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Abstract: The interest of the scientific community on the remote observation of sun-induced 
chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral 
ground measurements play a crucial role in the calibration and validation of future satellite 
missions. For this reason, the European cooperation in science and technology (COST) Action 
ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups 
and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we 
evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches 
and spectral fitting method (SFM)) for a combination of off-the-shelf commercial spectrometers. 
Secondly, we evaluated how an erroneous implementation of the retrieval methods increases the 
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uncertainty in the estimated SIF values. Results show that the SFM approach applied to high-
resolution spectra provided the most reliable SIF retrieval with a relative error (RE) ≤6% and <5% 
for F687 and F760, respectively. Furthermore, although the SFM was the least affected by an inaccurate 
definition of the absorption spectral window (RE = 5%) and/or interpolation strategy (RE = 15%–
30%), we observed a sensitivity of the SIF retrieval for the simulated training data underlying the 
SFM model implementation.  

Keywords: sun-induced chlorophyll fluorescence; ground spectrometers; retrieval methods  
 

1. Introduction 

Plant photosynthesis is the primary process in terrestrial ecosystems. Accurate estimates of 
photosynthesis and its dynamics are pivotal to understand complex feedbacks and exchange 
interactions in the land–atmosphere system [1,2]. The assessment of photosynthesis also presents a 
key challenge of the remote sensing (RS) community. Sun-induced chlorophyll fluorescence (SIF) is 
considered the most direct RS signal to track photosynthetic activity and its dynamics at leaf, canopy, 
ecosystem, or even global scale [3,4]. Therefore, an accurate retrieval of SIF in crucial to understand 
photosynthesis and its dynamics.  

SIF is emitted by chlorophyll-a (Chla), whose intensity depends on the incoming radiation and 
Chla concentration. The full chlorophyll fluorescence spectrum covers the wavelength range from 650 
up to 800 nm, from the red (FR) to the far-red (FFR) range of the spectrum [5] (Figure 1). The weak SIF 
signal is convolved with the vegetation’s reflected radiance. This radiance is typically 10 orders of 
magnitude greater than SIF, making the decoupling of both a significant challenge. In order to 
retrieve SIF from spectroradiometric measurements, absorption features in the solar or Earth’s 
atmosphere can be exploited. In particular, the solar Fraunhofer lines—Fe (758.8 nm) and KI (770.1 
nm) [6]—or the Earth’s two O2 absorption features—O2B (687 nm) and O2A (760 nm) bands—are 
typically used due to their spectral proximity to the peaks of the chlorophyll SIF emission spectrum 
[7]. SIF retrieval using Fraunhofer lines requires high spectral resolution (SR) (e.g., << 0.1 nm), high 
radiometric resolution, and very high signal-to-noise ratio (SNR)[8]. Most proximal sensing 
instruments do not satisfy these requirements. Hence, this paper will focus on the retrieval of SIF at 
the oxygen absorption features, which do not require such a high-performance instrument. 

 
Figure 1. Down-welling irradiance (E↓, black line) at ground level and sun-induced chlorophyll 
fluorescence spectrum (red line). Maximum value of fluorescence at 685 nm (maxF685) and 740 nm 
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(maxF740) and sun-induced fluorescence at the O2B (F687) and O2A (F760) absorption features are 
indicated. 

Meroni et al. [9] proposed that the retrieval methods used to quantify SIF can be divided into 
two major categories: Reflectance-based and radiance-based approaches. Particularly, radiance-
based retrieval schemes using on the Fraunhofer line depth (FLD) principle, e.g., standard FLD (sFLD 
[10]), three bands FLD (3FLD [11]), improved FLD (iFLD [12]), and the spectral fitting method (SFM 
[13]) are the most frequently used methods for the proximal sensing of SIF (i.e. based on a 
bibliographic survey in Web of Science – core collection – during the last year 21 papers were 
published using the keyword sFLD, 22 using 3FLD, 22 using iFLD, and 23 using SFM) (FLD methods 
and SFM are described more in Section 2).  

Many recent publications focus on the retrieval and interpretation of SIF from satellite platforms 
like GOSAT, GOME-2, and OCO-2 [6,14,15]. The first approach proposed for GOSAT took advantage 
of its very high spectral resolution (0.025 nm) to evaluate the in-filling by SIF of single solar 
Fraunhofer lines [6,16,17]. The same approach is now being used for OCO-2 [15,18]. This type of 
retrieval was later extended to wider fitting windows also including Earth’s atmospheric absorption 
features in the case of GOME-2, SCIAMACHY, and more recently, TROPOMI, which have a coarser 
spectral resolution (0.5 nm) than GOSAT. Data-driven methods are used to empirically model 
atmospheric radiative transfer effects (e.g., References [19–21]). On the other hand, with the recent 
development of new in situ-based SIF measuring systems (e.g., FloX, JB Hyperspectral, Dusseldorf, 
Germany, PhotoSpec [8], Piccolo [22,23], and HyScreen [24]), the number of publications 
investigating proximal sensing approaches of SIF steadily increases [7,25–29] and will possibly grow 
in the near future. Moreover, hyperspectral ground measurements play a crucial role in the 
calibration and validation of recent (e.g., Sentinel-2) and future (e.g., FLEX) satellite missions and can 
be used to upscale ground signals to the satellite.  

Since SIF only represents a fraction of the radiance measured by the spectrometer, insufficient 
characterization of the sensor, inadequate measurement protocols, or an incorrect implementation of 
the retrieval method will lead to an erroneous estimation and interpretation of the SIF signal. For this 
reason, many researchers have worked within the framework of a European cooperation in science 
and technology (COST) action, “Innovative optical tools for proximal sensing of ecophysiological 
processes” (OPTIMISE, ES1309; https://optimise.dcs.aber.ac.uk/) over the last four years to address 
these challenges. The OPTIMISE community has compiled three papers: One on instrument 
characterization[30], one on measurement setups and protocols [31], and this paper on retrieval 
methods to make gathered information available. This compilation of papers aims to summarize the 
state-of-the-art for high quality SIF measurements and bring up-to-date the review papers of Meroni 
et al. [9] and Damm et al.[32]. 

This study aims to provide a guiding document to evaluate possible SIF retrieval accuracies for 
FR and FFR considering the characteristics of novel instrumentation (e.g., SR, spectral sampling 
interval (SSI), signal-to-noise ratio (SNR)) in combination with frequently applied retrieval schemes 
(e.g., sFLD, 3FLD, iFLD, and SFM). Further, this document aims to outline critical steps in the 
implementation of the retrieval schemes. The insights provided need to be considered in the total 
uncertainty budget of SIF retrieval. However, it is important to note that other factors such as canopy 
structure and atmospheric effects also need to be taken into account when estimating SIF 
uncertainties (cf. Reference [31]). 

The paper is structured as follows: In Section 2 we give an overview of the most commonly used 
retrieval methods and outline their advantages and disadvantages. Section 3 describes sensitivity 
analysis evaluating how the retrieval accuracy depends on the retrieval methods and the dataset used 
to evaluate them. Section 4 presents and discusses the results of this work and, finally, the main 
findings are summarized in Section 5.  

2. Background on Frequently Used SIF Retrieval Methods for Proximal Sensing  
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Vegetation fluorescence under solar illumination conditions adds a weak signal to the 
reflectance solar radiation. In the red and far-red spectral region, the up-welling radiance (L↑) is the 
result of two contributions: The reflected radiance (𝐿ோ = 𝑅 ∙ 𝐸↓/𝜋) from the vegetation and 
fluorescence, 𝐿↑(𝜆) = 𝑅(𝜆) ∙ 𝐸↓(𝜆)𝜋 + 𝐹(𝜆) (1) 

where λ is the wavelength, R is the actual reflectance, E↓ is the down-welling irradiance incident to 
the surface, and F the top of the canopy SIF radiance in the direction of observation. According to the 
international system of units, spectral 𝐿↑ is defined as the radiant flux emitted, reflected, transmitted, 
or received by a surface, per unit projected area per unit solid angle per wavelength (e.g., mW m−2sr-

1nm-1). 𝐿↑ is a directional quantity. On the other hand, spectral E↓ is defined as the radiant flux 
received by a surface per unit area per wavelength (e.g., mW m-2nm-1). E↓ is not a directional quantity. 
Therefore, to compute the reflected radiance, E↓ needs to be divided by 𝜋. Finally, the reflectance 
obtained from L↑ and E↓ measurements and containing the contribution of F is defined as apparent 
reflectance (Rapp) [9] (see Figure 2),  𝑅(𝜆) = 𝜋 ∙ 𝐿↑(𝜆)𝐸↓(𝜆) = 𝑅(𝜆) + 𝜋 ∙ 𝐹(𝜆)𝐸↓(𝜆) . (2) 

 

Figure 2. Actual reflectance (R, black line) and apparent reflectance (Rapp, red line). The actual 
reflectance was computed as the ratio between reflected radiance (LR) and down-welling irradiance 
(E↓); the apparent reflectance was computed as the ratio between total up-welling radiance (L↑ = LR + 
F) and down-welling irradiance (E↓). The small plots highlight the apparent reflectance. That is the 
contribution of fluorescence to the reflected radiance spectrum. 

Most retrieval algorithms used to estimate SIF from ground measurements are based on the FLD 
principle. Conceptually, FLD approaches exploit the different relative contribution of F to the L↑ and 
the E↓ spectra inside and outside of an absorption feature (Figure 3).  
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Figure 3. Fraunhofer line depth (FLD) method. (A) The solar down-welling irradiance (E↓) is affected 
by narrow absorption feature. (B) The measured up-welling radiance (L↑) present the absorption 
feature partially filled with fluorescence emission (adapted from Alonso et al. 2008 [12]). 

FLD approaches exploit the ratio between these up- and down-welling fluxes in the form of the 
apparent reflectance factor (Rapp). The method aims to separate F from L↑ estimating, therefore, the 
actual reflectance (R), the ratio between reflected radiance and E↓, assuming a smooth R profile in the 
absorption region. Importantly, an inaccurate estimation R has a high impact on the retrieval of F 
[12]. Therefore, a precise and accurate function to interpolate R inside the absorption line is needed. 
This function should take into account the following factors: (1) The appropriate definition of both 
shoulders of the used absorption feature, (2) the selection of measurements outside the used 
absorption feature as end points for the interpolation, and (3) the selection of an appropriate 
interpolation method. The choice of these three factors differentiates each FLD-based retrieval 
scheme. In contrast, the SFM method decouples F and R using spectral curve fitting. The method 
relies on parameterized mathematical functions representing R and F within narrow spectral 
windows centered at the O2 absorption features. 

2.1. FLD-Based SIF Retrieval Methods 

Retrieval methods based on the FLD principle take advantage of the reduced E↓ in the O2B and 
O2A absorption features reaching the surface, which increases the relative contribution of F to L↑ 
(Figure 3). Such retrieval allows estimating F in a specific spectral band, 687 nm (F687) at O2B and 760 
nm (F760) at O2A, which correspond to the smallest E↓ and L↑ value in the oxygen absorption windows 
(Figure 1). While the O2B absorption window is close to the maximum peak of fluorescence at 685 nm 
(maxF685), the O2A window is shifted towards longer wavelengths. Hence, F760 represents only around 
70% of the radiated F signal at the FFR peak (maxF740, Figure 1). 

Since the seminal review provided by Meroni et al. [9], various new SIF retrieval methods were 
proposed by the scientific community, for instance, the singular vector decomposition (SVD) [17,33], 
the nFLD approach [34], and the peak height method [35]. However, as presented in the introduction, 
sFLD, 3FLD, and iFLD are still the most frequently applied methods for proximal sensing of SIF. 
Therefore, only these approaches are included for further discussion and their main assumptions, 
strengths, and shortcomings are described.  

2.1.1. sFLD 

The Fraunhofer line depth (FLD) principle [10,36] relies on measurements of E↓ and L↑ inside 
and outside an absorption window (λin and λout) such as solar Fraunhofer lines or Earth’s atmosphere 
O2 absorption features.  
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𝐿↑(𝜆) = 𝑅(𝜆) ∙ 𝐸↓(𝜆)𝜋 + 𝐹(𝜆) 
(3) 𝐿↑(𝜆௨௧) = 𝑅(𝜆௨௧) ∙ 𝐸↓(𝜆௨௧)𝜋 + 𝐹(𝜆௨௧) 

Fluorescence is calculated from a linear system of equations by comparing the measured signal 
inside and outside an absorption feature,  𝑅 = 𝐿↑(𝜆௨௧) − 𝐿↑(𝜆)𝐸↓(𝜆௨௧) − 𝐸↓(𝜆) ∙ 𝜋 

(4) 𝐹 = 𝐸↓(𝜆௨௧) ∙ 𝐿↑(𝜆) − 𝐿↑(𝜆௨௧) ∙ 𝐸↓(𝜆)𝐸↓(𝜆௨௧) − 𝐸↓(𝜆)  

A fundamental assumption is that F and R remain constant over the exploited absorption 
feature. The original FLD (sFLD) approach is relatively simple and requires the measurement of E↓ 
and L↑ inside the absorption window and only one measurement at the shoulder of the absorption 
feature. The main limitation of this approach is the frequent violation of the base assumption—that 
F and R are spectrally constant over the used absorption feature [12,37,38]. 

2.1.2. 3FLD 

In order to overcome the limitations of the sFLD approach, Maier et al. [11] proposed the use of 
three bands to solve Equation (4). The single reference band (λout) of sFLD is replaced by a linear 
interpolation of two bands on the left and right shoulders of the absorption feature. The advantage 
of this modification is that it considers a linear variation of R and F over the absorption window, 
which is a good approximation when the red-edge shoulder is displaced towards short wavelengths. 
Even though this approach is theoretically more advanced than the sFLD, non-linear variations of R 
and F often result in inaccurate estimates in particular for the O2B band.  

2.1.3. iFLD 

The iFLD method uses two correction factors (αR and αF) to account for the non-linear variation 
of R and F inside and outside the absorption feature and to account for using the apparent reflectance 
instead of actual reflectance in the measurement. The method proposed by Alonso et al. [12] makes 
use of the full E↓ and L↑ spectral information in the region around the absorption to estimate the αR 
factor. F is expressed as: 𝐹(𝜆) = 𝛼ோ ∙ 𝐸↓(𝜆௨௧) ∙ 𝐿↑(𝜆) − 𝐿↑(𝜆௨௧) ∙ 𝐸↓(𝜆)𝛼ோ ∙ 𝐸↓(𝜆௨௧) − 𝛼ி ∙ 𝐸↓(𝜆)  (5) 

In order to calculate the value of αR and αF correction factors, it is necessary to know, in advance, 
F and the actual reflectance. Since this is not possible due to the variable nature of both parameters, 
Alonso et al. [12] proposed the use of Rapp to calculate the correction factors for reflectance (αෝୖ) and F 
(αෝ): 𝛼ොோ = 𝑅(𝜆௨௧)𝑅෨(𝜆)  (6) 𝛼ොி ≈ 𝐸↓(𝜆௨௧)𝐸෨↓(𝜆) ∙ 𝛼ොோ (7) 

where 𝑅ୟ୮୮(λ୭୳୲)  is the apparent reflectance measured outside the absorption feature, and 𝑅෨ୟ୮୮(λ୧୬) is the apparent reflectance inside the absorption feature λin. 𝑅෨ୟ୮୮(λ୧୬) is obtained from the 
non-linear interpolation of the apparent reflectance using the continuous reflectance spectrum at the 
left and right shoulders. Analogously, 𝐸෨↓(λ୧୬) is obtained by interpolation of the irradiance in order 
to predict 𝐸↓ unaffected by atmospheric absorption. Replacing αR and αF by the apparent coefficients 
(𝛼ොோ, 𝛼ොி), F can be expressed as: 𝐹∗(𝜆) = 𝛼ොோ  ∙ 𝐸↓(𝜆௨௧) ∙ 𝐿↑(𝜆) − 𝐿↑(𝜆௨௧) ∙ 𝐸↓(𝜆)𝛼ොோ  ∙ 𝐸↓(𝜆௨௧) − 𝛼ොி ∙ 𝐸↓(𝜆) . (8) 

2.1.4. Implementation of the FLD-Based Methods 
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In summary, these FLD-based retrieval schemes can be distinguished by the approximation of 
R and F over the spectral extent of the absorption feature used, while the sFLD requires a single 
measurement of E↓ and L↑ inside and outside the absorption feature. The 3FLD requires one 
measurement of E↓ and L↑ inside the absorption feature and two outside, at the left and right 
shoulders. The iFLD makes use of the complete E↓ and L↑ spectral information to compute 𝛼ොோ and 𝛼ොி  correction factors. Importantly, E↓ and L↑ must be defined in the same units. In the case of 
measuring E↓ and L↑ pointing a fiber optics towards a Spectralon ® panel (Labsphere, Inc,. North 
Sutton, NH, USA) and vegetation target, respectively, both measurements are directional, i.e., are 
dependent of the observation direction. Therefore, both are defined as the radiant flux reflected by a 
surface, per unit projected area per unit solid angle per wavelength (e.g., mW m-2sr1nm1). However, 
if E↓ is measured with a fiber optic attached to a cosine diffuser pointing the sky, E↓ is not directional, 
i.e., E↓ is integrated over the entire hemisphere. It is defined as the radiant flux received by a surface 
per unit area per wavelength (e.g., mW m−2nm−1). However, provided that the cosine receptor 
responds according to Lambert’s cosine law, the total luminous flux (global sky and sun irradiance) 𝐹 ↓௧௧= 𝜋 × 𝐸 ↓௫ , being E↓max the peak luminous intensity at nadir incidence of the global 
irradiance. It is possible to divide E↓ by 𝜋  to define E↓ and L↑ with the same units (e.g., mW 
m2sr1nm1).  

The first, and a critical, step is to define the wavelength range covering the full O2B and O2A 
absorption windows. This is particularly relevant when the spectral resolution is sub-optimal and 
spectral bands not affected by absorption are not easily identifiable. In our study, we determined that 
the spectral ranges affected by O2 absorption are: 686–697 nm (O2B) and 759–770 nm (O2A) (see 
Appendix C for further discussion). We consider that outside these ranges, the influence of O2 
absorption is minimal. Once the absorption region is identified, the spectral band representing 
maximum absorption can be easily identified by searching for the smallest E↓ value in the respective 
wavelength range (Appendix A–sFLD, 3FLD, and iFLD red dot). It is recommended not to use a fixed 
wavelength position to define the band representing the minimum absorption. If the 
spectroradiometer used to measure is not accurately spectrally calibrated or there is a spectral shift 
due to variable measurement temperature (cf. Reference [24]), the use of a fixed wavelength position 
will introduce an error in the F retrieved. In addition, in case of using a spectroradiometer with low 
SNR, it is recommendable to define 𝐿↑(𝜆) and 𝐸↓(𝜆)  as the average value of 𝐿↑(𝜆) and 𝐸↓(𝜆) of adjacent wavelengths. 

The next step is to determine the spectral lines defining the left and right shoulders of the 
absorption feature. This can be achieved by searching for E↓ local maxima at both shoulders. 
According to the method assumptions, one or several wavelengths have to be used to compute E↓ 
and L↑ outside the absorption feature. Again, it is not recommended to use a fix wavelength to define 
the left and right shoulders position and by computing the average values of  𝐿↑(𝜆௨௧) and 𝐸↓(𝜆௨௧) using adjacent wavelengths it is possible to increase the SNR.  

The interpolation method, and its implementation, is a key step in the most advanced retrieval 
algorithms. The main purpose of the interpolation is to eliminate the effect of the absorption feature 
(Earth or solar atmosphere) by constructing the L↑, E↓, and/or Rapp spectra shape between the 
absorption features shoulders (Figure 4, green line). Through the interpolation, a reference band 
inside the absorption feature can be computed, mitigating the effect of having a different reflectance 
inside and outside of the absorption feature, which has been the weak point in the earlier retrieval 
algorithms, such as sFLD. In the case of the E↓, interpolation is easier, since the solar spectrum is very 
well characterized. The reflected radiance is more complex, since it is modulated by the reflectance 
and the fluorescence spectral shapes, which are complex, especially in the red region around the O2B 
absorption. Therefore, it requires more flexible interpolating functions capable to fit its curvature (see 
Figure 4, B,D). 



Remote Sens. 2019, 11, 962 8 of 31 

 

 
Figure 4. Example of correct (green) and incorrect (blue) implementation of polynomial second-order 
interpolation for the down-welling irradiance (E↓, A and C) and cubic spline interpolation for the 
apparent reflectance (Rapp, B and D) at O2B (F687, C and D) and O2A (F760, A and B) bands. 

For the interpolation, it is necessary to determine the known data points from which construct 
the new data points (Figure 4, green dots). Properly selecting those points is the most critical step for 
an accurate interpolation. Similar to previous steps, this can be achieved by searching for E↓ local 
maxima at both shoulders of the absorption feature (green dots and lines in Figure 4 A,C). Then, those 
bands can be used to interpolate L↑ and/or Rapp. Importantly, the small Earth’s atmospheric 
absorptions (e.g., water) present in the left and right shoulders of the oxygen absorption feature must 
be avoided. Otherwise, if the points inside those absorptions are included as key points for the 
interpolation, the resulting curve will be shifted downwards, which can introduce an error of a 
similar or larger magnitude than the fluorescence itself (blue dots and lines in Figure 4 A,C). This 
problem is great for spectrometers of finer spectral resolution, since they resolve deeper fine features. 
Instruments with coarser spectral resolution are less sensitive, since they cannot resolve this level of 
detail. 

The presence of noise also needs to be considered as it distorts the spectrum, and this might, in 
turn, distort the interpolation. Therefore, the use of spectrometers with very high SNR is 
recommended. Rapp is particularly affected by noise, since noise will be amplified by dividing L↑ by 
E↓ (Figure 4 B,D). In this case, it is possible to mitigate the effect of noise by two approaches: One 
would be to avoid using spline or any other method that obliges the resulting curve to pass precisely 
through the key points used for interpolating; the other is to use noise-reduction algorithms to 
mitigate noise, pixel binning being the simplest one, or by applying a low-pass filter. However, care 
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should be exercised to ensure that spectral features are not smoothed out when denoising the 
spectrum.  

Appendix C provides additional detail on wavelength setting, spectral window intervals, and 
interpolation method used in this study for the sFLD, 3FLD, and iFLD retrieval methods. We would 
like to highlight that these settings worked for this specific dataset (cf. Section 3) and should not be 
seen as a standard setting. It is important to adapt the herein-described setting to the characteristics 
of the used instruments and observed vegetation [39]. 

2.2. Spectral Fitting Method-Based SIF Retrieval 

2.2.1. Background of the Spectral Fitting Method 

The SFM is a technique to decouple SIF and reflectance from high spectral resolution radiance 
observations. The method relies on general mathematical functions representing canopy R and F 
within narrow spectral windows centered at oxygen absorption features. As previously defined, in 
the case of ground-based spectrometer, radiance detected by sensors includes contributions from 
canopy LR and emitted F. The parameters of the functions employed to represent F and R are thus 
optimized by non-linear least square optimization process, comparing instrument observations with 
radiance computed accordingly with Equation (1). In this way, the a-priori F and reflectance functions 
can be spectrally decoupled on the base of their contribution at the different spectral lines.  

The use of Spectral Fitting for proximal sensing measurements is easier compared with airborne 
or satellite measurement because the surface irradiance is directly measured, therefore Equation 1 
can be solved without additional information (i.e., indirectly estimating top of canopy irradiance). In 
the past, several functions were proposed to fit the SIF and reflectance spectral behavior within 
narrow spectral windows as suggested in References [9,13,38,40]. However, SIF is generally 
represented as peak-like functions such as Gaussian, Lorenzian, or Voigt; whereas canopy reflectance 
is usually described as second- or third-order polynomial or more complex piecewise cubic splines. 

The major advantage of SFM is the exploitation of a large number of spectral bands because the 
mathematical system, which describes L↑ at different wavelengths, is better conditioned and, 
consequently, estimations are less affected by instrument noise. The SFM method is therefore 
particularly useful for spectroradiometers with very high spectral resolution that suffer from higher 
noise levels. On the other hand, this approach has a number of limitations that are due to its complex 
setup and the overall computational time. Recently, the SFM approach has been further extended to 
a unique and broad spectral window that covers the entire SIF emission region (650−800 nm) to 
estimate the full SIF emission spectrum consistently [13]. 

2.2.2. SFM Retrieval Method Implementation 

As previously described, this method relies on general mathematical functions representing the 
R and F spectrum within a narrow spectral window. Before going into the description of the SFM 
implementation, the mathematical functions used to model R and F are defined. Since R (not distorted 
by F) and F spectral emission are not available from field measurements, first, a set of representative 
R and F spectra are modeled using a canopy reflectance-SIF radiative transfer model. Then, the 
accuracy of different functions used to represent R and F reference spectra are tested using the 
reference dataset. For instance, Cogliati et al. [13] used the FluoSpec radiative transfer model (RTM) 
to build a reference dataset simulating the spectral characteristics of the FLEX spectrometer FLORIS. 
In their study, different functions were tested to model R (i.e., linear, quadratic, cubic spline) and F 
(i.e., linear, quadratic, cubic, Gaussian, Lorentzian, and Voigt). From this analysis, they concluded 
that a cubic spline function and a Voigt function are the best functions to model R and F, respectively. 
On the other hand, Julitta et al. [41], also using FluoSpec to build a reference dataset but simulating 
the spectral response of Ocean Optic’s QE Pro spectrometer, suggest to use a cubic spline function to 
model R and a Gaussian function to model F. 

In the study presented here, the Gaussian function performed better than the Voigt function in 
modeling F (and R2 = 0.96 and R2 < 0.5 for the Gaussian and Voigt functions, respectively). Cogliati et 
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al. [13] propose that different sensor spectral responses (e.g., SR, SSI, and SNR) may lead to different 
functions to best represent R and F. This may explain why, for proximal sensing spectrometers, a 
Gaussian function was the most suitable algorithm to model F [41] instead of a Voigt function as 
suggested by Cogliati et al. [13] for FLORIS, FLEX space-borne sensor. 

Therefore, in this study, R was approximated using a cubic spline function and a Gaussian 
function was used to model F, 𝐹 = 𝑎 ∙ 𝑒ି൫(ఒିఒబ)ି(ିఒబ)൯మଶ∙మ  (9) 

where 𝑎 stands for the heights of the red (O2B) or far-red (O2A) F curve’s peak, 𝜆 represents the 
wavelengths of the defined F and R fitting window interval, 𝜆 is the first wavelength of the defined 
F and R fitting window interval, 𝑐 is the central wavelength of F peaks, and 𝑏 controls the width of 
the red and far-red F spectrum (Appendix C).  

To retrieve F with the SFM, high-resolution E↓ and L↑ spectral measurements are needed. Similar 
to FLD retrieval methods, E↓ and L↑ must be defined with the same units (cf. Section 2.1.4). For this 
study, the F and R fitting spectral windows are defined between 750–780 nm (O2A) and 680–698 nm 
(O2B) (Appendix C). The first step to retrieve SIF using the SFM is to compute Rapp and interpolate 
within the defined absorption range (O2A: 759–770 nm and O2B: 686–697 nm) (Appendix C). The 
output parameters of the interpolated Rapp are used in the optimization cost function as the R ‘first 
guess’ parameters. Secondly, by using the iFLD method (Section 3.1), F at each O2 absorption feature 
is estimated. The retrieved F is used in the optimization cost function as a first-guess parameter for 
the height of the red (O2B) and far-red (O2A) F peak curve (a parameter of the Gaussian function used 
in this study). Third, the first guess as well as the lower and upper boundaries for the R and F 
functions need to be defined. Finally, the parameters of the functions employed to model F and R are 
optimized by non-linear least square optimization process, comparing instrument observations with 
radiance computed by Equation 1. In order to estimate the accuracy of the retrieval method, it is 
recommended to compare the modeled and reference L↑. For a good implementation of the SFM, the 
differences between modeled and measured L↑ must be minimal.  

In Appendix C, a diagram that sets out the most relevant steps when implementing the SFM 
retrieval method is presented. Appendix C then summarizes the input parameters, wavelength 
settings, wavelength intervals, and R and F model functions used in this study. Here, again, we would 
like to highlight that these settings specific for this dataset (cf. Section 3). These should not be 
considered as standard settings.  

3. Assessment of SIF Retrieval Uncertainties-Sensitivity Analysis  

The aim of this analysis is to assess possible SIF retrieval uncertainties for the combination of 
consolidated SIF retrieval approaches presented using off-the-shelf spectrometers currently used for 
proximal sensing of SIF. A summary of considered sensors and their characteristics is presented in 
Table 1 and Figure 5. 

Table 1. Characteristics of the typical off-the-shelf spectrometers for the measurement of sun-induced 
fluorescence: Spectral range, spectral sampling interval (SSI), optical resolution measured as full width at half 
maximum (FWHM), and signal-to-noise ratio (SNR). *OceanOptics spectroradiometers can be built with these 
or other characteristics by demand. 

Spectrometer Range (nm) SSI (nm) FWHM (nm) SNR 
ASD FieldSpec  350−1000 1.4 3 4000 

OceanOptics MAYA * 650−803 0.08 0.44 450:1 
OceanOptics HR4000 * 650−840 0.05 0.28 300:1 
OceanOptics QEPRO * 651−803 0.13 0.38 1100:1 
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Figure 5. Up-welling radiance (L↑) modeled with the spectral resolution and spectral sampling interval of ASD, 
MAYA, HR4000, and QE Pro spectrometers in correspondence of the O2B (left) and O2A (right) bands. Data 
were modeled for a typical plant canopy using FluorSAIL3 and then degraded to the respective spectral 
resolution of the instrument. 

For the data simulation, we employed a combination of the RMT FluorSAIL3 and MODTRAN-
5 [42] to simulate radiance (LTOC) and top-of-canopy (TOC) irradiance (ETOC), respectively. 
FluorSAIL3, an extended version of the physically based FluorSAIL model [43], provides simulations 
of surface reflectance and emitted SIF with a spectral resolution of 1 nm. The coupling with the 
atmosphere was realized using the four-stream theory [44], while atmospheric functions were 
calculated with MODTRAN-5 [42]. Table 2 and Table 3 list the simulation parameters and variables 
used in this study representing 16 typical vegetation targets, observed under a cloudless sky. We 
deliberately considered vegetation types as defined in Damm et al. [32] to relate our results with 
previous investigations and allow progress in the field of SIF proximal sensing to be tracked. The 
advantage of using simulated data is that SIF emission and surface reflectance are precisely known 
(Figure 6). ETOC↓ and LTOC↑ were simulated assuming Lambertian surface reflectance and neglecting 
adjacency effects following 𝐿େ↑ = ൏ 𝐸௦୭  𝑐𝑜𝑠𝜃௦𝜋 ቈ(൏ 𝜏ୱୱ  +൏ 𝜏ୱୢ ) ∙ 𝑅1 − 𝑅 ൏ 𝜌ୢୢ   + 𝐹 (10) 𝐸େ↓ = ൏ 𝐸ୱ୭  𝑐𝑜𝑠𝜃௦𝜋 ቈ(൏ 𝜏ୱୱ  +൏ 𝜏ୱୢ )1 − 𝑅 ൏ 𝜌ୢୢ  , (11) 

where 𝐸௦represents the combined direct and diffuse top-of-atmosphere irradiance flux for a given 
sun-incident angle 𝜃ୱ. 𝜏ୱୱ is the atmospheric transmittance for direct downwelling irradiance, 𝜏ୱୢis 
the atmospheric transmittance for diffuse downwelling irradiance, and 𝜌ௗௗ is the spherical albedo. 
Angle brackets indicate functions that need to be convolved individually to avoid artefacts stemming 
from this processing step. 

To evaluate the impact of sensor parameters on the SIF retrieval accuracy, simulated ETOC↓ and 
LTOC↑ were spectrally resampled using a two-step approach that includes the convolution of the input 
signal using a Gaussian function and the sampling of the convolved signal considering predefined 
sensor characteristics, following the approach described in Damm et al. [32]. 

We then added random Gaussian distributed noise with a mean value of zero and a standard 
deviation equal to the ratio between signal level (e.g., LTOC↑) and SNR to ETOC↓ and LTOC↑ as: 𝐿େ୬୭୧ୱୣ,↑ = 𝐿େ↑ + 𝒩 ቆ0, 𝐿େ↑𝑆𝑁𝑅 ቇ (12) 

𝐸େ୬୭୧ୱୣ,↓ = 𝐸େ↓ + 𝒩 ቆ0, 𝐸େ↓𝑆𝑁𝑅 ቇ (13) 



Remote Sens. 2019, 11, 962 12 of 31 

 

where 𝒩 is a function providing a random value according to a normal distribution (μ,σ) defined by 
its mean (μ) and standard deviation (σ). For the SNR, we identified representative values per sensor 
from literature and assumed the noise contribution constant across wavelengths (cf. Table 2).  

Finally, retrieved SIF signals were compared to the modeled reference SIF at the wavelength 
representing the maximum absorption (e.g., lowest LTOC↑). We then calculated several quality 
statistics including, the total relative error (RE), the coefficient of determination (R²), and the root 
mean square error (RMSE).  

 

 
Figure 6. Apparent reflectance (Rapp, A) and total fluorescence (FTOT, B) spectrum used in this study 
representing 16 typical vegetation targets. Data were modeled using FluorSAIL3. 

Table 2. Parameters and variables used to calculate the reference radiance signatures for incoming 
and reflected light using FluorSAIL3. 

Parameter Unit Values 
FluorMODleaf 

Internal structure parameter N - 1.5 
Chlorophyll ab µg cm−2 20,80 

Leaf water cm 0.025 
Dry matter g cm−2 0.01 

Fluorescence efficiency factor  0.02,0.04 
Temperature °C 20 

FluorSAIL 
LAI - 1,4 

LIDF - erectophile, planophile 
Hot-spot parameter - 0.1 

MODTRAN 5 
Correlated-K option - yes 

DISORT number of streams - 8 
Molecular band model resolution cm−1 0.1 

Atmospheric profile - midlatitude summer 
Aerosol model - rural 

Visibility km 23 
Surface height m 200 
Water vapor g cm-2 2.65 

CO2 ppm 385 
Solar zenith angle deg 30 

Viewing zenith angle deg 0 
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Table 3. Structural and physiological canopy properties of the 16 vegetation canopies investigated. Varied 
parameters are the leaf angle distribution (LAD) (erectophile (erec.) or planophile (Plan.), the leaf area index 
(LAI, m2 m-2), the chlorophyll content (µg cm-2) and the Fs efficiency factor. 

Chlorophyll content Fs-efficiency factor LAI LAD Canopy type (example) 
20 0.02 1 Plan. Sparse young unstressed wheat 
80 0.02 1 Plan. Sparse old unstressed wheat 
20 0.04 1 Plan. Sparse young stressed wheat 
80 0.04 1 Plan. Sparse old stressed wheat 
20 0.02 4 Plan. Dense senescent unstressed wheat 
80 0.02 4 Plan. Dense mid old unstressed wheat 
20 0.04 4 Plan. Dense senescent stressed wheat 
80 0.04 4 Plan. Dense mid old stressed wheat 
20 0.02 1 Erec. Sparse young unstressed bean 
80 0.02 1 Erec. Sparse old unstressed bean 
20 0.04 1 Erec. Sparse young stressed bean 
80 0.04 1 Erec. Sparse old stressed bean 
20 0.02 4 Erec. Dense senescent unstressed bean 
80 0.02 4 Erec. Dense mid old unstressed bean 
20 0.04 4 Erec. Dense senescent stressed bean 
80 0.04 4 Erec. Dense mid old stressed bean 

 

4. Results and Discussion 

4.1. Impact of Sensor Specification on SIF Retrieval Methods 

The following Section describes the impact of the different sensor specifications (i.e., SR, SSI, 
and SNR) on the precision, accuracy, and relative error of four different retrieval methods: sFLD, 
3FLD, iFLD, and SFM. First, we compare the reference (modeled) and retrieved F687 and F760 of the 16 
simulated canopy cases without noise (Figure 7 to assess the effect of SR and SSI. Afterwards, the 
relative impact of SNR on F687 and F760 retrieval is quantified by adding the corresponding noise 
(Figure 8). The coarse SR and SSI of the ASD only allows assessing the performance of sFLD, 3FLD 
and iFLD method, while for sensors with higher SR and SSI (e.g., MAYA, QE Pro and HR4000), all 
four approaches were tested. 
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Figure 7. Retrieved and reference fluorescence signal of 16 simulated canopy cases without noise for 
four off-the-shelf spectrometers; ASD (red), MAYA (green), QE Pro (black), and HR4000 (blue). 
Results for O2B (F687) band standard FLD (sFLD) (A), three bands FLD (3FLD) (B), improved FLD 
(iFLD) (C), and spectral fitting method (SFM) (D). Results for O2A (F760) band sFLD (E), 3FLD (F), 
iFLD (G), and SFM (H). The coarse spectral resolution (SR) and SSI of the ASD only allows assessing 
the performance of sFLD, 3FLD, and iFLD method, while for sensors with higher SR and SSI (i.e., 
MAYA, QE Pro, and HR4000) all four approaches were tested. Hence, plots D and H do not show 
ASD results. The line 1:1 is shown as a dashed line. Note that Y-axes of A–H differ. 

Considering retrieval in the O2A band using high-resolution instruments, we obtain nearly 
identical results for F760 estimates using 3FLD, iFLD, and SFM methods where the regression lines of 
F760 (Figure 7E–H) and R (Figure 9E–H) are close to the 1:1 line (R² ≈ 0.98 and RMSE ≈ 0.08 mW m−2 
sr−1 nm−1). In more detail, the SFM approach has a tendency to underestimate R, while 3FLD, iFLD, 
and SFM overestimate F760 for higher F values. On the other hand, sFLD and 3FLD applied to low-
resolution sensors constantly overestimated F760. However, when using the iFLD, an R² = 0.91 and 
RMSE = 0.18 mW m−2 sr−1 nm−1 was found. The sFLD performs worst in estimating F760 with a 
significant overestimation for all sensors (R² = 0.93–0.94 and RMSE = 0.3–0.32 mW m-2 sr−1 nm−1). As 
described by Damm et al. [32], the strong overestimation of F760 by the sFLD method is caused by a 
violation of the assumption that R and F are spectrally constant over the O2A band. The 3FLD and 
iFLD methods assume a linear and non-linear relationship respectively between R and SIF, which 
results in a better prediction of R and F760. 

The retrieval of F687 at the O2B band is more challenging and was found to be unfeasible with 
low-resolution instruments such as the ASD (Figure 7A–D). Higher resolution sensors MAYA, QE 
Pro, and HR4000, however, all perform reasonably well for F687 retrieval (e.g., for iFLD and SFM a R² 
between 0.88–0.91 and an RMSE between 0.34–0.38 mW m−2 nm−1 sr−1 was observed). Due to the non-
linear relationship of R and F across the O2B band, both sFLD and 3FLD show a significant larger 
error compared to iFLD and SFM (R² ≤ 0.5 and RMSE = 1–8 mW m−2 sr−1 nm−1). By using a more 
complex interpolation method, iFLD and SFM can better estimate R at the O2B (R² = 1 and RMSE = 
0.001 mW m−2 sr−1 nm−1), a fact that substantially impacts F retrieval. 

 
Figure 8. Retrieved relative error of 16 simulated canopy cases with added noise for four off-the-shelf 
spectrometers; ASD, QE Pro (green), MAYA, and HR4000. Results for O2B (F687) band sFLD (A), 3FLD 
(B), iFLD (C), and SFM (D). Results for O2A (F760) band sFLD (E), 3FLD (F), iFLD (G), and SFM (H). 
The coarse SR and SSI of the ASD only allows assessing the performance of sFLD, 3FLD, and iFLD 
method, while for sensors with higher SR and SSI (i.e., MAYA, QE Pro, and HR4000) all four 
approaches were tested. Hence, plots D and H are missing ASD results. Note that Y-axes of A–H 
differ. 
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When retrieving F687, the iFLD shows a tendency to underestimate high F687 values, while low 
F687 values are overestimated by both iFLD and SFM. This result does not agree with results presented 
by Jullita et al. [41] and Zhang et al. [45]. In their study, the same SFM implementation [41] was used 
as in the present study, but they found a 1:1 relation between retrieved and reference F687. We 
hypothesize that this could be explained by differences on how the F687 and R reference data were 
simulated. In the case of Zhang et al. [45], FluoSpec was used to generate the reference dataset. Jullita 
et al. [43] also defined the R and F687 functions implemented in their R code using FluoSpec reference 
data. In our study, we used FluorSAIL3 to generate the reference dataset (to be consistent with the 
study by Damm et al.[32]) but used the SFM fitted for FluoSpec. It is known that F687 modeled by 
FluorSAIL3 presents a taller and narrower red SIF peak compared to FluoSpec. Thus, most probably 
the shape of spectra of F687 and R simulated with FluorSAIL3 may not be captured with the FluoSpec-
trained SFM approach. To ensure that the results presented were not due to incorrect implementation 
of the SFM approach, we retrieved F687 and F760 with the original R code from Julitta et al. [41] available 
on GitHub platform at https://github.com/tommasojulitta and we obtained the same results as with 
our SFM approach. We suggest the systematic assessment of the effect in the near future to ensure 
that the SFM is flexible enough to cope with possible dynamics of SIF. 

Figure 8 shows the RE of retrieved F obtained when including noise. In spite of its high SNR, the 
ASD shows the highest RE for F760 and F687, where sFLD performs worst (RE = 234.5 mW m−2 nm−1 sr-

1, 370.1%) and iFLD best (RE = 11.8 mW m−2 nm−1 sr−1, 41.2%). The high-resolution sensors QEPro, 
MAYA, and HR4000 provide better F estimates with lower RE for SFM (F760 = 4.5%–4.9%, F687 = 5.9%–
7.2%) compared to the iFLD method (F760 = 4.7%–9.3%, F687 = 9.7%–13.4%). From these three sensors, 
the QE Pro produces lowest RE for F760 and the HR4000 lowest RE for F687. The SFM furthermore 
shows the lowest error range and lowest mean RE for F760 and F687 (6.2%–6.5% and 25.3%–27.8%). 

Importantly, when retrieving SIF with the sFLD or 3FLD, the relative error was 2–6 (QE Pro-F760) 
and 6–11 (HR4000–F687) times higher than with the SFM. Moreover, when retrieving SIF using the 
ASD simulated data, the error was 2–10 times higher than when using spectrometers with a finer 
spectral resolution, suggesting the need for care when interpreting SIF results retrieved with the sFLD 
and 3FLD and/or with spectrometers with SSI ≥ 1.4 nm and FWHM ≥ 3 nm. 

 

Figure 9. Retrieved and reference reflectance signal of 16 simulated vegetation canopies for four off-
the-shelf spectrometers; ASD (red), MAYA (green), QE Pro (black), and HR4000 (blue). Results for 
O2B (F687) band sFLD (A), 3FLD (B), iFLD (C), and SFM (D). Results for O2A (F760) band sFLD (E), 3FLD 
(F), iFLD (G), and SFM (H). The coarse SR and SSI of the ASD only allows assessing the performance 
of sFLD, 3FLD, and iFLD method, while for sensors with higher SR and SSI (i.e., MAYA, QE Pro, and 
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HR4000), all four approaches were tested. Hence, plots D and H do not show ASD results. The line 
1:1 is shown as a dashed line. Note that Y-axes of A–D differ from E–H. 

In summary, the results presented in this study corroborate Damm et al. [32] results, where SNR 
was the most important parameter affecting the retrieval accuracy, followed by SR and SSI. 
Nevertheless, since in the study by Damm et al. [32], the spectrometers used present a relative high 
SNR, the accuracy and precision of retrieved F760 and F687 mainly depend on the SR and SSI. A finer 
spectral resolution generally reduces retrieval uncertainties and allows the use of the more 
sophisticated iFLD and SFM methods. 

Table 4. Overview of the total relative error (RE), the coefficient of determination (R²), and the root mean square 
error (RMSE) of reference (modeled) and estimated F760 and F687 for 16 simulated canopy signatures and four 
different sensors (ASD, QE Pro, MAYA, and HR4000). Bold numbers represent the best performing retrieval 
method. 

 
F760 F687 

RE 
sFLD 3FLD iFLD SFM sFLD 3FLD iFLD SFM 

ASD 234.5 31.9 11.8 --- 370.1 101.9 41.2 --- 
QE Pro 26.2 7.7 4.7 4.5 56.0 50.8 13.8 6.2 
MAYA 33.4 14.4 7.0 4.9 62.9 50.8 10.4 7.2 
HR4000 40.9 25.4 9.6 4.8 66.5 34.5 9.7 5.9 

 R² 
ASD 0.44 0.91 0.91 --- 0.15 0.00 0.26 --- 

QE Pro 0.93 0.98 0.98 0.98 0.52 0.22 0.88 0.90 
MAYA 0.93 0.98 0.98 0.98 0.48 0.13 0.88 0.90 
HR4000 0.94 0.98 0.98 0.99 0.54 0.40 0.90 0.91 

 RMSE 
ASD 2.48 0.53 0.18 --- 8.80 4.99 0.84 --- 

QE Pro 0.31 0.13 0.09 0.09 1.39 1.58 0.36 0.37 
MAYA 0.32 0.13 0.08 0.08 1.55 2.04 0.37 0.38 
HR4000 0.30 0.12 0.08 0.08 1.31 1.06 0.34 0.36 

4.2. Uncertainties Caused by the Setup of Retrieval Methods  

This section describes the impact of an incorrect implementation of the FLD and SFM methods for 
the SIF retrieval. For this purpose, retrieved and modeled F signals of a representative vegetation 
target were compared. The selected vegetation target represent the spectrum of a planophile canopy 
with a leaf area index of 1, a chlorophyll content of 80 µg/cm2, and SIF efficiency factor of 2 (Table 3). 
The major sources of error, when retrieving SIF, can be attributed to: 
1) Definition of the wavelength interval affected by O2B and O2A absorption according to 

instrumental spectral characteristics (FLD-based and SFM methods). 
2) Selection of wavelengths at the shoulder and inside the absorption feature (FLD-based 

methods). 
3) Interpolation strategy to estimate F and R at wavelengths affected by O2 absorption (FLD-based 

and SFM method).  
4) Definition of the b parameter (SFM method). 
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Figure 10. Fluorescence relative error as function of the absorption range position for sFLD (black), 
3FLD (cyan), iFLD (red), and SFM (blue) retrieval methods at O2B (F687, A and B) and O2A (F760, C) 
bands. Plot B show the same information as A but for a narrow y-axes range. For this exercise, we 
modified the left and right shoulders limits simultaneously. Note that Y-axes of A–C differ. 

Error source 1: The F retrieval errors related to the definition of the wavelength representing the 
full oxygen absorption feature are shown in Figure 10. For this experiment, the left and right shoulder 
limits were simultaneously changed. For both retrievals, F687 (Figure 10A,B) and F760 (Figure 10C), the 
relative error of FLD-based methods, increases with an increased absorption range. The 3FLD was 
the most affected retrieval method (RE-F687 100%–1200% and RE-F760 10%–20%), followed by sFLD 
(RE-F687 10%–70% and RE-F760 30%–70%), and iFLD (RE-F687 2%–70% and RE- F760 1%–30%), which led 
to an over- and/or underestimation of E↓ and L↑ outside the absorption feature (Appendix D, green 
and blue crosses). The SFM was not affected by changes in the absorption range. For the FLD-based 
methods, the oxygen absorption range affects the definition of the shoulder wavelength position 
bands (error source 2) as well as the interpolation to model E↓, L↑, and R (error source 3). This is the 
reason an incorrect characterization of the oxygen absorption window has a significant impact in the 
retrieval of SIF when using FLD-based method. For instance, for the 3FLD method, an uncorrected 
definition of the O2B absorption range (Figure 10 A, RE-F687 = 1200%) led to an underestimation of E↓ 
and to an overestimation of L↑ outside the absorption feature (Appendix D, blue crosses), which in 
the end results in an underestimation of the retrieved fluorescence (F =−0.1049 mW m−2 nm−1). 
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Figure 11. Fluorescence relative error as function of the outer wavelength position for sFLD (black), 
3FLD (cyan), and iFLD (red) retrieval methods at O2B (F687, A and B) and O2A (F760, C and D) bands. 
Plot B and D show the same information as A and B but for a narrow y-axes range. For this exercise, 
we fixed the absorption range position between 686–697 (O2B) and 759–770 (O2A). Moreover, for each 
change of the outer wavelength positions, we computed the relative error when i) the left shoulder 
was fixed in a specific band and the right shoulder changed positions and ii) the left shoulder changed 
wavelength positions and the right shoulder was fixed in a specific band. Note that Y-axes of A–D 
differ. 

Error source 2: Retrieval errors related to definition of the shoulder wavelength position is 
shown in Figure 11. For this experiment, the absorption range was fixed between 686-697 nm (O2B, 
Appendix C) and 759–770 nm (O2A, Appendix C), and systematically changed the shoulder 
wavelength position and computed corresponding F retrieval errors (i.e., RE). First, the left shoulder 
wavelength was set to a fixed position and the right shoulder wavelength changed (Figure 11, O2B 
from 695–710 nm and O2A from 770–780 nm). Second, the left shoulder wavelength was modified by 
fixing the right one at a specific band (Figure 11 O2B from 670–685 nm and O2A from 750–760 nm). In 
general, the further away the shoulder wavelength position is from the absorption range feature, the 
greater is the error. For F687 (Figure 11 A–B), the 3FLD was most sensitive to changes in the shoulder 
wavelengths position (RE-F687 5%–2500%), followed by sFLD (RE-F687 20%–200%), and iFLD (RE-F687 
5%–35%). For F760 (Figure 11 C–D), the sFLD was most sensitive to changes of the shoulder position 
(RE- F760 200%–800%), followed by 3FLD (RE- F760 10%–20%), and iFLD (RE- F760 5%–10%) method. SIF 
retrieval errors by the sFLD were two times higher when using the right shoulder, which indicates 
that the use of reference bands at the right shoulder should be avoided. The iFLD method is less 
sensitive to the shoulder wavelength position because, in contrast to sFLD and 3FLD methods, it uses 
the full spectrum to interpolate E↓ and R in the absence of the oxygen absorption feature. Another 
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source of error can occur when selecting the local maximum on both shoulders (Figure 11, green 
dots). The incorrect selection of these points can result in a RE of 60% for F687 and RE 35% for F760 

(Figure 11, blue dots). 
 

 
Figure 12. Fluorescence relative error as function of the interpolation window delimited to select the 
local maximum points with which perform the interpolation for iFLD (red) and SFM (blue) retrieval 
methods at O2B (F687, A and B) and O2A (F760, C and D) bands. For this exercise, we fixed the absorption 
range position between 686–697 (O2B) and 759–770 (O2A). Moreover, for each modifications of the 
interpolation window, we computed the relative error when i) changing the left and right limits 
simultaneously (A and C), ii) the left limit was fixed in a specific band and the right limit changed 
wavelength positions (B and D), and iii) the left limit changed wavelength positions and the right 
limit was fixed in a specific band (B and D). Note that y-axes of A–B differ. 

Error source 3: The interpolation strategy is of great importance, as can be seen from Figure 12. 
The distance of the selected shoulder points defines the interpolation range used for the SIF retrieval 
inside the absorption feature. The interpolation range was modified as follows: i) Changing the left 
and right shoulder positions simultaneously (Figure 12A,C); ii) only the right shoulder position 
(Figure 12B, O2B 700–730 nm and Figure 12D; O2A 780–820 nm); and iii) only the left shoulder position 
(Figure 12B, O2B 650–680 nm and Figure 12D, O2A 720–750 nm). Figure 12 shows that the RE increase 
with increasing interpolation range resulting in values of 120% at F687 and 30% at F760 for the iFLD 
and a RE of 15% at F687 and 30% at F760 for the SFM. In this experiment, for both retrieval methods, a 
cubic spline function was used to interpolate R in the absorption feature. A splines function will go 
exactly through all the key points provided to perform the interpolation. This decreases the 
interpolation accuracy at the absorption feature when the key points selected are located some 
distance away from the absorption region. The SFM yields a lower RE than the iFLD because the 
parameters of the R interpolation are used as a first guess in a non-linear least square optimization 
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function. Therefore, a small error in the R parameters first guess is corrected in the optimization 
process (Appendix C). 

 

 
Figure 13. Fluorescence relative error as function of the b parameter first guess used at the SFM 
Gaussian function to model fluorescence at O2B (F687, circle) and O2A (F760, cross) bands. The b 
parameters define the Gaussian function width used to model fluorescence. 

Error source 4 only relates to the SFM approach. For a good implementation of this method, the 
crucial issue is to define a set of functions that are able to model the broad range of R and F dynamics 
found under natural conditions. As introduced in Section 2 in this study, and after testing a different 
set of functions to model R and F, a cubic spline function to model R and a Gaussian function to 
model F were implemented [41]. Hence, for this specific implementation of the algorithm, the 
parameters that could be considered for the sensitivity analysis are i) absorption feature range, ii) F 
and R fitting interval, iii) R interpolation, and iv) the Gaussian function parameter 𝑏, which controls 
the width of the red and far-red SIF modeled peaks. We will now focus on the 𝑏  parameter 
characterization. Figure 13 shows the impact on the retrieved SIF when the  𝑏  factor first guess 
changes from 0 to 100. The F retrieval is mostly sensitive to low 𝑏 values, for instance the RE varies 
between 10%–310% (F687) and 5%–20% (F760) for 𝑏  values between 1 to 3. When 𝑏  > 3, the RE 
decreases to 6% (F687) and 1% (F760). Similar to the R parameters, the value assigned to the b factor is 
used as a first estimate in a non-linear least square optimization function. A small error in the b factor 
first estimate is corrected in the optimization process (Appendix B). 

5. Conclusions 

For the first time, the retrieval errors of F687 and F760 have been systematically analyzed, taking 
into account two known error sources, the sensor configuration (i.e., SR, SSI, or SNR), and the 
retrieval method applied. Our extended analysis reveals further sources of error caused by the 
definition and implementation of retrieval approaches, including the selection of appropriate 
wavelengths representing the absorption feature and related shoulder values.  
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We identified the HR4000 and QE Pro spectrometers in combination with the SFM approach to 
provide the most reliable SIF retrieval with a relative error ≤ 6% and < 5% for F687 and F760, respectively, 
followed by iFLD with a relative error for F687 ≤ 10% and F760 < 5%. Regarding the retrieval method 
implementation, again, the SFM was the least affected by the incorrect definition of the oxygen 
absorption spectral window, interpolation strategy, or model parameters characterization. Although 
the SFM approach was found to yield highest SIF retrieval accuracies, we also observed a sensitivity 
of the SIF retrieval to the simulated training data underlying the SFM model implementation. In 
contrast to iFLD approach, the SFM is less sensitive to the instrument noise but more sensitive to R 
and F modeling. We suggest further investigation of this sensitivity is required. 

We would like to encourage the scientific community to validate their implementation of the 
different retrieval methods by generating graphs of the most common error sources in the retrieval 
of SIF described in this paper (cf. Section 4.2). Furthermore, we recommend measuring fluorescence 
(e.g., grass) and non-fluorescence targets (e.g., soil) as part of the validation exercise (Dr. Andreas 
Burkart, personal communication). In the case of retrieving negative and/or extremely high SIF values 
in a fluorescence target (cf. Meroni et al. [9], Section 5 for SIF range variation) and SIF values different 
to zero in a non-fluorescence target, a revision of the implemented retrieval method must be 
performed.  

Finally, we would like to emphasize the importance of instrument characterization [30], 
measurement protocol [31], and implementation of the retrieval methods (this paper). We propose 
that the insights provided in the three review papers can assist the scientific community to achieve 
higher accuracies and replicability of their SIF measurements to significantly contribute to advancing 
vegetation research.  
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Abbreviations  

Terms frequently used in studies of sun-induced chlorophyll fluorescence. 

Description Acronym Units 

Up-welling radiance 

Spectral canopy-leaving radiance in the observation 

direction, including both the reflected component (LR) and 

the emitted component (F). It is defined as the radiant flux 

emitted, reflected, transmitted, or received by a surface, per 

unit projected area per unit solid angle per wavelength. It is 

a directional quantity. 

L↑, Lout [mWm-2sr-1nm-1] 

Reflected radiance 

Spectral reflected radiance in the observation direction. 
LR, Lrefl  

Down-welling irradiance 

Spectral incoming irradiance integrated over the entire 

hemisphere. It is defined as the radiant flux received by a 

surface per unit area per wavelength. It is not a directional 

quantity. 

E↓, Ein [mWm-2nm-1] 

Reflectance factor 

The spectrally resolved ratio of the amount of radiation 

reflected by a surface to the amount of radiation incident on 

the surface, for a specific observation geometry. 

R [-] 

Apparent reflectance factor 

The spectrally resolved ratio of the amount of radiation 

reflected and emitted by a surface (i.e., including 

fluorescence) to the amount of radiation incident on the 

surface, for a specific observation geometry. 

Rapp, R* [-] 

Spectroradiometer 

A device designed to measure spectrally resolved 

radiance/irradiance over a defined region of the 

electromagnetic spectrum. 

  

Spectral resolution 

Describes the ability of a spectrometer to define fine 

wavelength intervals. The finer the spectral resolution, the 

narrower the wavelength range for a particular band. 

SR [nm, µm] 

Spectral sampling interval 

Distance between the central wavelength of two consecutive 

spectral bands. 

SSI [nm, µm] 

Full width half maximum 

Width, at half of its maximum amplitude, of a function 

describing the spectral response of a spectral band. 

FWHM [nm, µm] 
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Signal-to-noise ratio 

Ratio between the power of a signal to the power of 

instrument noise, measured for the same spectral band. 

SNR [-, dB] 

Spectral band/Spectral line 

A certain region of the electromagnetic spectrum sampled 

with an instrument, defined by its FWHM and central 

wavelength. Resulting from the emission, reflection, 

absorption, or transmission of light in a narrow frequency 

range.  

  

Spectral window 

A certain region of the electromagnetic spectrum, defined 

inside a minimum and maximum wavelength range. 

  

Multispectral 

Involving a limited number (e.g., 3–20) distinct regions of 

the electromagnetic spectrum with a relatively coarse 

spectral resolution (e.g., 10–50 nm FWHM). 

  

Hyperspectral 

Involving a large number of nearly contiguous, partially 

overlapping spectral regions (e.g., 100–1000) with a 

relatively high spectral resolution (e.g., 0.01–3 nm FWHM). 

  

Radiative transfer model 

A set of equations describing the interaction between the 

electromagnetic radiation and a certain medium (e.g., 

atmosphere, vegetation). 

RTM  

Solar and Earth atmosphere absorption features  

Spectral regions in which the incoming radiance at ground 

level is strongly reduced due to absorption by specific 

chemical compounds. 

  

Absorption features due to absorption in the solar 

atmosphere (i.e., solar Fraunhofer lines). These spectral 

regions appear “dark” also at top of Earth atmosphere.  

e.g., Hα, FeI, KI  

Absorption features due to absorption in the Earth 

atmosphere (i.e., telluric). 

e.g., O2A, O2B, 

H2O 

 

Shoulder of the absorption features 

The closest spectral region to an absorption feature that is 

not influenced by the absorption, usually referred to as left 

shoulder (towards shorter wavelengths) or right shoulder 

(towards longer wavelengths). 

  

Sun-induced fluorescence SIF  

Spectral fluorescence radiance in the observation direction F [mWm-2sr-1nm-1] 
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Integral of the F spectrum over the full retrieval range (e.g., 

670–780 nm, 650–850 nm) 
FINT [mWm-2sr-1] 

F emitted in the red region of the spectrum at a specific 

wavelength (not an integrated value), depending on the 

retrieval method used. 

FR [mWm-2sr-1nm-1] 

F emitted in the far-red region of the spectrum at a specific 

wavelength (not an integrated value), depending on the 

retrieval method used. 

FFR [mWm-2sr-1nm-1] 

Maximum value of F in the red region maxFR [mWm-2sr-1nm-1] 

Maximum value of F in the far-red region maxFFR [mWm-2sr-1nm-1] 

F value at 687 nm F687 [mWm-2sr-1nm-1] 

F value at 740 nm F740 [mWm-2sr-1nm-1] 

F value at 760 nm F760 [mWm-2sr-1nm-1] 

 

”   
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Appendix A. Implementation FLD-based retrieval methods 
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Appendix B. Implementation SFM retrieval methods 
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Appendix C. Description of the parameters, wavelength setting, wavelength intervals (WI), and 
interpolation/model functions used in this study for the sFLD, 3FLD, iFLD, and SFM retrieval methods, 
respectively. Down-welling irradiance (E↓), up-welling radiance (L↑), reflectance (R), absorption feature (Abs. 
feature), lower boundary (lb), and upper boundary (ub). Gaussian function parameters, 𝑎 height of the red and 
far-red fluorescence curve’s peak, 𝑐 is the center of fluorescence peaks, and 𝑏 controls the width of the red and 
far-red fluorescence spectrum. 

O2A FLD methods 

Method 
E and R 

interpolation 
WI 

Abs. 
feature WI 

Left shoulder band Right shoulder band Interpolation 
method 

sFLD - 

759–770 nm 

From E↓ spectrum 
the local maximum 

between 745–759 nm 
closer to the abs. 

band. 

- - 

3FLD - 

From E↓ spectrum the 
local maximum 

between 770–780 nm 
closer to the abs. 

band. 

E↓: Linear 
L↑: Linear 

iFLD 750–780 nm 

From E↓ spectrum 
all local maximum 
between 745–759 

nm. 

From E↓ spectrum all 
maximum between 

770–780 nm closer to 
the abs. band. 

E↓: polynomial 2nd 
grade 

R: cubic spline 
 

 

O2B FLD methods 

Method 
E and R 

interpolation 
WI 

Abs. 
feature WI Left shoulder band Right shoulder band Interpolation 

method 

sFLD - 

686–697 nm 

From E↓ spectrum 
the local maximum 

between 680–686 nm 
closer to the abs. 

band. 

- - 

3FLD - 

From E↓ spectrum the 
local maximum 

between 697–698 nm 
closer to the abs. 

band. 

E↓: Linear 
L↑: Linear 

iFLD 680–698 nm 

From E↓ spectrum 
all local maximum 
between 680–686 

nm. 

From E↓ spectrum all 
maximum between 

697–698 nm closer to 
the abs. band. 

E↓: polynomial 2nd 
grade 

R: cubic spline 
 

 

  

O2B and O2A SFM method 

Method 
F and R 
fitting 

WI 

Abs. 
feature 

WI 

Model 
function 

Gaussian function parameters Cost function 

a ctr b 
Function 
tolerance 

Step 
tolerance 

SFM 

O2A 
750–780 

nm 
759–

770 nm F:Gaussian 
 

R:Cubic 
spline 

iFLD 
retrieved 

fluorescence 
 

ub = 15 
lb = 0 

740 
nm 

24 
 

ub = +Inf 
lb = - Inf 

1e-12 1e-15 

O2B 
680–698 

nm 
686–

697 nm 
684 
nm 

8 
 

ub = +Inf 
lb = - Inf 

1e-14 1e-01 



Remote Sens. 2019, 11, 962 28 of 31 

 

Appendix D. 3FLD methods, example of correct (green) and incorrect (blue) implementation at the O2B (F687) 
absorption feature for the down-welling irradiance (E↓, A) and up-welling irradiance (L↑, B). Squares represent 
the O2B wavelength interval, dots the selected bands at the shoulder of the absorption feature, and crosses the 
interpolated E↓ and L↑ at the absorption feature. 
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