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Abstract

Tungsten has established itself as the most suitable plasma-facing material
for long-term operation in future magnetic-confinement fusion devices. How-
ever, the properties of pure tungsten make it a poor structural material and
complicate the manufacturing of complex components. Recent advances in
additive-manufacturing (AM) technology have begun to make the production
of tungsten components with complex geometry more feasible. The design
freedom afforded by AM could be leveraged to produce more resilient plasma-
facing components (PFCs).

To this end, a methodology to optimize the material distribution of compos-
ite PFCs was developed to reduce the maximum thermal stress caused by
high heat fluxes. This methodology is primarily intended to be used with
copper-infiltrated AM tungsten (WAM/Cu) structures. The C++ implemen-
tation of this methodology was used to optimize a typical PFC configuration
for numerous test cases. Stress reductions of approximately 50 - 85% were ob-
served under nominal load conditions. Off-nominal conditions produce higher
stresses, but the stress maximum generally remains an improvement over tradi-
tional designs. The resulting optimized structures are composed of a spatially
heterogeneous distribution of tungsten and copper comprising a broad range
of composite mixtures. In order to estimate the material properties of these
composites for all compositions at relevant temperatures, a tool was developed
to numerically determine the thermomechanical properties of composites with
cuboid unit cells, and was tested on two example AM microstructures.

Using numerically optimized WAM/Cu composite structures, sample compo-
nents were modelled in CAD software, analyzed, and compared to traditional
PFC designs. Simulated stress levels in the topology-optimized PFCs designed
with this technique are significantly lower than in traditional designs. The
methodology developed in this work may be a valuable tool for the design of
reliable, economical components for plasma-facing applications.
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Chapter 1

Introduction

1.1 Background

Harnessing atomic fusion for energy production is a common theme in futur-
istic science fiction. However, this goal is closer than one might believe; a
considerable amount of research since the mid-20th century has focused on
making fusion energy a reality. One of the most well-studied concepts for
future fusion power plants employs a reactor, the tokamak, that confines a
high-temperature hydrogen plasma – up to 150 million ◦C – in a powerful
toroidal magnetic field. Two isotopes of hydrogen, deuterium and tritium,
fuse in the core of the plasma, and the released energy is exhausted through
the wall of the reactor to be used for electricity production.

Figure 1.1: A cutaway drawing of the ITER tokamak [1].
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2 1. Introduction

These reactors have yet to be used to produce electricity, though, since no
historical or contemporary reactor has yielded more power than is required
to heat the plasma to the extreme temperatures required for fusion to take
place. Researchers developing the next generation of tokamaks hope to change
this precedent. A large consortium of countries are cooperating to create the
world’s first tokamak with net energy gain: ITER [1]. This massive device,
illustrated in Figure 1.1, is currently under construction in Cadarache, France.
ITER is an experimental platform, meant as a test bed for new technologies
to pave the way for economical fusion energy production.

Magnetic-confinement fusion is one of the most complex technical problems
mankind has attempted to solve, and many challenges remain. The challenge
addressed in this work is the design of the plasma-facing components (PFCs)
that line the vessel wall. These components protect the structure of the re-
actor from the heat and radiation released during fusion, and are exposed to
high heat fluxes during operation. The thermal loads are most extreme at
the reactor’s divertor (see Figure 1.2), located at the bottom of the vacuum
vessel. The nominal steady-state heat flux expected at the ITER divertor is
10 MW/m2, with transient heat loads potentially as high as 20 MW/m2 [2].
As will be discussed, high-heat-flux (HHF) loading poses many problems for
the design of the PFCs in this region.

Figure 1.2: The main components of the ITER tungsten divertor [2].
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1.2 Research aims and outline

The principal goal of this work is to develop a methodology to help design
more robust composite PFCs by reducing the thermal stresses that develop
under HHF loading. This methodology is primarily meant to be employed for
components that will be fabricated using additive manufacturing. Central to
this methodology is a toolset with which PFC designs can be optimized. The
foundation of this toolset consists of two programs:

• homog3d – Calculates the effective 3D thermomechanical properties of
composite microstructures with cuboid unit cells by homogenization.

• TopOpt – Determines the optimal material distribution to reduce stress
in components exposed to steady-state high heat fluxes by topology op-
timization.

Although the primary purpose is to develop a toolset capable of design opti-
mization for PFCs in any configuration, the process is demonstrated through-
out with concrete examples based on well-known microstructures and a sim-
plified ITER-like PFC geometry.

After a review of contemporary research on the topic and the current state of
applicable technology in Chapter 2, W/Cu composite microstructures are in-
vestigated in Chapter 3. The process to calculate their effective properties by
homogenization is explained, and the material models produced in this man-
ner by the homog3d code are presented. Chapter 4 subsequently details the
proposed method to optimize PFCs, discusses its implementation in TopOpt,
and presents the results for test cases using the microstructures examined in
the preceding chapter. Finally, use of the toolset to create manufacturable
components is demonstrated and its effectiveness verified in Chapter 5 using
two sample designs. Chapter 6 discusses the results and suggestions for future
work. An overview of the finite-element formulation used in both codes and
relevant notation is provided in Appendix A.
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Chapter 2

Review of current research and
technology

2.1 Plasma-facing materials

The interior of a fusion reactor is an extreme environment; in-vessel compo-
nents like the divertor and first wall are exposed directly to the fusion plasma.
Components in these regions are subjected to bombardment by energetic par-
ticles, which results in intense heat loads. This places demanding, sometimes
contradictory requirements on the armor materials lining the reactor. Assess-
ment of potential plasma-facing materials (PFMs) for fusion reactors has been
performed by many authors (see [3, 4, 5], for example). The following lists key
selection criteria for PFMs discussed in the literature:

• Low erosion – Bombardment with energetic particles sputters the sur-
face of components, causing erosion and releasing impurities into the
plasma. The rate of erosion must be limited to ensure components have
an economical lifespan and to maintain reactor performance.

• Low atomic number (Z) – Impurities in the core plasma reduce reactor
performance. This effect is stronger for high-Z elements: incomplete
ionization increases radiative cooling, reducing plasma temperature, and
the large positive charge of their nucleus displaces greater amounts of
hydrogen fuel.

• Low tritium retention – Deposition of this radioactive hydrogen isotope
in the reactor wall is a safety hazard and complicates the disposal or
recycling of PFCs. Additionally, removal of tritium from the plasma
precludes its use as fuel in the fusion reaction, which negatively impacts
reactor performance and economics.

• Resistance to high temperatures – Heat is exhausted through the reactor
wall at very high power densities. This thermal load results in high
temperatures, especially at the plasma-facing surface. PFMs must retain
their properties at these high temperatures.

5



6 2. Review of current research and technology

• Low vapor pressure – In addition to erosion, material loss occurs in vac-
uum by sublimation at high temperatures. Materials with a high vapor
pressure sublime at higher rates.

• Structural integrity – The extreme temperature gradients resulting from
high heat fluxes produce substantial thermal stress. These thermal stresses
must not cause material failure.

In addition to the charged particles that erode the surface of plasma-facing ma-
terial, reactor components receive high doses of neutron radiation over their
operational lives. Neutron bombardment causes microstructural defects and
transmutations that induce changes such as swelling, creep, and altered prop-
erties [6]. The combination of extreme heat flux and neutron radiation makes
the design of PFCs a challenging issue.

Few materials have the necessary properties to sustain direct exposure to the
fusion plasma for extended periods of operation, and no one material meets
all criteria for the “ideal” PFM. Only three armor materials were considered
for use in ITER: carbon fiber reinforced carbon (CFC), beryllium (Be), and
tungsten (W), each of which has its share of positive and negative features.

CFC has good thermal conductivity, high strength, and, unlike metals, does
not melt. These properties make it fitting for use in HHF applications. How-
ever, despite its advantageous thermal and mechanical properties, carbon suf-
fers from high rates of hydrogen isotope co-deposition and chemical erosion by
formation of hydrocarbons.

The low atomic number of beryllium was vital to its selection as the armor
material for the ITER blanket. The blanket comprises roughly 80% of the
plasma-exposed surface in the reactor; an abundance of sputtered high-Z im-
purity atoms from such a large area and their proximity to the plasma core
would have a significant impact on reactor performance. However, beryllium
is not suitable for all regions of the reactor, especially the divertor: its erosion
resistance is inferior to that of tungsten, and its resistance to thermal fatigue
and shock is poor.

Tungsten has the highest melting point of all metals, excellent high-temperature
properties, and a low vapor pressure. Most importantly, tungsten retains a
minimal tritium inventory, and has the lowest sputtering yield among candi-
date materials, which makes it the most suitable divertor armor and a promis-
ing material for long-term operation in future reactors. The poor plasma-
compatibility of tungsten is its main disadvantage. Recent research has fo-
cused heavily on understanding and improving the performance of tungsten as
a PFM (see [7, 8, 9, 10, 11], for example).
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Because the requirements for PFMs are governed chiefly by plasma interaction,
most choices sacrifice structural performance. PFMs are therefore attached to
a heat sink, which serves as a structural foundation and provides cooling. The
two candidate heat-sink materials for ITER are both copper alloys: CuCrZr,
a precipitation-hardened alloy, and CuAl25, an oxide dispersion-strengthened
alloy. These copper alloys have a very narrow window of operational temper-
atures without reinforcement due to radiation-induced embrittlement at low
temperatures (<150◦C), and softening and creep at high-temperatures (>300-
400◦C) [12, 13].

2.2 W/Cu plasma-facing components

Clearly, no one material meets all of the requirements for structural integrity
and interaction with the fusion plasma on its own. To be robust and economi-
cal, PFCs must thus make use of multiple materials. Current research focuses
heavily on designing components that combine the advantages of tungsten ar-
mor and copper-alloy heat sinks (typically CuCrZr). Multi-material PFCs are
generally fabricated according to one of the following two paradigms.

Monoblock designs join numerous tiles of armor material (the monoblocks) to
a copper-alloy cooling tube (Figure 2.1).

Figure 2.1: PFC Mockups of a monoblock design [14].

The simple geometry of an individual monoblock makes fabrication straight-
forward, an important consideration for a difficult-to-work material like tung-
sten. However, this configuration confines a high-thermal-expansion mate-
rial (the Cu-alloy tube) within a stiff, low-thermal-expansion material (the W
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monoblock). Upon heating, this leads to high thermal stresses. Failure often
occurs at the cooling tube interface [15] or due to the propogation of radial
cracks between the cooling tube and plasma-facing surface during the cooling
phase of a thermal cycle [16, 17]. These issues are aggravated by the brit-
tleness of tungsten near the cooling channel, where the temperature is below
tungsten’s ductile-to-brittle transition temperature (DBTT).

An alternative to tungsten monoblock designs is the “flat-tile” design: a mono-
lithic copper-alloy heat sink shielded by castellated tiles of tungsten armor
(Figure 2.2).

Figure 2.2: Tungsten-armored flat-tile mockup [10].

The flat-tile design combines the advantages of tungsten as plasma-facing ar-
mor with the excellent thermal conductivity and superior low-temperature
mechanical properties of copper alloys. Despite the theoretical advantage of
this arrangement, performance is limited by the lack of a robust bond at the
heat-sink/armor interface. Failure of a flat-tile design generally results from
high stresses at the free edges of the interface. This effect is especially detri-
mental for a combination of tungsten and copper, due to their vastly different
thermomechanical properties. You and Bolt developed an analytical descrip-
tion of the stress singularities that develop at the free edges of bimaterial joints
in PFCs. Their model indicates that, among the material combinations consid-
ered, a W/Cu interface experiences the most pronounced stress singularity [18].

The performance of both monoblock and flat-tile designs is limited by fail-
ure at the W/Cu interface. The stresses that lead to failure are the result
of tungsten’s and copper’s dissimilar material properties, especially the large
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difference in thermal expansion. Mitigating the effects of dissimilar thermome-
chanical properties requires the use of composites and stress-reducing design
features.

2.2.1 W/Cu composite materials

As in many other demanding fields, composites are a promising solution to
improve and tailor the properties of materials for components exposed to the
extreme conditions in fusion reactors. Much recent work has focused on de-
veloping these advanced materials and complementary design techniques for
PFCs exposed to HHF loading.

The composites of interest for PFC applications generally take the form of a
copper-alloy matrix with tungsten reinforcement, either as particles or fibers.
A review of CuCrZr-matrix composites for divertor heat sinks with SiC-fiber,
W-wire, and W-particle reinforcements is provided by You in [19]. The au-
thor remarks that such composites increase the strength of copper-alloy heat
sinks in general and mitigate thermal strain mismatch between the heat sink
and tungsten armor. Von Müller et al. produced W-particle- and W-fiber-
reinforced materials by Cu-melt infiltration for PFC heat sinks [20]. You et
al. investigated the properties of melt-infiltrated porous skeletons of sintered
tungsten in [21]. The thermomechanical behavior and failure mechanisms of
these composites were investigated by Zivelonghi et al. [22] and Zivelonghi
and You [23], and Tejado et al. characterized the dependence of their material
properties on copper content and temperature [24, 25]. The intended use of
these composites is the creation of a graded interlayer to reduce stress at the
heat-sink/armor interface. This is discussed further in the following section.

Powder-based composites can also be processed by additive manufacturing.
Yan et al. characterized samples produced from W-(Ni)-Cu powder mixtures
by Selective Laser Melting [26]. Although this technique allows freeform design
of part geometry, it is limited to producing components with one homogeneous
material. Local tailoring of properties within the additively manufactured
body is not possible.

2.2.2 Stress-reducing mechanisms

In order to make full use of the advantageous properties of composites, com-
ponent designs must tailor the material to the needs of the application. A
classic example is the alignment of fiber orientation to the loads applied to a
fiber-reinforced composite. A number of design techniques have been proposed
to minimize thermal stress in W/Cu PFCs.
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Figure 2.3: Cross-section of a W monoblock with a concentric Wf/Cu interlayer

[27].

The simplest method to reduce stress at a bimaterial joint is to introduce an in-
terlayer with properties between those of the joined materials. For monoblock
designs, the interlayer is an annulus placed concentrically around the cooling
tube. Figure 2.3 shows the Wf/Cu interlayer tested by Herrmann et al. in
[27]. Planar interlayers are used at the heat-sink/armor interface of flat-tile
designs. A planar interlayer made from a fiber-reinforced composite laminate
(Figure 2.4) was studied by You in [28].

Interlayers need not consist of only one material. Functionally-graded interlay-
ers, with a smooth or stepped progression of properties, form a more gradual
transition between dissimilar materials. The melt-infiltrated porous tungsten
composites presented in [21] were developed with this use in mind. Compo-
nents fabricated with a three-zone interlayer faired well under cyclic HHF loads
when tested by Greuner et al. [29].

Designers are not limited to the use of interlayers; stress-reducing mechanisms
may extend into the body of the heatsink as well. Sun et al. analyzed a design
combining a functionally-graded interlayer with tungsten wires embedded into
the body of the heatsink [30].
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Figure 2.4: Schematic cross-section of a flat-tile divertor component with a com-

posite interlayer [28].

2.3 Additive manufacturing with Selective Laser

Melting

The design techniques discussed in the previous section are limited by their re-
liance on traditional processes for manufacturing tungsten components. Tung-
sten’s intrinsic hardness and brittleness make it a difficult raw material to work
with, which generally restricts tungsten components to very simple geometries.
Additive manufacturing (AM) is an alternative to traditional processes; the
design freedom afforded by AM could be key to producing better W-armored
PFCs. This section provides an overview of AM and its implementation for
metallic materials, and is based on the general references [31] and [32].

Irrespective of the mechanics of the build process, all AM processes follow the
same general procedure. Starting from a 3D model, the surface of the com-
ponent is triangulated and exported in a suitable format (e.g. the STL data
format). The 3D model is typically produced in parametric CAD software, but
other sources may be used. The triangulated surface data is then imported into
pre-processing software that slices the model into layers and prepares a pro-
gram for the machine. This software is typically machine-specific and provided
by the machine’s manufacturer. During the build process, the component is
built up layerwise. After the machine builds the component from the processed
3D model, the component is removed from the machine and post-processed as
necessary. The necessary post-build steps vary significantly between processes.
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Compared to traditional manufacturing, process times for AM are long and the
cost of raw materials is high. However, the extra expense of AM is offset by the
advantages of sequential layerwise construction. AM has the ability to produce
components with nearly arbitrary shape. Whereas the cost of a traditionally
manufactured part is strongly influenced by its complexity, complexity has
little impact on the cost of an AM part. This yields numerous benefits:

• Leadtimes for prototypes are reduced, shortening the design phase of
product development.

• Parts can be built with complex geometries that would be otherwise
impossible with traditional manufacturing processes.

• Subcomponents of an assembly can be merged, combining multiple func-
tions into a monolithic part.

• Parts that would normally require custom tooling (e.g. injection molds,
machining fixtures) can be produced directly instead. This makes small-
batch production more economical.

A wide variety of AM processes exists for each class of materials: polymers,
metals, and ceramics. Selective Laser Melting (SLM) is one of the most widely-
employed processes for metals (alternative designations are Laser Beam Melt-
ing and Direct Metal Laser Sintering). SLM is a “powder-bed fusion” process;
parts are built by selectively fusing regions of a thin layer of loose powder into
a solid body. The powder is melted with a high-power laser – peak powers of
200 - 400W are typical. Between laser exposures, the platform onto which the
manufactured components are built is lowered, and a new layer of powder is
spread across the build container. Figure 2.5 shows a schematic representation
of SLM.

SLM components generally require post-build heat treatment to relieve resid-
ual stress and machining to produce precision surfaces. Hot isostatic pressing
(HIP) can also be used to reduce bulk porosity [34].

Parts made with SLM already see commercial application. For example, new
generations of Airbus aircraft fly with engines containing AM fuel nozzles [35].
SLM has been demonstrated with many metals, from lightweight structural
metals like aluminium and titanium to biocompatible alloys for orthopedic
implants.

2.3.1 Selective Laser Melting of tungsten

While more commonly used metals already see commercial application in AM
form, SLM of pure tungsten is still in its infancy. There are only a handful of
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Figure 2.5: Schematic of the SLM build process [33].

works on this topic to date. The results indicate that the physical properties
of tungsten make it a challenging material to process with SLM.

One of the main focuses of contemporary research on the subject is fabricating
samples with a high relative mass density. Zhou et al. remark that the combi-
nation of the high melting temperature, high thermal conductivity, high melt
viscosity, and oxidation tendency of tungsten makes it difficult to maintain a
continuous molten track during laser melting. The melt pool tends to ball into
droplets with poor wetting properties that solidify into material with a high
degree of porosity. Using commercially-available polyhedral tungsten powder,
samples with a maximum of only 82.9% of theoretical density were achieved
[36]. Wang et al. determined that plasma spheroidization of polyhedral tung-
sten powder increases powder packing density and laser absorptivity. These
improvements yielded samples with densities up to 96% of the theoretical max-
imum [37].

Von Müller et al. achieved SLM tungsten samples with minimal porosity - up to
98% of theoretical density. However, micrographs of the samples reveal another
challenge: SLM tungsten exhibits widespread cracking at grain boundaries
(see Figure 2.6). The cracking is attributed to residual stresses that result
from extreme local thermal gradients during laser melting. Additionally, the
thermomechanical properties of tungsten make it more susceptible to thermal
stress than most other metals [38]. The influence of material properties on
crack-inducing residual stresses in metals processed by SLM was investigated
by Vrancken et al. in [39], and a complete discussion by Vrancken on the
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Figure 2.6: Optical micrograph perpendicular to the build direction of SLM tung-

sten samples produced with a laser power of 400 W and a laser scanning speed of

300 mm/s [38].

nature of residual stress in metals produced by SLM is available in [40]. The
authors found no clear correlation between measurable thermal stresses and
individual material properties or combinations thereof. They remark that
residual stresses are the product of too many interconnected phenomena to be
predicted adequately. However, one means to semi-quantitatively characterize
the stress that develops during thermal transients is to use the following metric
from [41]:

σ ∝ αmE∆T

1− ν
(2.1)

where ∆T is the difference between the material’s melting temperature and
the base plate preheat temperature. Application of this metric by von Müller
et al. shows that the value for tungsten ranges between 1.57 and 5.35 times
that of other metals commonly produced with SLM, which indicates tungsten
has a strong tendency to develop thermal stress due to temperature transients.
The authors suggest preheating the base plate above the DBTT of tungsten
to mitigate cracking [38]. Kurzynowski et al. suggested alloying tungsten with
elements such as Co, Re, or Ti to improve ductility or using HIP to reduce
porosity after fabrication [42].

There remains much to be done on the topic of AM with tungsten. Recent
research has focused mainly on the first step of SLM process development with
a new material: achieving samples with high relative density and acceptable
microstructure. As yet, no published works have experimentally characterized
the material’s mechanical and thermal properties. Data from this step will be
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vital for detailed analyses of WAM/Cu composite components.

2.4 Additively manufactured composite struc-

tures

Because of the exceptional design freedom of AM, AM microstructures may
take many forms. For WAM/Cu structures made using SLM, the most im-
portant design constraint is that the AM tungsten structure must be open
to facilitate the removal of residual powder and subsequent melt infiltration.
Numerous options exist that meet this requirement. Two common structures,
which will be used to demonstrate the design methodology presented in this
work, are discussed here: lattices and regular honeycomb.

Figure 2.7: Unit cell of a 2D W/Cu microstructure optimized for minimal thermal

expansion [43].

AM has made the use of lattice structures practical for an increasing number of
applications. Topology-optimized components, for example, can be designed
in multiple ways using lattices of variable volume fraction [44]. Fabrication
of these structures is generally only possible with AM. The extremely large
variety of potential lattice geometries complicates the selection of a promising
candidate for stress-reduction in PFCs. Topology optimization of 2D W/Cu
microstructures for minimal thermal expansion was performed by von Müller
et al. [43]. The resulting topology, shown in Figure 2.7, suggests that a truss-
like cubic lattice would be the most likely extension to three dimensions.

An advantage of truss-like lattice structures is the relative ease with which
they can be used to design components. McMillan et al. explain the procedu-
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ral generation of truss-like lattices in STL format for use with AM [45].

Because of their simple, 2D geometry, honeycomb materials are easy to pro-
duce and have a long history of use. Thin-walled honeycomb commonly serves
as the core material of laminated sandwich-structured composites due to its
low density, high out-of-plane shear stiffness, and in-plane elastic isotropy. De-
signing functionally graded or topology-optimized structures with honeycomb
materials is also straight-forward. For example, the local volume fraction can
be set easily by adjusting the wall thickness of a honeycomb with a uniform
cell size.

Figure 2.8: Copper-infiltrated AM-tungsten honeycomb created by the Plasma

Component Interaction research group at the Max Planck Institut for Plasma

Physics in Garching.

Traditionally, AM lattices and honeycomb are open structures; the space be-
tween struts and cell walls remains empty. In this case, analytical beam and
truss models can be employed to estimate the structure’s material properties
(e.g. [46]). However, melt-infiltration of a tungsten structure with copper
alloys produces a solid body (e.g. the WAM/Cu honeycomb in Figure 2.8).
Estimation of the composite’s material properties can no longer be performed
analytically. Properties must be calculated by homogenization.
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2.4.1 Theory of homogenization

A defining feature of composite materials is their heterogeneous microstruc-
ture, which exists even in components with a macroscopically homogeneous
material distribution. A full description of a composite component’s physical
behavior requires analysis at both length scales. However, simulating macro-
scopic structures with a mesh fine enough to capture the full detail of the
composite microstructure would produce a numerical system too large to solve
by practical means. To efficiently simulate structures built from composite
materials, analysis must be performed at the macro- and microscopic scales
separately.

This dual-scale description of material behavior is accomplished by averaging
the heterogeneous properties of the composite microstructure over a represen-
tative volume element (RVE), a process known as homogenization. The ho-
mogenized material properties form the link between simulations at the macro-
and microscale. The fundamental theory of this technique, as described in the
following, is outlined by Hassani and Hinton in [47].

Homogenization is based on a material description wherein the microstructure
is considered periodic and its characteristic size is much smaller than the size
of the macroscopic structure. A 3D medium is periodic if its properties can be
described by functions with the following character:

g (x+NyY ) = g (x) (2.2)

where x is the position of any point in the body, Y is a constant vector
representing the dimension and orientation of the microstructure’s periodic
unit cell, and Ny is a matrix with arbitrary integers n1, n2, and n3 of the form

Ny =


n1 0 0

0 n2 0

0 0 n3

 (2.3)

Any tensorial quantity (e.g. density, constitutive relations) may be represented
in this way. Although these quantities generally experience rapid local varia-
tion at the microscopic level, variation at the macroscale is seen to be smooth.
This motivates an asymptotic expansion of the modelled physical quantities,
whereby coordinates in the unit-cell coordinate system Y are related to those
in the global coordinate system X by

ε yi = xi (2.4)

The small parameter ε describes the ratio of micro- to macroscale dimensions.
The value 1/ε can be understood as a “magnification factor” that enlarges the
composite microstructure to the macroscopic structural dimensions. Functions
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in the composite body are then defined in terms of both x and y. In the
context of this dual-scale description, functions defining material behavior (e.g.
displacement, stress) can be expanded generally as

φ(x) = φ0(x,y) + εφ1(x,y) + ε2φ2(x,y) + . . . (2.5)

where ε is assumed to approach 0 and each function φn(x,y) is Y-periodic
and smooth with respect to x.

Hassani and Hinton demonstrate the basic principle of homogenization using
one-dimensional elasticity as an example. They show that the homogenized
Young’s modulus EH

1 of a one-dimensional composite is found with

1

EH
1

=
1

|Y |

∫ Y

0

1

E1(y)
dy (2.6)

This amounts to a volumetric averaging of compliance on the unit cell Y.
Based on their treatment of general elliptic boundary-value problems in non-
homogeneous media, the authors arrive at the following for the homogenized
elasticity tensor:

EH
ijkl =

1

|Y |

∫
Y

(
Eijkl − Eijpq

∂uklp
∂yq

)
dY (2.7)

where the Einstein summation convention applies. The displacements ukl are
solutions to ∫

Y

∂(δui)

∂yj

(
Eijpq ε

0(kl)
pq − Eijpq

∂uklp
∂yq

)
dY = 0 (2.8)

with periodic boundary conditions. One displacement field ukl is necessary
for each unique strain component (three components in 2D, six in 3D). Given
a set of displacement vectors, (2.7) can be used to explicitly calculate the
homogenized elastic properties. Conceptually, the solution of (2.8) can be
understood as determining the displacements that result from applying a unit
strain ε

0(kl)
pq to the periodic unit cell. While (2.8) is used by the majority

authors, (2.9) is common as an alternative to (2.7). It is used by Sigmund and
Torquato in [48] and Andreassen and Andreasen in [49], for example.

EH
ijkl =

1

|Y |

∫
Y

(
ε0(ij)
pq − εpq(uij)

)
Epqrs

(
ε0(kl)
rs − εrs(ukl)

)
dY (2.9)

This performs a volumetric averaging of the difference between the applied unit
strains and the actual local strains that occur due to the displacements u. In
summary, using the homogenized elastic properties of a composite involves
three steps:

1. Solve (2.8) with Y -periodic boundary conditions for each ukl.
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2. Evaluate the homogenized coefficients with (2.7) or (2.9).

3. Apply the homogenized coefficients in the macroscale analysis.

Despite the simplicity of (2.7), (2.9) is preferred in this work because it can be
easily modified to calculate a composite’s homogenized coefficient of thermal
expansion (CTE). A composite’s thermoelastic tensor, defined as

βij = Eijkl αkl (2.10)

combines the elasticity tensor and thermal expansion tensor. It can be homog-
enized using

βHij =
1

|Y |

∫
Y

(αpq − εpq(uα)) Epqrs
(
ε0(ij)
rs − εrs(uij)

)
dY (2.11)

where the displacement uα results from solving (2.8) using the thermal expan-
sion tensor as an applied unit strain:∫

Y

∂(δui)

∂yj

(
Eijklαkl − Eijpq

∂uαp
∂yq

)
dY = 0 (2.12)

The homogenized thermal expansion tensor is then calculated with

αHij = (EH
ijkl)

−1 βHkl (2.13)

Because of the similarities between elasticity and thermal conduction, the ho-
mogenized thermal conductivity can be found in a similar manner. The analog
to the displacements ukl are the temperature fields T j, which are found by ap-
plying unit temperature gradients to Y with periodic boundary conditions:

∫
Y

∂(δT )

∂yi

(
κip

∂T

∂yp

0(j)

− κip
∂T j

∂yp

)
dY = 0 (2.14)

The homogenized thermal conductivity tensor is then found with

κHij =
1

|Y |

∫
Y

(
∂T

∂ym

0(i)

− ∂T i

∂ym

)
κmn

(
∂T

∂yn

0(j)

− ∂T j

∂yn

)
dY (2.15)

For simple unit cells, such as rank-1 and rank-2 laminates, homogenization
can be performed analytically, as shown in [50]. However, complex domains
require the use of numerical techniques. The finite-element implementation of
these homogenization techniques is detailed in Section 3.1.
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2.5 Structural topology optimization

The design approaches for PFCs discussed in Section 2.2.2 all share a fun-
damental limitation: they rely on geometrically simple stress-reducing mech-
anisms. Functionally-graded transition regions, for example, are likely only
possible with planar interlayers. The ability to produce complex composite
structures with AM frees designers of the majority of manufacturing con-
straints, facilitating a vast range of new possible designs. The possibilities
are so varied, in fact, that profitable exploitation of AM requires an equally
capable design approach. Topology optimization can be employed to deter-
mine the optimal material distribution in a PFC exposed to HHF loads with
the goal of reducing thermal stresses. This powerful technique complements
AM well, and has its roots in the field of structural design.

A thorough overview of the field of structural optimization is provided in [51].
Structural optimizations almost always result in nonlinear mathematical prob-
lems. The system equations used to evaluate the objective and constraints are,
in most cases, not only highly nonlinear, but are also implicit functions of the
design variables. As such, evaluation of these equations and their sensitivi-
ties is frequently the most computationally intensive step of any optimization.
Additionally, most structural optimization problems are non-convex; special
care must be taken to ensure that an “optimal” solution produced by the al-
gorithm is in fact a global optimum. Another general aspect to consider when
applying the solutions of optimization problems to design is that optimization
only considers objectives and constraints that can be formulated mathemat-
ically. Optimization is thus a tool to be used in concert with the experience
and intuition of the designer.

The concept of topology optimization for continua was first introduced by
Bendsøe and Kikuchi in 1988. The authors formulated a design problem
whereby the optimal distribution of material in a given design domain is deter-
mined with the goal of minimizing the structure’s compliance under an applied
load (ie. maximizing stiffness) [52]. Unlike traditional techniques in structural
optimization, such as size and shape optimization, which require preliminary
assumptions about the optimal structure’s form, topology optimization does
not restrict designs to a prescribed configuration. Figure 2.9 shows an example
of a 2D structure optimized for minimum compliance. Topology optimization
is often used in conjunction with size and shape optimization, where the latter
are used to fine-tune the optimized topology. The design study performed by
Crescenzi et al. in [53] demonstrates the use of size optimization for PFCs.

Interest in topology optimization has grown considerably since the publication
of [52]. Sigmund and Maute performed a thorough review of intervening devel-
opments in [55]. Of the many approaches to numerical topology optimization,
the density-field approach is the most relevant for this work. The structure’s
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Figure 2.9: Topology optimization for minimum compliance with a load applied

at the bottom-right corner: a) raw output, and b) after post-processing [54].

shape is represented by a density field, which is typically discretized with one
design variable per element. For traditional stiffness- and stress-based struc-
tural optimization, the design variables are continuous and represent a relative
material density. They range between 0 and 1, where 0 represents void and 1
solid material. Topology optimization techniques can be further categorized by
the optimization algorithm used to seek optimal solutions; optimality criteria
methods and mathematical programming are common alternatives.

Density-field approaches to topology optimization are typically prone to mesh-
related problems. Mesh refinement tends to produce entirely new topologies,
since a finer discretization allows the algorithm to represent ever finer details.
Bilinear finite elements, especially, often produce undesirable “checkerboard”
patterns [54]. Many techniques exist to mitigate these issues. The simplest,
heuristic approaches apply a filter to the mesh, averaging an element’s design
variable or its sensitivity with those of surrounding elements. Other techniques
expand the optimization problem with constraints imposed on the structure’s
perimeter, density field gradient, etc. Filter-based techniques are derived from
the field of image processing, and were introduced by Sigmund in [56]. A
sensitivity filter such as (2.16) is used by many authors, where w(xe) is a
function that weights neighboring elements based on their centroid xe.
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∂f

∂ρj

∗
=

∑
ew(xe) ρe

∂f
∂ρe∑

ew(xe) ρe
(2.16)

Although early work on topology optimization avoided stress-based objectives
and constraints due to their computational complexity, treatment of stress is
highly desirable. Indeed, the premise of this work is the minimization of stress.
A more traditional example is the augmentation of the minimum compliance
problem with stress constraints to prevent yielding.

There are a variety of approaches to treating stress in topology optimization.
As an inherently local quantity with a (generally) known limit, stress is most
naturally constrained locally (e.g. with one constraint per element). This ap-
proach requires a large number of highly nonlinear constraints, however, which
increases the size of the optimization problem, and adds considerably to the
computational complexity. An alternative is to aggregate local stresses into a
global stress metric, an approach proposed by Yang and Chen in [57]. One
example of a suitable global stress metric is the p-norm of local stress val-
ues (2.17). Using a global metric reduces the computational effort required
to treat stress in optimization problems, but is not without disadvantages.
Yang and Chen note that the global stress metrics they tested were sensitive
to parameters of the solution-search algorithm, and exhibited numerical insta-
bility in some cases. Additionally, this method places a constraint only on a
global “summary” of the stress state in the body; Duysinx and Sigmund found
that local stress values are only weakly constrained and may therefore exceed
the desired limit in some locations. They also demonstrated a third approach
to treat stress: minimization of the maximum local stress over all elements.
They comment that this was the most computationally expensive of the three
approaches tested [58].

Gkk =

[∫
Ω

(
fi(σ)

fmax(σ)

)p
dΩ

] 1
p

(2.17)

Without special treatment, topology optimization problems that incorporate
stress in objective or constraint functions generally experience numerical sin-
gularities. For problems where the material distribution ranges between solid
material and void, singularities occur in elements of the design domain with
material densities near zero due to a discontinuity of stress at zero density. A
method known as “ε-relaxation” was developed in [59] to treat the degeneracy
of stress relationships for discrete structures, and extended to continua in [60]
and [58].
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2.5.1 Method of Moving Asymptotes

Optimization problems in this work are solved using a mathematical program-
ming technique known as the Method of Moving Asymptotes (MMA). It was
introduced by Svanberg in [61], and expanded into a globally convergent algo-
rithm in [62]. A general description of the MMA algorithm is presented below;
further details concerning the implementation are found in [63].

In order to simplify the implementation of a wide variety of optimization prob-
lems, the MMA solves a standardized problem of the form

min f0(x) + a0z +
m∑
i=1

[
ciyi +

1

2
diy

2
i

]
(2.18)

subject to fi(x)− aiz − yi ≤ 0, i = 1, . . . ,m

xmin ≤ x ≤ xmax

y ≥ 0

z ≥ 0

The function f0 is the optimization objective function, and each function fi
represents a constraint. The vector x contains n design variables xj, which
are each restricted to a range of realistic values between xminj and xmaxj . For
topology optimization problems, these variables generally represent either a
local material density (ranging from void to solid material) or, as is the case
in this work, a parameter defining the makeup of a composite material.

The MMA extends the set of design variables to produce a more robust, ver-
satile formulation. The artificial variables yi and z are used to 1) traverse
infeasible design points, and 2) tune the standardized problem to the desired
formulation in conjunction with the constant parameters a0, ai, ci, and di.

For each iteration k in the solution of problem (2.18), a subproblem is generated
by approximating the functions f0, f1, . . . , fm at the current solution point with
convex, separable functions in the form of (2.19). Generating the subproblem
requires evaluation of the system equations and their gradients (e.g. with a
finite-element solver).

fi(x) ≈ g
(k)
i (x) = r

(k)
i +

n∑
j=1

[
P

(k)
ij

U
(k)
j − xj

+
Q

(k)
ij

xj − L(k)
j

]
(2.19)

The parameters U
(k)
j and L

(k)
j are the “moving asymptotes” that define the

domain of the approximate function. After the first two iterations of the prob-
lem, the moving asymptotes are either relaxed or tightened depending on the
convergence behavior in previous iterations. A monotonic increase or decrease
of a variable indicates stable convergence; the asymptotes can be relaxed to
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accelerate convergence to the optimal solution. Oscillation of a design vari-
able indicates instability; the asymptotes are tightened to shrink the region in
which the approximation is considered a valid representation of the original
function. The coefficients P

(k)
ij , Q

(k)
ij , and r

(k)
i are derived from the values and

gradients of the system equations evaluated at the current solution point.

The optimal solution of the subproblem is found using a primal-dual solution
method. The inequality constraints fi are converted to equality constraints
with the additional slack variables si. Each design variable is restricted to a
region between two move limits, αj and βj, that are determined in considera-

tion of their natural limits xminj and xmaxj and the moving asymptotes L
(k)
j and

U
(k)
j . The corresponding Lagrange function is

L = g0(x) + (a0 − ζ)z +
n∑
j=1

[ξj(αj − xj) + ηj(xj − βj)]

+
m∑
i=1

[
λi(gi(x)− aiz − yi + si) + ciyi +

1

2
diy

2
i − µiyi

]
(2.20)

where all Lagrange multipliers (λi, ξj, ηj, µi, and ζ) are nonnegative. Slack-
ness of the Lagrange multipliers is ensured by using relaxed conditions (e.g.
ζz − ε = 0), where the positive parameter ε is progressively reduced to a very
small value. The optimum of the primal-dual subproblem is found iteratively
via line-search using a Newton search direction. After the subproblem has
been solved, the system equations and their gradients are reevaluated at the
new solution point, and a new approximate subproblem is formed for the next
iteration.

The MMA has a number of features that make it particularly suitable for
structural optimizations. As discussed in Section 2.5, structural optimizations
are highly nonlinear, non-convex, and require time-consuming evaluation of
implicit system equations. These issues are mitigated by the novel form of
the MMA’s approximating functions (2.19): though still nonlinear, they are
convex, separable, and explicit. Convexity guarantees the subproblem has a
unique optimum. For systems with a large number of design variables, sepa-
rability and explicit evaluation greatly reduce the expense of determining the
search direction and evaluating potential solution points during the line-search.
Due to these advantages, the MMA sees extensive use in the field of topology
optimization.



Chapter 3

Additively manufactured W/Cu
composites

Topology optimization of components with AM composite structures requires
as an input a model to evaluate the physical properties of the composite and
their sensitivities at all material compositions. This material model depends
on the microstructural topology of the composite. In Section 4.4, the topology-
optimization code is demonstrated with two common microstructures: regular
honeycomb and a body-centered cubic (BCC) lattice. The thermomechanical
properties of open lattice structures and thin-walled honeycomb are relatively
well known. As mentioned in Section 2.4, their properties can be estimated
with decent accuracy using analytical models. However, these models are of
little use when the open structures are melt-infiltrated. Properties of the solid
bodies produced in this way must be determined numerically or experimentally.

Because WAM/Cu composites are such a new development, experimental char-
acterization has yet to be performed. For materials without a database of
experimental results, a simple approximation, such as linear rule-of-mixtures
interpolation, yields usable results, but more realistic modelling of the com-
posite’s properties should ultimately produce better designs. For that reason,
material models for the investigated composites were produced by numerical
homogenization.

3.1 Numerical homogenization

Although the topology optimization code TopOpt, detailed later, was only ap-
plied to 2D domains, homogenization of material properties was done in three
dimensions for the structures considered. Most AM microstructures – lattices
in particular – are inherently 3D, and cannot be simplified to two dimensions.
Some, such as honeycomb, may be simplified to 2D to estimate their in-plane
properties. However, as is the case for PFCs, the structure may be used in an

25
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orientation that requires knowledge of the out-of-plane properties as well. In
this case, homogenization must be performed in three dimensions.

Because of the large temperature gradients in a PFC at high heat fluxes, the
temperature dependence of material properties should be modelled. The ho-
mogenization code should therefore produce a two-variable material model,
parameterized by material composition and temperature.

Existing homogenization codes did not provide a convenient means to satisfy
both of these requirements. Therefore, the code to perform these calcula-
tions was developed as part of this work, and is referred to as homog3d. The
following describes the calculation of homogenized material properties in 3D
as implemented in homog3d. Section 3.2 presents the results of the homoge-
nization process for CuCrZr-infiltrated tungsten honeycomb and BCC lattices.

Homogenization theory was discussed in Section 2.4.1. Due to the geometric
complexity of the considered composites, analytical solution of the equations
of homogenization on a representative 3D volume element is not practical. The
process is therefore performed with a finite-element numerical approximation.
The formulas of Section 2.4.1 are transformed here to use the more conve-
nient matrix/vector notation. The FE formulation is set forth in Appendix
A, which can be referenced for a more detailed description of the notation used.

First, tensorial quantities are translated to their respective matrix/vector form.
The rank-4 elasticity tensor Eijkl is transformed to the matrix with coefficients
Crs. As a rank-2 tensor, thermal conductivity can be represented directly by
the matrix with coefficients κij. The thermal expansion (αij) and thermoe-
lastic (βij) tensors can be represented as vectors using the same format as for
strain and stress.

Second, continuous field variables must be discretized. The displacements
ukl are discretized within an element e the same as any general displacement
vector:

ukl(e) =


N (e)T 0 0

0 N (e)T 0

0 0 N (e))
T

d(e)
s (3.1)

where d
(e)
s are the 3D discrete displacements corresponding to the s-th applied

unit strain, with a form that matches (A.15). After these transformations,
(2.8) becomes

nel∑
e=1

∫
Y (e)

(B(e) δd(e))T
(
C(e)ε0

s − C(e) B(e) d(e)
s

)
dY = 0 (3.2)
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In 3D, the s-th applied unit strain ε0
s is a 6-vector, and contains only one

non-zero component. The unit normal strain along the X-axis, for example,
would take the form

ε0
1 =

[
1 0 0 0 0 0

]T
(3.3)

Multiplication with the elasticity matrix yields the s-th column: c
(e)
s . The

similarities to a traditional FE system are evident in (3.2). Element stiffness
matrices are built by integrating the local elasticity matrix C(e) and strain-
displacement matrices B(e) as for any FE problem (A.18). Unit strains are
applied to the mesh as load vectors, computed with (3.4). The system is
solved once for each unit strain.

f (e)
s =

∫
Y (e)

B(e)T c(e)
s dY (3.4)

Solving (3.2) must be done with periodic boundary conditions to ensure that
the displacement fields ds are Y -periodic. If the composite’s unit cell is cuboid
and can be discretized with a structured mesh, ensuring each boundary node
matches directly with a node on the opposing boundary, these conditions can
be applied by equating the displacements of the matching nodes. When us-
ing an unstructured mesh, where a boundary node generally does not have a
matching node on the opposing boundary, periodic boundary conditions must
be applied with a combination of Dirichlet constraints and multi-point con-
straints (e.g. with Lagrange multipliers or the penalty method).

The mesh becomes constrained as depicted in Figure 3.1 for a 2D composite
with a rectangular unit cell. When applying unit normal strains, displacements
normal to the boundary on all boundary faces are fixed. For unit shear strains,
the boundary conditions depend on which strain component is applied. Con-
sider the 4th strain component as an example (shear in YZ-plane). This shear
represents a rotational deformation about the X-axis. The periodic boundary
conditions for this unit strain fix boundary displacements normal to the X-
boundaries. On the Y- and Z-boundaries, displacements within the boundary
plane are fixed; normal boundary displacements remain free.

By then discretizing (2.9), the homogenized coefficients of the elasticity matrix
can be evaluated by summing contributions from each element:

CHrs =
1

|Y |

nel∑
e=1

∫
Y (e)

(
ε0
r − B(e) d(e)

r

)T C(e)
(
ε0
s − B(e) d(e)

s

)
dY (3.5)

The corresponding elastic constants (Ex, νxy, etc.) can be found by inverting
the resultant elasticity matrix to produce the compliance matrix SH . Thermal
expansion is homogenized by first applying the thermal expansion tensor as a
strain load:
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Figure 3.1: Periodic boundary conditions for homogenization of a 2D composite

with rectangular microscale voids [50]. For unit normal strains, a) is used. For unit

shear strains, b) is used.

f (e)
α =

∫
Y (e)

B(e)T C(e)α(e)dY (3.6)

The homogenized thermoelastic tensor is then found with

βHr =
1

|Y |

nel∑
e=1

∫
Y (e)

(
α(e) − B(e) d(e)

α

)T C(e)
(
ε0
r − B(e) d(e)

r

)
dY (3.7)

For components 1 - 3 of the thermoelastic tensor (normal strains), the displace-
ments dα are solved using periodic boundary conditions matching Figure 3.1a.
For the remaining components, which correspond to shear strains, boundary
conditions are applied as in Figure 3.1b. Multiplication with the homogenized
compliance matrix then yields the thermal expansion tensor:

αH = SHβH = (CH)−1βH (3.8)

Discretization of the thermal conductivity problem proceeds similarly. As for
elasticity, the global system matrix is built in the standard method (A.5). The
load vector is used to apply a unit temperature gradient φ0

j to the volume
along the j-th coordinate axis:

(f (e)
q )j =

∫
Y (e)

F (e)Tκ(e)φ0
jdY =

∫
Y (e)

F (e)Tk
(e)
j dY (3.9)

This can be simplified to the j-th column of the conductivity tensor: k
(e)
j .

Periodic boundary conditions are applied with the same techniques used for
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homogenizing elasticity and thermal expansion. This is simplified somewhat
for the thermal conductivity problem, since the field variable is a scalar. With
the resulting discrete temperature fields θj, the coefficients of the homogenized
thermal conductivity tensor are determined via the discrete form of (2.15):

κHij =
1

|Y |

nel∑
e=1

∫
Y (e)

(
φ0
i −F (e) θ

(e)
i

)T
κ(e)

(
φ0
j −F (e) θ

(e)
j

)
dY (3.10)

A composite’s RVE can be discretized in a number of ways. The Matlab script
presented in [49] demonstrates discretization of 2D domains with a uniform
structured mesh of quadrilateral elements. The material distribution can be
visualized as a raster image with individual materials displayed as a unique
color, where each pixel represents one element.

Figure 3.2: Material distribution in a regular W/Cu honeycomb with 20% W

volume fraction, discretized with an 814x417-element mesh of quadrilaterals for

homogenization using the Matlab script from [49].

Although this method is expedient, and particularly useful when the compos-
ite’s microstructural topology itself will be optimized, it requires a very fine
mesh to accurately represent the microstructure’s geometry. For 2D domains
with first-order elements, the required computational time is still insignificant.
However, extension of this method to 3D produces a large number of degrees
of freedom. This, combined with the use of higher-order elements for more
accurate results, leads to long simulation times. Uniform, structured meshes
were not used with homog3d for this reason.
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Figure 3.3: Multi-body parametric CATIA models of a) regular honeycomb RVE

and b) BCC lattice RVE (matrix body hidden).

Figure 3.4: FE mesh of a regular honeycomb RVE.

Meshes used with homog3d are instead unstructured and composed of tetra-
hedra with quadratic interpolation (see Figure 3.4). Parametric CAD files
created with CATIA (Figure 3.3) allow unit cells with a full range volume
fractions and, for lattice structures, various lattice topologies to be created
with minimal effort. The multi-body models were exported from CATIA in
STEP format. The open-source pre- and post-processing platform SALOME
was then used to generate tetrahedral meshes with the Netgen mesh generator.
For an RVE modelled with 1mm characteristic size, meshes were created using
an element edge length of 0.06mm. Meshes were transferred to homog3d in
UNV format.
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3.2 Homogenized properties of candidate mi-

crostructures

In order to create the desired two-variable material model, homogenized prop-
erties were calculated at multiple temperatures ranging from 20 to 1000◦C.
The tabulated temperature-dependent material properties in [64] were used
for both CuCrZr and pure tungsten. Intermediate values were calculated with
linear interpolation when necessary.

Since the properties of CuCrZr are generally insufficient for the alloy to be used
at high temperatures without reinforcement, tabulated values are not available
up to 1000◦C. To create the material models for honeycomb and BCC lattices,
the properties of CuCrZr were extrapolated by using the value at the high-
est tabulated temperature for all temperatures exceeding the tabulated range.
Extrapolation to higher temperatures was performed to simplify implementa-
tion in the topology optimization code, since an extensive temperature range
is necessary for regions near the surface of the tungsten armor. Until more
realistic, experimental material models of WAM/Cu composites exist, it is left
to the designer to address composite regions with excessive temperatures in
the subsequent detailed analysis following topology optimization.

The honeycomb RVE (Figure 3.3a) was parameterized with the ratio of cell
wall thickness t to cell size w. Figure 3.5 shows the geometry of the unit cell
and relevant dimensions.

Figure 3.5: Dimensions of the regular honeycomb RVE.
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The relationship between wall thickness and tungsten volume fraction (3.11)
was determined geometrically.

Vf,W = 1−
(

1− t

w

)2

(3.11)

The BCC lattice (Figure 3.3b) was parameterized with the ratio between the
(uniform) diameter Ds of the struts and the side length of the RVE a. The
relationship for the tungsten volume fraction was determined by fitting a cubic
polynomial (3.12) to values measured in CATIA.

Vf,W = −4.89875

(
Ds

a

)3

+ 5.44114

(
Ds

a

)2

+ 6.12658(10−5)

(
Ds

a

)
(3.12)

0 ≤ Ds

a
. 0.741

The properties of honeycomb are transversely isotropic: in-plane (XY) behav-
ior is isotropic, but out-of-plane behavior differs somewhat. Properties of the
BCC lattice are fully isotropic. Figure 3.6 compares the normal stiffnesses of
the BCC lattice and honeycomb at an intermediate temperature of 400 ◦C to
the analytical linear (ROM) and inverse (iROM) rule-of-mixtures models. The
out-of-plane normal stiffness (Ez) of honeycomb follows linear ROM behavior.

Figure 3.6: Comparison of normal stiffness at 400◦C.
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Figure 3.7: Comparison of shear stiffness at 400◦C.

While the in-plane stiffness of honeycomb is very similar to that of the BCC
lattice, linear ROM behavior makes honeycomb’s Ez up to 20% higher for in-
termediate mixtures. Figure 3.7 visualizes the composites’ shear stiffness in
the same manner.

The comparison continues with Figure 3.8, showing the normal components
of the thermal expansion tensor. Neither structure is fully anisotropic; shear
components of thermal expansion are therefore zero. The in-plane isotropy
of honeycomb seen for stiffness is also applicable to thermal expansion. The
higher out-of-plane stiffness of the honeycomb also results in a decreased out-
of-plane thermal expansion.

The relationships for thermal conductivity are shown in Figure 3.9. The high-
est thermal conductivity is achieved by honeycomb along its Z axis, which has
linear ROM behavior. Since heat conduction in a PFC using this microstruc-
ture will largely be along the Z axis (see component model in Section 5.1), this
feature should be advantageous.

Figure 3.10 depicts, as an example, the full two-variable model of normal stiff-
ness for the BCC lattice. A step can be seen at 700◦C, beyond which the
properties of CuCrZr have been extrapolated as a constant.

The effect of the periodic boundary conditions can be seen by visualizing the
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Figure 3.8: Comparison of thermal expansion at 400◦C.

Figure 3.9: Comparison of thermal conductivity at 400◦C.
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Figure 3.10: Two-variable plot of normal stiffness for the BCC lattice.

displacement field for a given strain load. Figure 3.11 shows the constrained
expansion of a honeycomb RVE with 40% tungsten volume fraction when a
temperature step of 1 ◦C is simulated to homogenize the microstructure’s ther-
mal expansion. Although the copper-alloy matrix experiences greater thermal
strain due to its higher CTE, the much higher stiffness of the tungsten rein-
forcement allows it to swell relative to the matrix. Averaging of the internal
stress response in this state is used to determine the thermoelastic tensor, and
subsequently the thermal expansion tensor can be found.

The properties of neither structure are universally more suitable for stress re-
duction in PFCs. The isotropic CTE of the BCC lattice is nearly equal to
the in-plane CTE of honeycomb. However, the even lower CTE and excellent
thermal conductivity of honeycomb along its Z-axis may prove valuable. Ul-
timately, the effectiveness of a given microstructure can only be seen through
optimization at the component level; microstructures with different properties
may reduce stress to the same degree using different macroscopic material dis-
tributions.

Selection of a suitable microstructure requires consideration of manufacturabil-
ity as well. The cross-section of a lattice consists of many small points, formed
by thin struts which may be prone to breakage. Honeycomb has a high degree
of interconnectivity within its cross-section and is much less fragile. However,
removal of residual powder can only be performed from the end of a honey-
comb cell due to its closed walls; the open structure of the BCC lattice allows
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Figure 3.11: Internal displacement of a honeycomb RVE with 40% tungsten sub-

jected to a temperature step to homogenize thermal expansion. Undeformed state

(top), deformed state (bottom).

powder removal from all directions. Structural integrity, powder removal, and
other practical aspects of producing tungsten microstructures with SLM must
be assessed through testing.



Chapter 4

Topology optimization of
plasma-facing components

The honeycomb and lattice structures characterized numerically in the pre-
vious chapter are examples of additively manufacturable composites that can
be tailored locally to achieve the desired performance of a PFC. Here, the
goal is stress reduction, but the interactions that produce thermal stresses
are too complicated for the optimal structure to be predicted intuitively. A
component-level topology optimization should therefore be used to achieve the
greatest stress reduction.

This chapter presents the procedure to optimize the material distribution in
a composite PFC to minimize stress under HHF loading. First, two poten-
tial mathematical formulations of this goal are described. Two variants of
the algorithm are elaborated with a sensitivity analysis and implementation
details: the simpler uses constant material properties (non-TD), and a more
refined version considers the temperature-dependence of material properties
(TD). The non-TD version was tested with a simple ROM material model,
and the TD version with the two-variable models for regular honeycomb and
a BCC lattice calculated by homog3d.

4.1 Formulation of the optimization problem

Selection of a suitable optimization problem requires consideration of multiple
factors. Most importantly, all optimization objectives and constraints must
be expressed mathematically; qualitative aspects of design must be considered
separately. The ability to express the problem mathematically is, however, not
sufficient on its own. Poor convergence behavior or excessive computational
expense may disqualify certain approaches despite their conceptual suitability.

With that in mind, two formulations with objective functions based on the

37
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von Mises equivalent stress were developed. For a 2D, plane-stress domain,
the von Mises stress σV is calculated with (4.1) [65].

σ2
V = σ2

1 + σ2
2 − σ1σ2 + 3τ 2

12 (4.1)

This choice may seem to disregard the complexity of failure mechanisms in
composite materials, especially those containing a brittle material like tung-
sten. However, it greatly simplifies implementation, and is justified by the
following:

1. The von Mises stress is a good summary of the stress state, and is effective
at reducing all components of stress during optimization.

2. Topology optimization is meant to enrich the design process, not to re-
place thorough analysis and validation of designs.

3. As discussed in Section 2.3.1, the lack of experimental data on the me-
chanical properties of SLM tungsten currently precludes realistic mod-
elling of the failure mechanisms of WAM/Cu composites.

The first formulation seeks to minimize the global stress metric (4.2), a discrete
form similar to (2.17). This metric is the p-norm of the von Mises stress in the
entire domain. Stress is evaluated at each of the nel elements’ ngp integration
points (ie. “Gauss” points):

σg =

[
nel∑
e=1

ngp∑
g=1

(
σ

(e,g)
V

)p] 1
p

(4.2)

As p approaches ∞, the p-norm approximates the maximum of the summed
values. The value of p should ideally be chosen as large as possible to best
approximate the infinity norm. However, choosing a value too large will re-
sult in an overflow of the computer’s finite numerical representation. A value
of 100 yielded a reasonable approximation without numerical overflow using
double-precision floating point arithmetic. Using larger values is possible, but
produces only marginal returns.

In addition to the global stress objective function, the average volume fraction
of tungsten (Vf,W ) can be constrained to a maximum value if designs with
more copper content are desired. The individual variable limits xmin and xmax

provided by the standard MMA problem (2.18) can also be used to place a
hard limit on local volume fractions. This is useful, for example, to ensure that
the AM tungsten structure is open enough to remove unfused residual powder
from the SLM process before melt infiltration.

Formulated with the global stress metric, the optimization problem is
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min σg (4.3)

subject to
1

n

n∑
j=1

xj ≤ V̂f,W

The average volume fraction constraint is applied only to elements in the de-
sign domain. Translation of (4.3) to the standard MMA format is simple.
The artificial variable z is unused, so a0 is set to 1 and ai is set to 0 for all
other values of i. The variables yi are used to traverse infeasible points; the co-
efficients ci are set to a “large” value (103 was used) and the coefficients di to 1.

The second formulation treats stress locally. It uses the following “min-max”
formulation:

min z (4.4)

subject to σ̄
(e)
V ≤ z, e = 1, . . . , nel

1

n

n∑
j=1

xj ≤ V̂f,W

Unlike the global formulation, (4.4) makes use of the artificial variable z pro-
vided by the standard MMA problem. This variable is minimized while the
average von Mises stress in each element (4.5) is individually constrained to

be less than or equal to z. The average von Mises stress σ̄
(e)
V in an element

is found by averaging stress values over the element’s ngp integration points.
Through the use of an artificial variable and local stress constraints, the al-
gorithm indirectly minimizes the maximum von Mises stress observed in the
domain.

σ̄
(e)
V =

1

ngp

ngp∑
g=1

σ
(g)
V (4.5)

Since the artificial variable z becomes the objective function, f0 is simply de-
fined to be 0. The number of constraint functions m is equal to nel + 1. All
coefficients ai are set to 1, except for the coefficient am corresponding to the
average volume fraction constraint, which should be 0. The coefficients ci and
di are again set to 103 and 1, respectively.

4.2 Sensitivity analysis

The MMA, like most efficient algorithms for non-linear optimization, requires
knowledge not only of the values of the system equations at the current solu-
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tion point, but also of their derivatives. Thus, the derivative with respect to
each design variable of the stress functions used in the optimization problems
of the previous section must be calculated once per iteration. This process,
known as sensitivity analysis, is illustrated in the following. This section as-
sumes that material properties are independent of temperature. Section 4.2.1
extends the procedure for temperature-dependent material models.

The global stress metric (4.2) and element average von Mises stresses (4.5)
are analytical functions of the local von Mises stress values at the integration
points within the FE mesh. Their derivatives are calculated with (4.6) and
(4.7) and are simple to evaluate once the derivatives of the local stress values
are known.

∂σg
∂ρj

=
1

p
σ1−p
g ·

[
nel∑
e=1

ngp∑
g=1

p
(
σ

(e,g)
V

)p−1

· ∂σV
∂ρj

(e,g)
]

(4.6)

∂σ̄
(e)
V

∂ρj
=

1

ngp

ngp∑
g=1

∂σV
∂ρj

(g)

(4.7)

Differentiation of the von Mises equivalent stress for 2D plane-stress domains
(4.1) with respect to a design variable ρj leads to:

2σV

(
∂σV
∂ρj

)
= 2σ1

(
∂σ1

∂ρj

)
+ 2σ2

(
∂σ2

∂ρj

)
− σ1

(
∂σ2

∂ρj

)
−
(
∂σ1

∂ρj

)
σ2 + 6τ12

(
∂τ12

∂ρj

)
(4.8)

This requires knowledge of the current von Mises stress value as well as the
components of the local stress tensor (A.11) and their derivatives. The deriva-
tive of the stress tensor within an element is calculated as follows:

∂σ(e)

∂ρj
= C

(
B(e)

(
∂d(e)

∂ρj

)
−α(e)(N (e))T

(
∂θ(e)

∂ρj

))
+ (4.9)

δje

[(
∂C(e)

∂ρe

)(
B(e)d(e) −α(e)(N (e))T ∆θ(e)

)
− · · ·

C
((

∂α(e)

∂ρe

)
(N (e))T ∆θ(e)

)]
The strain-displacement matrix B(e) and element shape functions depend only
on the FE formulation and the location of the integration points; they do
not change with the design variables. The derivatives in the right-hand side
of (4.9) take two forms: derivatives of the material properties C(e) and α(e),
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and derivatives of the discrete field variables d and θ. Since the material
properties in an element depend only on the design variable assigned to that
element, terms containing material property derivatives are zero for all but one
of the design variables. This is indicated by the Kronecker delta δje. Changes
due to the variable displacements and temperatures, however, are global and
influence the stress in all elements. Derivatives of the temperature field are
calculated directly with

∂θ

∂ρj
= −K−1

t

[(
∂Kt
∂ρj

)
θ

]
(4.10)

The prescribed heat loads applied with fq are constant and do not appear in
the sensitivity analysis. It is clear that differentiating the temperature field
requires an additional solution of the FE system for each derivative to be calcu-
lated. The computational expense of this process can be reduced significantly
by saving the decomposed conductivity matrix from the original solution of θ.
The matrix will therefore be decomposed only once per iteration of the opti-
mizer; each subsequent load case requires only the much less time-consuming
process of back-substitution. Differentiation of the static displacement field is
performed in a similar manner.

∂d

∂ρj
= K−1

s

[
∂f

∂ρj
−
(
∂Ks
∂ρj

)
d

]
(4.11)

As for the temperature field, evaluating these derivatives requires solving the
FE system once for each design variable, but can be done efficiently by reusing
the decomposed stiffness matrix from the original solution of d. Since an
element’s conductivity and stiffness matrices K(e)

t and K(e)
s depend only on the

element’s own design variable, the sensitivities of the global system matrices
require differentiation of only one element matrix per design variable:

∂Kt
∂ρj

=

nel∑
e=1

δje
∂K(e)

t

∂ρe
= hz

∫
Ω(j)

F (j)T
(
∂κ(j)

∂ρj

)
F (j) dΩ (4.12)

∂Ks
∂ρj

=

nel∑
e=1

δje
∂K(e)

s

∂ρe
= hz

∫
Ω(j)

B(j)T
(
∂C(j)

∂ρj

)
B(j) dΩ (4.13)

Unlike in the thermal system, the load vector of the static problem f is not
constant. This vector clearly depends on the changing temperature field. Dif-
ferentiation of (A.21) produces

∂f (e)

∂ρj
= δje

(
∂T (e)

∂ρe

)
∆θ(e) + T (e)

(
∂θ(e)

∂ρj

)
(4.14)

The matrix T (e), like all element matrices, depends only on the element’s own
design variable:
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∂T (e)

∂ρe
= hz

∫
Ω(e)

B(e)T
[(

∂C(e)

∂ρe

)
α(e) + C(e)

(
∂α(e)

∂ρe

)]
N (e)T dΩ (4.15)

The calculation of the temperature and displacement derivatives can be under-
stood conceptually by viewing the square-bracketed quantities in (4.10) and
(4.11) as pseudo-load vectors applied to the FE systems. A pseudo-load vector
is built and the constrained system is solved once for each design variable. The
resulting temperature or displacement field is the desired derivative.

The sensitivities of material properties depend on the method used to parame-
terize the material model. For a material model using linear ROM intepolation,
sensitivities are constant, and can be evaluated as the difference between the
properties for the composite’s component materials. The derivative of the
isotropic Young’s modulus, for example, is simply

∂E

∂ρj
= E1 − E0 (4.16)

where E1 and E0 are the Young’s moduli of the constituent materials repre-
sented by design variables 1.0 and 0.0 respectively.

4.2.1 Sensitivity analysis with temperature-dependent
properties

Treatment of temperature-dependent properties requires that all derivatives
of the previous section be transformed from partial to total derivatives. For
the sensitivities of the stress objectives (4.6) and constraints (4.7), local von
Mises stress (4.8), and local stress tensor (4.9), this requires only a change of
notation, since the derivatives of these stress functions are calculated using the
derivatives of their subsidiary terms.

An actual change of procedure is necessary for the derivatives of 1) material
properties, and 2) the temperature and displacement fields. The first step is
to calculate the partial derivative of the temperature field with (4.10). Sen-
sitivities of material properties must then include a term to account for the
change of temperature at the current integration point. The elasticity tensor,
for example, is differentiated with

DC(e)

Dρj
= δje

∂C(e)

∂ρe
+
∂C(e)

∂T

(
N (e)T ∂θ

(e)

∂ρj

)
(4.17)

Total derivatives of the element conductivity and stiffness matrices are then
built using

DK(e)
t

Dρj
= hz

∫
Ω(e)

F (e)T
(
Dκ(e)

Dρj

)
F (e) dΩ (4.18)
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DK(e)
s

Dρj
= hz

∫
Ω(e)

B(e)T
(
DC(e)

Dρj

)
B(e) dΩ (4.19)

Note that, since the temperature field changes with each design variable, the
material properties within an element no longer depend only on the design
variable assigned to that element; changing a single variable alters proper-
ties in the entire domain. Finally, total derivatives of the temperature and
displacement fields become

Dθ

Dρj
= −K−1

t

[(
DKt
Dρj

)
θ

]
(4.20)

Dd

Dρj
= K−1

s

[
Df

Dρj
−
(
DKs
Dρj

)
d

]
(4.21)

Between the use of (4.20) and (4.21), the total derivative of the element load
vector f must be calculated with

Df (e)

Dρj
= hz

∫
Ω(e)

B(e)T

[
C(e)

(
Dε

(e)
t

Dρj

)
+

(
DC(e)

Dρj

)
ε

(e)
t

]
dΩ (4.22)

using the sensitivity of the thermal strain within the element:

Dε
(e)
t

Dρj
= α

(e)
T

(
N (e)TDθ

(e)

Dρj

)
+
Dα

(e)
T

Dρj

(
N (e)Tθ(e) − 20◦C

)
(4.23)

− δje
∂α

(e)
T0

∂ρe
(T0 − 20◦C)

Finally, the total derivative of the stress tensor forms the link to the stress
objective/constraints:

Dσ(e)

Dρj
=
DC(e)

Dρj

(
B(e)d(e) − ε(e)

t

)
+ C(e)

(
B(e)Dd

(e)

Dρj
− Dε

(e)
t

Dρj

)
(4.24)

4.3 Implementation

The cross-section shown in Figure 4.1 was used to demonstrate the optimiza-
tion formulation described in the previous sections. The dimensions are typical
of ITER-like PFC designs. A 5mm region facing the plasma was fixed to be
pure tungsten to ensure a minimum thickness of armor material. The rest of
the component comprises the design domain, where the W/Cu mixture may
vary freely. A steady-state heat flux QN is applied at the surface of the tung-
sten armor. Convection in the cooling channel was simplfied to a uniform
surface temperature of 150◦C. Because of the domain’s symmetry, only half of
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Figure 4.1: Dimensions and boundary conditions of the optimized component.

the component was simulated.

The temperature and displacement fields are discretized with 4-node quadri-
laterals using bilinear interpolation of the primary variables. Linear-elastic
material behavior is assumed. Meshes were generated procedurally as a grid,
with elements in the cooling channel removed (Figure 4.2). This simplifies
post-processing of the results, but unstructured meshes can be used as well.
The stepped representation of the cooling channel surface complicates the use
of convection boundary conditions; an unstructured mesh with a smooth cool-
ing channel surface is therefore preferred when a convection model is to be used.

The von Mises stress within each element (4.5) is averaged across 4 integration
points. Because the material distribution in the design domain varies between
two solid materials – no void regions develop – the stress singularities that
afflict most topology optimization problems do not occur; treatments such as
“ε-relaxation” are unnecessary.

To reduce calculation time, sensitivities are calculated only for design variables
associated with elements in the design domain; elements in the armor region
fixed to tungsten are skipped. Filtering of sensitivities with (2.16) was tested
using the weighting function

w(xe) =

{
1− ‖xe−x0‖

R̂f
‖xe − x0‖ ≤ R̂f

0 ‖xe − x0‖ > R̂f

(4.25)

where the vector magnitude is the distance between the centroid of the summed
element (xe) and the central element (x0) for which the updated sensitivity
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Figure 4.2: Gridded meshes of the optimized component with a) 14x28 and b)

21x42 elements.

is being calculated. The filter radius R̂f should be at least large enough that
the weighting function encompasses the central element’s immediate neighbors.

In order to demonstrate the versatility of the methodology and better un-
derstand the factors that influence the resulting topology, optimizations were
performed with multiple load cases. Two parameters define a load case: the
nominal heat flux from the plasma QN and the reference temperature for
thermal expansion T0. Heat flux was varied to show how components can
be adapted to diverse reactor operating conditions and to the various heat
loads present in a single reactor. The effect of the reference temperature T0

was investigated due to uncertainty concerning its actual value for WAM/Cu
composites. The temperature at which melt-infiltrated W/Cu composites are
mostly free of thermal strains is generally unknown. This property depends on
manufacturing, heat treatment, and thermal cycling history. Until the strain
state of these composites is better understood, the principal goal is to charac-
terize trends and the sensitivity of a component design to deviations of T0. A
combination of 4 nominal heat fluxes and 5 reference temperatures, shown in
Table 4.1, required simulating 20 load cases.

QN = 5 10 15 20 [MW/m2]

T0 = 150 400 650 900 1150 [◦C]

Table 4.1: Parameter set defining load cases. QN is the nominal heat load applied

to the component, and T0 is the reference temperature for thermal expansion.



46 4. Topology optimization of plasma-facing components

Figure 4.3: Flow chart of the optimization algorithm.

After optimization for a particular load case, stress in the optimized compo-
nent was additionally measured using the parameters from all other load cases
to examine its behavior when subjected to off-nominal conditions.

Figure 4.3 describes the procedure of a typical optimization. Convergence is
achieved when the objective function and design variables have stabilized, and
the solution satisfies all constraints. Each of these three conditions has its own
tolerance. For stress objectives, 1 - 2 MPa is reasonable. For design variables
and constraints, 10−2 was used. Minor, localized oscillation of stress or design
variables may prevent convergence to these tolerances even after the structure
as a whole no longer experiences major changes. To avoid this, the optimiza-
tion may also be constrained to a maximum number of iterations.

A simple linear ROM material model was used to test the TopOpt code
without temperature-dependent material properties. Properties at an inter-
mediate temperature of 500◦C were used for both materials (see Table 4.2).
Temperature-dependent material properties were calculated with the two-variable
models produced by homog3d for honeycomb and BCC lattices. Values be-
tween tabulated points were found with bilinear interpolation.
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Material E [GPa] ν [-] α [K−1] κ [W/(m K)]

W 390 0.29 4.89× 10−6 133

CuCrZr 106 0.33 19.55× 10−6 346

Table 4.2: Young’s modulus, Poisson ratio, CTE, and thermal conductivity of W

and CuCrZr at 500◦C [64].

With the addition of temperature-dependent material properties, the thermal
conduction problem becomes nonlinear. This was handled by solving the ther-
mal problem iteratively, using the latest temperature field to calculate material
properties for each new solution until the temperature field stabilizes. Itera-
tion ends after the maximum nodal temperature change is below 0.1◦C. The
temperature field is initialized to a uniform 400◦C at the beginning of the op-
timization. Subsequent iterations of the optimization algorithm start from the
final temperature field of the previous iteration.

The sensitivity analysis for temperature-dependent optimization was tested
in two forms. In unmodified form, as presented in Section 4.2.1, sensitivi-
ties are calculated using total derivatives of the material properties. In this
case, contributions from every element must be assembled into the pseudo-
load vectors applied to the system, and differentiation of the temperature field
must be performed twice – once as a partial derivative, and then as a total
derivative. This increases the computational complexity substantially. Since
the temperature-dependence of the material properties in an element is much
weaker than their dependence on the local design variable, an alternative form
was tested, whereby properties are evaluated at the current local temperature,
but the partial derivative with respect to temperature is assumed to be zero.
This allows the use of partial derivatives with respect to the local design vari-
able as a substitute for total derivatives, which reduces computation time and
likely has little effect on the end result.

4.4 Results

This section presents the results of numerous tests performed with the TopOpt
code. The purpose is to illustrate the capabilities and characteristics of the
presented optimization approach. Emphasis is placed on understanding the
interactions between the numerous parameters that influence the optimal de-
sign. Numerical behavior of the algorithm is also discussed.

The reference configuration to which optimized material distributions are com-
pared is a full-tungsten gridded mesh (as in Figure 4.2). Although this isn’t
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entirely representative of real, contemporary PFC designs, it is useful for com-
paring various approaches and understanding the behavior of the algorithm.
In Chapter 5, sample optimized designs are compared with realistic traditional
designs. Table 4.3 shows the peak von Mises stress for the reference configu-
ration at each heat load.

QN [MW/m2] 5 10 15 20

σmax [MPa] 260.5 576.1 922.5 1264.2

Table 4.3: Maximum von Mises stress in a full-tungsten domain at tested heat

loads.

Figure 4.4 visualizes the stress and temperature fields in the full-tungsten do-
main at 15 MW/m2. The fields at other heat loads are similar, but vary in
intensity. Material distributions are depicted in the following images using a
white-blue color scale, with copper alloy represented as white and tungsten as
blue. The various shades of blue representing intermediate composite mixtures
thus darken with increasing tungsten content.

Figure 4.4: Stress (left) and temperature (right) in the reference component with

a heat load of 15 MW/m2.

Both formulations from Section 4.1 were initially tested with the non-TD ROM
model. The local formulation (4.4) reliably yields stress reductions and man-
ufacturable material distributions. Its main disadvantage is the time required
for computation, due to the large number of local stress constraint functions.
Only two functions must be evaluated for the global formulation (4.3), so this
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approach is noticeably quicker. However, the global formulation does not reli-
ably produce usable results. In fact, the global formulation occasionally yields
a stress increase. Optimizing a component for a heat load of 5 MW/m2 and a
reference temperature of 900◦C (referred to as the 5/900 load case) results in
an increase of stress of over 150% after 50 iterations, for example. While there
are cases where the global formulation does outperform the local formulation
numerically, many of these results are impractical. The component in Figure
4.5 was optimized for the 15/400 load case, but the discrete tungsten feature
encompassing the cooling channel would be effectively impossible to realize.
Because of its robustness and good results, the local formulation is suggested
and is investigated in detail in the following.

Figure 4.5: Material distribution of a component optimized for the 15/400 load

case with the global formulation and non-TD ROM material model.

The parameters QN and T0 influence the optimal design significantly. Fig-
ure 4.6 shows the optimized material distribution for all 20 load cases using
a BCC lattice structure. The initial material distribution was a full-tungsten
domain. The results exhibit common features that help deduce the means of
stress reduction qualitatively. The copper-dense region that develops on the
unconstrained sides, for example, lends the structure a degree of compliance
at the free surface that likely reduces stress at the armor/heat-sink interface.
The interaction between QN and T0 is also visible. A concurrent increase of
both parameters changes the optimal material distribution only negligibly. For
example, the material distributions in Figure 4.5 for the 10/650 and 15/900
load cases appear nearly identical. A greater heat flux results in higher tem-
peratures; it’s logical to expect that thermal expansion in a given structure is
reduced by increasing the reference temperature to better match actual tem-
peratures in the component.
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Figure 4.6: Influence of parameters QN (in MW/m2) and T0 (in ◦C) on the

resulting material distribution with a BCC lattice material model. Blue indicates

tungsten, white copper.
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Figure 4.7: Visualization of stress in optimal designs with a BCC lattice for various

values of QN (in MW/m2) and T0 (in ◦C). Regions of dark blue indicate low stress.

Color changes to light blue, then light green for increasing stress.
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QN [MW
m2 ] T0 [◦C] σmax [MPa] Rel. ∆σmax Final Vf,W

5 150 98.2 -62.3% 0.342

5 400 42.9 -83.5% 0.696

5 650 41.8 -84.0% 0.828

5 900 42.6 -83.6% 0.866

5 1150 41.6 -84.0% 0.876

10 150 219.1 -62.0% 0.315

10 400 84.9 -85.3% 0.245

10 650 82.2 -85.7% 0.605

10 900 87.2 -84.9% 0.729

10 1150 88.4 -84.7% 0.776

15 150 355.5 -61.5% 0.307

15 400 177.9 -80.7% 0.295

15 650 124.8 -86.5% 0.399

15 900 139.7 -84.9% 0.583

15 1150 139.9 -84.8% 0.689

20 150 479.2 -62.1% 0.341

20 400 370.4 -70.7% 0.286

20 650 177.1 -86.0% 0.285

20 900 185.6 -85.3% 0.454

20 1150 198.8 -84.3% 0.606

Table 4.4: Maximum stress, stress reduction, and final average volume fraction

for structures optimized with a BCC lattice.

Table 4.4 shows the quantitative results of optimization with a BCC lattice.
The predicted stress reduction is significant, roughly 85% for the majority of
cases. Though the local formulation is effective at reducing stress for all load
cases, the improvement is generally less pronounced for low values of T0, since
higher values better match the actual temperatures within the component.

Figure 4.8 shows selected iterations of an optimization for the 10/650 load case
with a BCC lattice to demonstrate the efficiency with which the optimization
algorithm achieves stress reduction. Within 3 iterations, the peak stress has
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already decreased by 76.9%, and the developing structure is visible. After 10
- 15 iterations, the material distribution and stress field have largely stabilized.

Figure 4.8: A sequence showing the progress of the optimization for the 10/650

load case with a BCC lattice. Each pair of images displays the material distribution

(left) and the stress field (right).

Components optimized for a specific load case experience higher stresses when
subjected to off-nominal conditions. The maximum stress in a BCC component
optimized for the 10/650 load case was calculated assuming off-nominal heat
loads and reference temperatures (Table 4.5). The fourth and fifth columns
compare the maximum stress to, respectively, the value measured for nominal
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conditions and the stress in the reference configuration at the considered heat
load. An increase of maximum stress is evident, but the final column shows
that, in most cases, the optimized design is still an improvement over the ref-
erence configuration at off-nominal conditions.

QN [MW
m2 ] T0 [◦C] σmax [MPa] σmax/σnom

σmax/σref

5 150 248.7 303% 95%

5 400 56.9 69% 22%

5 650 248.9 303% 96%

5 900 485.7 591% 186%

5 1150 734.5 894% 282%

10 150 538.1 655% 93%

10 400 280.4 341% 49%

10 650 82.2 100% 14%

10 900 229.4 279% 40%

10 1150 446.1 543% 77%

15 150 854.5 1040% 93%

15 400 598.5 728% 65%

15 650 365.7 445% 40%

15 900 141.3 172% 15%

15 1150 222.1 270% 24%

20 150 1167.1 1420% 92%

20 400 911.9 1110% 72%

20 650 679.4 827% 54%

20 900 447.2 544% 35%

20 1150 205.7 250% 16%

Table 4.5: Stress in a BCC component optimized for the 10/650 load case assuming

off-nominal conditions.
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Figure 4.9: Comparison of material models with a heat load of 10 MW/m2.

Figure 4.9 shows a comparison of results at 10 MW/m2 using three different
material models. Both temperature-dependent models (BCC lattice and hon-
eycomb) produce similar results. The non-TD ROM model, however, results
in material distributions that are slightly different from those produced with
TD models. Table 4.6 compares the maximum stress in the components shown
in Figure 4.9. Stress in the designs optimized using the non-TD ROM model
was calculated additionally with both TD models to permit a realistic com-
parison with the BCC and honeycomb structures. In all cases, non-TD ROM
material distributions exhibit an increase of maximum stress when simulated
using the more realistic temperature-dependent properties. This effect is most
significant for higher values of T0.

As discussed in Section 4.2.1, the temperature-dependent sensitivity analy-
sis formally requires the use of total derivatives that consider the changing
temperature at each integration point, since the material properties within an
element are coupled to all design variables in the domain via the temperature
field. However, the contribution of temperature dependence to total deriva-
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T0 [◦C] ROM (a) ROM (b) ROM (c) BCC Honeycomb

150 224.2 240.1 232.0 219.1 226.2

400 117.2 126.1 131.1 84.9 73.0

650 99.2 260.2 337.9 82.2 79.7

900 110.6 294.4 364.0 87.2 79.2

1150 101.6 300.2 369.6 88.4 87.2

Table 4.6: Comparison of maximum stress (in MPa) in designs optimized for 10

MW/m2 with various material models. Stress in the ROM designs was evaluated

with a) the non-TD ROM model, b) the TD BCC model, and c) the TD honeycomb

model.

tives within an element (e.g. Equation 4.17) is negligibly small for two reasons:
First, the partial derivative of material properties with respect to the local de-
sign variable is generally 103−105 times larger than the partial derivative with
respect to temperature. Second, a single element’s design variable only has a
small effect on the temperature field as a whole.

Temperature-dependent optimization with and without the use of total deriva-
tives was tested on the 10/650 load case with the BCC material model. The
maximum stress in the optimized design varied by less than 2 MPa, and there
was no significant difference in the optimal material distributions. However,
because of the extra effort required to calculate the total derivatives, their use
more than doubled the computation time. Since this disadvantage was not
balanced by any practical benefit, partial derivatives were used as a substitute
for the presented results.

The composite mixture is unconstrained in the previous material distributions;
the full range of volume fractions was allowed. It was mentioned in Section 4.1
that restricting the range of allowable design variables can be used to exclude
dense microstructures that hamper powder removal and melt-infiltration. Fig-
ure 4.10 shows the material distributions that result when design variables are
restricted everywhere to a maximum of 0.5, 0.7, and 1.0 (from left to right) for
the 10/650 load case. The material distributions are qualitatively very similar.
The stress-reduction achieved when constraining the local volume fraction is
different than the unrestricted solution, however. Table 4.7 shows maximum
stress values corresponding to Figure 4.10 and the reduction relative to the ref-
erence value for 10 MW/m2. Restricting the solution space naturally results
in an increase of stress compared to the unrestricted optimum. However, the
stress reduction of the constrained designs is still substantial.
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Figure 4.10: Structures optimized for the 10/650 load case with locally constrained

composite volume fraction. From left to right for each microstructure: maximum

volume fraction of 0.5, 0.7, and 1.0.

BCC Honeycomb

Max. Vf,W 0.5 0.7 1.0 0.5 0.7 1.0

σmax [MPa] 239.3 145.7 82.2 266.6 145.1 79.7

Rel. ∆σmax -58.5% -74.7% -85.7% -53.7% -74.8% -86.2%

Table 4.7: Maximum stress and relative stress reduction for components optimized

for the 10/650 load case with locally constrained volume fraction.

Though constraining the global average volume fraction is implemented in the
formulation of the optimization problem, testing did not demonstrate notewor-
thy advantages. This method is not effective at preventing dense structures
(to aid manufacturing) and results in higher levels of stress than unconstrained
material distributions.

The BCC component was optimized for 10 MW/m2 using multiple initial ma-
terial distributions in order to evaluate the influence of the optimization prob-
lem’s non-convexity. Figure 4.11 compares optimized designs that began with
uniform distributions of tungsten and copper, respectively. It is clear that the
initial distribution can bias the average volume fraction of the optimal solu-
tion: optimizations that started with a full-copper domain typically produce
optimal structures with higher copper content. Table 4.8 shows this effect
quantitatively, as well as the maximum stress and stress reduction in each so-
lution. Although it’s clear that the choice of initial distribution may impede
the algorithm’s ability to find particular solutions, and that the solutions are
certainly local optima, achieving a substantial stress reduction is itself not in-
hibited.
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Figure 4.11: BCC component optimized for 10 MW/m2 with different initial

distributions. Design variables were initially 1.0 (top) and 0.0 (bottom).

Initial Vf,W T0 σmax [MPa] Rel. ∆σmax Final Vf,W

1.0 150 219.1 -62.0% 0.315

400 84.9 -85.3% 0.245

650 82.2 -85.7% 0.605

900 87.2 -84.9% 0.729

1150 88.4 -84.7% 0.776

0.0 150 206.6 -64.1% 0.350

400 84.1 -85.4% 0.236

650 79.3 -86.2% 0.422

900 81.2 -85.9% 0.496

1150 102.3 -82.2% 0.494

Table 4.8: Maximum stress, stress reduction, and final volume fraction in a com-

ponent optimized for 10 MW/m2 with two different initial distributions.

Using a 14x28-element mesh and a temperature-dependent material model
without temperature-dependent sensitivities, iterations required, on average,
about 20 - 30 seconds on a notebook computer with a quad-core Intel Core i7.
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This permitted simulation of all 20 load cases in one day. Iterations required
roughly 100 and 250 seconds when simulating the 10/650 load case with 21x42-
and 28x56-element meshes, respectively. For a typical iteration, the sensitivity
analysis requires 70 - 75% of the total computation time. Solution of the MMA
subproblem requires the bulk of the remaining time, and solution of the ther-
mal and static equilibrium problems amounts to less than 2% of an iteration.

Mesh refinement does not fundamentally change the topology of the material
distribution of an optimized component, an issue that is common in traditional
topology optimization. Figure 4.12 compares the optimal design for the 10/400
load case on a 14x28- and 21x42-element mesh. Though the average volume
fraction and resolution of the solutions differ, the same stress-reducing features
develop regardless of element size. Thus, filtering of sensitivities is, in principal,
unnecessary. Testing with the weighting function (4.25) further demonstrated
that filtering produces virtually no effect. Filtering does increase computa-
tional time, however, due to the large number of local constraint functions for
which sensitivities must be calculated. The sensitivity filter was therefore not
used for the components presented.

Figure 4.12: A BCC component optimized for the 10/400 load case using 14x28-

(left) and 21x42-element (right) meshes.
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Chapter 5

Sample topology-optimized
designs

The following presents two examples of topology-optimized PFC designs. The
primary purpose of this chapter is to demonstrate techniques to utilize the
output of the topology optimization process to design manufacturable compo-
nents, and to compare the ability of those techniques to achieve the predicted
stress reduction.

The designs presented were compared using the commercial FE software AN-
SYS to simple 2D analyses of traditional components, shown below. The
cooling tube was excluded in each model so that the conventional components
match the simplified PFC configuration used for the optimized components as
closely as possible. Figures 5.1 and 5.2 display, respectively, the domain and
stress field in a W monoblock and a W-armored flat-tile design with a CuCrZr
heat sink. Each component has an OFHC-copper interlayer. Properties of all
three materials were drawn from [64]. The peak von Mises stress was 475.2
MPa in the monoblock, and 517.6 MPa in the flat-tile design.

5.1 Flat-tile mockup with honeycomb

A flat-tile component designed for the 10/400 load case with an optimized
honeycomb-reinforced heat sink is pictured in Figure 5.3. The composite’s
tungsten volume fraction was constrained locally to 0.7. Using the TopOpt
output as a reference, the design domain was divided in 2D CAD software into
four regions with uniform volume fractions of 0.7, 0.45, 0.20, and 0.0. Bound-
aries between regions are splines drawn manually to visually match the optimal
material distribution. Though simplistic, this approach is commonly used to
post-process topology-optimized material distributions for mechanically loaded
structures. The 2D sketch was imported into CATIA, where the region for each
intermediate volume fraction was extruded as a separate body. The material
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Figure 5.1: Two-dimensional model of a traditional monoblock with annular in-

terlayer and the corresponding stress field at 10 MW/m2. The peak stress is 475.2

MPa.

Figure 5.2: Two-dimensional model of a traditional flat-tile design with planar

interlayer and the corresponding stress field at 10 MW/m2. The peak stress is

517.6 MPa.
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Figure 5.3: Post-processed CAD model of a flat-tile design with a honeycomb-

reinforced heatsink.

distribution was then realized by intersecting each extruded region with an
appropriate uniform honeycomb and subsequently fusing the bodies into one
solid.

The optimized component was simulated with a simple 2D FE model in ANSYS
to verify that the stress reduction predicted during optimization is plausible for
a real component (see Figure 5.4). The peak stress in the simulated component
is 214.6 MPa. This is a reduction of 54.8% compared to the monoblock model,
and 58.5% compared to the flat-tile model. Although this doesn’t achieve
the predicted stress reduction of approximately 75% (with volume fraction
constraint), consider that the reference components in this chapter have the
benefit of more realistic modelling and a stress-reducing interlayer. Achieving
a 50 - 60% stress reduction with such a simplistic design technique is still a
remarkable improvement. This might be further improved with a more refined
approach.

5.2 Monoblock tile with BCC lattice

The previous design was post-processed with a simple, manual technique. The
optimal material distribution can also be realized with a more systematic
method. Figure 5.5 shows a section of a monoblock tile designed with an
optimized BCC lattice. The component was optimized for the 10/650 load
case with the tungsten volume fraction again constrained to 0.7. Each cell of
the lattice is a 2mm cube. The volume fraction in each cell is the average of the
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Figure 5.4: 2D FE model of the flat-tile design with a honeycomb-reinforced

heatsink. The peak von Mises stress is 214.6 MPa.

composition in up to four of the square 1mm elements in the 14x28-element
mesh used for the optimization, and was rounded to the nearest tenth (i.e.
0.2, 0.3, etc.). The lattice truss geometry was generated procedurally with the
scripting capabilities of SALOME. Finishing touches were applied in CATIA.

Figure 5.6 shows the ANSYS FE model of the optimized BCC monoblock.
The peak stress is 207.2 MPa. This is a reduction of 56.4% compared to the
monoblock model, and 60.0% compared to the flat-tile model. This method of
post-processing showed a minor improvement over the manual technique used
for the optimized flat-tile design. Figures 5.4 and 5.6 show that the highest
stresses generally occur at the boundaries between regions of different volume
fraction. This is a manifestation of the same general problem experienced at
any joint between dissimilar materials. The most successful designs will likely
be those that 1) capture the optimal material distribution most accurately, and
2) achieve the smoothest transition between regions of different composition.
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Figure 5.5: Monoblock tile designed with an optimized BCC lattice.

Figure 5.6: 2D FE model of the monoblock tile designed with an optimized BCC

lattice. The peak von Mises stress is 207.2 MPa.
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Chapter 6

Conclusions and outlook

The advantages of AM will soon be available to designers of PFCs. This work
has presented a new design methodology that complements the capabilities
of AM and promises significant reductions of thermal stress in components
exposed to HHF loads. Because melt-infiltrated AM composites are such a
recent development, experimental material data is lacking. The homogeniza-
tion code homog3d overcomes this hurdle by predicting the material properties
of WAM/Cu composites numerically. The models it produces are essential to
optimization techniques using these materials. The TopOpt code reduces the
stress in PFCs exposed to high heat fluxes remarkably well; the predicted
stress reduction reaches 85% in many cases. The final version of this code uses
temperature-dependent material properties to provide more realistic results.

The calculation of temperature-dependent sensitivities formally requires the
use of total derivatives, which incorporate the dependence of material proper-
ties on both the local volume fraction and temperature. However, the contribu-
tion of temperature-dependence to the total derivatives of material properties
was found to be negligible. Additionally, calculation of total derivatives more
than doubles the time required to perform the sensitivity analysis. For these
reasons, the suggested approach is to calculate material properties at the cur-
rent temperature, but to replace total derivatives with partial derivatives with
respect to the local design variable. This saves a considerable amount of com-
putation time, and the impact on the solution is inconsequential.

Sample designs were presented demonstrating two ways in which the results of
the topology optimization can be used to design components manufacturable
with AM. These components exhibit, as predicted, considerably reduced levels
of stress compared to traditional PFC designs.

The toolset illustrated in this work is meant as a starting point. The TopOpt
and homog3d codes could be used as presented to design components, given
appropriate inputs, but expansion of their capabilities could facilitate better
designs: greater stress reduction, improved manufacturability, etc. The ideas
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discussed below are potential ways to expand on the methodology that has
been presented.

While the optimization problem with local stress constraints reliably yielded
good results, the global stress metric didn’t achieve the same degree of success.
The global formulation shouldn’t be completely disregarded, though, because
there were cases where it did produce good results. Its speed relative to the lo-
cal formulation may make further development worthwhile for large problems
with numerous design variables. The p-norm is not the only potential stress
metric; other metrics could prove more successful. Augmenting the formula-
tion with additional constraints may also improve the feasibility of designs,
making them more practical to manufacture.

Optimization tailors a PFC to a specific load case. It was shown that opti-
mized PFCs experience higher stresses at off-nominal conditions. Although
the optimized component is still expected to reduce stress compared to tra-
ditional designs in most cases, certain combinations of off-nominal conditions
can actually lead to poorer performance. Mitigating this issue would make
optimized components more versatile. This could potentially be achieved us-
ing a multi-objective optimization that minimizes weighted stress values over
a range of expected conditions.

As one tends to expect for a structural optimization, the formulation presented
exhibits non-convexity; the resulting solutions are known to be local optima.
Indeed, examples were presented in Section 4.4 demonstrating the algorithm’s
failure to reach known better solutions. But the fact that a particular material
distribution isn’t the best mathematical solution doesn’t make it a bad design;
realizing stress reductions in the range of 60 - 85% would undoubtedly make
components more robust. In addition, there’s a practical benefit to finding nu-
merous good solutions at the expense of one mathematically best solution: this
provides the designer with more ways of implementing an optimized compo-
nent. There are cases, however, where a more thorough solution search would
be beneficial; bringing optimized designs with a predicted 60% stress reduction
to the 80 - 85% level might be worthwhile. The simplest approach is to per-
form multiple optimizations, starting with a different initial distribution each
time. This is unlikely to be the most robust or efficient approach, however;
implementing the globally convergent variant of Svanberg’s Method of Moving
Asymptotes may yield a more comprehensive search.

Relatively thin components, like monoblocks, are accurately modelled in two
dimensions, but designs with significant depth (e.g. long flat-tile components)
may benefit from a truly 3D material distribution. Although Section 4.4 only
presents results using 2D domains, the TopOpt code is generally independent of
dimension. Optimization of components in three dimensions is not fundamen-
tally different than in two, but the third dimension does bring new challenges.
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Significantly increasing the number of mesh degrees of freedom and design
variables causes supralinear growth of memory consumption and calculation
times. A faster, more scalable implementation may be necessary to mitigate
this effect. In addition to the increased computational expense, visualization
of 3D material distributions is not as simple as drawing a single image. Clever
visualization of 3D results would aid interpretation and implementation of the
optimal structure.

The component-level optimizations performed by TopOpt currently use ma-
terial models with an assumed microstructural topology. Optimization of the
microstructure itself is possible as well. This process, known as inverse homog-
enization, was demonstrated to achieve prescribed elastic properties in [66] and
extremal thermal expansion in [54]. As mentioned in Section 2.4, von Müller
et al. applied this technique to a 2D W/Cu composite unit cell to minimize the
isotropic CTE [43]. An extension of this to three dimensions would be possible
by combining elements of TopOpt and homog3d. Optimizing for other mate-
rial properties (e.g. thermal conductivity, thermoelastic tensor, non-isotropic
behavior) or combinations thereof, could be investigated as well.

Although the inverse homogenization method is effective at producing a mi-
crostructure with the desired local properties, a purely microscale treatment
neglects the complex interactions that produce stress at the component level.
Optimization performed without consideration of these component-level inter-
actions is likely to produce limited results; multi-scale optimization is a more
suitable approach. Multi-scale optimization seeks an optimal structural topol-
ogy at the macro- and microscales concurrently. Examples include Da et al.
[67] and Chen et al. [68]. As one would expect for a relatively new branch
of topology optimization, initial findings have focused on mechanically loaded
structures optimized for minimum compliance; application of the technique
to reduce thermoelastic stress would be novel. Current approaches generally
assume a uniform microstructure throughout the body. This is a significant
restriction for PFCs. Although a uniform microstructure can be used to reduce
thermal stress, the results presented in Section 4.4 show that non-uniform ma-
terial distributions play a major role in stress reduction. This restriction should
ideally be avoided, but the alternative – optimization of each microstructural
unit cell independently – would generally require tremendous calculation times.
The problem lends itself to parallel processing, though; GPU acceleration or
cluster computing would make the large number of design variables more man-
ageable.

The tools presented here for optimization of PFCs offer a wealth of design
opportunities and a foundation for many future improvements. Topology op-
timization techniques could be a valuable tool for developing components in
the next generation of fusion reactors.
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Appendix A

Finite element formulation

This section serves to clarify the details of the FE formulation used for op-
timization and homogenization simulations. It is meant mainly to introduce
an informed reader to the notation used in this work. A full derivation of the
finite-element method is available in numerous references.

A.1 Thermal conduction

The temperature field in a PFC is determined by the heat flux received from
the plasma, the characteristics of the cooling system, and the conductive prop-
erties of the material in between. Temperatures must be recalculated in each
iteration of an optimization to account for the changing material distribution.
Calculation of a composite’s homogenized thermal conductivity also requires
solution of a thermal problem. The temperature field T in the body of a com-
posite PFC is governed by the homogeneous form of Poisson’s equation with
variable thermal conductivity κ:

∇ · (κ∇T ) = 0 (A.1)

Conventional FE methods were used to convert this continuous partial dif-
ferential equation into a system of linear equations. Material properties vary
throughout the domain. Material composition is considered uniform within
an element, but temperature is not. Thus, when the temperature-dependence
of properties is considered, unique properties exist at each integration point.
The elemental shape function of an element’s node i is denoted N

(e)
i . The

temperature within an element e with nn nodes is then interpolated by

T =
nn∑
i=1

N
(e)
i θ

(e)
i = N (e)T θ(e) (A.2)

The column vectors N (e) and θ(e) contain the element shape functions and
nodal temperatures, respectively. The temperature gradient within an element
is derived from the nodal temperatures as
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∇T = (∇N (e)T )θ(e) = F (e)θ(e) (A.3)

where the ”flux-temperature” matrix F encapsulates the shape function deriva-
tives:

F (e)
ij =

∂N
(e)
j

∂xi
(A.4)

Element conductivity matrices are built from F (e) and the local thermal con-
ductivity tensor by integration over the element volume Ω(e):

K(e)
t = hz

∫
Ω(e)

F (e)T κ(e)F (e) dΩ (A.5)

Integration is performed with Gauss quadrature. The thickness parameter hz
is constant throughout the mesh for 2D domains and simply set to one for
3D domains. Heat loads are applied to an element by integrating a prescribed
heat flux q̂ over the element boundary Γ(e):

f (e)
q = −hz

∫
Γ(e)

N (e) (q̂ · n) dΓ (A.6)

The global conductivity matrix Kt and heat load vector fq are assembled
from their element-level counterparts. The temperature field is then found by
solving the global linear system:

Kt θ = fq (A.7)

A.2 Static equilibrium

Although no structural loads are applied directly to the simulated PFCs,
stresses develop in the body due to non-uniform thermal expansion. These
stresses are calculated using the displacements that result from the applied
heat load. The system of partial differential equations for static equilibrium
takes the form

divσ + b̂ = 0 (A.8)

Prescribed body loads b̂ are not relevant for the simulations in this work.
Treatment of this system is simplest when using matrix/vector notation for
the elements of the equation. Thus, the elasticity tensor with components
Eijkl is represented by the symmetric matrix C. Differentiation is performed
with the matrix operator D, with the form

DT =

 ∂
∂x1

0 ∂
∂x2

0 ∂
∂x2

∂
∂x1

 (A.9)
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in two dimensions and

DT =


∂
∂x1

0 0 0 ∂
∂x3

∂
∂x2

0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x1

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

 (A.10)

in three dimensions. Stress in the body is proportional to the mechanical strain
εm. This strain is found by removing the contribution of thermal expansion
εt from the displacement-derived actual strain ε. Stress is calculated as

σ = C(ε− εt) = C (Du− εt) (A.11)

The form of the thermal strain εt depends on whether the temperature-dependence
of thermal expansion is considered. Assuming no temperature dependence, the
thermal strain is simply

εt = α (T − T0) (A.12)

where α is the thermal expansion tensor in vector form. For a 2D, orthotropic
material model, α is

α =
[
α1 α2 0

]T
(A.13)

The reference temperature T0 is an assumed strain-free temperature. When
thermal expansion varies with temperature, values are generally tabulated as
the mean thermal expansion from a common reference (e.g. 20◦C). In this case,
thermal expansion between two arbitrary temperatures must be calculated
with a simulated intermediate step to the common reference:

εt = αT (T − 20◦C)−αT0 (T0 − 20◦C) (A.14)

The displacements u are discretized within a 2D element as

u =

u
v

 =

N (e)T 0

0 N (e)T





du1

· · ·

dunn

dv1

· · ·

dvnn


= N (e)d(e) (A.15)

This representation can be easily expanded to three dimensions. After dis-
cretizing displacement and temperature, the stress field within an element
becomes
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σ(e) = C(e)
(
B(e)d(e) −α(e)N (e)T ∆θ(e)

)
(A.16)

assuming constant thermal expansion. The ”strain-displacement” matrix B(e)

relates an element’s nodal displacements to the resulting strain field within the
element.

B(e) = DN (e) (A.17)

Conversion of the equations of static equilibrium (A.8) to a linear system is
performed in a manner analogous to the thermal system, with the element
stiffness matrices

K(e)
s = hz

∫
Ω(e)

B(e)T C(e) B(e) dΩ (A.18)

and load vectors

f (e) = hz

∫
Ω(e)

B(e)T C(e) εt dΩ (A.19)

The assembled global system (A.20) is then solved.

Ksd = f (A.20)

With constant thermal expansion, the thermal strain in (A.19) can be ex-
panded and, by removing the discrete temperatures, the integral can be en-
capsulated into a matrix that maps nodal temperatures to the load vector:

f (e) =

(
hz

∫
Ω(e)

B(e)T C(e)α(e)N (e)T dΩ

)
∆θ(e) = T (e) ∆θ(e) (A.21)
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