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ABSTRACT
This article presents analytical solutions of the general rate model (GRM), the lumped kinetic
model (LKM), and the simpler equilibrium dispersive model (EDM) for core-shell particles and lin-
ear adsorption isotherms. The solutions in the Laplace domain are applied to derive analytical
expressions for the temporal moments of these models. The results provide relations between the
model specific kinetic parameters by matching one or more of the temporal moments. Several
case studies are considered for illustration. The results show that simpler models are in many
cases as good as the most detailed GRM if their kinetic parameters fulfill the matching relations.
Thus, it is possible to reliably predict elution profiles using the simpler models. The derived analyt-
ical expressions can also be utilized to efficiently estimate model parameters from experimentally
observed elution profiles to further optimize core-shell particles and to identify suitable column
sizes and operating conditions.

GRAPHICAL ABSTRACT
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Introduction

Mathematical modeling is an essential part of the chroma-
tographic theory for simulating its dynamical process.
Several chromatographic models exist in the literature
considering different levels of complexities to describe the
process. The models, which are most frequently used in
the simulation of liquid chromatography, are the general

rate model (GRM), the lumped kinetic model (LKM), and
the equilibrium dispersive model (EDM).[1,2] Hereby, the
GRM is the most detailed model, while the LKM and
EDM have less degrees of freedom and are simpler. It
accounts for various mass transfer kinetics that influence
the band profiles, namely external mass transfer resistance
and intraparticle diffusion. In addition axial dispersion is
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considered. Under linear conditions the model describes
these effects with three kinetic parameters. The simpler
LKM applies a linear driving force in the solid phase and
considers just one additional parameter complementing
the axial dispersion coefficient instead of considering the
full intraparticle concentration profile. It lumps together
the contributions of internal and external mass transport
resistances within a single mass transfer coefficient and con-
tains only two essential kinetic parameters, namely the axial
dispersion and the mass transfer coefficient. The EDM is
the most simple model that Lumps together all kinetic
effects into a single apparent dispersion coefficient. It is well
known that simpler models can be derived from the detailed
GRM under certain simplifying assumptions.[1–4]

The demand for increased efficiency during the last years
triggered the development of cored beads, made up of a solid
silica core and a porous thin shell. These particles have recently
gathered considerable attention because of their unusual high
column efficiencies, low column pressures and fast separation.
They were invented and pioneered with the specific purpose of
preparing columns that could provide highly efficient HPLC
separation of high molecular weight compounds of biological
origin.[5] A comprehensive review describing” trials,tribulations
and triumphs” was published by Guiochon and Gritti.[6]

Several authors other have theoretically investigated chromato-
graphic columns packed with core-shell particles.[7–19]

In our previous articles, we have derived analytical solu-
tions and temporal moments of the EDM, LKM and GRM

Table 1. Analytical moments of GRM, LKM and EDM for core-shell particles (except l04 of GRM). Here, the zeroth moment l0 ¼ c injs inj, representing the
amount injected, is the same for all models.
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for columns packed with fully porous particles.[20–22]

Recently, we have also derived analytical solutions and
moments of the linear GRM for core-shell particles.[23] In all
these derivations, the Laplace transformation was applied as a
basic tool to derive analytical solutions. As analytical Laplace
inversion was not possible in most of the cases. The numer-
ical Laplace inversion was applied to back transform solutions
in the actual time domain.[24,25] The Laplace domain solu-
tions were further utilized to derive analytical temporal
moments. These moments can be used to measure retention
times, band broadenings, front asymmetries and kurtosis of
the elution profiles. Moment analysis and matching is well-
known and instructive in the literature,[2,23,26–39] and referen-
ces therein. A high resolution finite volume scheme (HRFVS)
was also applied to numerically approximate the linear and
nonlinear GRM for fully-porous and core-shell particles.[23,40]

This manuscript focuses on the derivation of relations
among the essential kinetic parameters of the GRM and the
two simpler LKM and EDM models for usage of columns
packed with core-shell particles. These relations are derived
by matching the corresponding temporal moments of the
mentioned three models for linear isotherms.

The remaining parts of this manuscript are organized as
follows. In Section 2 we start with the detailed GRM and then
present the simpler LKM and EDM for core-shell particles.
Section 3 refers the reader to Appendix A and Table 1 for the
analytical solutions and temporal moments of the considered
models, respectively. Section 4 presents relations between the
kinetic parameters of these models after matching their corre-
sponding moments. In Section 5, different numerical test
problems are presented. Conclusions are drawn in Section 6.

Mathematical Models for Core-shell Particles

This section summarizes the GRM for core-shell particles,
which is the most complete model incorporating several
mass transfer kinetics. It also provides the simplified LKM
and EDM under different assumptions.[2,7]

General Rate Model (GRM) for Core-shell Particles

A GRM of liquid chromatography contains two mass bal-
ance equations, one is for the total amount of liquid phase
in the column and the other one is for the total amount of
liquid stored in the solid phase. An isothermal adsorption
column packed with inert core particles is considered as
shown in Figure 1. Each core-shell particle has three storage
regions, i.e. the inert core (impermeable), the pores, and the
inner surface. At time zero, a step change in the concentra-
tion of an adsorbate is introduced into a flowing stream.
The adsorption column is subjected to axial dispersion, film
mass transfer resistance and intraparticle diffusion resist-
ance. It is assumed that cored beads have uniform particle
size Rp and core size R core. The inert core cannot be pene-
trated and there is only diffusion (no convection) in the
porous shell. As this study is concerned with the cored par-
ticles of arbitrary core radius fraction qcore ¼ R core

Rp
, it is

necessary to allow the core radius to be changed. The col-
umn is considered to be isothermal and thermally insulated.

The differential mass balance equations for a single-solute
percolating through a column filled with spherical core
beads is given as[4]

�e
@c
@t

þ 1��eð Þ 1�q3core
� � @qav

@t
þ �eu

@c
@z

¼ �eDz
@2c
@z2

(1)

In the above equation, c is the concentrations of the sol-
ute in the bulk of the fluid, q av is the average solute con-
centration in the particles including the pores, �e is the
external porosity, u is the interstitial velocity, Dz represents
the axial dispersion coefficient, and t and z denote the time
and axial coordinates of the column.

The differential mass balance equation for the solute in
the stationary particles can be expressed as[4]

�p
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@

@r
r2
@cp
@r

� �
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@
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r2
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� �
(2)

where cp denotes the concentration of the solute in the par-
ticles pores, qp is the local concentration of the solute in the
shell part of the particle, �p is the internal porosity, r 2
½Rcore;Rp� denotes the radial coordinate (c.f. Figure 1), and
Dp and Ds are the constant pore and surface diffusivities,
respectively. For fully-porous particles R core ¼ 0, while for
core-shell particles Rcore 6¼ 0.

The following boundary conditions at r¼ 0 and r = Rp

are assumed for Eq. (2):

@cp
@r

jr¼Rcore
¼ 0; �pDp

@cp
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þ 1� �pð ÞDs
@qp
@r

� �
r¼Rp

¼ kext c�cpjr¼Rp

� 	
(3)

Eq. (3) includes also the additional resistance in the stag-
nant laminar boundary layer around the particle using the
rate constant kext.

A change in averaged particle concentration in Eq. (1)
can be calculated by integrating Eq. (2) over the volume,
Vs ¼ 4p

3 ðR3
p�R3

coreÞ, of the porous shell. Thus, we obtain[4]

@qav
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¼ 1

Vs

ðRp

Rcore

�p
@cp
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þ 1� �pð Þ
@q�p
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� �
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@
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@qp
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4pr2dr

(4)

After integrating the last term in Eq. (4) and incorporat-
ing the boundary condition in Eq. (3), we obtains

@qav

@t
¼ 3

Rp 1� q3core
� � k ext c�cpjr¼Rp

� 	
(5)

Assuming a permanently established equilibrium between
the two phases and considering the linear adsorption iso-
therm, valid for smaller concentrations, we obtain

qp ¼ q�p ¼ acp (6)

Then, the two transport contributions can be lumped
together and can be quantified by a single effective
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diffusivity coefficient D eff and an adjusted equilibrium con-
stant a�. After using Eq. (6) in Eq. (2), we obtain

a�
@cp
@t

¼ Deff

r2
@

@r
r2
@cp
@r

� �
(7)

where

Deff ¼ �pDp þ 1��pð ÞDsa; a� ¼ �p þ 1��pð Þa (8)

Eqs. (1) and (7) are also subjected to the initial and bound-
ary conditions. The initial conditions for an initially equili-
brated column are given as

c 0; zð Þ ¼ cinit; cp 0; z; rð Þ ¼ cinit (9)

where c init is the spatially uniform initial concentration.
For an initially fully regenerated column holds cinit ¼ 0
which is assumed below. Appropriate inlet and outlet
boundary conditions (BCs) are required for Eq. (1).[2] In
this study, we evaluate a rectangular injection profile and
consider the Dirichlet boundary conditions at the column
inlet:

cjz¼0 ¼
cinj; if 0<t � tinj
0; t>tinj



(10a)

together with a Neumann boundary condition for a hypo-
thetically infinite column length, z ¼ 1:

@c t; zð Þ
@z

jz¼1 ¼ 0 (10b)

Here, tinj denotes the time of sample injection. For suffi-
ciently small dispersion coefficients the Dirichlet inlet
boundary conditions are well applicable.

Lumped Kinetic Model (LKM)

The LKM can be obtained with some simplifications from
the GRM. The model describes the rate of variation of the
averaged solute concentration in the stationary phase by
assuming a linear driving force originating from the devi-
ation from equilibrium concentration. Thus, it lumps
together the two contributions of internal and external mass
transport resistances within a mass transfer coefficient
k LKM. In the case of LKM, the second term in Eq. (1) is

defined as

@qav

@t
¼ kLKM

1� �e
qav��qavð Þ (11)

where for a diluted linear system, the equilibrium concen-
tration is qav� ¼ ac. In summary, the LKM contains only
two equations as given by Eqs. (1) and (11) containing
two kinetic parameters Dz and kLKM. The same initial and
boundary conditions given by Eqs. (9), (10a) and (10b)
are applied.

Equilibrium Dispersive Model (EDM)

The EDM, which is the most simple one among the models
considered, can be obtained from the LKM with one further
simplification. It is assumed that there is a permanent equi-
librium, i.e. qav ¼ qav� ¼ ac, which is equivalent to kLKM !
1 in the LKM. To compensate this neglect, all mass transfer
limitations are lumped into an apparent dispersion coeffi-
cient. Under this assumption, Eq. (11) is not needed any-
more and Dz in Eq. (1) is replaced by a new parameter Dapp

with Dapp � Dz. Thus, Eq. (1) simplifies to:

1þ ~aFeð Þ @c
@t

þ u
@c
@z

¼ Dapp
@2c
@z2

(12)

where

Figure 1. Schematic diagrams of a fixed-bed column packed with inert-core adsorbents.

Table 2. Parameters assumed in simulations.

Parameters values

Column length L ¼ 10cm
External porosity �e ¼ 0:4
Internal porosity �p ¼ 0:333
Henry’s constant a ¼ 2:5
Initial concentration cinit ¼ 0
Injected bulk concentration cinj ¼ 0:5g=l
Injection time tinj ¼ 10
Core-radius fraction qcore ¼ 0:5
Axial dispersion coefficient(GRM, LKM)a Dz ¼ 0:02cm2=min
Effective diffusivity coefficient (GRM) Deff ¼ 10�6cm2=min
External mass transfer coefficient (GRM)a kext ¼ 0:01cm=min
Mass transfer coefficient of LKMa kLKM ¼ 1min�1

Apparent dispersion coefficient of EDMa Dapp ¼ 0:02cm2=min
aAssumed to be the same for different flow rates.
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Fe ¼ 1��eð Þ=�e; ~a ¼ a 1�q3core
� �

(13)

Again, the same initial and boundary conditions given by
Eqs. (9), (10a) and (10b) are applied.

A more realistic description would require considering
further coupling. Indeed, strictly speaking Dz and kext, but
also kLKM and Dapp, are functions of the flow-rate of the
fluid (i.e. the Reynolds number). There are functional
dependencies available in the literature to capture this effect.
To take them quantitatively into account would be possible.
It would, however, render the analysis much more compli-
cated. Most of the main trends reported in the paper would
not change. Thus, for the sake of simplicity we kept these
parameters constant.

Analytical Moments of GRM, LKM and EDM

The analytical solutions of linear GRM (Eqs. (1), (7)), LKM
(Eqs. (1), (11)) and EDM (Eq. (12)) for core-shell particles

along with given initial and boundary conditions (c.f. Eqs.
(3), (9), (10a), (10b)) are given in the Appendix A exploiting
some dimensionless quantities for the kinetic parameters. In
order to deduce analytical temporal moments from these
solutions, the following moment generating property of the
Laplace transform is exploited[41]

ln ¼ �1ð Þn 1
l0

lim
s!0

dn �c s; x ¼ 1ð Þð Þ
dsn

; l0 ¼ lim
s!0

�c s; x ¼ 1ð Þð Þ; n ¼ 1; 2; 3; ::::

(14)

The corresponding central moments up to order four can
be easily obtained as[42]

l02 ¼ l2� l1ð Þ2; l03 ¼ l3�3l1l2 þ 2l1
3; l04 ¼ l4�4l1l3 þ 6l1

2l2�3l4

(15)

It is assumed for the moments derivation that cinit ¼ 0.
Furthermore, results are given only for the column out-
let (x¼ 1).
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Figure 2. Illustration of three models utilizing the non-matched kinetic parameters of Table 2. The effect of q core is shown on the concentration profiles
for u ¼ 1 cm=min.
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On using Eqs. (14) and (15) along with the solutions of
GRM and LKM (or EDM for kLKM ! 1 and Dz ¼ Dapp) in
Eq. (A-2) and (A-8) of Appendix A, we have calculated the
first four temporal moments of the considered models which
are listed in the Table 1. The zeroth moment l0 represents
the total mass injected and the first moment l1 corresponds
to the mean retention time. Kinetic effects are not signifi-
cant with respect to mean retention time or the first
moment. The second central moment l02, i.e. variance of the
elution profile, contains information about the rates of the
mass transfer processes in the column. Also, the kinetically
controlled third central moment l03 and the fourth central
moment l04 are helpful to quantify asymmetry and kurtosis
of the elution profile.

In chromatography literature the first and second
moments are typically exploited to give a number of theoret-
ical plates, Nt ¼ l21=l

0
2, which is a valuable indicator for the

overall column efficiency.[2]

Relations Between the Kinetic Parameters of
Different Models

The analytical solutions and moments of the more compre-
hensive GRM and of the simpler LKM and EDM for core-
shell particles are presented in the Appendix A and Table 1
of this manuscript. In this section, we present relationships
between the kinetic parameters of these models by matching
their corresponding moments. These relations are helpful to
analyze and predict the corresponding concentration profiles.

The linear GRM has a three-level complexity because it con-
tains three essential kinetic parameters Dz, kext and Deff . The
simpler Linear LKM has a two-level complexity, as it involves
only two kinetic parameters Dz and kLKM. On the other hand,
the most simpler EDM has a single-level complexity because it
contains only one essential kinetic parameter Dapp.

It is also important to mention again that for evaluating
the same injections the zeroth moment, which describes the
total mass (volume) of the sample injected to the column, has
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Figure 3. Moments and concentration profiles of the considered three models for qcore ¼ 0:5 utilizing the non-matched kinetic parameters of Table 2.
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the same value for all models. Moreover, the first moment,
which indicates the mean retention time, can be trivially
matched for all models if the overall Henry’s constant ~a in
the LKM and EDM in accordance with the GRM is chosen
through the following relation (c.f. Table 1 and Eq. (13)):

~a ¼ ~a� ¼ �p þ 1��pð Þa½ � 1�q3core
� �

(16)

There are two general ways to match the elution profiles
and second to fourth order central moments of the aforemen-
tioned models, as discussed below in Sections 4.1 and 4.2.

Matching the Moments of Low-level Models with Those
of High-level Models

In this forward direction, we assume that concentration pro-
files and moments of the high-level models are known, i.e.
they are considered to be “experimental results”, and we try to
match them with moments of the simpler models by applying
compatible kinetic coefficients. More specifically, there are two
possibilities: (a) either try to match the results of simpler EDM
and LKM with the provided results of the GRM or (b) match
the results of EDM with known results of LKM.

Matching of the Second Moment
The second central moment describes the variance of the
elution profile. On comparing the second central moments
of the considered models for core shell particles (c.f.
Table 1), we obtain the following relations assuming ~a ¼ ~a�,
i.e. for identical first moments.

Matching a Second Moment of LKM with that of GRM.
With the following relation we can match the second central
moment of the simpler LKM with that of the comprehensive
GRM, while other moments of the GRM will differ from
those of the LKM.

kLKM ¼ ~a�

1� �e

Rp

3kext
þ R2

p

15Deff
qmod

 !" #�1

(17)

where qmod, originally developed by Kaczmarski and
Guiochon,[4] is defined in Table 1. Thus, the above relation
and ~a ¼ ~a� ensure that concentration profiles of the LKM
and GRM have the same retention times and variances
(spreadings) but they may have different asymmetries (l03)
and kurtosis (l04).

0 5 10 15 20 25 30 35
50

100

150

200

250

300

350

400

450

500

u−3 [min3/cm3]

μ’
2 [m

in
2 ]

 

 

GRM
LKM
EDM

(a)

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

6000

u−5 [min5/cm5]

μ’
3 [m

in
3 ]

 

 
GRM
LKM
EDM

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8
x 10

5

u−7 [min7/cm7]

μ’
4 [m

in
4 ]

 

 
GRM
LKM
EDM

(c)

10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

t [min]

c 
[g

/l]

 

 

GRM
LKM
EDM

(d)

u=1 cm/min

Figure 4. Matching of the second central moments of simpler models with GRM (c.f. Eqs. (17)–(19)) for qcore ¼ 0:5. The kinetic parameters of GRM are taken from Table 2.
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Matching the Second Moment of EDM with that of GRM.
Here, we have to use:

Dapp ¼ Dz þ u2Fe ~a
�ð Þ2

1þ ~a�Feð Þ2
Rp

3k ext
þ R2

p

15Deff
qmod

 !
(18)

Matching the Second Moment of EDM with that of LKM.
To match the second central moments of EDM and LKM,
one has to fulfill:

Dapp ¼ Dz þ ~au2F2e �

kLKM 1þ ~a�Feð Þ2 (19)

Matching of Third Moment
The third moment, representing asymmetry of the elution
profile, provides other matching conditions as given below.

Matching of Third Moment of LKM with that of GRM. On
equating the third central moments of LKM and GRM given

by Table 1 we obtain from using again ~a ¼ ~a�:

kLKM ¼ aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b acþ dð Þp
2 acþ dð Þ

" #
(20)

where

a ¼ 12LDz~a
��eF2e 1þ ~a�Feð Þ

u3
1
Pe

e�Pe � 1ð Þ þ 1

� �
; b ¼ 6L~a��2eF

3
e

u

(21)

c ¼ ~a�

�eFe

Rp

3k ext
þ R2

p

15Deff
qmod

 !
(22)

d ¼ L ~a�ð Þ3Fe
u

4R4
p

105D2
eff

1�qcoreð Þ2 1þ q2ð Þ þ
4R3

p

15kextDeff
qmod þ

2R2
p

3k2ext

 !

(23)

Here, q2 and qmod are defined in Table 1.
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Figure 5. Matching of the third central moments of simpler models with GRM (c.f. Eqs. (20)–(24)) for qcore ¼ 0:5. The kinetic parameters of GRM are taken from
Table 2.
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Matching of Third Moment of EDM with that of GRM. For
~a ¼ ~a� matching of the third moment of EDM with that of
GRM requires:

Dapp ¼ u5l03; GRM Dz; kext;Deff ; qcoreð Þ
12L 1þ ~a�Feð Þ3

 !1
2

(24)

Matching of Third Moment of EDM with that of LKM. To
match the third moment of EDM with that of LKM, we
have to use:

Dapp ¼ u5l03;LKM Dz; kLKM; qcoreð Þ
12L 1þ ~aFeð Þ3

 !1
2

(25)

In the above two equations l03;GRM and l03;LKM are the
third central moments of GRM and LKM which are
assumed to be available either theoretically or experimen-
tally. Relations in Eq. (24) and (25) guarantee the matching
of first and third moments only. All other moments of these
models, including the second moment, will differ from
each other.

Simultaneously Matching LKM Moments with those of
GRM up to Third Order
We might assume that the second and third central
moments of GRM are available, may be theoretically or
experimentally. Now, we can use the analytical moment
expressions of LKM in Table 1 along with Eq. (16) to match
the first three moments of LKM and GRM. On solving the
analytical expressions of second and third central moments
of LKM simultaneously for the two unknown parameters Dz

and kLKM, we obtain

kLKM ¼
�b16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ 4a1c1

q
2a1

; Dz ¼ l02;GRM � t2inj
12

� 2L~a�F2
e �e

ukLKM

" #
u3

2L 1þ ~a�Feð Þ2

(26)

where

a1 ¼ l03; GRM�
3u

L 1þ ~a�Feð Þ l02;GRM � t2inj
12

� �2

; b1 ¼
6~a��eF2e
1þ ~a�Fe

l02;GRM � t2inj
12

� �

(27)

c1 ¼
6L~a�F3e �

2
e

u
1þ 3~a�Fe
1þ ~a�Fe

� �
(28)

Here, l02;GRM and l03;GRM are the provided second and third
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Figure 6. Simultaneously matching the first three moments of simpler models with GRM (c.f. Eqs. (26)–(28)) for qcore ¼ 0:5. The kinetic parameters of GRM are
taken from Table 2.
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central moments of GRM. With these relations the first
three moments of LKM can be perfectly matched with those
of GRM. However, the fourth and higher order moments of
these models will differ from each other. Due to the involve-
ment of just one single free parameter Dapp, there is no pos-
sibility to match both the second and third moments of
EDM with corresponding moments of other models.

Similar procedure can be used to match any other two
moments of LKM with those of GRM. For example, one can
match the second and fourth order moments or the third
and fourth order moments of LKM with those of GRM.
Moreover, it is also possible to match any one moment of
the EDM with corresponding known moments of the LKM
and GRM.

The above estimated parameters and procedure can be
used to match the results of low-level models with theoret-
ical results of the high-level models considered to represent
the experimental situation. Thus, there is a clear pathway
available for rational model complexity reduction.

Matching the Moments of High-level Models with Those
of Low-level Models

In this reverse direction, we can assume that concentration
profiles and moments of a low-level model are already
known and we try to specify free parameters of a high-level
model by matching selected moments. For example, we can
match the results of LKM and GRM for known parameters
of EDM or we can match the results of GRM for known
parameters of LKM.

To match the results of LKM with the known results of
EDM, we need to estimate two kinetic parameters of the
LKM. For this purpose, we can use the analytical expres-
sions of second and third central moments of the LKM and
take their Left hand sides as known moments of the EDM.
The Newton-Raphson routine can be used to find the roots
of resulting two nonlinear equations for two unknowns Pe
and j LKM. Similarly, one can select any other combination
of two moments of the LKM to find its two
unknown parameters.

Moreover, a numerical Newton-Raphson routine can be
used to estimate three kinetic parameters of the GRM by
utilizing the analytical expressions of its second, third and
fourth moments and by providing the corresponding
moment expressions and parameters for the EDM or for
the LKM.

Numerical Test Problems

In this section, some case studies are presented to analyze
and compare concentration profiles and moments of the
considered three chromatographic models. The correctness
of the matching relations (c.f. Eqs. (17)–(28)) is evaluated
based on concentration profiles. In all figures, liquid phase
concentration profiles are plotted with respect to the actual
time t ¼ Ls=u at the column outlet (x¼ 1). Moreover,
moments are plotted in the dimensional forms. The dimen-
sionless moments in Table 1 are converted into dimensional

forms by simply multiplying l0 and l1 by L/u and l0n by
ðL=uÞn for n¼ 2, 3, 4. Standard parameters used in the test
problems are given in Table 2. These model parameters are
chosen in accordance with ranges typically encountered in
liquid chromatography applications.

Effect of Core-radius Fraction on the Solutions of Three
Models (Non-matching Case)

Figure 2 shows a comparison of concentration profiles,
obtained from the analytical solutions of investigated models
for standard parameters in Table 2, considering different
core radius fractions including fully porous beads. Except
taking ~a ¼ ~a�, kinetic parameters of the models are not cal-
culated through matching relations. Thus, profiles of all the
four models have the same retention times but have differ-
ent band widths and shapes. It can be seen that the effect of
qcore is similar in all cases. As qcore increases from 0 (fully
porous beads) to 0.9 (beads with a very thin shell), the elu-
tion profiles sharpens, i.e. column efficiency increases and
mean residence time reduces, in other words capacity
reduces. The sharpening and the increased symmetry of the
peaks in Figure 2 are due to reduced intraparticle diffusional
mass transfer resistance. The shorter residence times are due
to the loss of binding sites with a larger qcore value, allowing
less interaction between the mobile and the stationary
phases for adsorption and desorption. At qcore ¼ 0:9 the
capacity is very low and profiles are sharper.

Figure 3 displays moments and concentration profiles of
all the four models for a fixed qcore ¼ 0:5, for the same
adsorption coefficient ~a ¼ ~a�, and for the standard parame-
ters listed in the Table 2. It can be observed that all models
have different temporal moments and concentration profile.
Thus, all the four models may give different results if the
matching relations of Section 4 are not fulfilled. These
results also endorse the behavior of profiles presents in
Figure 2.

Matching the Moments of Low-level Models to Those of
High-level Models

Here, we try to either match moments of the LKM and
EDM with known moments of the GRM or to mach
moments of the EDM with known moments of the LKM.

Matching the Second Central Moments of LKM and EDM
with that of GRM
We analyzed the influence of matching relations on
moments and concentration profiles of the simpler LKM
and EDM, assuming that the results of GRM are already
known as given in Figures 2 and 3.

Figure 4 shows the results of all models when relations in
Eqs. (17) and (18) are used to match second moment of
the simpler models with already known second moment of
the GRM. It can be seen that for different flow rates, u, the
second central moments of the models are overlapping each
other, i.e. they provide the same peak widths. However,
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Figure 7. Matching of GRM moments with the known moments of LKM (qcore ¼ 0). The kinetic parameters of LKM are taken from Table 2.

26 S. QAMAR ET AL.



these matching relations are not enough to guarantee the
matching of higher order moments of the simpler models
with those of the GRM. As a result, differences can be seen
in the predicted concentration profiles, as they have only the
same retention times and variances but have different asym-
metries and kurtosis. The concentration profile and higher
order moments of the EDM are more deviated from those
of the GRM due to more simplifying assumptions (less
degrees of freedom) as compared to the LKM.

Matching the Third Central Moments of LKM and EDM
with that of GRM
Figure 5 shows the results of the GRM, LKM, and EDM
when matching relations in Eqs. (20)–(25) are used to match
the first and third moments. It can be seen that all models
have now the same third central moments, i.e. they have the
same asymmetries. However, these matching relations are
not enough to guarantee the matching of second and fourth
moments of the simpler models with those of the GRM.
Also, clear differences can be seen in their concentration
profiles, especially in their spreading and flatness. It can also
be seen that now difference in the fourth moments and con-
centration profiles of models are much larger as compared
to those presented in Figure 4.

Simultaneously Matching the Moments of LKM with those
of GRM up to Third Order
Figure 6 displays the results of GRM and LKM when match-
ing relations in Eqs. (26) and (28) are used to match their
first three moments. It can be seen that both models have
the same second and third central moments, i.e. they have
now the same variances and asymmetries. However, these
matching relations are not enough to guarantee the match-
ing of their fourth (and higher) order moments. It can be
observed that both models give almost similar concentration
profiles in this case. The EDM involves only one essential
kinetic parameter Dapp, thus, it is not possible to match

simultaneously its second and third moments with the cor-
responding moments of the GRM.

Matching the Moments of High-level Models with Those
of Low-level Models

Figure 7 shows the results obtained after matching GRM
moments to the already known LKM moments as an
example. As all the four moments of GRM were used to
estimate its kinetic parameters, we can observe a perfect
matching of moments and concentration profiles in the
Figure 7. In this procedure, we have replaced the left hand
sides of GRM moments by known moments of LKM and
then found the unknown three kinetic parameters of GRM by
using a Newton-Raphson routine. Figure 7(e) displays the
absolute errors after comparing the concentration profiles of
both LKM and GRM. It can be seen that differences in both
profiles are negligible (below 2:5� 10�5g=l) for both flow-
rates considered. It can be seen that errors are larger for the
higher flow-rate corresponding to the sharper profile.

The same procedure was used to match the first four
moments of GRM with the provided moments of EDM.
Similar trends were found, which are not presented here.

Effect of Core-radius Fraction on Matching of Moments

Figure 8 presents the plots of moments for different values
of the core-radius fraction qcore. In this case, the LKM
moments were assumed to be the provided for a reference
value of core-radius fraction (i.e. for qcore ¼ 0:5). We then
specify the free parameters of the other two models by
matching the moments for that particular value of the core-
radius fraction. As EDM has only one parameter Dapp, we
were able to match the second moments of both EDM and
LKM but not their third moments. On the other hand, we
were able to match both the second and third central
moments of GRM with those of LKM. The plots of Figure 8
now show that matching at a specific core-radius fraction
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Figure 8. Effect of qcore on moments matching (illustrated for u ¼ 1 cm=min). Parameters are selected to match moments for qcore ¼ 0:5. The kinetic parameters
of LKM are taken from Table 2.
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does not deliver agreement for other values of the core-
radius fractions. Thus, care should be taken in matching the
moments when the structure of core-beads is changed.
Matching of moments obtained for a specific value of qcore
will only hold for that value of qcore and will not hold when
the core-radius fraction is altered.

Conclusion

In this article relationships were derived between the essen-
tial kinetic parameters of three models for fixed bed col-
umns packed with core-shell particles. These relations were
derived by matching the specific analytical expressions
describing the temporal moments of the elution profiles for
linear isotherms. The Laplace transformation was used as a
basic tool to derive the analytical solutions and the first four
temporal moments. An efficient and accurate numerical
Laplace inversion was applied to get back solutions in the
time domain. Several case studies were considered and the
analytical solutions and moments of aforementioned models
were compared with each other. The results showed that
simpler models can be as good as the complex GRM after
calculating their kinetic parameters through using matching
relations involving essential kinetic parameters of the GRM.
The results clearly demonstrate the importance of matching
first lower order moments before considering a matching of
higher order moments. This concept could be extended and
applied also for further refined models of chromatographic
columns going beyond the GRM. For practical applications,
models capable to well capture the first three moments of a
peak are seen as sufficiently accurate. The results presented
in this manuscript further showed that an increase in the
core radius fraction for cored beads results in shorter resi-
dence times and a sharper peaks. Thus, if a column is
packed with such beads, the column separation efficiency
will increase due to shorter diffusion path lengths, i.e. the
peaks will become sharper and narrower. The newly derived
moment expressions and the matching relations for the
three models considered contain explicitly the core-radius
fraction as an additional degree of freedom. Thus, the
derived and carefully validated solutions are seen as a useful
tool to produce further optimized core-shell particles, to
apply them efficiently in chromatographic separation proc-
esses, to estimate model parameters from observed experi-
mentally determined moments and to perform in a rational
manner a model reduction.
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Appendix: Analytical solutions of linear GRM
and LKM

Here, we present the analytical solutions of linear GRM and LKM con-
sidering core-shell particles.Analytical solution of the linear GRM
(already published in our previous article[23])After introducing the
following dimensionless quantities

s ¼ ut
L
; x ¼ z

L
; q ¼ r=Rp; qcore ¼ Rcore=Rp;

Pe ¼ u=L
Dz=L2

; Bi ¼ kextRp

Deff
; g ¼ DeffL

R2
pu

; n ¼ 3Fe
kext
Rp

L
u

(A-1)

and considering Dirichlet boundary conditions (c.f. (10a) and (10b)),
the Laplace domain solution is given as[23]

�c s; xð Þ ¼ 1�e�ssinjð Þ
s

exp
xPe
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4/ sð Þ

Pe

r !" #
(A-2)

where for aðsÞ ¼ a�s
g , we have

/ sð Þ ¼ sþ n 1�f sð Þð Þ; (A-3)

f sð Þ ¼
Bi qcore

ffiffiffiffiffiffiffiffi
a sð Þp� 	

coth 1�qcoreð Þ
ffiffiffiffiffiffiffiffi
a sð Þp� 	

þ 1
h i

1� qcoreð Þ þ Biqcoreð Þ
ffiffiffiffiffiffiffiffi
a sð Þp Biþ qcorea sð Þ�1ð Þð Þ

1�qcoreð ÞþBiqcoreð Þ
ffiffiffiffiffiffi
a sð Þ

p þ coth 1� qcoreð Þ
ffiffiffiffiffiffiffiffi
a sð Þp� 	� �

(A-4)

Moreover, a� and D eff are given by Eq. (8).
7.2 Analytical solution of the linear LKM
After using the dimensionless quantities in Eq. (A-1) and the

definition

jLKM ¼ kLKM
u=L

(A-5)

the normalized forms of LKM equations (c.f. Eqs. (1) and (11)) are
given as

@c
@s

þ 1�q3core
� �

Fe
@q
@s

þ @c
@x

¼ 1
Pe

@2c
@x2

(A-6)

@q
@s

¼ jLKM
�eFe

ac� qð Þ (A-7)
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By applying the Laplace transformation on Eqs. (A-6) and (A-7) and
using the initial conditions cð0; xÞ ¼ cinit and qð0; xÞ ¼ q�init ¼ acinit, we
obtain the following Laplace domain solution[20,21]

c s; xð Þ ¼ 1
s

cinj 1� e�ssinjð Þ � cinit
� 	

ek1x þ cinit
s

(A-8)

where

k1;2 ¼ Pe
2
7

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Peð Þ2 þ 4sPe 1þ ~aFe

1þ s�eFe
j LKM

 !vuut (A-9)

Here, sinj ¼ utinj=L. An efficient and accurate numerical Laplace inver-
sion algorithm is applied for back transformation of the solution
in s-domain.[24]
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