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S.1. ESTIMATION OF POSSIBLE OPTICAL
E-FIELD STRENGTH

The power-conversion relationship between the opti-
cal E-field and the power density is given as 1 V/Å ,
which corresponds to 1.327 × 1013 W/cm2. (Note that
the square of the E-field is proportional to the power per
section.)

A recently commercialized femtosecond laser has a
power of 1 W with a repetition rate of 1 GHZ, according
to the manufacturer’s specifications. This corresponds
to an energy output of 1 J per second and 1 nJ per sin-
gle pulse. Although laser powers exceeding 10 W have
been achieved in some laboratories, we restrict our con-
sideration to commercially available lasers. By using an
additional amplifying device, a power gain of a factor
105 with a reduced frequency of 10 kHZ is possible, re-
sulting in an energy of 1× 10−4 J per pulse. For a pulse
width with a full width at half-maximum (FWHM) of 10
fs (10−14 second), the corresponding power is 1×1010 W
per pulse.

The laser beam can be focused using a commercially
available device based on silver mirrors. For practical
purposes, the current feasible focusing size is approxi-
mately 30 µm × 30 µm area for a laser pulse with an
FWHM of 10 fs. Since 1 µm is 10−4 cm, this corresponds
to an area of 9× 10−6 cm2.
Therefore, if a laser beam with a power of 1 × 1010

W is focused on the above area, the power per section
is 1/9 × 1016 = 1.1 × 1015 W/cm2, which corresponds

to
√

(1.1× 1015)/(1.327× 1013) =
√
(110/1.327)= 9.1

V/Å of optical E-field strength according to the afore-
mentioned relationship between the optical E-field and
the power per area. Therefore, the range of E-fields ex-
amined in this study is accessible using currently com-
mercially available lasers.

S.2. DETAILS OF MD CALCULATIONS

We performed RT-TDDFT-MD simulations to exam-
ine the H2O decomposition for the case with 15 H2O
molecules around an (8,0) CNT. The stable atomic coor-
dinates were determined by geometry optimization from
15 randomly placed/oriented H2O molecules around the
(8,0) CNT. Several geometries should be obtained as
metastable structures, and testing all of them may give
a statistically correct answer. However, we observed no
quantitative difference in the threshold intensity upon
testing several initial geometries as reported in Ref. [8]
of the main text. In the present relaxed geometry, as
shown in Fig. 1 of the main text, the distances between
the H2O molecules and the CNT wall were kept within
a typical range for van der Waals interactions (3.0∼3.4
Å). At the same time, the locations of the H2O molecules
along the tube axis and their molecular orientations were
dispersed. Therefore, a single MD trajectory with ran-
domly distributed H2O molecules provides a suitable ap-
proximation for understanding the trend of H2O decom-
position unless temperature effects are being considered.


