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Abstract. On the basis of the ideal-mhd equilibrium code VMEC [Hirshman S
et. al, 1986 Comp. Phys. Comm. 43 143] supplemented by transformation of its
results into magnetic coordinates it is shown how current sheets, radially widened
by the finite grid size, at rational values of rotational transform in 3d toroidal
equilibria can be removed by variation of the equilibrium geometry.
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1. Introduction

Recently it has been stated that the 3d equilibrium
code VMEC [1] cannot compute current sheets at
rational values of rotational transform in 3d toroidal
mhd equilibria [2]. On the other hand, the existence
of magnetic islands and current sheets in three-
dimensional slab-geometry equilibria [3] and screw-
pinch geometry [4, 5] has been proven. More recently
[6], VMEC has been verified for force-free large-aspect-
ratio circular cross-section equlibria against linear
ideal-mhd equilibrium theory in the limit of nested
surfaces. Here, it will be shown that an evaluation
of the equilibrium results of toroidal equilibria with
general 3d geometry obtained with VMEC can find the
signature of current sheets, computationally radially
widened by the finite radial grid size in calculating the
equilibrium.

Boozer’s coordinates [7] s, θ, φ (flux label, poloidal
and toroidal coordinate) are used for this purpose.
Their construction from a VMEC equilibrium is
described in [8]. In these coordinates, the covariant

component of ~B, Bs, has been named β̃ because the
inhomogeneous part of its equation when formulated
as a differential equation along fieldlines√

g ~B · ∇β̃ = p′(
√
g − V ′)

is proportional to the derivative of the pressure with
respect to the flux coordinate. Here, g is the Jacobian,
V (s) the volume enclosed by the flux surface with label
s.

The radial dependency of the homogeneous part
of β̃ on rational magnetic surfaces, ιperiod = n/m,
is proportional to δ(s− sres) and is related to the
force-free current density sheet necessary for rational
magnetic surfaces to exist [9]. In order to describe
β̃ completely, an equivalent expression, calculating it
from the geometry directly, is used

β̃ = −(FT
′gφs + FP

′gθs)/
√
g

where gφs and gθs are elements of the Jacobian and
FT and FP toroidal and poloidal flux, respectively.
This expression is computed for various radial grid
sizes so that the contribution of the resonance can be
extrapolated to infinite radial grid size. Then a suitable
boundary coefficient of the equilibrium investigated
can be selected to eliminate the resonant contribution.
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Figure 1. Poincaré plot of a three-period vacuum field. The
non-vanishing boundary coefficients are: R0,0 = 5;R1,0 =
Z1,0 = 1;R1,3 = −Z1,3 = 0.5;R2,1 = −Z2,1 = 0.0025; solid line:
VMEC boundary. In this configuration the rotational transform
varies from ≈ 0.82 at the center to ≈ 2.5 at the boundary

2. Case studies

Three physically different types of configurations are
investigated: a vacuum field, a force-free equilibrium,
and a finite-β equilibrium.

a) A vacuum field
If a vacuum field with an outer smooth magnetic

surface and an inner island chain at a resonance is
recomputed with VMEC as a zero-β ideal-mhd (i.e.
with infinite conductivity) no-net-current equilibrium
with nested surfaces, a surface current density appears
at the resonance. Here, this is demonstrated starting
from a simple l = 2 stellarator with 9 periods
and rotational transform unity occurring in the
confinement region (R0,0 = 5;R1,0 = Z1,0 = 1, R1,1 =
−Z1,1 = 0.5). This configuration is changed into a 3-
period configuration by an m = 3 perturbation, three-
periodic on the torus (and thus resonant at ι = 1) so
that an m = 3 island chain appears at ι = 1. Figure 1
shows a cross-section of the VMEC boundary and the
vacuum field solution for this boundary as obtained
from an outside surface current density [10].

Figure 2 shows the resonant component of β̃ as
obtained from VMEC. Its properties are characterized
with three different evaluations. While the integrals
of β̃31 between its zeroes closest to the resonance
converge, the amplitude of β̃31 strongly grows with the
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Figure 2. β̃(m = 3, n = 1) as a function of s for various gridsizes
(307, 613, 1223, 2447) in VMEC. The singular behaviour of
β̃(m = 3, n = 1) becomes sharper with increasing radial grid
size ns.

Figure 3. The inverse of the amplitude of the m = 3, n = 1
Fourier component of β̃ as a function of mesh widths in the
vacuum field case.

mesh size and the width of β̃31 at half of its amplitude
strongly shrinks, see Figs. 3 and 4.

These results indicate the interpretation that the
singular behavior found is of δ-function character.

From the point of view of selecting a viable config-
uration, perturbations that destroy the periodicity of
a configuration must be avoided or precautions taken
[11].

Figure 4. The width of the resonant component of β̃ at half of
its amplitude as a function of mesh widths in the vacuum field
case.

b) Force-free equilibrium
A two-period quasi-axisymmetric configuration

[12], a tokamak-stellarator hybrid, is selected because
low-order resonances (e.g. ι per period, ιp = 1/3)
occur which should be of particular importance. Its
β = 0 equilibrium is investigated with fixed rotational
transform profile (ι = 0.91 − 0.59s) at its ι =
2/3 resonance. Again, the signature of a δ-function
behaviour of β̃31 smoothed by finite radial grid sizes is
clearly seen in Fig. 5.

A systematic search for a parameter of the
equilibrium boundary [12] ‡ which is effective in
reducing the amplitude of β̃31 at the resonance is not
laborious because the number of boundary coefficients
is small. Since m = 2 coefficients correspond to
triangular deformations these coefficients should be
tested first and yielded the boundary coefficient Z(m =
2, n = 0) whose values for eliminating the singularity
in β̃(m = 3, n = 1) (i.e. rendering it locally odd)
only weakly depend on radial grid size, see Fig. 6, and
turn out to converge quadratically with the grid-point
distance to 0.1126.

One expects that the shape of the magnetic
surfaces should reflect a resonant current sheet and its
elimination. This is seen in Fig. 7 where the two cases
are compared with respect to |∇s|2: elimination of the
current sheet eliminates the resonance signature in the
m=3, n=1 Fourier component of |∇s|2.

The change of the geometry of the configuration

‡ In Table I the published version contains a misprint: R(2,−1)
should be 0.026.
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Figure 5. The m = 3, n = 1 Fourier component of β̃ as a
function of the flux label for various grid sizes in the force-free
case. The insets show the values of the integrals between the
zero values adjacent to the resonance 2/3 at s = 0.4123. Here
(and in Figs. 6 and 10) dotted, dashed and solid lines correspond
to increasing mesh size.
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Figure 6. The same as in Fig. 5, now for various grid sizes
and associated values of Zm=2,n=0 (given in the inset) which

render β̃ a locally odd function at the resonance. Please note
the difference in vertical scale between Fig. 5 and here.

is shown in Fig. 8 where the flux surface cross-
section is shown in that symmetry plane in which
the smallest deviation from a circular cross occurs: a
small reduction in triangularity and a small shift of the
magnetic axis are seen.

c) Finite-pressure equilibrium
For 3D equilibria obtained under the assumption

of nested flux surfaces at finite β, a stronger divergence
than above dominates the behavior of the equilibrium
at a resonance. The parallel current density exhibits
a 1/(s− sres) singularity if the pressure gradient does
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Figure 7. The m = 3, n = 1 Fourier component of |∇s|2 as
a function of the flux label without (dashed) and with (solid)
elimimation of the resonance in the force-free case.

Figure 8. Flux surfaces without (solid) and with (dashed)
the choice of Z(m=2, n=0) which eliminates the surface current
density at the resonance
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Figure 9. Normalized pressure profile for the finite-β case.

not vanish [8].
The following procedure to deal with this situation

is chosen. A pressure profile flattening as seen in
Fig. 9 is introduced for the equilibrium calculation and
eliminates the pressure-driven parallel-current-density
divergence. The width of the flattening can be chosen
such that, e.g. the Mercier stability criterion [13], is not
violated near the resonance. Thus, a useful estimate is
obtained on the importance of the resonance for the
mhd stability of the configuration. Here, with the
width of the flattening chosen, the Mercier stability
criterion becomes approximately marginal at the
boundaries of the flattening so that Mercier instability
would occur for a significantly narrower pressure profile
flattening.

The inhomogeneous solution for β̃ then exhibits
a resonant Fourier component which vanishes in the
immediate neighbourhood of the resonance and is
approximately odd outside the small pressure-flattened
region. Therefore, vanishing of the even part of the
solution (the δ-function widened by the finite grid size)
is indicated by the local oddness of the resonant Fourier
component.

Figure 10 shows results at 〈β〉 ≈ 0.03 for the same
configuration as considered in case study b. The
change of the boundary coefficient Z20 needed to obtain
the above property is similar to the one for β = 0 and
converges linearly to Z20 = 0.09.

Since for case studies b) and c) a fixed profile
of the rotational transform has been used, the
toroidal current J and the parallel current density are
considered for completeness of the description. The
parallel current density is given by [8]

~j · ~B/B2 = (−Jβ̃φ + Iβ̃θ)/(FT
′I + FP

′J)
+(JI ′ − IJ ′)/(FT

′I + FP
′J)

so that it is conveniently discussed in terms of J and
β̃. Fig. 11 shows the toroidal currents in the most

Figure 10. Various grid sizes and associated values of
Zm=2,n=0 render β̃ an odd function at the resonance. Please
note the difference in vertical scale between Fig. 6 and here.

Figure 11. The toroidal current in case study b (upper solid
line) and case study c (lower solid line) in the neighborhood of
the resonance indicated by the middle vertical line; the left and
the right vertical lines indicate the boundaries of the pressure
profile flattening. The dashed line corresponds to the lower line
shifted upwards to visualize the slightly lower derivative of the
toroidal curret in case study b.

interesting region and finds them to be smooth.
Fig. 12 shows contours of β̃ for case study b). They
are completely dominated by the resonant component
β̃31 before elimination of this current sheet and, after
its elilmination, as has to be expected, mainly show
the higher resonance β̃62 with an amplitude of about
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Figure 12. Contours of β̃(θ, φ) at the resonance in case study
b for Z2,0 = 0, i.e. before eliminating the resonant current sheet
m = 3, n = 1 (top), and after eliminating it (bottom). Please
note the difference in the scales.

Figure 13. Contours of β̃(θ, φ) at the resonance in case study
c) for Z2,0 = 0.095.

one order smaller than the original one of β̃31.
Fig. 13 shows contours of β̃ for case study c) which

again mainly show the higher resonance β̃62 but with
higher amplitude than in case study b)

3. Discussion

The results found above should be checked with
3d equilibrium codes which do not assume nested
magnetic surfaces as, by way of example, current
versions of PIES [14] and HINT [15] as well as SIESTA
[16] and SPEC [17].

The results obtained here suggest that current
sheets in 3d ideal-mhd equilibria can be avoided by
adjusting the confinement geometry.

In case of a verification of these results further
applications ot the procedure presented here can be
investigated, by way of example, up to which order
in poloidal and toroidal periodicity of a current sheet
this procedure can be pursued. By way of example, an
interesting case would be a high-β equilibrium in W7-X
in which ι = 5/6 occurs in the confinement region [18].

A successful design of a threedimensional toroidal
confinement configuration will aim at a sufficiently
well-behaved topological structure of its magnetic field
at finite β. On the other hand, the perturbation of the
property of quasi-axisymmetry of the configurations
in case studies b) and c) will result in a study on
the compatibility of quasi-axisymmetry and absence of
current sheets.
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