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Abstract. In this work, we investigate a model-order reduction scheme for polynomial systems.
We begin with defining the generalized multivariate transfer functions for the system. Based on
this, we aim at constructing a reduced-order system, interpolating the defined generalized transfer
functions at a given set of interpolation points. Furthermore, we provide a method, inspired by the
Loewner approach for linear and (quadratic-)bilinear systems, to determine a good-quality reduced-
order system in an automatic way. We also discuss the computational issues related to the proposed
method and a potential application of a CUR matrix approximation in order to further speed up
simulation of the reduced-order systems. We test the efficiency of the proposed method via two
benchmark examples.
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1. Introduction. Model-order reduction (MOR) is a technique that enables
the construction of low-dimensional or reduced-order systems of large-scale dynami-
cal systems. This is achieved by projecting the high-dimensional state vector into a
low-dimensional subspace. The obtained reduced-order systems are computationally
cheaper and efficient, yet still accurate. Hence, we can replace large-scale dynamical
systems by reduced-order systems while performing engineering studies such as opti-
mization, control design, and uncertainty quantification. We refer to [12, 16, 44] for
overviews of popular MOR techniques. In this paper, we focus on a class of nonlinear
systems, namely polynomial systems of the form

(1.1)
E \.x(t) = Ax(t) +

d\sum 
\xi =2

H\xi x
\xi (t) +

d\sum 
\eta =1

N\eta (u(t)\otimes x\eta (t)) +Bu(t), x(0) = 0,

y(t) = Cx(t),

where E,A \in \BbbR n\times n, B \in \BbbR n\times m, C \in \BbbR q\times n, H\xi \in \BbbR n\times n\xi 

, \xi \in \{ 2, . . . , d\} , N\eta \in 
\BbbR n\times m\cdot n\eta 

, \eta \in \{ 1, . . . , d\} ; the state, input and output vectors are denoted by x(t) \in \BbbR n,
u(t) \in \BbbR m and y(t) \in \BbbR q, respectively; x \xi := x\otimes \cdot \cdot \cdot \otimes x, e.g., x 3 = x \otimes x \otimes x.
Furthermore, we assume that the matrix pencil (A,E) is stable and all the eigenvalues
of the pencil are finite. The system (1.1) has polynomial terms of degree up to d; thus,
we refer to it as a dth degree polynomial system. The trajectories of the system (1.1) lie
in the n-dimensional Euclidean space and we are interested in the situations in which
n is large, say n \in \scrO 

\bigl( 
105  - 106

\bigr) 
, so that a significant amount of computer time will
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INTERPOLATION-BASED MOR FOR POLYNOMIAL SYSTEMS A85

be needed to simulate (1.1) for varying input signals, like in a control, design, or
optimization context. We seek to construct a reduced-order system of order r \ll n
that not only preserves the polynomial structure but also the output of it is as close
as possible to the output of the system (1.1) in an appropriate norm.

Most of the widely used MOR techniques to construct reduced-order systems for
nonlinear systems are based on snapshots. This means that the state vector x(t) needs
to be evaluated for a given input. In this category, proper orthogonal decomposition is
arguably the most favored method. The method relies on determining the dominant
subspace for the state vectors through singular value decomposition (SVD) of the
collected snapshots, which is generally followed by computing a reduced-order system
via Galerkin projection. For more details, we refer to [29]. For nonlinear systems,
it is often combined with hyperreduction methods to further reduce computational
costs related to the reduced nonlinear terms; see, e.g., [10, 11, 22, 21, 41, 42]. Another
widely known method in this category is the trajectory piecewise linear method, in
which a nonlinear system is approximated by a weighted sum of linearized systems
(linearized along the trajectory). Then, each linear system is reduced using popular
methods for linear systems such as balanced truncation or iterative methods; see,
e.g., [5, 16, 20, 30]. Moreover, reduced basis methods, which are also snapshot-based,
have been successfully applied to several nonlinear systems; see, e.g., [43]. Although
these methods have been very successful, they share a common drawback of being
dependent on snapshots. In other words, the resulting reduced-order systems depend
on the trajectories given for predefined inputs. As a result, it is difficult to use these
reduced-order systems, e.g., in feedback-control applications, where input variations
are not a priori known.

In this work, we focus on MOR methods that allow us to determine reduced-order
systems without any prior knowledge of inputs. There are basically two types of
such methods, namely, interpolation-based and balancing-related approaches; see [12]
for this categorization. Recently, there have been significant efforts to extend these
methods from linear to special classes of polynomial systems, namely, bilinear and
quadratic-bilinear systems; see, e.g., [7, 14, 15, 18, 19, 25, 27, 34]. In this paper,
we investigate an interpolation-based MOR scheme to obtain a reduced-order system
for the system (1.1). For this, we first define generalized transfer functions for the
system (1.1). Based on this, we aim at constructing a reduced-order system such
that its generalized transfer functions interpolate those of the original system at a
given set of interpolation points. Furthermore, we propose a scheme, inspired by the
Loewner approach for linear and (quadratic-)bilinear systems [7, 27], thus leading
to an algorithm that allows us to construct a good quality reduced-order system in
an automatic way. Furthermore, we discuss related computational aspects and an
application of a pseudoskeletal matrix approximation, the so-called CUR factoriza-
tion, to further reduce the computational complexity related to the reduced nonlinear
terms.

The remaining structure of the paper is as follows. In the following section, we
briefly recap interpolatory MOR for linear systems, polynomialization of nonlinear
systems, and some basic concepts from tensor algebra. In section 3, we present the
generalized transfer functions corresponding to (1.1) and discuss the construction of
an interpolating reduced-order system using Petrov--Galerkin projection. Based on
this, we propose an algorithm that allows us to determine a good quality reduced-
order system in an automatic way. In section 4, we discuss the related computational
aspects and investigate an application of CUR matrix approximation to further reduce
the complexity of the reduced nonlinear terms. In section 5, we illustrate the efficiency
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A86 PETER BENNER AND PAWAN GOYAL

of the proposed algorithms by means of two benchmark problems. We conclude the
paper with a summary of our contributions and future perspectives.

We make use of the following notation in the paper:
\bullet orth() returns an orthonormal basis of a given set of vectors.
\bullet The Hadamard and Kronecker products are denoted by ``\circ "" and ``\otimes ,"" respec-
tively.

\bullet Using MATLAB notation, A(:, 1 :r) denotes the first r columns of the matrix
A, and A(i, j) is the (i, j)th element of the matrix A.

\bullet Im is the identity matrix of size m\times m.
\bullet \scrV \xi is a shorthand notation for

\scrV \otimes \cdot \cdot \cdot \otimes \scrV \underbrace{}  \underbrace{}  
\xi  - times

,

where \scrV is a vector/matrix.

2. Background work. In this section, we briefly recap the basic concepts that
build a foundation for the rest of the paper. In subsection 2.1, we present an inter-
polatory MOR scheme for linear systems that we will later on extend to polynomial
systems. In subsection 2.2, we discuss the polynomialization of nonlinear systems. In
subsection 2.3, we outline a few important concepts from tensor algebra.

2.1. Interpolatory MOR for linear systems. We consider linear time-invariant
(LTI) systems of the form

(2.1)
E \.x(t) = Ax(t) +Bu(t), x(0) = 0,

y(t) = Cx(t),

where x(t) \in \BbbR n, u(t) \in \BbbR m, and y(t) \in \BbbR q, and the systems matrices are of ap-
propriate sizes. Furthermore, we assume that the matrix E is invertible. Moreover,
the system (2.1) is referred to as a single-input single-output (SISO) system when
q = m = 1; otherwise, it is referred to as a multiinput multioutput system (MIMO).
It is known that the analytical solution of the system (2.1) can be given as

(2.2) y(t) =

\int t

0

Ce\bfE 
 - 1\bfA \sigma E - 1Bu(t - \sigma )d\sigma ,

where h(\sigma ) := Ce\bfE 
 - 1\bfA \sigma E - 1B, that can also be seen as the convolution kernel, map-

ping the input to the output. The Laplace transform of the kernel yields

(2.3) H(s) := C(sE - A) - 1B,

where s = 2\pi {\j}f in which {\j} =
\surd 
 - 1 and f is the frequency. The function H(s) is also

known as the transfer function of the system (2.1). For a large-scale LTI system, we
aim at constructing a reduced-order system of order r:

(2.4)
\widehat E \.\widehat x(t) = \widehat A\widehat x(t) + \widehat Bu(t), \widehat x(0) = 0,\widehat y(t) = \widehat C\widehat x(t),

where \widehat x(t) \in \BbbR r, \widehat y(t) \in \BbbR q, and all other matrices are of the appropriate sizes. Let

us denote the transfer function of (2.4) by \widehat H(s). We seek to construct a reduced-
order system such that its transfer function interpolates that of the original one at
predefined frequency points. This problem is very well studied in the literature; see,
e.g., [6, 9, 24, 28, 48]. We briefly outline one main result in the following theorem.
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INTERPOLATION-BASED MOR FOR POLYNOMIAL SYSTEMS A87

Theorem 2.1. Consider a SISO LTI system (2.1) of order n. Let \sigma i, \mu i, i \in 
\{ 1, . . . , r\} be interpolation points such that sE  - A is invertible at s \in \{ \sigma i, \mu i\} , i \in 
\{ 1, . . . , r\} . Furthermore, let the projection matrices V and W be as follows:

V = range
\bigl( 
(\sigma 1E - A) - 1B, . . . , (\sigma rE - A) - 1B

\bigr) 
,(2.5a)

W = range
\bigl( 
(\mu 1E - A) - TCT , . . . , (\mu rE - A) - TCT

\bigr) 
.(2.5b)

Assume that V and W are full column rank matrices. If a reduced-order system of
order r is constructed as

\widehat E = WTEV, \widehat A = WTAV, \widehat B = WTB, \widehat C = CV,

then

(2.6) H(s) = \widehat H(s), s \in \{ \sigma i, \mu i\} , i \in \{ 1, . . . , r\} ,

provided \sigma i, \mu i, i \in \{ 1, . . . , r\} are not in the spectrum of the matrix pencil (\widehat A, \widehat E).
Moreover, if \sigma i = \mu i, then the following are also fulfilled:

(2.7)
d

ds
H(s) =

d

ds
\widehat H(s), s \in \{ \sigma 1, . . . , \sigma r\} .

In the above theorem, we have discussed interpolation of SISO systems. In the MIMO
case, the idea of tangential interpolation is often employed; see, e.g., [26, 40]. In this
case, we seek to determine a reduced-order system that tangentially interpolates the
original system, i.e.,

H(\sigma i)\widetilde bi = \widehat H(\sigma i)\widetilde bi, i \in \{ 1, . . . , r\} ,(2.8a) \widetilde cTi H(\mu i) = \widetilde cTi \widehat H(\mu i), i \in \{ 1, . . . , r\} ,(2.8b)

where \widetilde bi and \widetilde ci are appropriately chosen directions in \BbbR m and \BbbR q, respectively. The
goal (2.8) can be achieved when we determine the projection matrices V and W as
follows:

V = range
\Bigl( 
(\sigma 1E - A) - 1B\widetilde b1, . . . , (\sigma rE - A) - 1B\widetilde br

\Bigr) 
,(2.9a)

W = range
\bigl( 
(\mu 1E - A) - TCT\widetilde c1, . . . , (\mu rE - A) - TCT\widetilde cr\bigr) .(2.9b)

Next, the choice of interpolation points plays an important role in ensuring a
good quality of the reduced-order systems. There has been intensive research in
this direction; see, e.g., [30, 47, 50]. Moreover, it has been shown in [4, 13] that if we
consider enough interpolation points and construct the matrices V and W as in (2.9),
then the matrices WTEV and WTAV encode the complexity of the linear system.
In other words, the rank of the matrix [WTEV,WTAV] indicates the minimal order
of an underlying linear system that exactly represents the dynamics. Moreover, it
also provides subspaces that are the most important for the input-output mapping of
the linear systems. We refer to [4, 13] for a detailed discussion on this aspect.

2.2. Polynomialization of nonlinear systems. A class of nonlinear systems,
containing nonlinear terms such as exponential, trigonometric, or rational functions,
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A88 PETER BENNER AND PAWAN GOYAL

can be rewritten as a polynomial system (1.1) by introducing some auxiliary vari-
ables. This process is very closely related to the McCormick relaxation used in non-
convex optimization [39]. Recently, due to advances in the methodologies for MOR
for quadratic-bilinear (QB) systems, there has been a substantial focus on rewriting
a nonlinear system into the QB form. However, in this subsection, we illustrate with
an example of how a polynomialization of a nonlinear system is done by introducing
fewer auxiliary variables as compared to its quadratic-bilinearization.

An illustrative example. Let us consider the following one-dimensional non-
linear ODE:

\.x(t) =  - x(t) - x3(t) \cdot e - x(t) + u(t),(2.10a)

y(t) = x(t).(2.10b)

Now, we seek to rewrite the system (2.10) as a polynomial system via polynomial-
ization. For this, we introduce an auxiliary variable z(t) := e - x(t) and derive the
corresponding differential equation. That is

\.z(t) =  - e - x(t) \.x(t) =  - z(t)
\bigl( 
 - x(t) - x3(t)z(t) + u(t)

\bigr) 
.

Thus, we can equivalently write the input-output system (2.10) as follows:\biggl[ 
\.x(t)
\.z(t)

\biggr] 
=

\biggl[ 
 - x(t)
0

\biggr] 
+

\biggl[ 
0

x(t)z(t)

\biggr] 
 - 
\biggl[ 
x3(t)z(t)

0

\biggr] 
+

\biggl[ 
0

x3(t)z2(t)

\biggr] 
 - 

\biggl[ 
0

z(t)

\biggr] 
u(t) +

\biggl[ 
u(t)
0

\biggr] 
,

y(t) =
\bigl[ 
1 0

\bigr] \biggl[ x(t)
z(t)

\biggr] 
.

The nonlinear system (2.10) can be written into a polynomial system (1.1) of degree
5 by introducing a single variable. Furthermore, if one aims at rewriting the system
into the QB form, then we need to introduce at least 3 more auxiliary variables. Thus,
the nonlinear system (2.10) of order 1 can be written into the QB form of order 5.

We believe that it is not straightforward to conclude whether working with low-
order systems of a higher polynomial degree is easier than higher-order systems of a
lower polynomial degree. However, we have experienced in our numerical simulation
that introducing more auxiliary variables leads to numerical difficulties, e.g., the re-
sulting system becomes stiffer as we increase the number of auxiliary variables. Thus,
the goal of the work is to establish a MOR technique to construct reduced-order sys-
tems for polynomial systems of any degree that preserve the polynomial structure.
Moreover, there are several applications in science and engineering where governing
equations inherently have polynomial terms and by the goal of our method, we would
be able to keep the same polynomial structure in reduced-order systems.

2.3. Tensor algebra. In this subsection, we recall important results from ten-
sor algebra. Tensor algebra presents an effective tool to simplify algebra involving
Kronecker (tensor) products. A tensor is a multidimensional or an N -way array. An
Nth-order tensor \bfscrX \in \BbbR n1\times \cdot \cdot \cdot \times nN is an N -dimensional array with entries xi1,...,iN

\in \BbbR , where ij \in \{ 1, . . . , nj\} , j \in \{ 1, . . . , N\} . An important tool in tensor calculus is
matricization. This allows us to unfold a tensor into a matrix, which plays a crucial
role in tensor computations. For an Nth-order tensor, there are N different ways to
unfold as a matrix. In the following, we define mode-m matricization of a tensor \bfscrX .
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INTERPOLATION-BASED MOR FOR POLYNOMIAL SYSTEMS A89

Definition 2.2 (e.g., [33]). The mode-m matricization of a tensor \bfscrX \in \BbbR n1\times \cdot \cdot \cdot \times nN ,
denoted by X(m), satisfies the following mapping:

X(m)(im, j) = \bfscrX i1,...,iN ,

where j = 1 +
\sum N

k=1,k \not =m(ik  - 1)Jk with Jk =
\prod k - 1

z=1,z \not =m nz and im \in \{ 1, . . . , nm\} .
Like matrix-vector and matrix-matrix products, tensor-tensor, tensor-matrix, and

tensor-vector products can be defined. Of a particular interest of the paper, we discuss
the m-mode (matrix) product of an Nth-order tensor \bfscrX \in \BbbR n1\times \cdot \cdot \cdot \times nN and a matrix
U \in \BbbR J\times nm . Such a product, denoted by \bfscrX \times m U, yields also an Nth-order tensor,
denoted by \bfscrY , of size n1\times \cdot \cdot \cdot nm - 1\times J\times nm+1\times \cdot \cdot \cdot \times nN . Following [33], the elements
of the tensor \bfscrY can be given as

(2.11) \bfscrY i1...im - 1jim+1...iN =

nm\sum 
im=1

xi1i2...iNUjim .

The tensor \bfscrY can be interpreted in terms of the product of an unfolded tensor and a
matrix. The tensor \bfscrY is such that its mode-m is given by Y(m) = UX(m). General-
izing this, let us now consider the following tensor-matrix product:

\bfscrY = \bfscrX \times 1 A
(1) \times 2 A

(2) \cdot \cdot \cdot \times N A(N),

where A(l) \in \BbbR Jl\times nl and \bfscrY \in \BbbR J1\times \cdot \cdot \cdot \times JN . Then, we have the following relations
between unfolded tensors and Kronecker products:
(2.12)

Y(m) = A(m)X(m)

\Bigl( 
A(N) \otimes \cdot \cdot \cdot \otimes A(m+1) \otimes A(m - 1) \otimes A(1)

\Bigr) T

, m \in \{ 1, . . . , N\} .

Remark 2.3. If A(k), k \in \{ 1, . . . , nN\} are columns vectors, then the product

\bfscrX \times 1 A
(1) \times 2 A

(2) \cdot \cdot \cdot \times N A(N)

would be just a scaler. Consequently, we also have\Bigl( 
A(1)

\Bigr) T

\bfitX (1)

\Bigl( 
A(N) \otimes \cdot \cdot \cdot \otimes A(2)

\Bigr) T

=
\Bigl( 
A(2)

\Bigr) T

\bfitX (2)

\Bigl( 
A(N) \otimes \cdot \cdot \cdot \otimes A(3) \otimes A(1)

\Bigr) T

= \cdot \cdot \cdot 

=
\Bigl( 
A(N)

\Bigr) T

\bfitX (N)

\Bigl( 
A(N - 1) \otimes \cdot \cdot \cdot \otimes A(1)

\Bigr) T

.

For further details on these concepts, we strongly recommend [33] to readers.

3. Construction of interpolating reduced-order systems. In this section,
we present the construction of interpolating reduced-order systems for the systems
(1.1). We begin with defining the generalized transfer functions and discuss construc-
tion of interpolatory reduced-order systems.

3.1. Generalized transfer functions and reduced-order modeling. Let us
begin by considering SISO polynomial systems (1.1) and, without loss of generality,
assume E = In. As a first step towards developing a MOR scheme for the system, we
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A90 PETER BENNER AND PAWAN GOYAL

aim at defining the generalized multivariate transfer functions. Following the steps
as shown in [19] for QB systems, we write the Volterra series corresponding to the
system (1.1) as follows:

(3.1) x(t) =

\int t

0

e\bfA \sigma 1Bu(t\sigma 1
)d\sigma 1 +

d\sum 
\xi =2

\int t

0

e\bfA \sigma 1H\xi x
\xi (t\sigma 1

)d\sigma 1

+

d\sum 
\eta =1

e\bfA \sigma 1

\int t

0

N\eta u(t\sigma 1
) x\eta (t\sigma 1

) d\sigma 1,

where t\sigma 1 := t - \sigma 1. Using (3.1), we obtain the expression for x(t\sigma 1) as

(3.2) x(t\sigma 1) =

\int t\sigma 1

0

e\bfA \sigma 2Bu(t\sigma 1 - \sigma 2)d\sigma 2 +

d\sum 
\xi =2

\int t\sigma 1

0

e\bfA \sigma 2H\xi x
\xi (t\sigma 1

 - \sigma 2)d\sigma 2

+

d\sum 
\eta =1

\int t\sigma 1

0

e\bfA t\sigma 2N\eta u(t\sigma 1
 - \sigma 2) x

\eta (t\sigma 1
 - \sigma 2) d\sigma 2.

Substituting the expression in (3.2) for x(t\sigma 1) in (3.1) and multiplying by C yields

y(t) =

\int t

0

Ce\bfA \sigma 1Bu(t\sigma 1
)d\sigma 1

+

d\sum 
\xi =2

\int t

0

\int t\sigma 1

0

\cdot \cdot \cdot 
\int t\sigma 1

0\underbrace{}  \underbrace{}  
\xi  - times

Ce\bfA \sigma 1H\xi 

\bigl( 
e\bfA \sigma 2B\otimes \cdot \cdot \cdot \otimes e\bfA \sigma \xi +1B

\bigr) 
d\sigma 1d\sigma 2 \cdot \cdot \cdot d\sigma \xi +1

+

d\sum 
\eta =1

\int t

0

\int t\sigma 1

0

\cdot \cdot \cdot 
\int t\sigma 1

0\underbrace{}  \underbrace{}  
\eta  - times

Ce\bfA \sigma 1N\eta 

\bigl( 
e\bfA \sigma 2B\otimes \cdot \cdot \cdot \otimes e\bfA \sigma \eta +1B

\bigr) 
\times (u(t\sigma 1

)u(t\sigma 1
 - \sigma 2) \cdot \cdot \cdot u(t\sigma 1

 - \sigma \eta +1)) d\sigma 1d\sigma 2 \cdot \cdot \cdot d\sigma \eta +1 + \cdot \cdot \cdot .

The Volterra series, corresponding to the system (1.1), becomes cumbersome and
contains infinitely many terms. Thus, in this paper, we restrict ourselves only to the
leading kernels of the series, which are as follows:

fL(t1) := Ce\bfA t1B,(3.3a)

f
(\xi )
H (t1, . . . , t\xi +1) := Ce\bfA t1H\xi 

\bigl( 
e\bfA t2B\otimes \cdot \cdot \cdot \otimes e\bfA t\xi +1B

\bigr) 
,(3.3b)

f
(\eta )
N (t1, . . . , t\eta +1) := Ce\bfA t1N\eta 

\bigl( 
e\bfA t2B\otimes \cdot \cdot \cdot \otimes e\bfA t\eta +1B

\bigr) 
,(3.3c)

where \xi \in \{ 2, . . . , d\} and \eta \in \{ 1, . . . , d\} . Furthermore, taking the multivariate Laplace
transform (see, e.g., [45]) of the above kernels, we get the frequency-domain represen-
tations of the kernels as follows:

FL(s1) := \scrL (fL) = C\Phi (s1)B,(3.4a)

F
(\xi )
H (s1, . . . , s\xi +1) := \scrL (f (\xi )

H ) = C\Phi (s\xi +1)H\xi (\Phi (s\xi )B\otimes \cdot \cdot \cdot \otimes \Phi (s1)B) ,(3.4b)

F
(\eta )
N (s1, . . . , s\eta +1) := \scrL (f (\eta )

N ) = C\Phi (s\eta +1)N\eta (\Phi (s\eta )B\otimes \cdot \cdot \cdot \otimes \Phi (s1)B) ,(3.4c)
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INTERPOLATION-BASED MOR FOR POLYNOMIAL SYSTEMS A91

where \Phi (s) = (sIn - A) - 1 is the so-called state transition matrix, and \scrL (\cdot ) denotes
the multivariate Laplace transform.

Thus far, we have assumed that the mass matrix in front of \.x(t) in (1.1) is E = In;
however, one can also perform the above algebra to derive the multivariate transfer
function for E \not = In. In this case, we can also obtain the multivariate transfer functions
as in (3.4), where the matrix \Phi (s) will be (sE - A) - 1 instead of (sIn - A) - 1. In the
rest of the paper, we consider the generalized case with E being any invertible matrix.
We aim at constructing reduced-order systems, having a similar structure to (1.1), as
follows:

(3.5)
\widehat E \.\widehat x(t) = \widehat A\widehat x(t) + d\sum 

\xi =2

\widehat H\xi \widehat x \xi (t) +

d\sum 
\eta =1

\widehat N\eta (u(t)\otimes \widehat x\eta (t)) + \widehat Bu(t), \widehat x(0) = 0,

\widehat y(t) = \widehat C\widehat x(t),
where \widehat x(t) \in \BbbR r, u(t) \in \BbbR , and \widehat y(t) \in \BbbR are reduced state, input, and output vectors,
respectively, with r \ll n, and all other matrices are of appropriate sizes. To that end,
our goal is to construct reduced-order systems (3.5) using Petrov--Galerkin projection
such that the multivariate transfer functions, as given in (3.4), of the original system
match with those of the reduced-order system at a given set of interpolation points.
For this, we require projection matrices V \in \BbbR n\times r and W \in \BbbR n\times r, thus leading to
the system matrices of (3.5) as follows:

(3.6)
\widehat E = WTAV, \widehat A = WTAV, \widehat H\xi = WTH\xi V

\xi , \xi \in \{ 2, . . . , d\} ,\widehat B = WTB, \widehat C = CV, \widehat N\eta = WTN\eta V
\eta , \eta \in \{ 1, . . . , d\} ,

with x(t) \approx V\widehat x(t). The choice of the matrices V and W must ensure the desired
interpolating properties of the original and reduced-order systems, and the quality of
the reduced-order system. Thus, in the following theorem, we reveal the construction
of the projection matrices V and W, yielding an interpolating reduced-order system.

Theorem 3.1. Consider a SISO system as given in (1.1). Let \sigma i and \mu i, i \in 
\{ 1, . . . , \widetilde r\} , be interpolation points such that (sE - A) is invertible for all s = \{ \sigma i, \mu i\} ,
i \in \{ 1, . . . , \widetilde r\} . Moreover, let the projection matrices V and W be as follows:

VL = range (\Phi (\sigma 1)B, . . . ,\Phi (\sigma \widetilde r)B) ,(3.7a)

VN =
d\bigcup 

\eta =1

\widetilde r\bigcup 
i=1

range (\Phi (\sigma i)N\eta (\Phi (\sigma i)B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)B)) ,(3.7b)

VH =

d\bigcup 
\xi =2

\widetilde r\bigcup 
i=1

range (\Phi (\sigma i)H\xi (\Phi (\sigma i)B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)B)) ,(3.7c)

WL = range
\bigl( 
\Phi (\mu 1)

TCT , . . . ,\Phi (\mu \widetilde r)TCT
\bigr) 
,(3.7d)

WN =

d\bigcup 
\eta =1

\widetilde r\bigcup 
i=1

range
\bigl( 
\Phi (\sigma i)

T (N\eta )(2) (\Phi (\sigma i)B

\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)B\otimes \Phi (\mu i)
TCT

\bigr) \bigr) 
,(3.7e)

WH =

d\bigcup 
\xi =2

\widetilde r\bigcup 
i=1

range
\Bigl( 
\Phi (\sigma i)

T (H\xi )(2)
\bigl( 
\Phi (\sigma i)B\otimes \cdot \cdot \cdot \otimes \Phi (\mu i)

TCT
\bigr) \Bigr) 

,(3.7f)
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A92 PETER BENNER AND PAWAN GOYAL

V = range (VL,VN ,VH) ,(3.7g)

W = range (WL,WN ,WH) ,(3.7h)

where \Phi (s) := (sE - A) - 1, and (H\xi )(2) \in \BbbR n\times n\xi 

and (N\eta )(2) \in \BbbR n\times m\cdot n\xi 

are, respec-

tively, the mode-2 matricizations of the (\xi +1)-way tensor \bfscrH \xi \in \BbbR n\times \cdot \cdot \cdot \times n and (\eta +2)-
way tensor \bfscrN \eta \in \BbbR n\times \cdot \cdot \cdot \times n whose mode-1 matricizations are H\xi and N\eta , respectively.
Assume V \in \BbbR n\times r and W \in \BbbR n\times r are of full column rank, where r = \widetilde r+d\widetilde r+(d - 1)\widetilde r.
If a reduced-order system of order r is computed as shown in (3.6) using the matrices
V and W, then the reduced-order system satisfies the following interpolation condi-
tions:

FL(\sigma i) = \widehat FL(\sigma i),(3.8a)

FL(\mu i) = \widehat FL(\mu i),(3.8b)

F
(\eta )
N (\sigma i, . . . , \sigma i) = \widehat F(\eta )

N (\sigma i, . . . , \sigma i),(3.8c)

F
(\eta )
N (\sigma i, . . . , \sigma i, \mu i) = \widehat F(\eta )

N (\sigma i, . . . , \sigma i, \mu i),(3.8d)

F
(\xi )
H (\sigma i, . . . , \sigma i) = \widehat F(\xi )

H (\sigma i, . . . , \sigma i),(3.8e)

F
(\xi )
H (\sigma i, . . . , \sigma i, \mu i) = \widehat F(\xi )

H (\sigma i, . . . , \sigma i, \mu i),(3.8f)

provided none of the interpolation points is the eigenvalue of the matrix pencil (\widehat A, \widehat E).

Proof. The relations, given in (3.8a) and (3.8b) directly follow from the linear
case; see, e.g., [5]. Therefore, we omit their proofs for the sake of brevity of the paper.
However, for the rest of the proof, we note down intermediate results from, e.g., [5],
which yield, while proving (3.8a) and (3.8b),

V\widehat \Phi (\sigma i)\widehat B = \Phi (\sigma i)B, i \in \{ 1, . . . , \widetilde r\} ,(3.9a)

W\widehat \Phi (\mu i)
T \widehat C = \Phi (\mu i)

TCT , i \in \{ 1, . . . , \widetilde r\} ,(3.9b)

where \Phi (s) = (sE - A) - 1 and \widehat \Phi (s) = (s\widehat E - \widehat A) - 1 \widehat B. Now, we focus on the relation
(3.8c). We begin with

V\widehat \Phi (\sigma i) \widehat N\eta 

\Bigl( \widehat \Phi (\sigma i)\widehat B\otimes \cdot \cdot \cdot \otimes \widehat \Phi (\sigma i)\widehat B\Bigr) 
= V\widehat \Phi (\sigma i)W

TN\eta V
\eta 

\Bigl( \widehat \Phi (\sigma i)\widehat B\otimes \cdot \cdot \cdot \otimes \widehat \Phi (\sigma i)\widehat B\Bigr) \Bigl( 
using \widehat N\eta = WTN\eta V

\eta 

\Bigr) 
= V\widehat \Phi (\sigma i)W

TN\eta 

\Bigl( 
V\widehat \Phi (\sigma i)\widehat B\otimes \cdot \cdot \cdot \otimes V\widehat \Phi (\sigma i)\widehat B\Bigr) 

(using (3.9a))

= V\widehat \Phi (\sigma i)W
TN\eta (\Phi (\sigma i)B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)B)

= V\widehat \Phi (\sigma i)W
T\Phi (\sigma i)

 - 1 \Phi (\sigma i)N\eta (\Phi (\sigma i)B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)B)\underbrace{}  \underbrace{}  
\in \bfV \bigl( 
introduction of In = \Phi (\sigma i)

 - 1\Phi (\sigma i)
\bigr) 

= V\widehat \Phi (\sigma i)W
T\Phi (\sigma i)

 - 1Vz,

(3.10)

where the vector z is such that Vz = \Phi (\sigma i)N\eta (\Phi (\sigma i)B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)B). Addition-
ally, we have\widehat \Phi (s)WT\Phi (s) - 1V = (s\widehat E - \widehat A) - 1WT (sE - A)V

= (s\widehat E - \widehat A) - 1(sWTEV  - WTAV) = Ir.
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Substituting the above relation into (3.10) and premultiplying with C yields the rela-
tion (3.8c). Similarly, we can prove the relation (3.8e). Next, we focus on the relation
(3.8d). We know that

\widehat N\eta = WTN\eta V \eta .

Hence, using (2.12), we obtain

(3.11)
\Bigl( \widehat N\eta 

\Bigr) 
(2)

= VT (N\eta )(2)

\biggl( 
V

\eta  - 1

\otimes W

\biggr) 
,

where ( \widehat N\eta )(2) is the mode-2 matricization of the tensor \widehat \bfscrN \eta whose mode-1 matriciza-

tion is \widehat N\eta . With the relation (3.11), we now consider

W\widehat \Phi (\sigma i)
T
\Bigl( \widehat N\eta 

\Bigr) 
(2)

\Bigl( \widehat \Phi (\sigma i)\widehat B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)\widehat B\otimes \widehat \Phi (\mu i)
T \widehat CT

\Bigr) 
= W\widehat \Phi (\sigma i)

TVT (N\eta )(2)

\biggl( 
V

\eta  - 1

\otimes W

\biggr) \Bigl( \widehat \Phi (\sigma i)\widehat B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)\widehat B\otimes \widehat \Phi (\mu i)
T \widehat CT

\Bigr) 
(using (3.11))

= W\widehat \Phi (\sigma i)
TVT (N\eta )(2)

\Bigl( 
V \widehat \Phi (\sigma i)\widehat B\otimes \cdot \cdot \cdot \otimes V \widehat \Phi (\sigma i)\widehat B\otimes W \widehat \Phi (\mu i)

T \widehat CT
\Bigr) 

= W\widehat \Phi (\sigma i)
TVT (N\eta )(2)

\bigl( 
\Phi (\sigma i)B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)B\otimes \Phi (\mu i)

TCT
\bigr) 

(using (3.9))

= W\widehat \Phi (\sigma i)
TVT\Phi (\sigma i)

 - T

\times \Phi (\sigma i)
T (N\eta )(2)

\bigl( 
\Phi (\sigma i)B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)B\otimes \Phi (\mu i)

TCT
\bigr) \underbrace{}  \underbrace{}  

\in \bfW ( =:\bfW \bfq )

= W\widehat \Phi (\sigma i)
TVT\Phi (\sigma i)

 - TWq = Wq

= \Phi (\sigma i)
T (N\eta )(2)

\bigl( 
\Phi (\sigma i)B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)B\otimes \Phi (\mu i)

TCT
\bigr) 
.

Next, we multiply both sides by BT to get

\widehat BT \widehat \Phi (\sigma i)
T
\Bigl( \widehat N\eta 

\Bigr) 
(2)

\Bigl( \widehat \Phi (\sigma i)\widehat B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)\widehat B\otimes \widehat \Phi (\mu i)
T \widehat CT

\Bigr) 
= B\Phi (\sigma i)

T (N\eta )(2)
\bigl( 
\Phi (\sigma i)B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)B\otimes \Phi (\mu i)

TCT
\bigr) 
.

Using the matricization property of tensor-vector multiplications (see Remark 2.3),
we get

\widehat C\widehat \Phi (\mu i) \widehat N\eta 

\Bigl( \widehat \Phi (\sigma i)\widehat B\otimes \cdot \cdot \cdot \otimes \widehat \Phi (\sigma i)\widehat B\Bigr) 
= C\Phi (\mu i)N\eta (\Phi (\sigma i)B\otimes \cdot \cdot \cdot \otimes \Phi (\sigma i)B) ,

which is nothing but the relation given in (3.8d). Using similar steps, we can prove
(3.8f); thus, for the sake of brevity, we skip it. This concludes the proof.

Remark 3.2. Although we have presented the result in Theorem 3.1 for the SISO
case, it can be easily extended to the MIMO case with the help of tangential directions
as done in the case of linear systems. Precisely, in this case, \Phi (\sigma i)B and \Phi (\mu i)

TCT

in (3.7) are replaced by \Phi (\sigma i)Bbi and \Phi (\mu i)
TCT ci, where bi \in \BbbC m and ci \in \BbbC q are

the tangential directions corresponding to the interpolation points \sigma i and \mu i. As a
result, we get a reduced-order system whose generalized transfer functions tangentially
interpolate those of the original ones.
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A94 PETER BENNER AND PAWAN GOYAL

Remark 3.3. There might be some applications where the matrixA = 0.Therefore,
we mention that Theorem 3.1 is valid even if A = 0, provided the corresponding
Volterra series is convergent. If the matrix A = 0, then it can readily be seen that
the projection matrices V and W are not full column rank. In the following section,
we discuss how to handle such cases, in particular how to compress the redundant
information and construct a lower-order realization.

3.2. Connection to the Loewner approach. In recent years, Loewner-based
MOR has received a lot of attention. For linear systems, the authors in [38] have
discussed the Loewner approach to construct reduced-order systems using transfer
function data. Later on, the Loewner approach has been extended to other classes of
nonlinear systems, namely, bilinear and QB systems in [7, 27], where data related to
generalized transfer functions are required to obtain a reduced-order system.

An important ingredient in the Loewner approach is the construction of the
Loewner matrix (\BbbL ) and the shifted Loewner matrix (\BbbL s). One way to construct
the matrices \BbbL and \BbbL s is either by using an experimental setup or by using numerical
evaluations of the generalized transfer functions, which is the primary inspiration of
the method. However, there is a strong connection with interpolation of (generalized-)
transfer functions, corresponding to a given system. As a result, we, alternatively,
can construct the latter matrices by projection for a given realization of a system,
ensuring the interpolation conditions.

For an example, let us consider 4 frequency measurements H(\sigma 1),H(\sigma 2), H(\mu 1),
andH(\mu 2), whereH(s) := C(sE - A) - 1B \in \BbbC is the transfer function of a linear SISO
system with the system matrices (E,A,B,C). As shown, e.g., in [8], the matrices
\BbbL and \BbbL s, using the data points and letting \sigma \{ 1,2\} and \mu \{ 1,2\} be the right and left
interpolation points, can be constructed as follows:

(3.13) \BbbL (i, j) =
H(\mu i) - H(\sigma j)

\mu i  - \sigma j
, \BbbL s(i, j) =

\mu iH(\mu i) - \sigma jH(\sigma j)

\mu i  - \sigma j
,

where i, j \in \{ 1, 2\} . Moreover, if the matrices V and W are given as

V =
\bigl[ 
(\sigma 1E - A) - 1B, (\sigma 2E - A) - 1B

\bigr] 
,

W =
\bigl[ 
(\mu 1E - A) - TCT , (\mu 2E - A) - TCT

\bigr] 
,

then the matrices \BbbL and \BbbL s, shown in (3.13), can also be constructed as

(3.14) \BbbL =  - WTEV, \BbbL s =  - WTAV.

Analogous features can also be seen for bilinear and QB systems [7, 27]. It is
preferable to construct \BbbL and \BbbL s using the data if the data corresponding to the
transfer function can be either computed cheaply by an explicit expression or deter-
mined by an experimental setup. In this paper, we focus on the method to determine
\BbbL and \BbbL s by projection shown in (3.14), which can be of greater use when we have a
system realization.

In this paper, we assume that a realization of the polynomial system (1.1) is given
and let the projection matrices V and W be as defined in Theorem 3.1. Thus, we
have the projected matrices as follows:

\BbbL =  - WTEV, \BbbB = WTB, \BbbH \xi = WTH\xi V
\xi , \xi \in \{ 2, . . . , d\} ,

\BbbL s =  - WTAV, \BbbC = CV, \BbbN \eta = WTN\eta (Im \otimes V \eta ) , \eta \in \{ 1, . . . , d\} .

This allows us to extend the result of bilinear/QB systems [7, 27] to polynomial
systems.
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Lemma 3.4. Let (\BbbL s,\BbbL ) be a regular pencil such that none of the interpolation

points are its eigenvalues. Then, the sextuple (\widehat C, \widehat E, \widehat A, \widehat H\xi , \widehat N\eta , \widehat B) defined as\widehat E =  - \BbbL , \widehat A =  - \BbbL s, \widehat H\xi = \BbbH \xi , \widehat N\eta = \BbbN \eta , \widehat B = \BbbB ,

is a minimal realization that interpolates at given interpolation points.

Furthermore, if we consider far more interpolation points on the imaginary axis
than required to capture input-output mapping to construct the matrices V and W
then the matrix pencil (\BbbL s,\BbbL ) is singular. In this case, there exits a lower-order
realization that interpolates at given interpolation points. To obtain a lower-order
realization, we consider the SVD of the following matrices, composed of \BbbL and \BbbL s:\bigl[ 

\BbbL \BbbL s

\bigr] 
= Y1\Sigma 1X

T
1 ,(3.15) \biggl[ 

\BbbL 
\BbbL s

\biggr] 
= Y2\Sigma 2X

T
2 ,(3.16)

where the diagonal entries of \Sigma 1 and \Sigma 2 are in nonincreasing order. Based on the
first r columns of Y1 and X2, let us construct Y and X, i.e., Y := Y1(:, 1 : r) and
X := X2(:, 1 : r) that lead us to the following theorem.

Theorem 3.5. If the sextuple (\widehat C, \widehat E, \widehat A, \widehat H\xi , \widehat N\eta , \widehat B) is given by

(3.17)
\widehat E =  - YT\BbbL X, \widehat B = YT\BbbB , \widehat H\xi = YT\BbbH \xi X

\xi , \xi \in \{ 2, . . . , d\} ,\widehat A =  - YT\BbbL sX, \widehat C = \BbbC X, \widehat N\eta = YT\BbbN \eta (Im \otimes X\eta ) , \eta \in \{ 1, . . . , d\} ,

then the realization is such that it approximately interpolates at given interpolation
points. Moreover, if r is chosen such that it truncates all 0 singular values, then it
constructs an exact interpolant lower-order realization.

Note that there are essentially two steps involved in order to get the approximate
interpolant realization (3.17). In the first step, we require matrices such as \BbbL ,\BbbL s,\BbbH \xi ,
and \BbbN \eta , which are generally dense, thus becoming unmanageable. This is followed
by compressing these matrices by using X and Y. However, upon closer inspection,
we can directly determine the realization (3.17) without forming matrices such as \BbbH \xi 

and \BbbN \eta . We can determine reduced-order systems by directly projecting the original
system matrices using appropriate projection matrices. If we define the effective
projection matrices as

(3.18) Veff := VX, and Weff := WY,

then the reduced-order system can be determined in a traditional projection frame-
work of the original system (1.1) as follows:

(3.19)

\widehat E = WT
effEVeff , \widehat A = WT

effAVeff , \widehat H\xi = WeffH\xi V
\xi 

eff ,\widehat B = WT
effB, \widehat C = CVeff , \widehat N\eta = VT

effN\eta 

\Bigl( 
Im \otimes V

\eta 

eff

\Bigr) 
,

where \xi \in \{ 2, . . . , d\} and \eta \in \{ 1, . . . , d\} . We point out that it is advantageous to
determine reduced system matrices as shown in (3.19); this way, we are not required
to form large dense matrices such as \BbbH \xi and \BbbN \eta . We can compute reduced matrices
by multiplying efficiently the sparse and supersparse1 original matrices H\xi and N\eta 

1Supersparsity of a matrix is defined as a ratio of the number of nonzero distinct numbers to the
total number of nonzero elements; see, e.g., [37, p. 50].
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Algorithm 3.1 MOR for polynomial systems (Lb Ps-Algo).

Input: The system matrices E,A,H\xi ,N\eta ,B,C, and interpolation points \sigma i, \mu i

and corresponding tangential directions bi and ci, the reduced order r.
Output: The reduced system matrices \widehat E, \widehat A, \widehat H\xi , \widehat N\eta , \widehat B, \widehat C.

1: Determine V and W as shown in (3.7).
2: Define the Loewner and shifted Loewner matrices as follows:

\BbbL =  - WTEV, \BbbL s =  - WTAV.

3: Compute SVD of the matrices:

\bigl[ 
\BbbL ,\BbbL s

\bigr] 
= Y1\Sigma 1X

T
1 ,

\biggl[ 
\BbbL 
\BbbL s

\biggr] 
= Y2\Sigma 2X

T
2 .

4: Define Y := Y1(:, 1 : r) and X := X2(:, 1 : r).
5: Determine compact projection matrices:

Veff := orth (VX) and Weff := orth (WY).
6: Determine the reduced-order system as follows:\widehat E = WT

effEVeff , \widehat A = WT
effAVeff , \widehat H\xi = WeffH\xi V

\xi 

eff ,\widehat B = WT
effB, \widehat C = CVeff , \widehat N\eta = VT

effN\eta 

\Bigl( 
Im \otimes V

\eta 

eff

\Bigr) 
.

with Veff and Weff . Having all these results, we briefly sketch the steps to determine
reduced-order systems in Algorithm 3.1. However, an important computational aspect
related to tensor computations such as WeffH\xi V

\xi 

eff still remains, which is discussed
in the next section.

4. Computational aspects and application of CUR. In this section, we
investigate two important computational aspects. These are related to evaluating the
nonlinear terms of the reduced-order systems (3.19) and further approximating the
terms using a CUR matrix approximation to accelerate simulation of reduced-order
systems.

4.1. Efficient evaluation of the nonlinear terms in the reduced-order
models (ROMs). Let us begin with the computational effort related to evaluating,

e.g., \widehat H\xi := WT
effH\xi V

\xi 

eff . It can be noticed that a direct computation of the above

terms requires the computation of V
\xi 

eff . Generally, the matrix Veff is a dense matrix;

thus, the computation related toV
\xi 

eff is of complexity \scrO ((n\cdot r)\xi ), which easily becomes
an unmanageable task. For \xi = 2, the authors in [15] have proposed a method using

tensor algebra to compute \widehat H2 without explicitly forming Veff \otimes Veff . On the other
hand, the authors in [19] have aimed at exploiting the structure of the nonlinear
operators, typically arising in governing equations, thus also leading to an efficient
method to compute \widehat H2.

In this paper, we focus on the latter approach, where the explicit nonlinear oper-
ator of the governing equations is utilized to compute \widehat H\xi . Extending the discussion
in [19], in principle, we can write the term H\xi x

\xi in the system (1.1) in the Hadamard
product form as follows:

(4.1) H\xi x
\xi = \scrA 1x \circ \cdot \cdot \cdot \circ \scrA \xi x,

where \circ denotes the Hadamard product and \scrA i \in \BbbR n\times n are the constant matrices
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INTERPOLATION-BASED MOR FOR POLYNOMIAL SYSTEMS A97

depending on the nonlinear operator in the governing equation. In order to reduce
these nonlinear terms, resulting in a reduced-order system, we proceed as follows.
First, we substitute x(t) \approx Veff\widehat x(t), where x(t) \in \BbbR n and \widehat x(t) \in \BbbR r are the original
and reduced state vectors, respectively, and then multiply WT

eff from the left-hand
side, thus leading to the corresponding nonlinear term:

\widehat H\xi \widehat x \xi = WT
eff

\Bigl( \Bigl( \widehat \scrA 1\widehat x\Bigr) \circ \cdot \cdot \cdot \circ 
\Bigl( \widehat \scrA \xi \widehat x\Bigr) \Bigr) ,

where \widehat \scrA i = \scrA iVeff , i \in \{ 1, . . . , \xi \} . Next, we use the relation between the Hadamard
product and the Kronecker product, that is,

\scrP p \circ \scrQ q =

\left[   \scrP (1, :)\otimes \scrQ (1, :)
...

\scrP (n, :)\otimes \scrQ (n, :)

\right]   (p\otimes q).

Thus, we get

WT
eff

\Bigl( \Bigl( \widehat \scrA 1\widehat x\Bigr) \circ \cdot \cdot \cdot \circ 
\Bigl( \widehat \scrA \xi \widehat x\Bigr) \Bigr) = WT

eff

\left[   
\widehat \scrA 1(1, :)\otimes \cdot \cdot \cdot \otimes \widehat \scrA \xi (1, :)

...\widehat \scrA 1(n, :)\otimes \cdot \cdot \cdot \otimes \widehat \scrA \xi (n, :)

\right]   
\underbrace{}  \underbrace{}  

=: \widehat \scrA 

\widehat x \xi .(4.2)

It can be seen that WT
eff

\widehat \scrA = \widehat H\xi . Summarizing, we can perform computations related

to \widehat H\xi efficiently by utilizing the particular structure of the nonlinear terms, without

explicitly forming V
\xi 

eff . We will illustrate the procedure using a nonlinear partial
differential equation in subsection 4.3.

4.2. CUR matrix approximation and ROMs. Next, we discuss another
computational issue, due to which we may not achieve the desired reduction in the
simulation time even after reducing the original system (1.1). Explaining this issue

further, the reduced matrices such as \widehat H\xi \in \BbbR r\times r\xi are generally dense matrices which

are multiplied with \widehat x \xi . Thus, the computation \widehat H\xi \widehat x \xi is of \scrO (r2\xi +1), which increases
rapidly with the order of the reduced system or with the polynomial degree (1.1). As

a remedy, in this paper, we propose a new procedure to approximate \widehat H\xi \widehat x \xi , which
can be computed cheaply. For this, we make use of the CUR matrix approximation;
see, e.g., [36, 46, 49]. Using this, we can approximate the matrix \widehat \scrA , defined in (4.2),
as follows:

(4.3) \widehat \scrA \approx \scrC \scrU \scrR ,

where \scrC \in \BbbR n\times nc and \scrR \in \BbbR nr\times r\xi contain wisely chosen nc columns and nr rows
of the matrix \widehat \scrA , respectively, and \scrU \in \BbbR nc\times nr is determined such that it minimizes
\| \widehat \scrA  - \scrC \scrU \scrR \| in an appropriate norm. There has been significant research on how to
choose columns and rows appropriately, leading to a good, or even optimal in some
sense, approximation of the matrix. We refer the reader to [36, 46, 49] and references
therein for more details. Substituting the relation (4.3) in (4.2) results in

WT
eff

\widehat \scrA \widehat x \xi \approx WT
eff (\scrC \scrU \scrR ) \widehat x \xi .(4.4)

Next, we closely look at the term \scrR \widehat x \xi , whose columns are given as

(4.5)
\Bigl( \widehat \scrA 1(ir, :)\otimes \cdot \cdot \cdot \otimes \widehat \scrA \xi (ir, :)

\Bigr) \widehat x \xi ,
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A98 PETER BENNER AND PAWAN GOYAL

where ir belongs to the columns chosen by the CUR matrix approximation. We know
that \widehat \scrA 1(ir, :) = \scrA 1(ir, :)V. Substituting this relation and x \approx V\widehat x, we get

\widehat \scrA 1(ir, :)\otimes \cdot \cdot \cdot \otimes \widehat \scrA \xi (ir, :)\widehat x \xi 

= (\scrA 1(ir, :)\otimes \cdot \cdot \cdot \otimes \scrA \xi (ir, :))V
\xi \widehat x \xi 

\approx (\scrA 1(ir, :)\otimes \cdot \cdot \cdot \otimes \scrA \xi (ir, :))x
\xi := NLir .

Comparing the above quantity with (4.1), it can be noticed that the quantity NLir is
nothing but the computation of the corresponding nonlinearity of the original system
at a particular grid point. Furthermore, the term WT

eff\scrC \scrU \in \BbbR r\times nr can be precom-
puted. This idea is very closely related to empirical interpolation methods, which
are commonly used in reduced basis methods or proper orthogonal decomposition for
nonlinear systems to reduce the computational cost related to nonlinear terms [11, 22].
We will demonstrate the concept using an example in the following subsection.

4.3. An illustration using Chafee--Infante equation. In the following, we
illustrate the computation of the reduced nonlinear term \widehat H\xi and the usage of the
CUR decomposition with the help of the Chafee--Infante equation. At this stage, we
avoid describing the governing equations of the Chafee--Infante equation; we provide
a detailed description of it in the numerical section. However, at the moment, we just
note that it has cubic nonlinearity, i.e.,  - v3, where v is the dependent variable. Hence,
if the system is written in the form given in (1.1), we have the following nonlinear
term:

H3x
3 :=  - x \circ x \circ x.

If the above term is reduced using the projection matrices Veff and Weff as shown in
(3.19), then we obtain

WT
effH3V

3

eff\widehat x 3 = \widehat H3\widehat x 3

= WT
eff (Veff\widehat x \circ Veff\widehat x \circ Veff\widehat x)

= WT
eff

\left[   Veff(1, :)\otimes Veff(1, :)\otimes Veff(1, :)
...

Veff(n, :)\otimes Veff(n, :)\otimes Veff(n, :)

\right]   
\underbrace{}  \underbrace{}  

=:\widetilde \bfV eff

(\widehat x\otimes \widehat x\otimes \widehat x) .(4.6)

Equation (4.6) shows that instead of explicitly forming V 3

eff to determine \widehat H3, we
can compute it by a smart choice of rows and perform the Kronecker products. Fur-
thermore, as discussed earlier, the evaluation of the term \widehat H3\widehat x 3 , in general, is of
complexity \scrO (r7), which might be expensive if the order of the reduced system (r) is

rather large. Also, we stress that the term \widehat H3\widehat x 3 needs to be computed at each time
step for every simulation. To reduce the computational complexity, we aim at further
approximating \widehat H3\widehat x 3 . For this, we first apply the CUR matrix approximation to the
matrix \widetilde Veff , defined in (4.6), to approximate it by using selected columns and rows,
that is,

(4.7) \widetilde Veff \approx \scrC v\scrU v\scrR v,

where \scrC v \in \BbbR r\times nc and \scrR v \in \BbbR nr\times r3 consist of columns and rows of \widetilde Veff , respectively.
Let us assume that \scrI \bfR \subseteq \{ 1, . . . , n\} denotes the indices, leading to the construction
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INTERPOLATION-BASED MOR FOR POLYNOMIAL SYSTEMS A99

of the matrix \scrR v in (4.7), i.e.,

\scrR v = \widetilde Veff(\scrI \bfR , :).

As a result, we use the relation (4.7) in (4.6) to obtain

WT
eff \c Veff\widehat x 3 \approx WT

eff\scrC v\scrU v\scrR v\widehat x 3 = WT
eff\scrC v\scrU v\underbrace{}  \underbrace{}  
=:\Psi 

\Bigl( \widetilde Veff(\scrI \bfR , :)\widehat x 3

\Bigr) 
.

Now, it can be noticed that the term \widetilde Veff(\scrI \bfR , :)\widehat x 3 is nothing but evaluating the
nonlinearity (in this case, it is a cubic nonlinearity) at indices \scrI \bfR . As a result, we
need to determine the nonlinearity at nr points. Moreover, the matrix \Psi \in \BbbR r\times rv

can be precomputed. This is exactly the idea of hyperreduction methods such as
(discrete) empirical interpolation method ((D)EIM) proposed in [11, 22] in the case
of nonlinear MOR. However, a major difference between the methodology in this paper
and (D)EIM is that we do not require time-domain snapshots of the nonlinearity as
needed in the case of (D)EIM. We approximate the nonlinear terms in the reduced-
order systems. Summarizing, for the Chafee--Infante equation in the end, we have

WT
eff

\widetilde Veff (\widehat x\otimes \widehat x\otimes \widehat x) \approx \Psi (\widetilde x \circ \widetilde x \circ \widetilde x) ,(4.8)

where \widetilde x = Veff(\scrI \bfR , :)\widehat x, which is of complexity \scrO (r \cdot n2
r).

Remark 4.1. In the above, we have focused on the computational aspect related to\widehat H\xi and \widehat H\xi \widehat x \xi . Analogously, a complexity reduction can be performed for computing\widehat N\eta and \widehat N\eta \widehat x\eta .

5. Numerical results. In this section, we illustrate the efficiency of the pro-
posed methods by means of two nonlinear partial differential equations. All the sim-
ulations were done on an Intel® Core™i7-6700 CPU@3.40 GHz, 8 MB cache, 8 GB
RAM, Ubuntu 16.04, MATLAB® Version 9.1.0.441655(R2016b) 64-bit(glnxa64). In
the following, we note some details used in the numerical simulation:

\bullet All original and reduced-order systems are integrated by the routine ode15s

in MATLAB with relative error and absolute error tolerances of 10 - 10.
\bullet We measure the output at 500 equidistant points within the time interval
[0, T ], where T is the end time.

\bullet We choose interpolation points for the frequency (s) in a logarithmic scale
for a given frequency range.

5.1. Chafee--Infante equation. In our first example, we deal with a widely
considered one-dimensional Chafee--Infante equation. Its governing equation and
boundary conditions are given as follows:

(5.1)
\.v(t) = vxx + v(1 - v2), x \in (0, L)\times (0, T ), v(0, \cdot ) = u(t), (0, T ),

vx(L, \cdot ) = 0, (0, T ), v(x, 0) = 0, (0, L).

MOR of this example has been considered in various papers [15, 18, 19, 27], where
the authors have proposed different methods to reduce it. The governing equation
has a cubic nonlinearity. In the literature, a common approach to reduce such a
cubic nonlinear system via system-theoretic MOR is twofold. First, it is to rewrite
the cubic system into a QB system by introducing auxiliary variables. Thereafter,
one can reduce it by employing a MOR scheme for QB systems such as balanced
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Cubic system Quadratic-bilinear system

0 5 10 15 20 25 30
10 - 20

10 - 10

100

Fig. 5.1. Relative decay of singular values based on the Loewner pencils, obtained using the
original cubic system and its equivalent transformed QB system.

truncation [18], and interpolation-based approaches, e.g., [3, 15, 19]. However, in this
process, we lose the original cubic nonlinearity structure in the reduced-order system.
On the other hand, our proposed method allows us to reduce a cubic system directly,
having preserved the polynomial structure in the reduced-order system.

We set the domain length L = 1. The system of equations (5.1) is discretized
using a finite-difference method by taking k = 500 grid points. Next, we aim at
constructing a reduced cubic system by applying Algorithm 3.1. For this purpose, we
consider the frequency range

\bigl[ 
10 - 3, 103

\bigr] 
. For comparison, we also rewrite the cubic

system into the QB form, which results in an equivalent QB system of order 1000.
We consider the same frequency range in order to employ Algorithm 3.1 to construct
a reduced QB system.

First, in Figure 5.1, we observe the decay of the singular values, obtained from
the Loewner pencil (s\BbbL  - \BbbL s). We observe that the singular values related to the
original cubic system decay faster as compared to its equivalent QB form. Hence,
for the same order of the reduced-order system, we can anticipate a better quality
reduced system. Next, we construct the reduced cubic and QB systems of order
r = 10 using Petrov--Galerkin (two-sided) projection. To test the quality of both
reduced cubic and QB systems, we perform time-domain simulation using control
inputs u(1)(t) = 10(sin(\pi t)+1) and u(2)(t) = 5(te - t) and compare them in Figures 5.2
and 5.3 by showing the responses and relative errors. As can be seen from these figures,
the reduced cubic system captures the dynamics of the original system much better
as compared to the QB system; precisely, we gain up to 3 orders of magnitude better
accuracy using the new method.

Typically, one expects that if QB and cubic systems are of the same orders, then
simulating the QB system may be cheaper. However, we have observed that if a
polynomial system is written into QB form, then the QB system typically becomes
stiffer. This means that we require finer time steps to obtain the same accuracy of
the solution. For completeness, we report the computational time to simulate both
reduced-order systems in Table 5.1. We observe that although both reduced-order sys-
tems are of different polynomial degrees but have the same orders, the computational
costs are very similar.

5.2. The FitzHugh--Nagumo (FHN) model. As a second example, we con-
sider the FHN system, which describes basic neuronal dynamics. This is a coupled
cubic nonlinear system, whose governing equations and boundary conditions are as
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Original system Cubic system Quadratic-bilinear system

0 1 2 3 4
0

0.5

1

1.5

2

Time

(a) Transient response.

0 1 2 3 4
10 - 9

10 - 5

10 - 1

Time

(b) Relative error.

Fig. 5.2. Chafee--Infante equation: a comparison of the original and reduced-order systems for
the input u(1) = 10 (sin(\pi t) + 1).

Original system Cubic system Quadratic-bilinear system

0 1 2 3 4

0

0.5

1

Time

(a) Transient response.

0 1 2 3 4
10 - 12

10 - 6

100

Time

(b) Relative error.

Fig. 5.3. Chafee--Infante equation: a comparison of the original and reduced-order systems for
the input u(2) = 5

\bigl( 
te - t

\bigr) 
.

Table 5.1
Chafee--Infante equation: CPU time comparison of reduced-order systems for both inputs.

Input Cubic systems QB system

u(1)(t) 0.3103 s 0.2709 s

u(2)(t) 0.1013 s 0.0835 s

follows:

(5.2)
\epsilon vt = \epsilon 2vxx + v(v  - 0.1)(1 - v) - w + q,

wt = hv  - \gamma w + q

with boundary conditions

v(x, 0) = 0, w(x, 0) = 0, x \in (0, L),

vx(0, t) = i0(t), vx(1, t) = 0, t \geq 0,

where h = 0.05, \gamma = 2, q = 0.05, L = 0.1, and i0 acts as an actuating control input
which takes the values 5\cdot 104t3e - t. In brief, the variables v and w denote the activation
and deactivation of a neuron, respectively. We discretize the governing equation using
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a finite difference method by taking 100 grid points. This leads to a cubic system of
order n = 200. We use the same output setting as used, e.g., in [19]. The system has
two inputs and two outputs, thus, is an MIMO system. The MOR problem related
to the FHN system has been considered by several researchers; see, e.g., [18, 19, 22].
Similarly to the previous example, system-theoretic MOR of the FHN system has also
been considered by first rewriting it into a QB system and employing MOR schemes
such as interpolation based and balanced truncation to reduce it. Thus, we obtain
an equivalent QB system of order 300. However, by doing so, we lose the original
nonlinear structure.

We apply Algorithm 3.1 to obtain reduced-order systems for the original cubic and
its equivalent QB systems; we choose 200 points in the frequency range

\bigl[ 
10 - 2, 102

\bigr] 
.

We construct reduced cubic and QB systems of order r = 20, which are denoted by
cubic (two-sided) and QB (two-sided) systems for future reference. To determine the
quality of the reduced systems, we perform time-domain simulation. We observe that
the obtained cubic two-sided reduced system captures the dynamics of the original
system very well, whereas the reduced QB (two-sided) system is unstable. This il-
lustrates a common shortcoming of Algorithm 3.1 that it does not always result in a
stable reduced system, and also shows that preserving the polynomial structure can
be beneficial.

As a remedy, we propose to obtain a reduced-order system using Galerkin (one-
sided) projection. For this, we determine the matrix V at step 1 in Algorithm 3.1 and
setW = V. This is followed by determiningX as shown in step 4 of the algorithm and
determine the projection matrix Veff . Subsequently, we set Weff = Veff and compute
a reduced-order system. As a result, we have a reduced-order system by one-sided
projection instead of two-sided. An advantage of doing one-sided projection is the
(local) stability of the reduced-order system in some cases. Next, we also compute
reduced systems of order r = 20 using the cubic and its equivalent QB form, using
one-sided projection, that are referred to as cubic (one-sided) and QB (one-sided)
systems, respectively.

For comparisons, we first plot the decay of singular values in Figure 5.4, indicating
a faster decay for cubic systems as compared to the equivalent QB systems. Further-
more, we compare the transient response of all reduced-order systems in Figure 5.5,
which shows that the reduced cubic systems (both one sided and two sided) perform
much better as compared to the reduced QB system (one sided), and as stated ear-
lier, the reduced QB system (two sided) is unstable. Interestingly, we observe that
the reduced cubic systems, using two-sided and one-sided projection, tend to perform
equally well as the time progresses but in the beginning, the reduced system obtained
using two-sided projection performs better. Furthermore, we mention that the same
order of accuracy as the reduced QB system (one sided) of order r = 20 can be
obtained from a reduced cubic system of order r = 6 only.

Note that one of the characteristic features of the FHN model is the limit cycle
that exhibits the activation and deactivation of the neuron. As we know, the model
is a cubic system. Thus, when we aim at constructing a reduced cubic system that
exhibits the similar limit cycles, we can construct a reduced cubic system of order as
low as r = 2. On the other hand, if we first rewrite the cubic system into the QB
form, we need the minimum order r = 15 for a reduced QB system to capture the
limit cycle behavior. This illustrates that keeping the original polynomial structure
into reduced-order systems can lead to much better reduced-order systems.

Furthermore, similarly to the previous example, we compare computational cost
to simulate reduced-order systems in Table 5.2. We observe that the reduced QB
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Cubic sys. (two-sided) Cubic sys. (one-sided)

QB sys. (two-sided) QB sys. (one-sided)

0 10 20 30 40 50
10 - 20

10 - 10

100

Fig. 5.4. FHN model: relative decay of singular values based on the Loewner pencils, obtained
via one-sided and two-sided projections of the corresponding systems.

Ori. sys. Cubic sys. (two-sided r = 20)

QB sys. (one-sided r = 20) Cubic sys. (one-sided r = 20)

Cubic sys. (two-sided r = 6)

0 5 10 15 20

0

0.5

1

Time

(a) Transient response.

0 5 10 15 20
10 - 12

10 - 6

100

Time

(b) Relative error.

Fig. 5.5. FHN model: a comparison of the original and reduced cubic and QB systems using
one-sided and two-sided projections, having employed Algorithm 3.1.

Table 5.2
FHN model: CPU time comparison of reduced-order systems.

Cubic (two-sided) Cubic (one-sided) QB (one-sided) Cubic (r = 6)
1.5232 s 1.4816 s 1.2704 s 0.9753 s

system (one sided) is sightly faster compared to the reduced cubic systems when the
orders of the reduced systems are kept the same. But the reduced cubic system of
order 6 and the reduced QB system of order 20 have a similar accuracy in terms of
time-domain simulation, but the reduced cubic system (r = 6) requires nearly 20\%
less time as compared to the reduced QB system (r = 20).

5.3. Usage of CUR in ROM. In this section, we illustrate the usage of the
CUR matrix approximation to further approximate the nonlinear reduced terms. For
this, we again consider the Chafee--Infante equation. Now, we aim at determining
reduced cubic systems using one-sided and two-sided projections. First, in Figure 5.6,
we plot the relative decay of the singular values based on the Loewner pencil, ob-
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Two-sided projection One-sided projection

0 5 10 15 20 25 30
10 - 20

10 - 10

100

Fig. 5.6. Chafee--Infante equation: relative decay of singular values using the Loewner pencil,
obtained via one-sided and two-sided projections.

Ori. sys. TwosProj TwosProj + CUR

OneSProj OneSProj + CUR
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0

1
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Time

(a) Transient response.

0 1 2 3 4
10 - 10

10 - 5

100

Time

(b) Relative error.

Fig. 5.7. Chafee--Infante equation: a comparison of the original and (CUR combined) reduced-
order systems for the input u(1) = 10 (sin(\pi t) + 1).

tained using the one-sided and two-sided projection matrices. We observe that the
singular values based on the two-sided projection decay faster relative to the one-sided
projection as can be expected.

Next, we construct reduced-order systems of order r = 10 using one-sided and
two-sided projections using Algorithm 3.1, preserving the polynomial structure. As
discussed in section 4, we can further approximate the reduced nonlinear terms by
making use of a CUR matrix approximation. For CUR matrix approximation, we
choose 60 rows and 60 columns of \scrV (defined in (4.6)), which are chosen based on an
adaptive sampling proposed in [49]. We would like to mention that the number 60 for
row and columns is determined based on a trial and error method. An appropriate
automatic method for CUR matrix approximation, being suitable for MOR, needs
further research. To this end, we have four reduced systems as follows:

\bullet One-sided projection (OneSProj).
\bullet One-sided projection with CUR approximation (OneSProj + CUR).
\bullet Two-sided projection (TwoSProj).
\bullet Two-sided projection with CUR approximation (TwoSProj + CUR).

To compare the quality of these reduced-order systems, we perform the time-domain
simulation of these systems with the original systems for two control inputs, the same
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Ori. sys. TwosProj TwosProj + CUR

OneSProj OneSProj + CUR
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0

0.5

1

Time

(a) Transient response.
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Fig. 5.8. Chafee--Infante equation: a comparison of the original and (CUR combined) reduced-
order systems for the input u(2) = 5

\bigl( 
e - tt

\bigr) 
.

as considered in subsection 5.1 which are then compared in Figures 5.7 and 5.8. We
observe that two-sided projection yields the best reduced-order systems among the
four reduced-order systems. Furthermore, when the two-sided reduced-order system
is combined with CUR matrix approximation, then we notice that the quality of the
reduced-order system decreases a little but still provides a very good approximation
of the original system. Interestingly, we also notice that CUR matrix approximation
applied to the one-sided reduced-order system also performs very well and keeps the
quality of the reduced-order models in the same order.

6. Conclusions. In this paper, we have discussed the construction of interpo-
lating reduced-order systems for polynomial systems that preserve the polynomial
structure. For this purpose, we have introduced generalized multivariate transfer
functions for the systems and have proposed algorithms, inspired by the Loewner ap-
proach, to generate good quality reduced-order systems in an automatic way. We have
discussed related computational issues and also the usage of the CUR matrix approx-
imation in the simulation of reduced systems. We have illustrated the efficiency of the
approaches via several numerical experiments, where we have observed that preserv-
ing the polynomial structure in reduced-order systems leads to better reduced-order
systems.

In our numerical experiments, we have chosen interpolation points logarithmically
in given intervals for frequency. However, choosing these interpolation points wisely
can ease the computational burden. In this direction, \scrH 2-optimal framework [14,
25, 19] and an adaptive choice of interpolation points based on an error estimate
[1, 23] can be extended to polynomial systems. Moreover, in section 4, we have

discussed the computational aspect related to \widehat H\xi \widehat x \xi which can be eased with the
help of CUR matrix approximation. However, we do not take the projection matrix
W into account for an approximation of the latter term. Thus, it would be valuable
to employ the projection matrix W as well, which could improve the approximation
quality. Moreover, it will be of great interest to the MOR community to extend the
proposed methodology to other classes of nonlinear systems such as rational nonlinear
systems, i.e., those systems containing nonlinear functions, e.g., 1

1+x or e - 1/x. Such
systems, for example, arise, in batch chromatography reactors [32] and reactor models
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[35]. Such systems can be rewritten as a polynomial system by introducing auxiliary
variables as discussed in subsection 2.2, but the goal would be to preserve the original
structure of the nonlinearity in the reduced-order systems. Last but not least, one
can think of extending the methodologies discussed, e.g., in [2, 17, 31] for descriptor
systems to descriptor polynomial systems.

Code availability. A MATLAB implementation of Algorithm 1 can be found on
Gitlab under the link https://gitlab.mpi-magdeburg.mpg.de/goyalp/interpolatorymor
polynomials.
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