Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A machine learning approach to model solute grain boundary segregation

MPG-Autoren
/persons/resource/persons204880

Huber,  Liam
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons136317

Hadian,  Raheleh
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125158

Grabowski,  Blazej
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Huber, L., Hadian, R., Grabowski, B., & Neugebauer, J. (2018). A machine learning approach to model solute grain boundary segregation. npj Computational Materials, 4(1): 64. doi:10.1038/s41524-018-0122-7.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-A390-1
Zusammenfassung
Even minute amounts of one solute atom per one million bulk atoms may give rise to qualitative changes in the mechanical response and fracture resistance of modern structural materials. These changes are commonly related to enrichment by several orders of magnitude of the solutes at structural defects in the host lattice. The underlying concept—segregation—is thus fundamental in materials science. To include it in modern strategies of materials design, accurate and realistic computational modelling tools are necessary. However, the enormous number of defect configurations as well as sites solutes can occupy requires models which rely on severe approximations. In the present study we combine a high-throughput study containing more than 1 million data points with machine learning to derive a computationally highly efficient framework which opens the opportunity to model this important mechanism on a routine basis. © 2018, The Author(s).