease the
population size settle in the population, the smaller θ , the
larger the drop of the population size as shown in Fig. 4(a).
Interestingly, however, the change of the relative average
carrying capacity of mutants does not monotonically increase
with θ ; see Fig. 4(b). Smaller θ induces larger decreases of the
population size, but these changes also become exceedingly
rare. From those two effects of small θ , we observe a large
drop of the average population size for intermediate θ .

B. Evolution of the carrying capacity in the long run

In the previous subsection, we have studied carrying capac-
ity changes induced by a single mutation event. Coexistence
games do not change the carrying capacity K much, while the
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fixation of the mutants in dominance games can have a large
influence on K . Usually, the change of K from the coexistence
game is negligible and thus we only consider fixation of mu-
tants in our analytical calculation for the long time behavior.
As a consequence, the dynamics of the population can be
approximated as a sequence of single payoffs which induce
changes in the population size. In this subsection, we map our
problem to a random walk in the payoff space to obtain the
evolution of the carrying capacity and approximate the mean
time to extinction.

If a new mutant type fixates in the population, then a22

becomes the new single payoff. The distribution of a22 as a
new single payoff in the dominance game is given by

fa11 (a22) =
∫ a22

0 da12
∫ ∞

a11
da21φPa11 (a)∫ ∞

0 da22
∫ a22

0 da12
∫ ∞

a11
da21φPa11 (a)

= 2θ
a22
a11

(
1 − θ

a22
a11

)
ln(θ−1)/a11, (15)

which depends on both a11 and a22. By defining l = ln( a22
a11

),
we can convert the distribution fa11 (a22) into a jump distribu-
tion f (l ), which is a function of a single variable,

f (l ) = 2 ln(θ−1)θ exp(l )(1 − θ exp(l ) ) exp(l ). (16)

We define a(τ ) as the payoff of the τ th successfully fix-
ating mutant type. After every successful fixation event, the
logarithm of the payoff jumps by a distance l , ln(a(τ+1)) =
ln(a(τ ) ) + l . Hence, the evolution of the logarithm of payoff
maps into the random walk problem with the jump distribution
Eq. (16). When the context is clear, we omit the superscript
τ . Once the population size goes down (a is decreasing),
fixations from mutants playing coordination games become
more relevant because a chance to get a small enough a12

increases. Hence, we also consider the coordination game as
well as the dominance game in the long time evolution. The
jump distributions derived from dominance and coordination
games become more similar as a11 decreases, so Eq. (16)
continues to be applicable for the coordination game; see
Appendix B.

For the sake of simplicity, we use the fixation time τ , a unit
of the single fixation event, and treat it as continuous variable.
Then, we can write down the diffusion equation to describe
the dynamics of u(τ ) = ln(a(τ ) ),

∂c(u, τ )

∂τ
= D

∂c(u, τ )

∂u2
− V

∂c(u, τ )

∂u
, (17)

where c(u, τ ) is the probability density of a random walker
at position u at time τ . The diffusion coefficient D and the
drift velocity V are given by the moments of distribution
Eq. (16), D = σ 2

l /2 = π2/12 − [ln(2)]2 ≈ 0.342 and V =
〈l〉 = −γ + ln(2) − ln[ln(θ−1)], where γ ≈ 0.544 is Euler’s
constant.

The boundary condition to this equation is given by the
stochastic extinctions of population. Since the population is
likely to go extinct when the population size is small, there
is a threshold payoff which can be defined as an absorbing
boundary. Based on simulation results, we measure the thresh-
old payoff ã(θ ) under which populations go extinct before the
next fixation event (see Appendix C). Under this boundary
condition c(ln(ã), τ ) = 0 and the initial condition c(u, 0) =

FIG. 5. Simulation results of the average population size 〈N〉 in
mutation events t for θ > 0.206. We used dashed and solid lines
for showing trajectories where the the population sizes decrease or
increase at the end of the simulations. We use log scales for both
axes, and the thick black solid line is a linear function in time t
for comparing the trend of population size changes and the linear
function. As we can see, the asymptotic growth of the population size
is linear in time t when the weak mutation assumption is violated; see
Appendix E for details. We used an initial payoff a11 = 1, M = 1000,
λb = 0.9, λd = 0.4, and μ = 10−5 (500 realizations for each θ ).

δ(u, 0), the solution of Eq. (17) yields (see Ref. [45], p. 87)

c(u, τ ) = 1√
4πDτ

[
e− (u−V τ )2

4Dτ − e
V
D ln(ã)− (u−2 ln(ã)−V τ )2

4Dτ

]
. (18)

Using this solution, we obtain the expected value of the
carrying capacity in the long run (see Appendix D for details):

〈K〉 ∝
τ→∞

⎧⎨
⎩

1√
τ

e− V 2τ
4D , 2D + V < 0,

e(D+V )τ , 2D + V > 0.
(19)

The expected value increases for D + V > 0 (θ > 0.206) and
decreases for D + V < 0 (θ < 0.206). Although population
size changes in time τ are well described by Eq. (19), the
predicted asymptotic behavior is not achieved in stochastic
simulations; see Appendix D.

If the population size increases, then it eventually becomes
too large to satisfy the weak mutation assumption. The large
population size decreases the time interval between consecu-
tive mutation events and increases the time to equilibration.
In this case, a new mutant emerges before the equilibration
of the population. Thus, the population size does not reach
the new carrying capacity calculated from the payoff matrix,
and the population size N cannot be characterized by the
carrying capacity anymore. Since the interactions play the
role if the population size is close to the carrying capac-
ity, the competition becomes negligible and the population
grows at a maximum rate of the order of λ; see Eq (2). The
average population growth rates in this regime agree well
with our prediction, as shown in Fig. 5; see Appendix E for
details. Note that the average population size 〈N〉 does not
always increase for θ > 0.206 in simulations. This may arise
from the emergence of mutants who play coexistence games
with resident. The changes of population size induced from
dominance games are much larger than that of coexistence
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games, except in the vicinity of θ which induces zero change
of the population size in dominance games, θ ≈ 0.223 (see
Fig. 4). As mutants who play coexistence games decrease
the population size for θ > 0.206 while dominance games
induce very small changes in the population size as shown
in Fig. 4(a), the average population sizes are reduced even for
θ > 0.206.

If the population size decreases, then the population will
eventually go extinct. However, the time to reach extinction
differs for different θ . We calculate the mean time to ex-
tinction, text, for θ < 0.206 to estimate the extinction risk.
The extinction rate kext(τ ) at τ is the density current passing
through the absorbing state [u = ln(ã)],

kext(τ ) = D
∂c(u, τ )

∂u

∣∣∣∣
u=ln(ã)

= D ln(ã−1)

2
√

φ(Dτ )3/2
e− (ln(ã)−V τ )2

4Dτ . (20)

Hence, we can get the mean time to extinction τext

τext =
∫ ∞

0
τkext(τ )dτ

= ln(ã)

V
≡ S (for θ < 0.206). (21)

This is exactly the same as the necessary time to move
the distance ln(ã) with velocity V . This result is based on the
fixation time unit, and thus S stands for the expected number
of random walker’s jumps before extinction.

The random walker jumps only if the mutants successfully
fixate in the population, and not every mutation leads to a
successful fixation. Now, we find the expected number of
mutations before extinction. The jump rate ξ of the random
walker is determined by the combined probabilities φ for
dominance and coordination games,

ξ = 1

〈φ〉dm + 〈φ〉 cd
, (22)

where

〈φ〉dm = θ + �(0, ln θ−1) ln θ

2λb/λ
,

〈φ〉cd ≈ θ (ln θ )2

a11Mλb
ln

[
a11Mλb

2 ln(θ−1)

]
. (23)

The probability 〈φ〉dm only depends on θ while 〈φ〉cd is a
function of both θ and the payoff a11 (see Appendix F for the
exact expression). On average, ξ mutations happen until one
successfully fixates.

As ξ mutation events are needed on average for each jump,
the mean time to extinction in the unit of t is

text =
∫ S

0
ξdτ. (24)

We use the relation ln(a(τ ) ) = ln(a(0) ) + V τ and calculate
the mean number of mutations before extinction as follows:

text =
∫ S

0
ξdτ =

∫ ã

a0

ξ (a)

aV
da. (25)

FIG. 6. The mean time to extinction text in θ . Stochastic simula-
tion results are shown as open circles. The solid line is our theoretical
prediction Eq. (25). Similar to the short-time behavior, the mean
time to extinction also shows a minimum at the intermediate θ due
to the small θ properties. Smaller θ induces larger decreases of the
population size, while it also delays such decreases. Our analytical
approximation predicts the mean time to extinction well. We used
M = 1000, λb = 0.9, λd = 0.4, and μ = 10−5 with an initial payoff
a11 = 1.

The expression for ξ is available in Eqs. (22) and (23). We
numerically compute text according to Eq. (25) and compare
the results with stochastic simulations in Fig. 6. Our analytical
results well predict the simulation outcomes. Interestingly,
again the mean time to extinction does not monotonically
increase with θ . As the same with the short time changes
of the carrying capacity, a minimum text is observed in the
intermediate θ due to the small θ properties. Smaller θ implies
a larger decrease of the population size. At the same time,
small θ leads to long waiting time for changes in the carrying
capacity. Hence, there is a trade-off between large jumps to the
small population size and long waiting time for such a jump.

IV. SUMMARY AND DISCUSSION

We implement a stochastic model with mutations leading
to novel interactions which induce changes of the population
size. Complementing the previous modeling on the evolution
of species communities in the continuum limit [24–27,29,30],
we explicitly consider stochastic individual-based interac-
tions. This allowed us to naturally take into account individual
birth and death as well as mutation and extinction events.

We focus on the evolution of the population size and
the mean time to extinction. Since we interpret competition
as game theoretical interactions, the relation between types
and thus the population size are determined by payoffs. In a
social dilemma, the population size decreases if a mutant type
outcompetes the resident type but has stronger intratypic com-
petition. This phenomenon is similar to mutational meltdown
from deleterious mutations [46–48]. In our model, the distri-
bution of new payoffs is important, because it controls how
often such deleterious mutations happen. If the probability θ

to have a larger payoff than the maternal payoff is too small,
then populations are endangered by deleterious mutations.
On the contrary, when θ is large enough, the population size
constantly increases. For short and long time evolution, we
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find a trade-off between large decreases of the population size
and the rareness of such events.

In long-term experiments of microorganisms, parallel mu-
tations are often seen in populations derived from a common
ancestor [49–54]. By tracking the point mutations in single
nucleotides over thousands of generations, e.g., in the seminal
experiments by Lenski et al., rich population dynamics includ-
ing selective sweeps by mutations with fitness advantages, are
observed [55], but the experimental conditions preclude loss
of the population. For this, a more complex setup is necessary
[56]. Also quasistable coexistences of multiple types have
been observed in recent experiments [53,54].

Our model provides a general framework to model stochas-
tic ecoevolutionary processes in natural populations. First, it
has no artificial restriction on the population dynamics, i.e.,
the population size and composition evolve solely depending
on random mutations and simple dynamic rules. Second,
using our approach it is possible to formulate a model in terms
of microscopic events such as individual birth and death, and
investigate the long-term evolution of communities analyti-
cally. We hope that this model will inspire other researchers
to work on evolutionary models in which interactions are
not predefined but evolve de novo with a natural link to
demographic fluctuations.
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APPENDIX A: STOCHASTIC SIMULATIONS

To implement the reaction rules in Eq. (1), we use an
algorithm developed in Ref. [57] which is similar to the
Gillespie algorithm [58]. In the algorithm, one of the reaction
rules is attempted at a given small enough time interval,
and the simulation time proceeds based on this try leading
continuous time. We call this simulation time the real time
T and can trace changes in the population size in T . When
the mutation rate is small enough, however, the population
size is fluctuating around the carrying capacity determined by
Eq. (2). Then, almost all simulation time after equilibration
of the population does not contain new information. Hence,
we use a discretized time t based on the mutation events and
only take the population size right before the emergence of
the new mutant type as the representative population size at
a given t . In general, the waiting time for the new mutant
type is long enough when the mutation rate is small, and thus
the carrying capacity can be representative for the population
size. However, according to the reaction rates, a new mutant
type can arise before the equilibration of the population. In
this case, the carrying capacity may not represent typical
population size. Core codes are available at Ref. [59].

APPENDIX B: JUMP DISTRIBUTION FOR
THE COORDINATION GAME

We obtain the jump distribution f cd
a11

(a22) from mutants
who playing the coordination game, and compare it to the
jump distribution from dominant mutants. The jump distribu-

FIG. 7. Jump distributions for mutants playing dominance and
coordination games, Eq. (15) and Eq. (B1), respectively. We used
θ = 0.1 for different a11 values: a11 = 1, a11 = 0.1, and a11 = 0.01.
For the rescaled variable a22

a11
, the jump distributions for the domi-

nance game collapse in one curve. For the coordination game, the
distribution moves closer to the jump distribution of the dominance
game as a11 decreases. We used M = 100, λd = 0.4, and λb = 0.9.

tion for the coordination game can be obtained from the same
form of Eq. (15) with a different integrating range

f cd
a11

(a22) =
∫ a22

0 da12
∫ a11

0 da21φPa11 (a)∫ ∞
0 da22

∫ a22

0 da12
∫ a11

0 da21φPa11 (a)

= θ
a22
a11 (ln θ−1)3

a11
2〈φ〉cd

∫ a11

0
χ (a11, a21, a22)da21, (B1)

where χ (a11, a21, a22) = a21
2θ

a21
a11 (1−θ

a22
a11 e

− a22
a21

2 q(a11 ,a21 )
)

a11q(a11,a21 )−a21
2 ln θ

with
q(a11, a21) = M(a11 − a21)(a11λ + a21λd ). Due to the form
of φ for the coordination game, the integration is more
complex than dominance game case. We numerically integrate
Eq. (B1) and draw the distributions for various parameters
together with the jump distribution for the dominance game;
see Fig. 7. As we can see in the figure, the distribution
f cd
a11

(a22) becomes more closer to fa11 (a22) as a11 becomes
smaller. As both distributions become with decreasing a11,
we use the same jump distribution written in Eq. (16) for both
games in the main text.

APPENDIX C: THRESHOLD PAYOFF ã

Single-type populations with a small payoff a11 are prone
to go extinct due to stochastic fluctuations of the population
size. We define the threshold payoff ã as a payoff at which the
system typically goes extinct before a change of the carrying
capacity. Hence, at ã, the mean time to extinction of single-
type populations is equal to the mean time to the next suc-
cessful fixation of mutants. Note that we deal with real time T
(continuous) instead of mutant event time t (discontinuous).
By simulating an ensemble of populations, we numerically
compute the characteristic time to extinction Text of single-
type populations without mutation (see Fig. 8). The results of
stochastic simulations show a clear exponential pattern. By
fitting we obtained Text(a11) ≈ 5 exp(165a11) at a given pa-
rameter set; see Fig. 8. A successful invading mutant appears
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FIG. 8. Mean time to extinction Text measured in real time unit
for single-type populations without mutation. As we expected, Text

increases in a11 with an exponent 165. The fitting function f (a11)
is f (a11) = 5 exp(165a11) for M = 1000. For all simulations, we
use λb = 0.9 and λd = 0.4. Since the timescale for a new mutant
is ξ/Kλbμ, most populations go to extinct when T < ξ/Kλbμ.
Hence, we define the threshold payoff ã by equating two timescales
ξ/a11Mμ and 5 exp(165a11). For the mutation rate, we used
μ = 10−5.

in Tmut = ξ/Kλbμ where K = a11Mλ. If Text is smaller than
Tmut, then populations typically go to extinction before the
next chance to rescue their population. Hence, the threshold
value ã can be evaluated by equating both timescales, Text =
Tmut. If we assume that only dominant mutants contribute to
ξ , then we can obtain the analytical expression of ã,

ã ≈ 1

165
W

(
66

Mμ(λb − λd )2

1

θ + �(0, ln θ−1) ln θ

)
, (C1)

where W (z) is the Lambert-W function which gives the solu-
tion for w in z = wew.

Figure 9 shows ã in θ with and without the coordination
game in ξ . We numerically solving Text = Tmut and get the
results with coordination game. The order is the same for
both cases, O(10−2). Despite the discrepancy between two
results for ã, it does not significantly affect the mean time to
extinction [see Fig. 9(b)]. Therefore, we use ã as expressed in
Eq. (C1) for the main text.

APPENDIX D: ASYMPTOTIC BEHAVIOR OF THE
AVERAGE CARRYING CAPACITY

To calculate the carrying capacity changes in the long run,
we need the distribution of payoff a11 in time. The solution
Eq. (18) provides us the distribution of u = ln(a11), which
leads to

c̃(a11, τ ) = 1

a11

√
4πDτ

[
e− (ln(a11 )−V τ )2

4Dτ

− e
V
D ln(ã)e− (ln(a11 )−2 ln(ã)−V τ )2

4Dτ

]
. (D1)

Note that the pre-factor 1/a11 originates from the variable
change. Then, the expectation value of the carrying capacity

FIG. 9. Threshold payoffs decreases in θ , and the order of magni-
tude is 10−2. The timescale ξ can be calculated from dominance and
coordination games. We examine the effect of coordination game on
ã. As shows in (a), the change of ξ from the coordination game does
not change order of ã. As we can see in (b), the changes of ã by the
coordination game is not crucial for the results of text. Hence, we keep
the expression of ã from only taking into account dominance game.
We used M = 1000, λb = 0.9, λd = 0.4, and μ = 10−5.

is

〈K〉 = Mλ

∫ ∞

ã
a11c̃(a11, τ )da11

= Mλ
e(D+V )τ

2

{
1 + Erf

(
(2D + V )τ − ln(ã)√

4Dτ

)

− e
2D+V

D ln(ã)

[
1 + Erf

(
(2D + V )τ + ln(ã)√

4Dτ

)]}
, (D2)

where Erf(x) = 2√
π

∫ x
0 e−z2

dz.
To describe the long time behavior (τ → ∞), we use the

approximations

Erf(x) −−−→
x→∞ 1 − e−x2

x
√

π
,

Erf(x) −−−−→
x→−∞ −1 + e−x2

x
√

π
. (D3)

Hence, we get

〈K〉 →
τ→∞

⎧⎪⎪⎨
⎪⎪⎩

Mλ√
τ

e− V 2τ
4D

√
D

(
e

2D+V
D ln(ã)−1

)
√

π (2D+V )2
, 2D + V < 0,

Mλe(D+V )τ
(

1 − e
2D+V

D ln(ã)
)
, 2D + V > 0.

(D4)
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FIG. 10. We compare the predicted asymptotic population size
described in Eq. (D4) and simulation results. As a representative
example, we used θ = 0.1 for several M values. For the y-axis,
we used a normalized population size, N/λM. Initially, the time
dependency of population sizes are well described by Eq. (D4)
with 1/

√
τ . However, the population size decreases rapidly, and

the population goes extinct within a few fixation events. Once the
population becomes too small, the fixation of deleterious mutants
occurs more frequently. Thus extinction occurs faster.

We compare our prediction and stochastic simulations in
Fig. 10. For the comparison, we convert t to τ and averaged
all samples in stochastic simulations, including extinction
trajectories. The tendency of population size changes in time
τ is well described by our approximation with the prefactor in
Eq. (D4); see Fig. 10. In the long run, however, population size
decreases and our calculation for the fixation probability does
not hold. For the small population sizes, deleterious mutants
can easily fixate in the population, accelerating the population
collapse.

The expected carrying capacity of surviving populations is
given by

〈K〉surv = 〈K〉
Psurv

= Mλ
∫ ∞

ã a11c̃(a11, τ )da11∫ ∞
ã c̃(a11, τ )da11

, (D5)

where

Psurv =
∫ ∞

ã
c̃(a11, τ )da11

= 1

2

{
1 − Erf

(
ln(ã) − V τ√

4Dτ

)

−e
V
D ln(ã)

[
1 + Erf

(
ln(ã) + V τ√

4Dτ

)]}
. (D6)

Using Eq. (D3), we get

Psurv →
τ→∞

⎧⎨
⎩

1√
τ

e− V 2τ
4D

√
D

V
√

π

(
1 − e

V
D ln(ã)

)
, V < 0,

1 − e
V
D ln(ã), V > 0.

(D7)

Substituting Eqs. (D4) and (D7) into Eq. (D5), we get

〈K〉surv

→
τ→∞

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Mλ −V√
(2D+V )2

1−e
2D+V

D ln(ã)

1−e
V
D ln(ã)

, V < −2D,

Mλ
√

τe
(2D+V )2τ

4D
−V

√
π√

D
1−e

2D+V
D ln(ã)

1−e
V
D ln(ã)

, −2D < V < 0,

Mλe(D+V )τ 1−e
2D+V

D ln(ã)

1−e
V
D ln(ã)

, 0 < V.

(D8)

Focussing on the time dependence, we obtain

〈K〉surv ∝
τ→∞

⎧⎨
⎩

const, V < −2D,√
τe

(2D+V )2τ

4D , −2D < V < 0,

e(D+V )τ , 0 < V.

(D9)

The borders between regimes are at V = −2D and V =
0. These correspond to θ = e− 2

4ln(2) eπ2/6−γ ≈ 0.108 and θ =
e−2e−γ ≈ 0.325, respectively. The border between exponential
decline and exponential growth of 〈K〉 is achieved at V = −D,

equivalent to θ = e− 2
4ln(2)/2 e

π2
12 −γ ≈ 0.206.

APPENDIX E: OUT OF WEAK MUTATION REGIME

If the next successful mutant emerges before its maternal
population reaches its carrying capacity, then the weak mu-
tation assumption is violated. We call this regime the diluted
regime, because the population size N is much smaller than
its carrying capacity K . Hence, the competition may not play
a major role in this regime. Here, we estimate the population
size Nc and the time τc to enter the diluted regime. Usually,
populations grow to large sizes when V > 0, and thus we
only focus on V > 0. In this parameter range, the coordination
game is negligible. Thus, we only consider the dominance
game for ξ .

The average time interval between two successful fixa-
tion of mutants is Tmut in real-time unit. However, the time
that mutants reach its carrying capacity can be estimated as
Tgrowth ≈ ln(N )/λ. The population enters the diluted regime
when Tmut � Tgrowth. This happens at the population size Nc =
W (eξλ/λbμ). We can obtain the necessary time τc to reach the
population size Nc from the Eq. (D4),

Nc ≈ Mλe(D+V )τc , (E1)

where we neglected the term e
2D+V

D ln(ã). Hence,

τc = 1

D + V
ln

(
W (eξλ/λbμ)

Mλ

)

≈ 1

D + V
ln

(
ξ

λbμM

)
. (E2)

We plotted Nc and τc in Fig. 11.
In the above approximation, we used W (x)|x→∞ = ln(x) −

ln[ln(x)].
In this regime, the population size is far from the carry-

ing capacity, and death from competition does not play an
important role. Hence, the constant death and birth rates are
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FIG. 11. The criteria of population sizes Nc in which the popu-
lation enter the dilute regime is shown in (a). The time τc to reach
this population size is drawn in (b). The average population size
decreases for θ < 0.206, and thus the population does not reach Nc

unless otherwise they start from N � Nc. Hence, we only show τc for
θ > 0.206. Both Nc and τc are decreasing in θ . We used M = 1000,
λb = 0.9, λd = 0.4, and μ = 10−5 for calculations.

determining the population size N ,

dN

dT
= λN. (E3)

The mutation event time per real time is

dt

dT
= μλbN, (E4)

where λbN gives the number of divisions per real time unit.
Combining the above two equations, we can obtain

dN

dt
= λ

μλb
. (E5)

Thus, the population size N is linearly increasing in t ,

N (t ) = N (0) + λ

μλb
t . (E6)

A new mutant emerges after 1/μ births, and during one birth,
a death happens with probability λd/λb. In a unit time of
one birth, the population size changes 1 − λd/λb. Hence,
following every mutation event, the population size linearly
increases by λ

λbμ
. The results also agree well with our predic-

tion, as shown in Fig. 5. The results show a linear growth of
population size even when the population size is smaller than

Nc. This implies that the growth of populations slows down in
the long time regime for large θ .

APPENDIX F: THE EXACT EXPRESSION OF ξ

The probability 〈φ〉dm that a mutation will result in a
fixation of dominating mutant is

〈φ〉dm =
∫ ∞

a11

da21

∫ ∞

0
da12

∫ ∞

a12

da22φPa11 (a)

= θ + �(0, ln θ−1) ln θ

2λb/(λb − λd )
. (F1)

The probability does not depend on the resident payoff
value a11 while the contribution 〈φ〉cd from the coordination
game depends on a11 as well as θ . The probability φ integrated
in coordination game is

〈φ〉cd =
∫ a11

0
da21

∫ ∞

0
da12

∫ ∞

a12

da22φPa11 (a)

= (ln θ )2

a11

∫ a11

0

(a21)2θ
a21
a11

α(a21)2 + βa21 + γ
da21, (F2)

where α = a11Mλ − a11Mλb − 2 ln θ , β = −2a11
2Mλ +

a11
2Mλb, and γ = a11

3Mλ. For our parameters of interest,
the above integration can be solved,

〈φ〉cd = (θ − 1) ln θ

α
+ e−(A+B) ln θ

(A − B)α
[g(A, B) − g(B, A)],

(F3)

where g(A, B) = A2eB[Ei(A) − Ei(A + ln θ )] with

A = (β−
√

β2−4αγ ) ln θ

2a11α
and B = (β+

√
β2−4αγ ) ln θ

2a11α
. The function

Ei(z) is the exponential integral function Ei(z) = ∫ ∞
−z e−t/tdt .

Thus, the average probability is depending on the current
payoff a11.

Furthermore, we get the approximated expression of the
probability 〈φ〉cd from Eq. (F2), which leads to the integral

〈φ〉cd = (ln θ )2

a11

∫ a11

0

(a21)2θ
a21
a11

α(a21 − c1)(a21 − c2)
da21, (F4)

where

c1 ≡ −β −
√

β2 − 4αγ

2α
,

c2 ≡ −β +
√

β2 − 4αγ

2α
. (F5)

For large M, we obtain the approximated expressions

c1 ≈ a11 − 2 ln θ

Mλb
+ O((ln θ )2),

c2 ≈ a11λ

λ − λb
+ O(ln θ ). (F6)

Note that the function inside of the integration diverges at
a21 = c1 and a21 = c2. Since c1 is close to a11, an upper
limit of integration, the major contribution of the integration
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FIG. 12. We show the average settling probability 〈φ〉 for
(a) dominance game and (b) coordination game. The theoretical
prediction Eqs. (F1) and (F3) are shown as purple lines. For the coor-
dination game, we show the approximation given by Eq. (F10) (solid
line). For stochastic simulations, we use 20 000 trials of dominance
or coordination games with a11 = 1 in each point. Especially, the
probability in the dominance game agrees well with the theory. For
the coordination game, our approximation does not work well, but it
reproduces the right trend in the right order of magnitude. We used
M = 1000, λb = 0.9, and λd = 0.4.

comes from the vicinity of this upper limit. We utilize this
diverging behavior to simplify the expression of Eq. (F4). We
do a partial fraction decomposition and neglect nondiverging
term

1

α(c1 − a21)(c2 − a21)

= 1

α(c2 − c1)

(
1

c1 − a21
− 1

c2 − a21

)

≈ 1

α(c2 − c1)

1

c1 − a21
. (F7)

Similarly, we approximate the nominator in integration as

a21
2θ

a21
a11 ≈ a11

2θ . Hence, we get the expression

〈φ〉cd ≈ a11θ (ln θ )2

α(c2 − c1)

∫ a11

0

1

c1 − a21
da21. (F8)

The prefactor can be approximated by

θ (ln θ )2

a11α(c2 − c1)
= θ (ln θ )2

a11

√
β2 − 4αγ

≈ θ (ln θ )2

a11
3Mλb

(F9)

for large M. Finally, we get

〈φ〉cd ≈ θ (ln θ )2

a11Mλb
ln

[
a11Mλb

2 ln(θ−1)

]
. (F10)

We compare the stochastic simulation results and theoretical
prediction for a11 = 1 in Fig. 12.
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