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Abstract

Almost all animals and plants are inhabited by diverse communities of microorganisms, the

microbiota, thereby forming an integrated entity, the metaorganism. Natural selection should

favor hosts that shape the community composition of these microbes to promote a beneficial

host-microbe symbiosis. Indeed, animal hosts often pose selective environments, which

only a subset of the environmentally available microbes are able to colonize. How these

microbes assemble after colonization to form the complex microbiota is less clear. Neutral

models are based on the assumption that the alternatives in microbiota community composi-

tion are selectively equivalent and thus entirely shaped by random population dynamics and

dispersal. Here, we use the neutral model as a null hypothesis to assess microbiata compo-

sition in host organisms, which does not rely on invoking any adaptive processes underlying

microbial community assembly. We show that the overall microbiota community structure

from a wide range of host organisms, in particular including previously understudied inverte-

brates, is in many cases consistent with neutral expectations. Our approach allows to iden-

tify individual microbes that are deviating from the neutral expectation and are therefore

interesting candidates for further study. Moreover, using simulated communities, we dem-

onstrate that transient community states may play a role in the deviations from the neutral

expectation. Our findings highlight that the consideration of neutral processes and temporal

changes in community composition are critical for an in-depth understanding of microbiota-

host interactions.

The microbial communities living in and on animals can affect many important host func-

tions, including metabolism [1–3], the immune system [4–6], and even behavior [7, 8]. The

extent and direction of this microbe-mediated influence is often linked to the presence or

absence of species and their relative abundances. It is thus paramount to understand how

host-associated microbial communities are assembled. A classical explanation for the emer-

gence of a particular ecological community structure posits that every species is defined by

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000298 June 19, 2019 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sieber M, Pita L, Weiland-Bräuer N,
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distinct traits and occupies a specific ecological niche. An implicit hypothesis underlying

much of microbiome research is that hosts have the potential to actively shape their associated

microbial communities by providing niches for useful microbes [9]. This implies that individ-

ual hosts could select for a potentially very specific community structure.

While the assumption that the metaorganism—the host together with its associated

microbes [10, 11]—is an actively shaped symbiotic unit is appealing, it may bias interpretation

of microbiota-host analyses. An example is the widely reported connection between the struc-

ture of the human gut microbiota and obesity, which turns out to be very hard to distinguish

from random noise [12]. More recently, it has also been demonstrated that the genetic back-

ground of the host does not significantly shape human microbiome composition [13]. Indeed,

it has been argued that selective processes should not form the null hypothesis for explaining

the allegedly cooperative host-microbe symbiosis [14]. Instead, neutral models have been pro-

posed as a valuable tool for finding patterns in the tremendous complexity of ecological com-

munities that may have a deeper mechanistic cause. Neutral models assume ecological

equivalence between species. Thus, the community structure within a single host is the out-

come of purely stochastic population dynamics, immigration, and local extinctions [15]. The

Unified Neutral Theory of Biodiversity [16, 17] extends the neutral framework from a single

site to multiple sites, each harboring its own local community (Fig 1). Diversity within the

local communities is maintained by immigration from a common source community, so that

the whole setup resembles a mainland-island structure [18]. Neutral theory has been applied

to numerous ecological systems and sparked a lot of controversy along the way [19].

Despite these controversies and with the growing availability of microbial community data,

the neutral theory has been adapted and applied to the microbial world [20–24]. In particular,

the local community versus metacommunity structure of neutral theory naturally extends to

host-associated microbial communities. Here, the hosts are viewed as ecosystems and their

microbiota are treated as local communities [11, 25]. This has led to several recent studies

addressing the question of whether the microbiota conform to the patterns predicted by the

neutral theory. The rank-abundance patterns of the microbiota from three domesticated verte-

brates, for example, were found to be largely consistent with the neutral expectation [26]. A

good fit of the neutral model was also found for the microbiota of young individuals of the zeb-

rafish Danio rerio [27]. Interestingly, in this study neutrality decreased as hosts aged, indicat-

ing an increasing influence of selective processes over developmental time, potentially linked

to the activation of a fully functioning adaptive immune response. The human microbiota

were found to be predominantly non-neutral across various body sites [28], which is thought

to be the result of a phase transition from a dispersal-dominated neutral regime to a selection-

dominated within-host regime [29]. In this study the few neutral communities were mostly

associated with the urological tract and the skin, while in another study the composition of the

skin microbiota of healthy human subjects in large Chinese cities was found to be better

explained by non-neutral processes [30]. Contrasting results can also be obtained depending

on the state of the host, with the healthy human lung microbiota being largely consistent with

a neutral model, while microbes recovered from diseased lungs diverged from neutrality [31].

Neutral assembly processes in invertebrate hosts are understudied, but a recent study shows

the microbial communities associated with the fruit fly Drosophila melanogaster to be consis-

tent with the predictions of a neutral model [32]. While these studies have drawn awareness to

the potentially important contribution of neutral processes in shaping the microbiota, the use

of several different neutral models and focus on one or a few, mostly vertebrate host organ-

isms, makes it hard to draw more general conclusions.

Here, we aim to overcome these limitations by consistently applying a neutral model to a

variety of distinct host systems, including but not limited to a wide range of invertebrate hosts.
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We included host species from a range of eukaryotic multicellular organisms with different

lifestyles, ranging from early branching groups such as sponges to the house mouse, with its

fully developed adaptive immune system. We used a general modelling approach and com-

bined it with a consistent simulation framework in order to achieve an unbiased comparison

of the distinct metaorganisms. Based on the neutral null hypothesis, we identified members of

the microbiota that consistently deviate from the neutral expectation, possibly indicating dif-

ferential selection of these particular microbes. Additionally, we hypothesize that some

instances of observed non-neutrality may be due to transient community stages, in which the

microbiota has not yet reached its long-term equilibrium composition.

Fig 1. Sketch of the setup of the neutral model. Only a subset of the available microorganisms can pass through the

environmental filter, forming a common source pool for all hosts. This selective step is not described by the neutral

model. The microbiota of individual hosts form local communities, and the microbial intra-host population dynamics

are neutral. Local diversity is maintained by immigration from the source pool.

https://doi.org/10.1371/journal.pbio.3000298.g001
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Results

We employed the neutral model presented by Sloan and colleagues [20], which is particularly

suited for large-sized microbial populations and has been used before to assess microbiota

neutrality [27, 32]. It describes the stochastic population dynamics within a local community,

corresponding to the microbiota of a specific host. To maintain local diversity, which would

otherwise reduce to a single species through ecological drift, immigration from a fixed source

community occurs with rate m. This source community is not equivalent to the environmental

pool of microorganisms, but rather it can be interpreted as the collection of all microbial spe-

cies that can pass through the environmental filter of the host (Fig 1). Thus, the neutral model

does not make any assumptions about the selective constraints that apply before and during

colonization of the host and, in particular, it is not concerned with any host traits that may

restrict the range of colonizing microbes [33].

This model allows to derive an expression for the expected long-term stationary community

composition. Specifically, it predicts the relationship between the mean relative abundance of

a taxon across all local communities, i.e., the metacommunity, and the probability of actually

observing this taxon in any single community. It has been shown that this relationship is deter-

mined by a beta distribution ([20] and Methods). The only free parameter of this model is the

immigration rate, m, which can be calibrated by a nonlinear fit. The goodness of the fit then

indicates how well the prediction of the neutral model compares to the empirical data. More

specifically, we used the coefficient of determination R2 as a quantitative measure of how con-

sistent the data are with the neutral model. See Methods for details of the neutral model, simu-

lations, and the fitting procedure.

Neutrality of the microbiota

We fitted the theoretical neutral expectation to the published microbiota compositions of eight

different host species across four phyla and, for comparison, three environmental microbial

communities (see Methods and S1 Table for an overview and references).

With the species Sarcotragus fasciculatus, Ircinia oros, and Carteriospongia foliascens, our

study included examples from the oldest extant sister group to all other animals, the sponges

(Porifera) [34]. Despite their filter-feeding lifestyle, sponges harbor a very diverse and highly

specific microbiota [35], which mediates the functional role of the sponges in the ecosystem

[36]. This is complemented by the jellyfish Aurelia aurita, the starlet sea anemone Nematostella
vectensis, and the freshwater polyp Hydra vulgaris. These hosts are examples from another

early branching phylum, the Cnidaria, which possesses a basic innate immune system thought

to play an important role in controlling the interaction with the associated microbial commu-

nity [37]. We also included the nematode Caenorhabditis elegans as one of the best-studied

multicellular organisms, whose microbiota has only more recently come into the focus [38–

41]. Finally, the house mouse Mus musculus with its potent adaptive immune system [42]

offers a well-studied intestinal microbiota [43, 44]. Our datasets included lab-reared animals as

well as samples from several natural populations from various locations, representing a broad

range of environmental and microbial contexts. For some host species, samples from both lab

and natural populations were available, which we analyzed separately to assess the potential

impact on neutrality of heterogeneous natural habitats versus homogeneous, constant lab con-

ditions. See Methods for a summary of the context of the individual datasets.

In all cases, community composition was determined by the relative abundances of opera-

tional taxonomic units (OTUs), obtained by standard high-throughput 16S rRNA sequencing

techniques [45]. To ensure equal sample sizes, all OTU abundance tables were rarefied to the

same read depth (1,000 reads per sample). We analyzed the effect of the rarefaction on the
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neutral fit for datasets in which more reads were available and found it to be of little relevance

for most communities (S6 Fig).

A comparison of the theoretical and observed relationship between mean relative abun-

dances and occurrence frequencies of OTUs for three illustrative examples is shown in Fig 2

(see S1 Fig for examples of the neutral fit for all datasets). The neutral model generally predicts

a specific monotonic increase of the occurence frequency of an OTU, with an increasing mean

relative abundance of this OTU across all samples. This is a quantitative reflection of the null

expectation that more abundant OTUs should also be found in more samples. Consequently,

OTUs that are found below the prediction in the lower right region of the graph are found in

fewer samples than expected by their mean abundance across all samples. Conversely, OTUs

that lie above the neutral expectation are found more often than expected.

A summary of the goodness of fit of the neutral model to the microbial communities from

all datasets is shown in Fig 3. Higher R2 values generally indicate a closer match between the

neutral expectation and the data. To aid the interpretation and comparison across datasets, we

additionally contrasted every dataset with a corresponding simulated, completely neutral com-

munity that had the same sample size, microbial diversity, and estimated immigration parame-

ter, m (see Methods for details of the simulation). This allows a comparison of the deviation

between the empirically obtained measure of neutrality and the expected values from a known

neutral community for each dataset. This is crucial because, depending on the sample size and

microbial diversity, even a completely neutral community will not yield a perfect fit, even

when there is sufficient time to reach an equilibrium (Fig 4).

Turning first to the environmental microbial communities, we generally observed a high

consistency with the neutral expectation. The majority of microbial taxa found in compost

samples, for example, closely followed the neutral prediction (Fig 2), as reflected by a high

goodness of fit measure (R2 = 0.86). While the goodnesses of fit to the microbial communities

in seawater and marine sediment are lower, they lie in the range expected from the respective

neutral simulations. The sediment dataset showed a marked effect of rarefaction, with the

goodness of fit increasing to the same level as the seawater community when more reads are

included (S6 Fig). It is also the dataset with the highest microbial diversity (>3,000 OTUs) and

a relatively low sample size, which may indicate a greater influence of rarefaction on rare taxa.

The overall good consistency of the environmental communities with the neutral expectation

Fig 2. The relationship between mean relative abundance of taxa across all samples and the frequency with which they are detected in individual samples for three

representative datasets. Each dot represents a taxon and the solid line is the best-fitting neutral community expectation. The dashed lines and gray area depict the 95%

confidence bands. The left panel shows a microbial community sampled from a compost as an example of an abiotic environment. The center panel shows data for the

natural microbiota of C. elegans nematode populations sampled from the same compost. The right panel shows the microbiota of a wild M. musculus mouse population.

Here, the red dots indicate members of the microbial family Ruminococcaceae, which are predominantly overrepresented compared with the neutral expectation. A genus

that was found in much fewer mice than expected by chance is Shigella, being present in less than a quarter of the hosts despite a neutral expectation of nearly 100%

prevalence. The OTU abundance data used to generate this figure are available in S6 and S7 Data. OTU, operational taxonomic unit.

https://doi.org/10.1371/journal.pbio.3000298.g002
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aligns with previous studies showing that random population dynamics and immigration play

a major role in shaping microbial communities in abiotic environments [21, 23, 24].

Biological hosts, with their potential for active selection of specific taxa, could on the other

hand be expected to have their resident microbial communities under tighter control, reducing

the relative importance of stochastic processes after colonization, which would be reflected in

a worse fit of the neutral expectation. The nematode C. elegans, for example, naturally con-

sumes bacteria as its food source and possesses an innate immune system as a defence against

the threat of ingested pathogenic microbes [46]. This suggests that these worms have some

Fig 3. Goodness of fit of the neutral expectation to a range of host-associated and environmental communities. Circles denote natural populations and diamonds

denote laboratory populations; error bars indicate 95% bootstrap confidence intervals. The gray bars indicate the 95% bootstrap confidence intervals around the

expected goodness of fit (horizontal black line) to a neutral simulation, providing a comparison to a completely neutral community with the same sample size and

diversity. The data for C. foliascens are from several different natural populations, while the data for H. vulgaris and N. vectensis are from different time points. The

spread of points along the x-axis is added to increase visibility. The data used to generate this figure are available in S7 Data. Phylogeny were generated with phyloT
based on NCBI taxonomy. Sponge photographs courtesy of Susanna López-Legentil (UNC Wilmington) and Mari-Carmen Pineda (AIMS). AIMS, Australian Institute

of Marine Science; NCBI, National Center for Biotechnology Information; UNC, University of North Carolina.

https://doi.org/10.1371/journal.pbio.3000298.g003
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control over their microbiota, and indeed we found a substantial mismatch between the neu-

tral expectation and the worm microbiota (Fig 2), resulting in a low goodness of fit (R2 = 0.44).

We also found a similar level of neutrality for the microbiota of laboratory worm populations

(Fig 3), indicating a similar influence of neutral processes under more controlled laboratory

conditions. For both the natural and lab-enriched worms, the goodness of fit was well below

the levels expected from the corresponding neutrally simulated communities (Fig 3). It is note-

worthy that these specific worms were isolated from the same compost where the environmen-

tal microbial communities showed a very good alignment with the neutral expectation (Figs 2

and 3).

Vertebrate hosts, with their more sophisticated and complex immune systems, are expected

to diverge even further from the neutral expectation. However, intriguingly, the neutral model

showed a very good fit to the microbiota of a wild M. musculus mouse population (Fig 2). The

best fit was in fact on par with the fit to the environmental microbes isolated from compost (R2

= 0.86), and the deviation from the simulated neutral community was minimal (Fig 3). The

high level of neutrality in the natural mouse population was corroborated by a laboratory pop-

ulation of M. musculus (Fig 3).

We found similar high levels of neutrality for sponges, which, as aquatic filter feeders, are

exposed to the full range of marine microbes. Like nematodes, they have a basic immune sys-

tem [47], and, especially for S. fasciculatus and some populations of C. foliascens, the data were

in very good agreement with the neutral expectation (Fig 3 and S1 Fig). In contrast, the results

for the three aquatic polyps were less consistent. The two laboratory populations of A. aurita
were in very good agreement with the neutral prediction, while samples taken at different

developmental stages of H. vulgaris and N. vectensis generally showed a larger deviation from

full neutrality (Fig 3).

The estimated immigration parameter, m, which can be interpreted as a proxy for inter-

host transmission and similarity of the individual microbial communities, showed consider-

able variation across the datasets (S2 Fig). Overall, communities from aquatic samples showed

higher best-fit values of m than terrestrial samples. This potentially indicates an increased

Fig 4. Impact of sample number on the goodness of fit of the neutral expectation. For each sampling depth, communities were resampled 100 times with replacement

at a rarefaction level of 1,000 reads/sample. The left panel shows the results for simulated neutral communities. The immigration parameter was fixed at m = 0.05, and

neutral dynamics were simulated for 106 time steps in all cases. Generally, goodness of fit remained high over a large range of sample sizes, reflecting the underlying

completely neutral community dynamics. Note that the goodness of fit did not reach 1.0 in finite and relatively small metacommunities, even if all communities were

sampled. The right panel shows the effect of subsampling for several host-associated microbial communities. As for the simulated data, observed levels of neutrality were

relatively robust, only dropping off at very low sample sizes. The C. elegans datasets showed a very poor fit at very low sampling depths but began to level off well below the

neutrality values of the other datasets. Shaded areas indicate 95% bootstrap confidence intervals. The data used to generate this figure are available in S1 Data. OTU,

operational taxonomic unit.

https://doi.org/10.1371/journal.pbio.3000298.g004
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between-sample dispersal and a more homogeneous microbial distribution in aquatic settings,

at least on the relevant spatial scales. This seems especially plausible for the filter-feeding

sponges sampled from the same location. In contrast, we obtained relatively low estimates for

the immigration parameter for the mice and nematodes, in both the natural and the laboratory

populations. For nematodes, in particular, a more patchy distribution of microbes on the spa-

tial microscale, together with stochastic founder effects during colonization [48], may play a

role in creating more heterogeneous microbiota compositions. In combination with less

exchange of microbes in this terrestrial organism with low dispersal ability, this can contribute

to low values of m.

Note that we did not find a correlation between immigration rate m, sample size or micro-

biota diversity, and the level of neutrality (S5 Fig). We additionally analyzed the effect of vary-

ing sample sizes by subsampling all datasets with more than 20 samples, because the number

of individual samples has the potential to influence the composition of the source community

of available microbial species. We found the observed levels of neutrality to be robust against

subsampling, unless sample sizes are very small (Fig 4). In all cases, neutrality consistently

decreased with decreasing sample sizes, potentially reflecting a decreasing overlap in the local

microbial communities. We performed this analysis for both the simulated and the empirical

datasets, which both showed a very similar impact of subsampling.

Comparing the neutral expectation with data from a wide range of environments and host

species showed that a good fit of the neutral model is in fact the norm rather than the excep-

tion (Fig 3). In particular, there was no substantial difference in observed neutrality between

microbial communities living in environmental samples, such as compost and seawater, and

the microbiota from several animal host species. We thus conclude that the observed patterns

of microbiota composition in hosts as different as mice and marine sponges can in many cases

already be obtained with a neutral null model.

Identifying non-neutral taxa

Our analysis showed that for all host species, regardless of the specific goodness of fit of the

neutral model, there are microbial taxa that diverged substantially from the neutral expecta-

tion. Because an essential ingredient of neutral theory is the assumption of selective equiva-

lence, such a divergence from neutrality may signify taxa that are subject to differential (e.g.,

host-mediated) selection. Thus, identifying specific non-neutral members in the bulk of the

microbiota is of great practical importance. In particular, OTUs that are observed more often

than expected by chance are commonly seen as good candidates for beneficial symbiotic

microbes. In general, however, it is not straightforward to decide whether a microbial taxon is

under positive or negative selection within a specific host. A taxon could, for example, be

observed more often than expected because it is indeed essential for the host, even at low

abundances, and is thus positively selected for in the community. Alternatively, such overrep-

resentation may point to a microbe that is simply a very good colonizer, i.e., it can easily dis-

perse and pass through a host’s environmental filter, but within the host it is subject to

negative selection to prevent it from reaching high abundances. Here, the practical value of the

neutral model lies in its ability to identify microbes that appear to interact in a specific, non-

neutral form with the host and are thus worthy of further investigation, taking into consider-

ation ecological and functional information.

In the following, we classified all OTUs outside of the 95% confidence bands around the neu-

tral prediction as not consistent with the neutral expectation. We found that the distribution of

non-neutral OTUs around the neutral prediction is roughly symmetrical in all cases, and no

microbial order deviated systematically above or below the neutral expectation (S3 Fig).

Neutrality in the Metaorganism

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000298 June 19, 2019 8 / 21

https://doi.org/10.1371/journal.pbio.3000298


To further distinguish random deviations from neutrality and actual non-neutral candi-

dates, we also applied a more conservative definition of non-neutrality. For this, a particular

OTU was classified as non-neutral only when it consistently diverged from the neutral expec-

tation in the same direction in independent host populations. Applying this definition to the

natural and laboratory populations of C. elegans and M. musculus yielded a reduced subset of

microbial taxa, which lay above or below the neutral prediction in both populations.

This analysis revealed that, of the C. elegans microbiota, only the genus Ochrobactrum is

consistently underrepresented (S2 Table). It is found in only about 40% of the natural isolates

and 70% of the laboratory worms, despite its relatively high mean abundance across all worms

and a neutral expectation of 100% prevalence. This underrepresentation of Ochrobactrum is

intriguing, as it had previously been identified to be enriched in worms, to favor growth of

worm populations, and to be able to persist in the nematode’s gut even under starvation condi-

tions [39]. However, this observation is consistent with a transient community state (see

below), where Ochrobactrum has not yet colonized all worms, despite being very successful

once it has entered the worm.

In the M. musculus microbiota of natural and laboratory populations, over a third of the

overrepresented taxa were from the bacterial family Ruminococcaceae. Members of this family

were never consistently found below the neutral expectation across hosts (Fig 2 and S3 Table).

This family includes several physiologically relevant genera involved in the utilization of plant

polysaccharides such as starch and cellulose [49], and high-fat diets low in plant-derived mate-

rials have been found to decrease the proportion of the Ruminococcaceae in mouse guts [50].

A notable microbe that was found in significantly fewer mice than expected from the neutral

model is Shigella (Fig 2). Invasive Shigella can cause intestinal inflammation in humans, but

mice mount an effective defense against it, thereby preventing acute infections [51]. This illus-

trates how potentially pathogenic microbes, which may be actively selected against by the host,

can be found diverging from the neutral expectation. That we were able to consistently identify

a bacterial family that had previously been linked to important metabolic functions as overrep-

resented and potential pathogens as underrepresented shows the utility of the neutral model as

a null hypothesis and a tool of finding meaningful patterns in the vast complexity of the

microbiota.

Another commonly applied approach to tackle this complexity consists of the identification

of OTUs that are shared among hosts, typically denoted as the core microbiota. This usually

requires setting a specific occurence threshold for the taxa found across hosts in similar habi-

tats [52]. Applying this persistence-based definition to our data shows that a substantial por-

tion of the core taxa, e.g., those with an occurence frequency above 90%, fall within the neutral

expectation (Fig 2 and S1 Fig). This implies that many taxa within the abundant and prevalent

core microbiota may actually not occur more often than would be expected by chance. Taxa

such as the Ruminococcaceae in mice, on the other hand, which were below typical cutoff

prevalences but occurred more often than expected by chance, emerge as interesting candi-

dates beyond the usual core taxa. Deviations from the neutral expectation can thus comple-

ment and enrich insights gained from the widely used concept of the core microbiome.

Change of neutrality over time

As we have discussed in the previous section, the most commonly assumed cause of deviations

from neutrality is selection by the host, for example, through its immune system. In the context

of our study, this would mean that after colonization, host-mediated selection may have

altered the composition of the microbial community, resulting in a non-neutral community

structure. Interestingly, we found a particularly strong deviation from neutrality for the
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nematode host, which possesses a rather simple immune system [53]. In contrast, other hosts

with more complex immune systems, for which strong selection could have been presumed,

show microbiomes close to neutral expectations. This suggests a role of additional factors

beyond the immune system driving deviations from the neutral expectation.

A crucial aspect of the neutral prediction is that it is based on the expected long-term sta-

tionary distribution of the microbial community. If the community is in a transient state, how-

ever, it can appear non-neutral even if it is the product of a purely neutral process. This effect

is illustrated in Fig 5, showing a simulation of the population dynamics of 50 neutral commu-

nities (Methods). For every community, only a few random colonizers were picked from the

source community, which yields random but non-neutral initial communities. We then com-

pared the neutral expectation to the in silico communities over time during the simulation,

showing that they become "neutralized" through random population dynamics and immigra-

tion until the community composition reaches its long-term equilibrium, or the host dies.

Thus, if community assembly is governed by purely neutral processes, we would expect the

fit of the neutral model generally to become better over time. Decreasing neutrality, which has

been reported for the zebrafish, D. rerio [27], would on the other hand be a good indicator of

selective processes. A similar increase in the relative importance of selective processes over sto-

chastic effects has been described for the ecological succession of microbial communities in

salt marshes [54]. However, while the microbiota from the Hydra and Nematostella popula-

tions show clear developmental patterns [55], we did not find a clear temporal trend in the

deviation from the neutral model (S4 Fig).

While we could not conclusively disentangle transient effects in the interplay between eco-

logical drift and selective processes, in principle, it is possible that a poor fit of the neutral

expectation may be due to a transient non-equilibrium state of the community rather than

actual non-neutral processes. This effect would be especially pronounced for short-lived host

species such as C. elegans, in which initial colonization can lead to communities that appear

Fig 5. Goodness of fit of the neutral long-term expectation to neutrally simulated communities over time. The two insets show

the best fits of the neutral model to snapshots of the communities at an early time point (indicated by the red dot) and a late time

point (indicated by the blue dot). Scale and meaning of the axes for the insets are the same as in Fig 2. Each community was

initialized with a few random colonizers, which yielded non-neutral initial communities that neutralized over time through a

stochastic death-birth process and immigration. The shaded area indicates the 95% bootstrap confidence intervals. The data used

to generate this figure are available in file S1 Data.

https://doi.org/10.1371/journal.pbio.3000298.g005
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non-neutral even for ecologically equivalent (i.e., neutral) colonizers [48]. The microbiota of

such hosts may never effectively converge to the neutral long-term expectation within the life-

time of the host, even if they are dominated by stochastic dynamics and immigration. For lon-

ger-lived species, such as sponges and mice, we would expect these transient effects to play a

smaller role.

Comparison with a random sampling model

The observed high levels of neutrality do not necessarily imply that the microbiota is simply a

random collection of microbes. A good fit of the expected distribution indicates that the simple

neutral model is sufficient to describe the relationship between abundance of a species and its

occurrence frequency. But this cannot rule out other processes, niche related or stochastic,

that lead to the same community structure [56].

A very simple alternative model is obtained by assembling a local community by drawing

randomly from the fixed source community, thus neglecting stochastic reproduction events

and dispersal. In this case, the probability of observing a specific species in a local community

is determined by a binomial distribution. Comparing the best fits of the neutral expectation

and of a binomial distribution using the Aikake information criterion (AIC) indicated that the

neutral model fits the data better in all cases (S1 Table). This indicates that the microbiota are

not merely random samples of the microbes present in the metacommunity.

In a more general context, ecological communities such as microbiota are examples of com-

ponent systems, in which each specific instance of the system (e.g., a specific microbial com-

munity) is composed of components drawn from a shared set of basic building blocks (e.g., the

source pool in our scenario). Such systems have been shown to exhibit some general invariant

properties, and deviations from these properties may reveal functional constraints imposed on

the shared components [57].

Discussion

We set out to quantify how consistent the microbiota of a range of different host organisms

are with the expectation from a neutral model. We found that the structures of the considered

host-associated microbial communities are often in surprisingly good agreement with the neu-

tral expectation. Taking into account a more complete simulation analysis of the neutral

model further suggested that transient stages of the microbiota may contribute to the diver-

gence from neutrality observed for some host species.

Even a high consistency with the neutral expectation does not rule out the presence of selec-

tive abiotic or biotic processes, as non-neutral models can yield predictions consistent with

neutral theory under certain conditions [56]. Moreover, biological hosts will select for a subset

of the environmentally "available" microbes, and yet the resulting microbiota may still look

mostly neutral. In fact, comparing the microbes present in seawater to the species present in

individual sponges reveals that there is almost no overlap (S7 Fig). This indicates that sponges

are a highly selective environment, imposing strong constraints on potential colonizers, and

yet after colonization, their microbiota are very consistent with the neutral expectation. A sim-

ilar selective filter is found for C. elegans, in which only a fraction of the microbes present in

the environment successfully colonize the worms (S7 Fig). This suggests that there are host

traits that act as environmental filters [33], and they often will do so in a predictable, i.e., deter-

ministic way. In this sense, the microbiological tenet that "everything is everywhere, but, the

environment selects" [58] also applies when the environment happens to be another biological

organism. However, our results highlight that the processes that are at play after the environ-

mental filter has been passed can be highly consistent with the neutral model. This apparent
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contradiction between selective environments and neutral processes acting on the allowed set

of species may also have contributed to some of the contrasting results found in previous stud-

ies [59].

This filtering of potential colonizers is not unique to biological hosts, but what sets biologi-

cal hosts apart from other habitats is the potential of the hosts’ filtering mechanisms to evolve.

An example for such an evolvable mechanism is the production of antimicrobial peptides

(AMPs) by several Hydra species [60]. Here, each Hydra species was shown to possess a spe-

cific AMP expression profile, selecting for a species-specific set of bacteria by inhibiting coloni-

zation of foreign microbes. Another recent study showed how host-derived proteins from the

jellyfish A. aurita interfere with bacterial quorum sensing to modulate host colonization [61].

While these examples do not constitute proof of adaptive coevolution between the host and its

microbiota, they exemplify the possible specific selection capabilities of the host. Moreover,

our results then highlight that microbiota composition is the outcome of several intertwined

processes. For example, selective filtering at the colonization stage may be controlled by the

host or by microbe characteristics, and is then presumably followed by largely neutral, stochas-

tic processes. It is further possible that selection at either the colonization stage or community

assembly thereafter only affects a subset of microbes, while the remaining microbes follow

neutral dynamics. Another factor to consider is that taxonomic and functional microbial com-

munity composition may be shaped by largely independent processes [62, 63]. Given the

known examples of functional redundancy present, e.g., in the human gut microbiota [64],

viewing communities from the perspective of functional (e.g., metabolic) categories can pro-

vide an alternative picture to data based on 16S rRNA gene-based taxonomic profiling [65].

These intertwined processes need to be better understood and taken into account for an

enhanced understanding of microbiota assembly.

Our simulation analysis demonstrates that the community needs time to reach the dynamic

neutral equilibrium (Fig 5) through ecological drift. This emphasizes the need for temporal

data to further investigate the role of transient community stages and drift in microbial com-

munities. Such data are usually not available for host-associated microbial communities, and

our study highlights the need to be aware of this potentially confounding factor when applying

neutral models to cross-sectional community snapshots.

The neutral assumption that species do not interact is anathema to many ecologists, and for

the microbiota in particular it is assumed that the functioning of the community is enhanced

by cooperative interactions. Recent results, however, suggest that interactions within the

mouse gut microbiota are indeed predominantly competitive and very weak [66]. Together

with our finding of the microbiota often being consistent with neutral expectations for several

different host species, this lends support to taking the neutral null hypothesis as a key compo-

nent of our understanding of host-microbe interactions. We would like to emphasize that even

a good consistency with the neutral model does not imply that the microbiota is functionless

or that hosts are nonselective—the Hydra system actually contains taxa that confer a selective

advantage, but which appear as neutral in our present analysis [67]. Neutral theory in fact

makes no claims about microbiota function; rather, it assumes that the different community

compositions that arise after the environmental filter of the host has been passed are, in the

words of the original formulation of the neutral theory, selectively nearly equivalent, that is,

they can do the job equally well in terms of survival and reproduction [68] of the individual

host.

Awareness of the potentially significant role of neutrality in shaping the microbiota is cru-

cial to avoid being led astray by randomness in view of the incredible complexity of host-

microbiota symbioses and to be able to uncover general principles of microbiome assembly.
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Methods

Summary of datasets and data availability

The collection of microbial abundance datasets for the environmental and host-associated

communities (i.e., OTU tables) was assembled as part of the Collaborative Research Centre

1182 "Origin and Function of Metaorganisms" (https://www.metaorganism-research.com)

funded by the Deutsche Forschungsgemeinschaft. All OTU tables are available in the Support-

ing information accompanying this paper (S2–S10 Data). The raw sequencing data have been

published previously and are available online; see below and S1 Table for the corresponding

references. In the following, we give a short summary of the context of the respective datasets;

for details we refer to the corresponding references.

Sponges [35]. S. fasciculatus (S2 Data) and I. oros (S3 Data) samples were collected at the

same location on the Spanish coast on different dates. C. foliascens samples were collected at

different locations along the Australian coast on different dates (S4 Data).

C. elegans [39]. The natural isolates of single C. elegans worms were collected on different

dates at the same location in Northern Germany (S6 Data). For the lab-enriched populations

of C. elegans (S6 Data), single worms isolated from the same location were transferred to

agar plates seeded with Escherichia coli as food. On these plates, the worms were allowed to

reproduce via selfing and were maintained for 2–3 weeks before sampling the resulting

populations.

Mice [44]. For the natural mice, 69 mice were captured from 34 unique locations, with a

maximum of 3 mice per location, in the hybrid zone of M. musculus musculus and M. musculus
domesticus in Bavaria, Germany, during May and June 2011 (S7 Data).

The lab dataset includes 40 F2 hybrids between M. musculus domesticus and M. musculus
musculus standard lab strains and, additionally, 7 each of the M. musculus domesticus and M.

musculus musculus parental mice (S7 Data). The parental strains were kept under conventional

conditions for two generations before setting up experimental crosses.

N. vectensis [55]. Animals were sampled from 15 independent laboratory cultures under

different but fixed environmental conditions (temperature and salinity) at specific time points

(S8 Data).

H. vulgaris [69]. Animals were sampled at several time points from independent, clonal

lab cultures with identical and constant environmental conditions (S9 Data).

A. aurita [61]. Animals were sampled from 4 independent populations: 1 control popula-

tion and 3 treatment populations (S10 Data). The treatment (QQ) populations were each

treated with a different host-derived quorum-quenching protein.

Environmental samples. Compost samples were collected in the context of the C. elegans
study [39], following the same protocols and at the same locations (S6 Data). Marine seawater

and sediment samples were collected in the context of the sponge microbiota study [35] (S5

Data).

The neutral model

Here, we summarize the model presented in [20], considering only the purely neutral special

case with equivalent growth rates for all species. A local community contains a fixed number

of N individuals, of which Ni are of species i. Individuals die with a constant death rate δ, and a

dead individual is replaced by reproduction of a local individual (with probability 1−m) or by

immigration from a fixed source community (with probability m). Thus, the total population

size N remains constant. The relative abundance of a species in the source community is

denoted by pi. With this, the probabilities that the number of individuals of species i increases
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by one, decreases by one, or stays the same are given by

PðNi ! Ni þ 1Þ ¼
N � Ni

N
mpi þ ð1 � mÞ

Ni

N � 1

� �

;

PðNi ! Ni � 1Þ ¼
Ni

N
mð1 � piÞ þ ð1 � mÞ

N � Ni

N � 1

� �

;

PðNi ! NiÞ ¼
Ni

N
mpi þ ð1 � mÞ

Ni � 1

N � 1

� �

þ
N � Ni

N
mð1 � piÞ þ ð1 � mÞ

N � Ni � 1

N � 1

� �

:

ð1Þ

These transition probabilities correspond to Hubbell’s original neutral model, but the follow-

ing continuous approximation derived by Sloan and colleagues [20] can be efficiently applied

to very large population sizes and allows for a relatively simple analytical solution. In particu-

lar, this allows for a calibration with the high-throughput 16S rRNA sequencing data obtained

from microbial communities.

If N is large enough, such as in microbial communities, we can assume the relative abun-

dance xi = Ni/N of species i to be continuous. This leads to a Fokker-Planck equation for the

probability density function ϕi(xi,t) of xi,

@�i

@t
¼ �

@

@xi
ðMdx�iÞ þ

1

2

@2

@x2
i

ðVdx�iÞ; ð2Þ

where Mδx and Vδx are the expected rates of change in relative abundance and variability,

respectively. Assuming the time intervals between individual death-birth events are short, they

can be approximated by

Mdx �
PðNi ! Ni þ 1Þ � PðNi ! Ni � 1Þ

N
¼
mðpi � xiÞ

N
ð3Þ

and

Vdx �
PðNi ! Ni þ 1Þ þ PðNi ! Ni � 1Þ

N2
¼

2ð1 � xiÞxi þmðpi � xiÞð1 � 2xiÞ
N2

: ð4Þ

Eq 2 describes the neutral population dynamics of a local microbial community. This is

not, in general, amenable to analytical treatment, but one can approximate the long-term equi-

librium solution of this equation. Namely, the so-called potential solution for @ϕi/@t = 0 arising

from Mdx�i �
1

2

@

@xi
ðVdx�iÞ ¼ const: is given by the beta distribution

�iðxi;N;pi;mÞ ¼ cð1 � xiÞ
Nmð1� piÞ� 1xNmpi � 1

i ; ð5Þ

with c = Γ(Nm)/[Γ(Nm(1−pi))Γ(Nmpi)]m. This can be connected to empirical observations.

For a given detection threshold d, the probability of actually observing a species in a local com-

munity is given by the truncated cumulative probability density function

Pðspecies i observedÞ ¼

Z 1

d
�iðxi;N;pi;mÞdx: ð6Þ

Here, N is given by the number of reads per sample, and the relative abundance pi of the

focal species in the source community can be approximated by the mean relative abundance of

the species across all samples. The detection threshold is set to d = 1/N. The probability of
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immigration m is thus the only free parameter and can be used to fit the predicted long-term

distribution to the observed occurence frequencies of the microbiota.

Fitting procedure

The fitting process applied to all datasets, empirical and simulated, works as follows. First, the

OTU abundance table was rarefied to the desired read depth (N = 1,000 reads per sample for

the main results, which was determined by the lowest available read depth from all datasets).

The expected observation probability (Eq 6) and a binomial model were then fitted to the

observed mean relative OTU abundances �pi and occurence frequencies fi obtained from this

rarefied table using nonlinear least squares minimization with the lmfit package (pypi.org/

project/lmfit) [70]. As a measure of the goodness of fit, we then calculated the standard coeffi-

cient of determination using the ratio of the sum of squared residuals and the total sum of

squares:

R2 ¼ 1 �

X

i

ðfi � FiÞ
2

X

i

ðfi � �fiÞ
2
; ð7Þ

where Fi is the expected ocurrence frequency obtained from the best-fit neutral prediction.

Additionally, for comparison of the neutral and binomial model, the mean AIC was calculated.

In all cases, 95% bootstrap confidence intervals were obtained by resampling the hosts 100

times with replacement and performing the described fitting procedure on each resampled set

of hosts.

Neutral model simulations

Simulated neutral communities were generated following the stochastic death-birth-immigra-

tion process described above and in [20]. Communities with a prescribed number of samples/

communities, community size, source pool diversity, and immigration parameter m were

started from random initial conditions and simulated for 106 time steps to let them reach

dynamic equilibrium. The community snapshots obtained at the end of each simulation were

treated with the same fitting procedure as the empirical datasets.

Code availibility

The Python code for fitting and simulating the neutral model is available at https://github.

com/misieber/neufit.

Supporting information

S1 Table. Overview of the datasets included in this study, their source (natural or labora-

tory communities), number of samples, microbial diversity, and a summary of the results

of the model fits. Best-fit data are the mean values from 100 rarefactions at a level of 1,000

reads per sample. Reference is to the original study containing detailed information on sample

preparation and raw sequencing data. The data summarized in this table are also available in

S1 Data.

(PDF)

S2 Table. Non-neutral genera found in the C. elegans microbiota.

(PDF)
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S3 Table. Non-neutral genera found in the M. musculus microbiota.

(PDF)

S1 Fig. The relationship between mean relative abundance of taxa across all samples and

the frequency with which they were detected in individual samples. Each dot represents a

taxon and the solid line is the best-fitting neutral community expectation. The dashed lines

and gray area depict the 95% confidence bands. The OTU abundance data used to generate

this figure are available in S2–S10 Data. OTU, operational taxonomic unit.

(PDF)

S2 Fig. Overview of the best-fit values for the immigration parameter m of the neutral

model. Circles denote natural populations and diamonds denote laboratory populations; error

bars indicate 95% bootstrap confidence intervals. The data for C. foliascens are from several

different natural populations, while the data for H. vulgaris and N. vectensis are from different

time points. Spread of points along the x-axis is added to increase visibility. The data used to

generate this figure are available in S1 Data. Phylogeny were generated with phyloT based on

NCBI taxonomy. Sponge photographs courtesy of Susanna López-Legentil (UNC Wilming-

ton) and Mari-Carmen Pineda (AIMS). AIMS, Australian Institute of Marine Science; NCBI,

National Center for Biotechnology Information; UNC, University of North Carolina.

(PDF)

S3 Fig. Bars show the mean relative abundance of the 10 most abundant microbial orders

in a specific host population. The colored sections indicate the fractions of OTUs within that

order that were found above the neutral expectation (red), within the neutral expectation

(gray), and below the neutral expectation (blue). The OTU abundance data used to generate

this figure are available in S2–S10 Data. OTU, operational taxonomic unit.

(PDF)

S4 Fig. Neutrality of the microbiota of H. vulgaris and N. vectensis at different time points

during development and adult life stages (95% bootstrap confidence intervals attached).

The dashed lines are the best linear fits; slopes are not significantly different from zero. The

data used to generate this figure are available in S1 Data.

(PDF)

S5 Fig. Consistency with the neutral model versus the estimated dispersal parameter m
(top left), the number of samples (top right), the number of identified taxa (bottom left),

and the Shannon index of diversity (bottom right). Circles denote natural populations and

diamonds laboratory populations. The data used to generate this figure are available in S1

Data.

(PDF)

S6 Fig. Impact of rarefaction on neutrality. Generally, consistency with the neutral model

initially decreased with increasing read depth, until it leveled off as read depth increased fur-

ther. For communities that showed a high consistency with the neutral model, varying read

depths did not affect the results much, ranging from almost no effect at all for A. aurita to a

slight drop in neutrality for the seawater samples, from R2 = 0.7 at 1,000 reads/sample to R2 =

0.6 at 50,000 reads/sample. Only for the communities associated with the sponge I. oros and

two of the C. foliascens populations did read depth show a more pronounced effect; in both

cases, neutrality dropped from R2� 0.6 at 1,000 reads/sample to R2� 0.45 when read depth

was exceeding 10,000 reads/sample. Interestingly, an opposite trend was observed for the sedi-

ment samples, in which neutrality increased from R2� 0.5 at 1,000 reads/sample to R2� 0.7 at

10,000 reads/sample. The minimal to moderate changes in neutrality with increasing read
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depth for some datasets potentially reflect the influence of rare, non-neutral taxa, which are

only detected with higher read depths. Shaded areas indicate 95% bootstrap confidence inter-

vals. The data used to generate this figure are available in S1 Data.

(PDF)

S7 Fig. Overlap of taxa found in hosts and the environment. Left: for two sponge species,

there is only a very small overlap between the sponge microbiota and the taxa found in seawa-

ter. Right: for C. elegans, only a subset of the environmentally available microbes is found in

the worms. The OTU abundance data used to generate this figure are available in S2–S10 Data.

OTU, operational taxonomic unit.

(PDF)

S1 Data. Excel spreadsheet containing the quantitative data underlying Figs 3, 4, and 5 and

S2, S4, S5, and S6 Figs.

(XLSX)

S2 Data. Excel spreadsheet containing OTU abundance data and the taxonomy for the

microbiota of the sponge S. fasciculatus. OTU, operational taxonomic unit.

(XLSX)

S3 Data. Excel spreadsheet containing OTU abundance data and the taxonomy for the

microbiota of the sponge I. oros. OTU, operational taxonomic unit.

(XLSX)

S4 Data. Excel spreadsheet containing OTU abundance data and the taxonomy for the

microbiota of the sponge C. foliascens. OTU, operational taxonomic unit.

(XLSX)

S5 Data. Excel spreadsheet containing OTU abundance data and the taxonomy for the

environmental microbial communities from seawater and sediment. OTU, operational tax-

onomic unit.

(XLSX)

S6 Data. Excel spreadsheet containing OTU abundance data and the taxonomy for the

microbiota of the nematode C. elegans and the associated environmental microbial com-

munity from compost. OTU, operational taxonomic unit.

(XLSX)

S7 Data. Excel spreadsheet containing OTU abundance data and the taxonomy for the

microbiota of the mouse M. musculus. OTU, operational taxonomic unit.

(XLSX)

S8 Data. Excel spreadsheet containing OTU abundance data and the taxonomy for the

microbiota of the freshwater polyp N. vectensis. OTU, operational taxonomic unit.

(XLSX)

S9 Data. Excel spreadsheet containing OTU abundance data and the taxonomy for the

microbiota of the freshwater polyp H. vulgaris. OTU, operational taxonomic unit.

(XLSX)

S10 Data. Excel spreadsheet containing OTU abundance data and the taxonomy for the

microbiota of the jellyfish A. aurita. OTU, operational taxonomic unit.

(XLSX)
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