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Almost all animals and plants are inhabited by diverse communities of microorganisms, the micro-
biota, thereby forming an integrated entity, the metaorganism. Natural selection should favor hosts
that shape the community composition of these microbes to promote a beneficial host-microbe sym-
biosis. Indeed, animal hosts often pose selective environments, which only a subset of the environmen-
tally available microbes are able to colonize. How these microbes assemble after colonization to form
the complex microbiota is less clear. Neutral models are based on the assumption that the alternatives
in microbiota community composition are selectively equivalent and thus entirely shaped by random
population dynamics and dispersal. Here, we use the neutral model as a null hypothesis to assess mi-
crobiata composition in host organisms, which does not rely on invoking any adaptive processes un-
derlying microbial community assembly. We show that the overall microbiota community structure
from a wide range of host organisms, in particular including previously understudied invertebrates,
is in many cases consistent with neutral expectations. Our approach allows to identify individual mi-
crobes that are deviating from the neutral expectation and which are therefore interesting candidates
for further study. Moreover, using simulated communities we demonstrate that transient community
states may play a role in the deviations from the neutral expectation. Our findings highlight that the
consideration of neutral processes and temporal changes in community composition are critical for
an in-depth understanding of microbiota-host interactions.

The microbial communities living in and on animals can affect many important host functions, includ-
ing metabolism [1, 2, 3], the immune system [4, 5, 6], and even behaviour [7, 8]. The extent and direction
of this microbe-mediated influence is often linked to the presence or absence of species and their relative
abundances. It is thus paramount to understand how host-associated microbial communities are assembled.
A classical explanation for the emergence of a particular ecological community structure posits that every
species is defined by distinct traits and occupies a specific ecological niche. An implicit hypothesis underly-
ing much of microbiome research is that hosts have the potential to actively shape their associated microbial
communities by providing niches for useful microbes [9]. This implies that individual hosts could select
for a potentially very specific community structure.

While the assumption that the metaorganism – the host together with its associated microbes [10, 11]
– is an actively shaped symbiotic unit is appealing, it may bias interpretation of microbiota-host analyses.
An example is the widely reported connection between the structure of the human gut microbiota and
obesity, which turns out to be very hard to distinguish from random noise [12]. More recently it has also
been demonstrated that the genetic background of the host does not significantly shape human microbiome
composition [13]. Indeed, it has been argued that selective processes should not form the null hypothesis
for explaining the allegedly cooperative host-microbe symbiosis [14]. Instead, neutral models have been
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proposed as a valuable tool for finding patterns in the tremendous complexity of ecological communities
that may have a deeper mechanistic cause. Neutral models assume ecological equivalence between species.
Thus, the community structure within a single host is the outcome of purely stochastic population dynamics,
immigration and local extinctions [15]. The Unified Neutral Theory of Biodiversity [16, 17] extends the
neutral framework from a single site to multiple sites, each harbouring its own local community (Fig 1).
Diversity within the local communities is maintained by immigration from a common source community,
so that the whole setup resembles a mainland-island structure [18]. Neutral theory has been applied to
numerous ecological systems and sparked a lot of controversy along the way [19].

Figure 1 Sketch of the setup of the neutral model.
Only a subset of the available microorganisms can
pass through the environmental filter, forming a
common source pool for all hosts. This selective
step is not described by the neutral model. The
microbiota of individual hosts form local commu-
nities and the microbial intra–host population dy-
namics are neutral. Local diversity is maintained
by immigration from the source pool.

Despite these controversies and with the grow-
ing availability of microbial community data, the
neutral theory has been adapted and applied to the
microbial world [20, 21, 22, 23, 24]. In particu-
lar, the local community vs. metacommunity struc-
ture of neutral theory naturally extends to host-
associated microbial communities. Here, the hosts
are viewed as ecosystems and their microbiota are
treated as local communities [25, 11]. This has
led to several recent studies addressing the ques-
tion whether the microbiota conform to the pat-
terns predicted by the neutral theory. The rank-
abundance patterns of the microbiota from three
domesticated vertebrates for example were found
to be largely consistent with the neutral expecta-
tion [26]. A good fit of the neutral model was also
found for the microbiota of young individuals of
the zebrafish Danio rerio [27]. Interestingly, in this
study neutrality decreased as hosts aged, indicat-
ing an increasing influence of selective processes
over developmental time, potentially linked to the
activation of a fully functioning adaptive immune
response. The human microbiota were found to
be predominantly non-neutral across various body
sites [28], which is thought to be the result of a
phase transition from a dispersal-dominated neutral
regime to a selection-dominated within-host regime
[29]. In this study the few neutral communities
were mostly associated with the urological tract and the skin, while in another study the composition of
the skin microbiota of healthy human subjects in large Chinese cities were found to be better explained by
non-neutral processes [30]. Contrasting results can also be obtained depending on the state of the host, with
the healthy human lung microbiota being largely consistent with a neutral model, while microbes recovered
from diseased lungs diverged from neutrality [31]. Neutral assembly processes in invertebrate hosts are
understudied, but a recent study shows the microbial communities associated with the fruit fly Drosophila
melanogaster to be consistent with the predictions of a neutral model [32]. While these studies have drawn
awareness to the potentially important contribution of neutral processes in shaping the microbiota, the use
of several different neutral models and focus on one or a few, mostly vertebrate host organisms, makes it
hard to draw more general conclusions.

Here, we aim to overcome these limitations by consistently applying a neutral model to a variety of
distinct host systems, including, but not limited to, a wide range of invertebrate hosts. We included host
species from a range of eukaryotic multicellular organisms with different life styles, ranging from early
branching groups such as sponges to the house mouse with its fully developed adaptive immune system.
We used a general modelling approach and combined it with a consistent simulation framework, in order
to achieve an unbiased comparison of the distinct metaorganisms. Based on the neutral null hypothesis, we
identified members of the microbiota which consistently deviate from the neutral expectation, possibly indi-
cating differential selection of these particular microbes. Additionally we hypothesize that some instances
of observed non-neutrality may be due to transient community stages, where the microbiota have not yet
reached its long-term equilibrium composition.
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Results
We employed the neutral model presented by Sloan et al. [20], which is particularly suited for large-sized
microbial populations and has been used before to assess microbiota neutrality [27, 32]. It describes the
stochastic population dynamics within a local community, corresponding to the microbiota of a specific
host. To maintain local diversity, which would otherwise reduce to a single species through ecological drift,
immigration from a fixed source community occurs with rate m. This source community is not equivalent to
the environmental pool of microorganisms, but rather it can be interpreted as the collection of all microbial
species that can pass through the environmental filter of the host (Fig 1). Thus, the neutral model does not
make any assumptions about the selective constraints that apply before and during colonization of the host
and in particular, it is not concerned with any host traits that may restrict the range of colonizing microbes
[33].

This model allows to derive an expression for the expected long-term stationary community composi-
tion. Specifically, it predicts the relationship between the mean relative abundance of a taxon across all
local communities, i.e. the metacommunity, and the probability of actually observing this taxon in any
single community. It has been shown that this relationship is determined by a beta distribution ([20] and
Materials and Methods). The only free parameter of this model is the immigration rate m, which can be
calibrated by a nonlinear fit. The goodness of the fit then indicates how well the prediction of the neutral
model compares to the empirical data. More specifically, we used the coefficient of determination R2 as a
quantitative measure of how consistent the data is with the neutral model. See the Material and Methods
for details of the neutral model, simulations and the fitting procedure.

Neutrality of the microbiota
We fitted the theoretical neutral expectation to the published microbiota compositions of eight different
host species across four phyla and, for comparison, three environmental microbial communities (see the
Materials and Methods and S1 Table for an overview and references).

With the species Sarcotragus fasciculatus, Ircinia oros and Carteriospongia foliascens, our study in-
cluded examples from the oldest extant sister group to all other animals, the sponges (Porifera) [34]. Despite
their filter-feeding life-style, sponges harbor a very diverse and highly specific microbiota [35], which medi-
ates the functional role of the sponges in the ecosystem [36]. This is complemented by the jellyfish Aurelia
aurita, the starlet sea anemone Nematostella vectensis, and the fresh-water polyp Hydra vulgaris. These
hosts are examples from another early branching phylum, the Cnidaria, which possess a basic innate im-
mune system thought to play an important role in controlling the interaction with the associated microbial
community [37]. We also included the nematode Caenorhabditis elegans as one of the best–studied multi-
cellular organisms, whose microbiota has only more recently come into the focus [38, 39, 40, 41]. Finally,

Figure 2 The relationship between mean relative abundance of taxa across all samples and the frequency
with which they are detected in individual samples for three representative datasets. Each dot represents a
taxon and the solid line is the best-fitting neutral community expectation. The dashed lines and grey area
depict the 95% confidence bands. The left panel shows a microbial community sampled from a compost
as an example of an abiotic environment. The centre panel shows data for the natural microbiota of C.
elegans nematode populations sampled from the same compost. The right panel shows the microbiota
of a wild M. musculus mouse population. Here, the red dots indicate members of the microbial family
Ruminococcaceae, which are predominantly overrepresented compared to the neutral expectation. A genus
that was found in much fewer mice than expected by chance is Shigella, being present in less than a quarter
of the hosts despite a neutral expectation of nearly 100% prevalence.
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Figure 3 Goodness of fit of the neutral expectation to a range of host-associated and environmental commu-
nities. Circles denote natural populations and diamonds denote laboratory populations, error bars indicate
95% bootstrap confidence intervals. The grey bars indicate the 95% bootstrap confidence intervals around
the expected goodness of fit (horizontal black line) to a neutral simulation, providing a comparison to a
completely neutral community with the same sample size and diversity. The data for C. foliascens is from
several different natural populations, while the data for H. vulgaris and N. vectensis is from different time
points. Spread of points along the x-axis is added to increase visibility. Phylogeny generated with phyloT
based on NCBI taxonomy. Sponge photographs courtesy of Susanna López-Legentil (UNC Wilmington)
and Mari-Carmen Pineda (AIMS).

the house mouse Mus musculus with its potent adaptive immune system [42] offers a well–studied intestinal
microbiota [43, 44]. Our datasets included lab-reared animals as well samples from several natural popula-
tions from various locations, representing a broad range of environmental and microbial contexts. For some
host species samples from both lab and natural populations were available, which we analyzed separately
to assess the potential impact of heterogeneous natural habitats vs. homogeneous, constant lab conditions,
on neutrality. See the Materials and Methods for a summary of the context of the individual datasets.

In all cases, community composition was determined by the relative abundances of operational tax-
onomic units (OTUs), obtained by standard high-throughput 16S rRNA sequencing techniques [45]. To
ensure equal sample sizes, all OTU abundance tables were rarefied to the same read depth (1000 reads per
sample). We analyzed the effect of the rarefaction on the neutral fit for datasets where more reads were
available and found it to be of little relevance for most communities (S6 Fig).

A comparison of the theoretical and observed relationship between mean relative abundances and oc-
currence frequencies of OTUs for three illustrative examples is shown in Fig 2 (see S1 Fig for examples
of the neutral fit for all datasets). The neutral model generally predicts a specific monotic increase of the
occurence frequency of an OTU with an increasing mean relative abundance of this OTU across all samples.
This is a quantitative reflection of the null expectation that more abundant OTUs should also be found in
more samples. Consequentely, OTUs that are found below the prediction in the lower right region of the
graph are found in fewer samples than expected by their mean abundance across all samples. Conversely,
OTUs that lie above the neutral expectation are found more often than expected.

A summary of the goodness of fit of the neutral model to the microbial communities from all datasets
is shown in Fig 3. Higher R2 values generally indicate a closer match between the neutral expectation and
the data. To aid the interpretation and comparison across datasets, we additionally contrasted every dataset
with a corresponding simulated, completely neutral community that had the same sample size, microbial
diversity and estimated immigration parameter m (see Material and Methods for details of the simulation).
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Figure 4 Impact of sample number on the goodness of fit of the neutral expectation. For each sam-
pling depth, communities where resampled 100 times with replacement at a rarefaction level of 1000
reads/sample. The left panel shows the results for simulated neutral communities. The immigration pa-
rameter was fixed at m = 0.05 and neutral dynamics were simulated for 106 timesteps in all cases. Gener-
ally goodness of fit remained high over a large range of sample sizes, reflecting the underlying completely
neutral community dynamics. Note, that goodness of fit did not reach 1.0 in finite and relatively small
metacommunities, even if all communities were sampled. The right panel shows the effect of subsampling
for several host-associated microbial communities. As for the simulated data, observed levels of neutrality
were relatively robust, only dropping off at very low sample sizes. The C. elegans datasets showed a very
poor fit at very low sampling depths, but began to level off well below the neutrality values of the other
datasets. Shaded areas indicate 95% bootstrap confidence intervals.

This allows a comparison of the deviation between the empirically obtained measure of neutrality and the
expected values from a known neutral community for each dataset. This is crucial, since depending on the
sample size and microbial diversity, even a completely neutral community will not yield a perfect fit, even
when there is sufficient time to reach an equilibrium (Fig 4).

Turning first to the environmental microbial communities, we generally observed a high consistency
with the neutral expectation. The majority of microbial taxa found in compost samples for example closely
followed the neutral prediction (Fig 2), as reflected by a high goodness of fit measure (R2 = 0.86). While
the goodness of fits to the microbial communities in seawater and marine sediment are lower, they lie in
the range expected from the respective neutral simulations. The sediment dataset showed a marked effect
of rarefaction, with the goodness of fit increasing to the same level as the seawater community when more
reads are included (S6 Fig). It is also the dataset with the highest microbial diversity (> 3000 OTUs) and
a relatively low sample size, which may indicate a greater influence of rarefaction on rare taxa. The over-
all good consistency of the environmental communities with the neutral expectation aligns with previous
studies showing that random population dynamics and immigration play a major role in shaping microbial
communities in abiotic environments [21, 23, 24].

Biological hosts with their potential for active selection of specific taxa, could on the other hand be ex-
pected to have their resident microbial communities under tighter control, reducing the relative importance
of stochastic processes after colonization, which would be reflected in a worse fit of the neutral expectation.
The nematode C. elegans for example naturally consumes bacteria as its food source and possesses an in-
nate immune system as a defence against the threat of ingested pathogenic microbes [46]. This suggests that
these worms have some control over their microbiota and indeed we found a substantial mismatch between
the neutral expectation and the worm microbiota (Fig 2), resulting in a low goodness of fit (R2 = 0.44). We
also found a similar level of neutrality for the microbiota of laboratory worm populations (Fig 3), indicating
a similar influence of neutral processes under more controlled laboratory conditions. For both the natural
and lab-enriched worms the goodness of fit was well below the levels expected from the corresponding
neutrally simulated communities (Fig 3). It is noteworthy that these specific worms were isolated from
the same compost where the environmental microbial communities showed a very good alignment with the
neutral expectation (Fig 2, 3).

Vertebrate hosts with their more sophisticated and complex immune system are expected to diverge
even further from the neutral expectation. However, intriguingly, the neutral model showed a very good fit
to the microbiota of a wild M. musculus mouse population (Fig 2). The best fit was in fact on par with the
fit to the environmental microbes isolated from compost (R2 = 0.86) and the deviation from the simulated
neutral community was minimal (Fig 3). The high level of neutrality in the natural mouse population was
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corroborated by a laboratory population of M. musculus (Fig 3).
We found similar high levels of neutrality for sponges, which as aquatic filter feeders are exposed to

the full range of marine microbes. Like nematodes, they have a basic immune system [47], and especially
for S. fasciculatus and some populations of C. foliascens, the data was in very good agreement with the
neutral expectation (Fig 3, S1 Fig). In contrast, the results for the three aquatic polyps were less consistent.
The two laboratory populations of A. aurita were in very good agreement with the neutral prediction, while
samples taken at different developmental stages of H. vulgaris and N. vectensis generally showed a larger
deviation from full neutrality (Fig 3).

The estimated immigration parameter m, which can be interpreted as a proxy for inter-host transmission
and similarity of the individual microbial communities, showed considerable variation across the datasets
(S2 Fig). Overall, communities from aquatic samples showed higher best-fit values of m than terrestrial
samples. This potentially indicates an increased between-sample dispersal and a more homogeneous mi-
crobial distribution in aquatic settings, at least on the relevant spatial scales. This seems especially plausible
for the filter-feeding sponges sampled from the same location. In contrast, we obtained relatively low es-
timates for the immigration parameter for the mice and nematodes, in both the natural and the laboratory
populations. For nematodes in particular, a more patchy distribution of microbes on the spatial microscale,
together with stochastic founder effects during colonization [48], may play a role in creating more heteroge-
neous microbiota compositions. In combination with less exchange of microbes in this terrestrial organism
with low dispersal ability, this can contribute to low values of m.

Note, that we did not find a correlation between immigration rate m, sample size or microbiota diversity
and the level of neutrality (S5 Fig). We additionally analyzed the effect of varying sample sizes by subsam-
pling all datasets with more than 20 samples, since the number of individual samples has the potential to
influence the composition of the source community of available microbial species. We found the observed
levels of neutrality to be robust against subsampling, unless sample sizes are very small (Fig 4). In all cases,
neutrality consistently decreased with decreasing sample sizes, potentially reflecting a decreasing overlap
in the local microbial communities. We performed this analysis for both the simulated and the empirical
datasets, which both showed a very similar impact of subsampling.

Comparing the neutral expectation with data from a wide range of environments and host species
showed that a good fit of the neutral model is in fact the norm rather than the exception (Fig 3). In par-
ticular, there was no substantial difference in observed neutrality between microbial communities living in
environmental samples, such as compost and seawater, and the microbiota from several animal host species.
We thus conclude that the observed patterns of microbiota composition in hosts as different as mice and
marine sponges can in many cases already be obtained with a neutral null model.

Identifying non-neutral taxa
Our analysis showed that for all host species, regardless of the specific goodness of fit of the neutral model,
there are microbial taxa that diverged substantially from the neutral expectation. Since an essential ingre-
dient of neutral theory is the assumption of selective equivalence, such a divergence from neutrality may
signify taxa that are subject to differential (e.g. host-mediated) selection. Thus, identifying specific non-
neutral members in the bulk of the microbiota is of great practical importance. In particular, OTUs that are
observed more often than expected by chance are commonly seen as good candidates for beneficial symbi-
otic microbes. In general, however, it is not straightforward to decide whether a microbial taxon is under
positive or negative selection within a specific host. A taxon could for example be observed more often than
expected because its is indeed essential for the host even at low abundances, and is thus positively selected
for in the community. Alternatively, such over-representation may point to a microbe which is simply a
very good colonizer, i.e. it can easily disperse and pass through a host’s environmental filter, but within the
host it is subject to negative selection to prevent it from reaching high abundances. Here, the practical value
of the neutral model lies in its ability to identify microbes that appear to interact in a specific, non-neutral
form with the host and are thus worthy of further investigation, taking into consideration ecological and
functional information.

In the following, we classified all OTUs outside of the 95% confidence bands around the neutral pre-
diction as not consistent with the neutral expectation. We found that the distribution of non-neutral OTUs
around the neutral prediction is roughly symmetrical in all cases, and no microbial order deviated system-
atically above or below the neutral expectation (S3 Fig).

To further distinguish random deviations from neutrality and actual non-neutral candidates, we also
applied a more conservative definition of non-neutrality. For this, a particular OTU was classified as non-
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neutral only when it consistently diverged from the neutral expectation in the same direction in independent
host populations. Applying this definition to the natural and laboratory populations of C. elegans and M.
musculus yielded a reduced subset of microbial taxa, which lay above or below the neutral prediction in
both populations.

This analysis revealed that of the C. elegans microbiota, only the genus Ochrobactrum is consistently
under-represented (S2 Table). It is found in only ca. 40% of the natural isolates and 70% of the laboratory
worms, despite its relatively high mean abundance across all worms and a neutral expectation of 100%
prevalence. This underrepresentation of Ochrobactrum is intriguing, as it had previously been identified to
be enriched in worms, to favor growth of worm populations, and to be able to persist in the nematode’s gut
even under starvation conditions [39]. However, this observation is consistent with a transient community
state (see below), where Ochrobactrum has not yet colonized all worms, despite being very successful once
it has entered the worm.
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Figure 5 Goodness of fit of the neutral long-term
expectation to neutrally simulated communities over
time. The two insets show the best fits of the neu-
tral model to snapshots of the communities at an early
timepoint (indicated by the red dot) and a late time-
point (indicated by the blue dot). Scale and meaning
of the axes for the insets are the same as in Fig 2.
Each community was initialised with a few random
colonizers, which yielded non-neutral initial commu-
nities that neutralized over time through a stochastic
death-birth process and immigration. The shaded area
indicates the 95% bootstrap confidence intervals.

In the M. musculus microbiota of natural and
laboratory populations, over a third of the over-
represented taxa were from the bacterial fam-
ily Ruminococcaceae. Members of this family
were never consistently found below the neutral
expectation across hosts (Fig 2 and S3 Table).
This family includes several physiologically rel-
evant genera involved in the utilization of plant
polysaccharides such as starch and cellulose
[49], and high-fat diets low in plant-derived ma-
terials have been found to decrease the propor-
tion of the Ruminococcaceae in mouse guts [50].
A notable microbe which was found in signifi-
cantly fewer mice than expected from the neu-
tral model is Shigella (Fig 2). Invasive Shigella
can cause intestinal inflammations in humans,
but mice mount an effective defense against it,
thereby preventing acute infections [51]. This
illustrates how potentially pathogenic microbes,
which may be actively selected against by the
host, can be found diverging from the neutral
expectation. That we were able to consistently
identify a bacterial family that had previously
been linked to important metabolic functions as
over-represented and potential pathogens as underrepresented, shows the utility of the neutral model as a
null hypothesis and a tool of finding meaningful patterns in the vast complexity of the microbiota.

Another commonly applied approach to tackle this complexity consists of the identification of OTUs that
are shared among hosts, typically denoted as the core microbiota. This usually requires setting a specific
occurence threshold for the taxa found across hosts in similar habitats [52]. Applying this persistence-
based definition to our data shows that a substantial portion of the core taxa, e.g. those with an occurence
frequency above 90%, fall within the neutral expectation (Fig 2, S1 Fig). This implies that many taxa within
the abundant and prevalent core microbiota may actually not occur more often than would be expected by
chance. Taxa such as the Ruminococcaceae in mice on the other hand, which were below typical cut-off
prevalences but occurred more often than expected by chance, emerge as interesting candidates beyond the
usual core taxa. Deviations from the neutral expectation can thus complement and enrich insights gained
from the widely used concept of the core microbiome.

Change of neutrality over time
As we have discussed in the previous section, the most commonly assumed cause of deviations from neu-
trality is selection by the host, for example through its immune system. In the context of our study this
would mean that after colonization, host-mediated selection may have altered the composition of the mi-
crobial community, resulting in a non-neutral community structure. Interestingly, we found a particularly
strong deviation from neutrality for the nematode host, which possesses a rather simple immune system
[53]. In contrast, other hosts with more complex immune systems, for which strong selection could have
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been presumed, show microbiomes close to neutral expectations. This suggests a role of additional factors
beyond the immune system driving deviations from the neutral expectation.

A crucial aspect of the neutral prediction is that it is based on the expected long-term stationary distribu-
tion of the microbial community. If the community is in a transient state, however, it can appear non-neutral
even if it is the product of a purely neutral process. This effect is illustrated in Figure 5, showing a simula-
tion of the population dynamics of 50 neutral communities (Material and Methods). For every community,
only a few random colonisers were picked from the source community, which yields random, but non-
neutral, initial communities. We then compared the neutral expectation to the in-silico communities over
time during the simulation, showing that they become “neutralized” through random population dynamics
and immigration until the community composition reaches its long-term equilibrium, or the host dies.

Thus, if community assembly is governed by purely neutral processes, we would expect the fit of the
neutral model generally to become better over time. Decreasing neutrality, which has been reported for the
zebrafish Danio rerio [27], would on the other hand be a good indicator of selective processes. A similar
increase in the relative importance of selective processes over stochastic effects has been described for the
ecological succession of microbial communities in salt marshes [54]. However, while the microbiota from
the Hydra and Nematostella populations show clear developmental patterns [55], we did not find a clear
temporal trend in the deviation from the neutral model (S4 Fig).

While we could not conclusively disentangle transient effects in the interplay between ecological drift
and selective processes, in principle it is possible that a poor fit of the neutral expectation may be due to
a transient non-equilibrium state of the community, rather than actual non-neutral processes. This effect
would be especially pronounced for short-lived host species such as C. elegans, where initial colonization
can lead to communities that appear non-neutral even for ecologically equivalent (i.e. neutral) colonizers
[48]. The microbiota of such hosts may never effectively converge to the neutral long-term expectation
within the lifetime of the host, even if they are dominated by stochastic dynamics and immigration. For
longer–lived species, such as sponges and mice, we would expect these transient effects to play a smaller
role.

Comparison with a random sampling model
The observed high levels of neutrality do not necessarily imply that the microbiota are simply a random
collection of microbes. A good fit of the expected distribution indicates that the simple neutral model is
sufficient to describe the relationship between abundance of a species and its occurrence frequency. But
this can not rule out other processes, niche-related or stochastic, that lead to the same community structure
[56].

A very simple alternative model is obtained by assembling a local community by drawing randomly
from the fixed source community, thus neglecting stochastic reproduction events and dispersal. In this case,
the probability of observing a specific species in a local community is determined by a binomial distribu-
tion. Comparing the best fits of the neutral expectation and of a binomial distribution using the Aikake
information criterion (AIC) indicated that the neutral model fits the data better in all cases (S1 Table). This
indicates that the microbiota are not merely random samples of the microbes present in the metacommunity.

In a more general context, ecological communities such as microbiota are examples of component
systems, where each specific instance of the system (e.g. a specific microbial community) is comprised of
components drawn from a shared set of basic building blocks (e.g. the source pool in our scenario). Such
systems have been shown to exhibit some general invariant properties, and deviations from these properties
may reveal functional constraints imposed on the shared components [57].

Discussion
We set out to quantify how consistent the microbiota of a range of different host organisms are with the
expectation from a neutral model. We found that the structures of the considered host-associated microbial
communities are often in surprisingly good agreement with the neutral expectation. Taking into account
a more complete simulation analysis of the neutral model further suggested that transient stages of the
microbiota may contribute to the divergence from neutrality observed for some host species.

Even a high consistency with the neutral expectation does not rule out the presence of selective abiotic
or biotic processes, as non-neutral models can yield predictions consistent with neutral theory under cer-
tain conditions [56]. Moreover, biological hosts will select for a subset of the environmentally “available”
microbes, and yet the resulting microbiota may still look mostly neutral. In fact, comparing the microbes
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present in seawater to the species present in individual sponges reveals that there is almost no overlap
(S7 Fig). This indicates that sponges are a highly selective environment, imposing strong constraints on
potential colonizers, and yet after colonization their microbiota are very consistent with the neutral expec-
tation. A similar selective filter is found for C. elegans, where only a fraction of the microbes present in
the environment successfully colonize the worms (S7 Fig). This suggests that there are host traits that act
as environmental filters [33] and they often will do so in a predictable, i.e. deterministic way. In this sense
the microbiological tenet that “everything is everywhere, but, the environment selects” [58] also applies
when the environment happens to be another biological organism. However, our results highlight that the
processes that are at play after the environmental filter has been passed can be highly consistent with the
neutral model. This apparent contradiction between selective environments and neutral processes acting on
the allowed set of species may also have contributed to some of the contrasting results found in previous
studies [59].

This filtering of potential colonizers is not unique to biological hosts, but what sets biological hosts
apart from other habitats is the potential of the hosts’ filtering mechanisms to evolve. An example for
such an evolvable mechanism is the production of antimicrobial peptides (AMPs) by several Hydra species
[60]. Here, each Hydra species was shown to posses a specific AMP expression profile, selecting for
a species-specific set of bacteria by inhibiting colonization of foreign microbes. Another recent study
showed how host-derived proteins from the jellyfish A. aurita interfere with bacterial quorum sensing to
modulate host colonization [61]. While these examples do not constitute proof of adaptive coevolution
between the host and its microbiota, they exemplify the possible specific selection capabilities of the host.
Moreover, our results then highlight that microbiota composition is the outcome of several intertwined
processes. For example, selective filtering at the colonization stage may be controlled by the host, or
by microbe characteristics, and is then presumably followed by largely neutral, stochastic processes. It is
further possible that selection at either the colonization stage or community assembly thereafter only affects
a subset of microbes, while the remaining microbes follow neutral dynamics. Another factor to consider
is that taxonomic and functional microbial community composition may be shaped by largely independent
processes [62, 63]. Given the known examples of functional redundancy present e.g. in the human gut
microbiota [64], viewing communities from the perspective of functional (e.g. metabolic) categories can
provide an alternative picture to data based on 16S rRNA gene based taxonomic profiling [65]. These
intertwined processes need to be better understood and taken into account for an enhanced understanding
of microbiota assembly.

Our simulation analysis demonstrates that the community needs time to reach the dynamic neutral equi-
librium (Fig 5) through ecological drift. This emphasizes the need for temporal data to further investigate
the role of transient community stages and drift in microbial communities. Such data is usually not available
for host-associated microbial communities, and our study highlights the need to be aware of this potentially
confounding factor when applying neutral models to cross-sectional community snapshots.

The neutral assumption that species do not interact is an anathema to many ecologists, and for the
microbiota in particular it is assumed that the functioning of the community is enhanced by cooperative
interactions. Recent results however suggest that interactions within the mouse gut microbiota are indeed
predominantly competitive and very weak [66]. Together with our finding of the microbiota often being
consistent with neutral expectations for several different host species, this lends support to taking the neutral
null hypothesis as a key component of our understanding of host-microbe interactions. We would like to
emphasize that even a good consistency with the neutral model does not imply that the microbiota are
functionless or that hosts are non-selective – the Hydra system actually contains taxa that confer a selective
advantage, but which appear as neutral in our present analysis [67]. Neutral theory in fact makes no claims
about microbiota function, rather it assumes that the different community compositions that arise after the
environmental filter of the host has been passed are, in the words of the original formulation of the neutral
theory, selectively nearly equivalent, that is, they can do the job equally well in terms of survival and
reproduction [68] of the individual host.

Awareness of the potentially significant role of neutrality in shaping the microbiota is crucial to avoid
being led astray by randomness in view of the incredible complexity of host-microbiota symbioses and to
be able to uncover general principles of microbiome assembly.
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Methods

Summary of datasets and data availability
The collection of microbial abundance datasets for the environmental and host-associated communities (i.e.
OTU tables) was assembled as part of the Collaborative Research Centre 1182 “Origin and Function of
Metaorganisms” and is available from the authors on request. The raw sequencing data has been published
previously and is available online, see S1 Table for the corresponding references. In the following we give a
short summary of the context of the respective datasets, for details we refer to the corresponding references.

Sponges [35]

S. fasciculatus and I. oros samples were collected at the same location on the Spanish coast on different
dates. C. foliascens samples were collected at different locations along the Australian coast on different
dates.

C. elegans [39]

The natural isolates of single C. elegans worms were collected on different dates at the same location in
Northern Germany.For the lab enriched populations of C. elegans , single worms isolated from the same
location were transfered to agar plates seeded with E. coli as food. On these plates the worms were allowed
to reproduce via selfing and were maintained for 2-3 weeks before sampling the resulting populations.

Mice [44]

For the natural mice, 69 mice were captured from 34 unique locations, with a maximum of 3 mice per
location, in the hybrid zone of M. musculus musculus and M. musculus domesticus in Bavaria, Germany,
during May and June 2011.

The lab dataset includes 40 F2 hybrids between M. musculus domesticus and M. musculus musculus
standard lab strains, and additionally seven each of the domesticus and musculus parental mice.The parental
strains were kept under conventional conditions for two generations before setting up experimental crosses.

N. vectensis [55]

Animals were sampled from 15 independent laboratory cultures under different, but fixed environmental
conditions (temperature and salinity) at specific time points.

H. vulgaris [69]

Animals were sampled at several time points from independent, clonal lab cultures with identical and con-
stant environmental conditions.

A. aurita [61]

Animals were sampled from 4 independent populations, one control population and 3 treatment popula-
tions.The treatment (QQ) populations were each treated with a different host-derived quorum-quenching
protein.

Environmental samples

Compost samples were collected in the context of the C. elegans study [39], following the same protocols
and at the same locations.Marine seawater and sediment samples were collected in the context of the sponge
microbiota study [35].
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The neutral model
Here, we summarize the model presented in [20], considering only the purely neutral special case with
equivalent growth rates for all species. A local community contains a fixed number of N individuals, of
which Ni are of species i. Individuals die with a constant death rate δ and a dead individual is replaced by
reproduction of a local individual (with probability 1−m), or by immigration from a fixed source commu-
nity (with probability m). Thus the total population size N remains constant. The relative abundance of a
species in the source community is denoted by pi. With this, the probabilities that the number of individuals
of species i increases by one, decreases by one or stays the same are given by

P(Ni→ Ni +1) =
N−Ni

N

(
m pi +(1−m)

Ni

N−1

)
,

P(Ni→ Ni−1) =
Ni

N

(
m(1− pi)+(1−m)

N−Ni

N−1

)
,

P(Ni→ Ni) =
Ni

N

(
m pi +(1−m)

Ni−1
N−1

)
+

N−Ni

N

(
m(1− pi)+(1−m)

N−Ni−1
N−1

)
.

(1)

These transition probabilities correspond to Hubbell’s original neutral model, but the following continuous
approximation derived by Sloan et al. [20] can be efficiently applied to very large population sizes and
allows for a relatively simple analytical solution. In particular, this allows for a calibration with the high-
throughput 16S rRNA sequencing data obtained from microbial communities.

If N is large enough, such as in microbial communities, we can assume the relative abundance xi =Ni/N
of species i to be continuous. This leads to a Fokker-Planck equation for the probability density function
φi(xi, t) of xi,

∂φi

∂ t
=− ∂

∂xi
(Mδx φi)+

1
2

∂ 2

∂x2
i
(Vδx φi), (2)

where Mδx and Vδx are the expected rates of change in relative abundance and variability, respectively.
Assuming the time intervals between individual death-birth events are short, they can be approximated by

Mδx ≈
P(Ni→ Ni +1)−P(Ni→ Ni−1)

N
=

m(pi− xi)

N
(3)

and

Vδx ≈
P(Ni→ Ni +1)+P(Ni→ Ni−1)

N2 =
2(1− xi)xi +m(pi− xi)(1−2xi)

N2 . (4)

Equation (2) describes the neutral population dynamics of a local microbial community. This is not in
general amenable to analytical treatment, but one can approximate the long-term equilibrium solution of
this equation. Namely, the so-called potential solution for ∂φi/∂ t = 0 arising from Mδx φi− 1

2
∂

∂xi
(Vδx φi) =

const., is given by the beta distribution

φi(xi;N, pi,m) = c(1− xi)
N m(1−pi)−1 xN m pi−1

i , (5)

with c = Γ(N m)/ [Γ(N m(1− pi))Γ(N m pi)]. This can be connected to empirical observations. For a given
detection threshold d, the probability of actually observing a species in a local community is given by the
truncated cumulative probability density function

P(species i observed) =
∫ 1

d
φi(xi;N, pi,m)dx . (6)

Here, N is given by the number of reads per sample and the relative abundance pi of the focal species in the
source community can be approximated by the mean relative abundance of the species across all samples.
The detection threshold is set to d = 1/N. The probability of immigration m is thus the only free parameter
and can be used to fit the predicted long-term distribution to the observed occurence frequencies of the
microbiota.
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Fitting procedure
The fitting process applied to all datasets, empirical and simulated, works as follows. First, the OTU
abundance table was rarefied to the desired read depth (N =1000 reads per sample for the main results,
which was determined by the lowest available read depth from all datasets). The expected observation
probability (6) and a binomial model were then fitted to the observed mean relative OTU abundances pi and
occurence frequencies fi obtained from this rarefied table using non-linear least squares minimization with
the lmfit package (pypi.org/project/lmfit) [70]. As a measure of the goodness of fit we then calculated the
standard coefficient of determination using the ratio of the sum of squared residuals and the total sum of
squares:

R2 = 1− ∑i( fi−Φi)
2

∑i( fi− fi)2
, (7)

where Φi is the expected ocurrence frequency obtained from the best-fit neutral prediction. Additionally, for
comparison of the neutral and binomial model, the mean Aikake information criterion (AIC) was calculated.
In all cases, 95% bootstrap confidence intervals were obtained by resampling the hosts 100 times with
replacement and performing the described fitting procedure on each resampled set of hosts.

Neutral model simulations
Simulated neutral communities were generated following the stochastic death-birth-immigration process
described above and in [20]. Communities with a prescribed number of samples/communities, community
size, source pool diversity and immigration parameter m were started from random initial conditions and
simulated for 106 time steps to let them reach dynamic equilibrium. The community snapshots obtained at
the end of each simulation were treated with the same fitting procedure as the empirical datasets.

Code availibility
The Python code for fitting and simulating the neutral model is available at http://github.com/misieber/neufit.
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Table S1 Overview of the datasets included in this study, their source (natural or laboratory communities),
number of samples, microbial diversity and a summary of the results of the model fits. Data is for rarefaction
level of 1000 reads per sample. Reference is to the original study containing detailed information on sample
preparation and raw sequencing data.

R2 AIC
Samples Source #samples #OTUs best-fit m neutral neutral binomial Reference

Caenorhabditis elegans [39]
natural samples natural 22 193 0.03 0.44 -673.2 -452.5
lab samples lab 34 106 0.007 0.38 -330.0 -208.2

Ircinia oros
Spain, Barcelona natural 11 1121 0.41 0.6 -5391.47 -4966.26 [35]

Sarcotragus fasciculatus
Spain, Barcelona natural 12 735 0.83 0.81 -3552.82 -3165.09 [35]

Carteriospongia foliascens [35]
Australia, Davies Reef natural 15 939 0.36 0.6 -5435.40 -5007.39
Australia, Fantome Island natural 14 728 0.81 0.79 -3740.45 -3336.08
Australia, Orpheus Island natural 15 750 0.86 0.8 -3987.01 -3539.84
Australia, Green Island natural 13 774 0.47 0.59 -3846.0 -3542.79
Australia, Torres Strait natural 7 336 0.78 0.58 -1410.75 -1244.0

Mus musculus [44]
natural samples natural 69 281 0.11 0.85 -1217.97 -998.15
lab samples lab 54 136 0.18 0.84 -536.30 -452.48

Nematostella vectensis [55]
1 day post fertilization (dpf) lab 6 226 0.23 0.52 -738.68 -655.06
4 dpf lab 15 149 0.33 0.67 -521.62 -479.29
40 dpf lab 12 155 0.09 0.59 -502.39 -413.96
123 dpf lab 12 195 0.39 0.69 -678.72 -623.49
385 dpf lab 20 225 0.17 0.58 -766.93 -679.74
401 dpf lab 8 120 0.7 0.74 -446.34 -402.59

Hydra vulgaris [69]
0.5 weeks after hatching (wah) lab 8 699 0.6 0.5 -2527.91 -2289.35
2.5 wah lab 8 248 0.28 0.44 -820.92 -756.19
5 wah lab 8 242 0.53 0.43 -1129.85 -1041.28
9 wah lab 8 257 0.5 0.44 -833.46 -765.88
15 wah lab 8 140 0.45 0.59 -466.20 -432.55

Aurelia aurita [61]
control lab 5 163 0.91 0.69 -624.96 -538.45
quorum quenching (QQ) lab 18 391 0.62 0.85 -1716.09 -1532.6

Environment
Compost natural 65 587 0.48 0.86 -2690.26 -2491.77 [39]
Seawater natural 16 2518 0.62 0.7 -12345.33 -11113.17 [35]
Sediment natural 12 3796 0.77 0.47 -16658.27 -14665.48 [35]
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Figure S1 The relationship between mean relative abundance of taxa across all samples and the frequency
with which they were detected in individual samples. Each dot represents a taxon and the solid line is
the best-fitting neutral community expectation. The dashed lines and grey area depict the 95% confidence
bands.
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Figure S1 The relationship between mean relative abundance of taxa across all samples and the frequency
with which they were detected in individual samples. Each dot represents a taxon and the solid line is
the best-fitting neutral community expectation. The dashed lines and grey area depict the 95% confidence
bands.
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Figure S2 Overview of the best fit values for the immigration parameter m of the neutral model. Circles
denote natural populations and diamonds denote laboratory populations, error bars indicate 95% bootstrap
confidence intervals. The data for C. foliascens is from several different natural populations, while the data
for H. vulgaris and N. vectensis is from different time points. Spread of points along the x-axis is added
to increase visibility. Phylogeny generated with phyloT based on NCBI taxonomy. Sponge photographs
courtesy of Susanna López-Legentil (UNC Wilmington) and Mari-Carmen Pineda (AIMS).
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Figure S3 Bars show the mean relative abundance of the ten most abundant microbial orders in a specific
host population. The colored sections indicate the fractions of OTUs within that order which were found
above the neutral expectation (red), within the neutral expectation (grey) and below the neutral expectiation
(blue).
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Figure S3 Bars show the mean relative abundance of the ten most abundant microbial orders in a specific
host population. The colored sections indicate the fractions of OTUs within that order which were found
above the neutral expectation (red), within the neutral expectation (grey) and below the neutral expectiation
(blue).
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Figure S3 Bars show the mean relative abundance of the ten most abundant microbial orders in a specific
host population. The colored sections indicate the fractions of OTUs within that order which were found
above the neutral expectation (red), within the neutral expectation (grey) and below the neutral expectiation
(blue).
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Table S2 Non-neutral genera found in the C. elegans microbiota

Domain Phylum Class Order Family Genus

Bacteria Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae unclassified

over-represented

Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Devosia
Bacteria Proteobacteria Alphaproteobacteria unclassified unclassified unclassified
Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae unclassified
Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae unclassified
Bacteria Proteobacteria Betaproteobacteria Burkholderiales unclassified unclassified
Bacteria Proteobacteria Betaproteobacteria unclassified unclassified unclassified
Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae unclassified
Bacteria Proteobacteria Gammaproteobacteria unclassified unclassified unclassified
Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae unclassified
Bacteria unclassified unclassified unclassified unclassified unclassified

Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Brucellaceae Ochrobactrum under-represented

Table S3 Non-neutral genera found in the M. musculus microbiota

Domain Phylum Class Order Family Genus

Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Acetomicrobium

over-represented

Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Proteiniphilum
Bacteria Bacteroidetes Flavobacteria Flavobacteriales Cryomorphaceae Fluviicola
Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae 4 Caminicella
Bacteria Firmicutes Clostridia Clostridiales Clostridiales_Incertae Sedis XIII Anaerovorax
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Clostridium XlVb
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea
Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae 1 Peptococcus
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Acetanaerobacterium
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ethanoligenens
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Flavonifractor
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Hydrogenoanaerobacterium
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Sporobacter
Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Anaerospora

Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinilabiaceae Anaerophaga

under-represented

Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Butyricimonas
Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Paludibacter
Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Tannerella
Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella
Bacteria Bacteroidetes Sphingobacteria Sphingobacteriales Flammeovirgaceae Sediminitomix
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Butyrivibrio
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Catonella
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Marvinbryantia
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Figure S4 Neutrality of the microbiota of Hydra vulgaris and Nematostella vectensis at different time points
during development and adult life stages (95% bootstrap confidence intervals attached). The dashed lines
are the best linear fits, slopes are not significantly different from zero.
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Figure S5 Consistency with the neutral model vs. the estimated dispersal parameter m (top left), the number
of samples (top right), number of identified taxa (bottom left) and the Shannon-Index of diversity (bottom
right). Circles denote natural populations and diamonds laboratory populations.
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Figure S6 Impact of rarefaction on neutrality. Generally, consistency with the neutral model initially de-
creased with increasing read depth, until it leveled off as read depth increased further. For communities
that showed a high consistency with the neutral model, varying read depths did not affect the results much,
ranging from almost no effect at all for A. aurita to a slight drop in neutrality for the seawater samples from
R2 = 0.7 at 1000 reads/sample to R2 ≈ 0.6 at 50000 reads/sample. Only for the communities associated
with the sponge I. oros and two of the C. foliascens populations did read depth show a more pronounced
effect, where in both cases neutrality dropped from R2 ≈ 0.6 at 1000 reads/sample to R2 ≈ 0.45 when read
depth was exceeding 10000 reads/sample. Interestingly, an opposite trend was observed for the sediment
samples, where neutrality increased from R2 ≈ 0.5 at 1000 reads/sample to R2 ≈ 0.7 at 10000 reads/sample.
The minimal to moderate changes in neutrality with increasing read depth for some datasets potentially re-
flect the influence of rare, non-neutral taxa, which are only detected with higher read depths. Shaded areas
indicate 95% bootstrap confidence intervals.

Figure S7 Overlap of taxa found in hosts and the environment. Left: For two sponge species, there is only
a very small overlap between the sponge microbiota and the taxa found in seawater. Right: For C. elegans,
only a subset of the environmentally available microbes is found in the worms.
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