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Abstract—A review of our results on the asymptotic structure of gravity at spatial infinity in
four spacetime dimensions is given. Finiteness of the action and integrability of the asymptotic
Lorentz boost generators are key criteria that we implement through appropriate boundary
conditions. These conditions are “twisted parity conditions,” expressing that the leading order
of the asymptotic fields obeys strict parity conditions under the sphere antipodal map up to
an improper gauge transformation. The asymptotic symmetries are shown to form the infinite-
dimensional Bondi–Metzner–Sachs group, which has a nontrivial action. The charges and their
algebra are worked out. The presentation aims at being self-contained and at possessing a
pedagogical component.
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1. INTRODUCTION

This paper is dedicated to Andrei Alekseevich Slavnov, colleague and friend, on the occasion
of his 80th birthday. His insight on symmetries and his interest in the infrared structure of gauge
theories (see, e.g., [28]) remain invaluable sources of inspiration.

We review here our recent work on the asymptotic structure of gravity and gauge theories at
spatial infinity [18–22], in particular [20]. Our analysis investigates the asymptotic dynamics of the
fields on spacelike hypersurfaces that approach spacelike (Cauchy) hyperplanes at infinity. It uses
the Hamiltonian formalism of general relativity [12, 1] as its main tool and finds its roots in the
pioneering paper [25]. Our central goal is to understand the emergence at spatial infinity of the
Bondi–Metzner–Sachs (BMS) symmetry, originally discovered at null infinity [7, 26, 27].

There are various motivations for studying the asymptotic structure of gravity at spatial infinity,
on spacelike hypersurfaces.

(i) First, the existence of null infinity is a rather delicate dynamical question (what are the
conditions on Cauchy data that will lead to null infinity with sufficient smoothness properties?),
and it seems therefore to be a good strategy to investigate the symmetries of the theory in a
context that is independent of these queries. This puts the discussion on a firmer footing, and also,
it disentangles the existence of the BMS symmetry—a symmetry of the theory—from gravitational
radiation, known to potentially destroy the usual smoothness requirements made at null infinity [11].

(ii) Second, earlier studies of the Hamiltonian structure at spatial infinity did not identify the
BMS group as a group of physical symmetries, leading to a tension between spatial infinity and null
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128 M. HENNEAUX, C. TROESSAERT

infinity results. It seems important to eliminate these previous tensions.
(iii) Finally the quantum formulation of the theory and questions such as Ward identities or

dressing of physical states are naturally investigated on Cauchy hypersurfaces.
The question of formulating consistent boundary conditions for given dynamical laws does not

have a unique answer. We have provided in [18, 20] two different sets of boundary conditions for
gravity at spatial infinity that are invariant under the BMS group and that yield a well-defined and
nontrivial canonical action of that group. Both sets are acceptable from the Hamiltonian point of
view, but we believe that the boundary conditions of [20] have some advantages:

(i) they accommodate the Taub–NUT solution [24, 10];
(ii) they do not lead to logarithmic divergences in the curvature as one goes to null infinity

(although subleading polylogarithmic terms will generically be present) [30, 18–20].

As [25] showed, the standard fall-off of the spatial metric and its conjugate momentum generally
assumed at spatial infinity does not lead to a well-defined canonical formulation of the theory. The
charges of the homogeneous Lorentz group generically diverge, among other difficulties. One needs
therefore to strengthen this fall-off. The authors of [25] cured the problem by imposing parity
conditions on the leading components of the metric and its momentum: under the antipodal map
xi → −xi, the leading metric components are even while the leading components of their momenta
are odd (in asymptotically cartesian coordinates). It follows from these parity conditions that both
the electric and magnetic components of the Weyl tensor have leading terms that are even under
parity [20].

Now, the metric components and their momenta are not invariant under diffeomorphisms. The
main idea of [20] is to impose parity conditions but with a twist. That is, one does not require that
the leading orders of the metric components (respectively, their conjugate momenta) be strictly
even (respectively, strictly odd), but only that they should be even (respectively, odd) up to a
diffeomorphism that need not have a definite parity.1

If the diffeomorphisms needed to enforce the strict parity conditions were transformations not
changing the physical state of the system, one could impose strict parity conditions on the non-
invariant metric components and their momenta. However, as clearly explained in the insightful
work [6], one must distinguish between “proper” and “improper” gauge transformations. While the
former have zero charges and correspond to redundancies in the description of the system, the latter
have nonvanishing charges and are physical transformations that cannot be gauge fixed. For that
reason, they must be retained in the asymptotic form of the fields and it would be incorrect to set
them to zero.

This conceptually simple and perhaps even obvious extension of the work [25] (“parity condi-
tions involving a twist given by improper diffeomorphisms”) completely reconciles the symmetry
analyses at spatial and null infinity. One can prove in particular that it is the same BMS group
that acts both at spatial infinity and at null infinity, expressed in different parametrizations that
can be explicitly related [30, 20]. The derivation of the Hamiltonian formalism with these more
general parity conditions is not entirely straightforward on the technical side, however, because
the Hamiltonian variables are not diffeomorphism invariant. This development was carried out
in [20].

It is the purpose of this article to systematically review the results of [20] in a self-contained
manner, with a somewhat pedagogical emphasis that sheds new light on some features of the
derivation.

1This is equivalent to strict parity conditions on the leading orders of the components of the (invariant) Weyl tensor,
namely, the conditions that they should be even in cartesian coordinates, if one also imposes extra conditions on
some BMS-invariant asymptotic fields characterizing the structure at spatial infinity (see [20, Appendix A.2] and
the Conclusions).
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THE ASYMPTOTIC STRUCTURE OF GRAVITY 129

2. ACTION AND NOTATION

Since we will use the Hamiltonian formulation of general relativity throughout, we briefly recall
its key features. The Hamiltonian action of pure gravity in four spacetime dimensions can be
written as

S
[
gij , π

ij , N,N i
]
=

∫
dt

{∫
d3x

(
πij∂tgij −N iHgrav

i −NHgrav)−B∞

}
, (2.1)

Hgrav = −√
gR+

1
√
g

(
πijπij −

1

2
π2

)
, Hgrav

i = −2∇jπ
j
i , (2.2)

where gij is the three-dimensional metric on the (spacelike) constant time slices, g its determinant,
πij its conjugate momentum, N the lapse and N i the shift [12, 1]. The spatial covariant derivative
with respect to the metric gij is denoted by ∇i. The scalar curvature of gij is R. The term B∞ is
a boundary term on the 2-sphere at spatial infinity that depends on the asymptotic values of the
lapse and of the shift (see (6.11) below). Varying the action with respect to the lapse and the shift
yields the “Hamiltonian” and “momentum” constraints Hgrav ≈ 0 and Hgrav

i ≈ 0. The lapse and the
shift act therefore as Lagrange multipliers for the constraints.

We are interested in spacetimes that approach the Minkowski spacetime at large distances.
The precise rates of decay of various fields will be given in the next section. Coordinates xi (i =
1, 2, 3) will refer from now on to asymptotically cartesian coordinates (except in Appendix A).
Asymptotically polar coordinates will be denoted by (r, xA), where r2 =

∑
i(x

i)2 and where the xA

(A = 1, 2) are coordinates on the unit sphere (referred to as the angles). The flat metric to which
the spatial metric tends at infinity reads δij dxi dxj = dr2 + r2 γAB dxA dxB , where γAB is the round
metric on the unit sphere. Large distances correspond to r → ∞. Functions on the unit sphere
are denoted by f(xA) or f(ni), where ni is the unit normal to the spheres. Quantities with an
overbar will always be quantities defined on the 2-sphere, depending only on the angles (but as it
will be clear from the context, there will also be quantities on the 2-sphere for which we will not
use the overbar notation). So vA is for instance a vector on the 2-sphere. The indices A,B, . . .
on fields with an overbar will be lowered and raised with the unit metric γAB and its inverse γAB ,
introducing no r-dependence. So, vA = γABv

B, vA = γABvB , etc.
Parity is the transformation xk → −xk, which induces the sphere antipodal map nk → −nk

together with r → r. This transformation has a well-defined meaning asymptotically. In terms of the
angles xA, the sphere antipodal map is symbolically written as xA → −xA (it is actually θ → π − θ
and ϕ → ϕ+ π in usual (θ, ϕ) angular variables, where γAB dxA dxB = (dθ)2 + sin2 θ (dϕ)2).

Flat space geometry. Since this is relevant to leading order in the r → ∞ limit, it is useful
to recall a few elementary properties of spheres centred at the origin in Euclidean geometry, with
induced metric γ̊AB = r2 γAB .

The components of the unit normal n to the spheres are given by ni = ∂xi/∂r. We introduce
the frame {ni ≡ ∂xi/∂r = xi/r, eiA ≡ ∂xi/∂xA} tangent to the spherical coordinate lines. The dual
frame is {ni = ∂r/∂xi, eAi = ∂xA/∂xi}. One has

δij n
inj = 1, δij n

iejA = 0, δij e
i
A ejB = r2 γAB ,

δij ninj = 1, δij nie
A
j = 0, δij eAi e

B
j =

1

r2
γAB.

One easily gets

∂jn
i =

1

r

(
δij − ninj

)
, ∂ie

A
k = − 1

r

(
nk e

A
i + ni e

A
k

)
− (2)ΓA

BC eBi e
C
k

where (2)ΓA
BC is the Christoffel symbol for the metric γAB.
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130 M. HENNEAUX, C. TROESSAERT

The covariant derivative with respect to the three-dimensional flat metric is denoted by ∇̊i. Quite
generally, the symbol ◦ over a quantity refers to Euclidean space. The two-dimensional covariant
derivatives with respect to the metrics γ̊AB and γAB are denoted by D̊A and DA, respectively.2 Their
respective curvatures (2)R̊ and (2)R are (2)R̊AB = (2)RAB = γAB, (2)R̊ = 2/r2, (2)R = 2.

The extrinsic curvature K̊AB of the constant r spheres in Euclidean space is defined by eiA∇̊in
j =

−K̊A
B ejB . One finds K̊AB ≡ γ̊BC K̊A

C = −rγAB and K̊A
B = −δA

B/r. The extrinsic curvature
satisfies the Gauss–Codazzi equations K̊A

BK̊A
B − K̊2 + (2)R̊ = 0 and ∂AK̊ − D̊BK̊

B
A = 0.

3. BOUNDARY CONDITIONS

We start by taking as asymptotic behaviour of the metric and its conjugate momentum the
following fall-off in cartesian coordinates:

gij = δij +O(r−1), πij = O(r−2). (3.1)

This asymptotic fall-off must be strengthened. Indeed, two problems arise if one does not impose
further conditions on the leading O(r−1)-order of the metric and O(r−2)-order of the conjugate
momenta:

• First, the kinetic term in the action diverges since its leading piece behaves as 1/r3, which
generically produces a logarithmic divergence upon integration over space (which involves∫
r2 dr, yielding

∫
dr/r). Finiteness of the action is an important physical requirement.

• Second, asymptotic boosts have non-integrable generators, i.e., are not canonical transforma-
tions (see Subsection 6.4). Since asymptotic flatness should imply invariance under boosts,
this again seems to be an undesirable situation.

One way to solve the first difficulty would be to require that the leading terms of the metric and
its conjugate momentum have opposite parity properties under the antipodal map, specifically [25]

hij ≡ gij − δij =
hij(n

k)

r
+O

(
1

r2

)
, hij(−nk) = hij(n

k)

and

πij =
π ij(nk)

r2
+O

(
1

r3

)
, π ij(−nk) = −π ij(nk).

The leading term in πij∂t gij is then of the form f(nk)/r3 where f(nk) is an odd function on the
sphere, and so the logarithmic divergence

∫
dr/r is multiplied by the integral

∫
f(θ, ϕ) sin θ dθ dϕ,

which is zero.
As emphasized in [20], these strict parity conditions must be relaxed (without loosing the good

property that the kinetic term in the action is finite), because in order to reach a coordinate system
where the parity conditions hold, one might have to perform an “improper gauge transformation” [6],
and such gauge fixings are not permissible.

In [20] we suggested replacing the strict parity conditions by parity conditions involving a “twist”
given by an improper gauge transformation.3 More precisely, we allow both an even component
(hij)

even(nk) and an odd component (hij)
odd(nk) in hij(n

k), but while the even component is

2One has in fact D̊A = DA since the two metrics are related by rescalings. However, in an asymptotically flat
curved geometry, the metric γAB of the constant r spheres is given by γAB = γ̊AB + (subleading terms), so that
the covariant derivative DA with respect to γAB differs from DA by subleading terms. The metric γAB is still
equal to limr→∞ γAB/r

2, characterizing therefore the leading behaviour of γAB .
3The improper gauge transformations written in Hamiltonian form are given by (5.1) and (5.2). The order 1 func-
tion ζ and vector ζi are the asymptotic normal and tangential components of the improper gauge transformations
(these involve no boost or rotation). To leading order, only the Lξmgij piece of δgij and the g1/2(ζ|ij − gijζ|m|m)

piece of πij are relevant.
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THE ASYMPTOTIC STRUCTURE OF GRAVITY 131

arbitrary, the odd component is required to take the specific form of a diffeomorphism (which goes
to a constant at infinity in order to preserve the asymptotic decay in r−1). At leading order and
in the flat background, the change of hij under diffeomorphisms takes the linear form ∂iζj + ∂jζi
with ζ i of order 1 (i.e., a function of the angles only). Thus we impose

hij ≡ gij − δij = Uij + jij , (3.2)

Uij = ∂iζj + ∂jζi = O

(
1

r

)
, ζ i = ζ i(nk) = O(1), ζ i(−nk) = ζ i(nk), (3.3)

jij =
(hij)

even(nk)

r
+O

(
1

r2

)
, (hij)

even(−nk) = (hij)
even(nk) (3.4)

for some ζ i that may be assumed to be even since the odd parity component can be absorbed in a
redefinition of (hij)even. Because ζ i is of order 1 (the lower orders can be absorbed in a redefinition
of the lower orders in jij , which are not restricted by parity conditions), one has

Uij =
(hij)

odd(nk)

r
⇔ (hij)

odd(nk) = rUij (3.5)

with
Uij = eAi ∂A ζj + eAj ∂A ζi. (3.6)

Similarly, we allow both an odd component (π ij)odd(nk) and an even component (π ij)even(nk)
in π ij. The odd component is unrestricted, but the even component must come from the trans-
formation of πij under diffeomorphisms (going to constants at infinity in order to preserve the
asymptotic decay in r−2). At leading order, πij sees only the normal diffeomorphisms. Denote
the normal component of the diffeomorphism by V , with V of order 1. Then the transformation
takes the form ∂i∂jV − δijΔ̊V at leading order. Here Δ̊ ≡ ∇̊i∇̊i is the flat metric Laplacian. Thus
we take

πij = V ij + pij, (3.7)

V ij = ∂i∂jV − δijΔ̊V, V = V (nk) = O(1), V (−nk) = V (nk), (3.8)

pij =
(π ij)odd(nk)

r2
+O

(
1

r3

)
, (π ij)odd(−nk) = −(π ij)odd(nk), (3.9)

for some V that may be assumed to be even since the odd parity components can be absorbed in a
redefinition of (π ij)odd. Because V is of order 1 (the lower orders can be absorbed in a redefinition
of the lower orders in pij, which are not restricted by parity conditions), one has

V ij =
(π ij)even(nk)

r2
⇔ (π ij)even(nk) = r2δimδjnVmn (3.10)

with

Vmn = ∂m∂nV − δmnΔ̊V

= −nmnn
1

r2
ΔV − 1

r

(
nmeAn + nne

A
m

)
DAV + eAm eBn

(
DADBV − γABΔV

)
(3.11)

where Δ ≡ γABDADB is the Laplacian on the sphere (with metric γAB).
Because the transformations linearize at infinity, the finite forms of the improper gauge trans-

formations Uij and V ij coincide with their infinitesimal forms. We can therefore assume that ζ i

and V are finite, and not just infinitesimal, in the above formulas.
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132 M. HENNEAUX, C. TROESSAERT

Adding these improper gauge transformation components to the dynamical variables is not
entirely trivial. It complicates the form of the charges and undoes the good property of finiteness
of the symplectic term in the action. To eliminate the divergences in the symplectic form while
keeping the freedom of performing improper gauge transformations, we require that the constraints
are fulfilled to leading orders. For generic decays, the constraints Hgrav and Hgrav

i typically behave
as r−3 in cartesian coordinates. We require them to hold two orders lower, which yields

Hgrav = O(r−5), Hgrav
i = O(r−5) (in cartesian coordinates). (3.12)

In fact, finiteness of the symplectic term and of the Hamiltonian requires only Hgrav = O(r−4) and
Hgrav

i = O(r−4). We impose the stronger condition (3.12) in order to guarantee that the bulk pieces
of the boost generators and of the rotation generators, which behave typically as rHgrav and rHgrav

i ,
are also convergent integrals.

It is useful to write explicitly the condition that there is no O(r−3)-terms in the constraints.
Denoting Jij = (hij)

even/r (first term in the expansion of jij) and P ij = (π ij)odd/r2 (first term in
the expansion of pij), one gets

∂i∂jJij − Δ̊J = 0, ∂iP
ij = 0, (3.13)

a condition that does not involve the improper gauge components since these automatically satisfy
∂i∂jUij − Δ̊U = 0 and ∂iV

ij = 0. We will verify below that this makes the symplectic form finite.
The next term in the expansion of the constraints can be found in [18].

Requiring that the constraints hold at infinity two orders more strongly than what follows
from the decay of the fields is a consistent request (the constraints transform into each other un-
der Poincaré transformations) that does not eliminate any solution for which the constraints hold
throughout space, i.e., to all orders.

The second problem (absence of a canonical generator for the boosts) is solved by demanding
that the leading order of the mixed radial–angular components of the metric, which would be of
order O(1), be actually zero, so that

grA ≡ hrA = O

(
1

r

)
. (3.14)

This implies4

ζi = ∂iŨ , Ũ = rU, U = U(nk) = O(1), U(−nk) = −U(nk) (3.15)

for some function U of the angles, and
jrA = 0. (3.16)

We will also explicitly verify below that this solves the second difficulty.
The improper transformations satisfy interesting identities, which are

nnUnm = 0 (3.17)

and
r2nmnnVmn = −ΔV = rDA(nmenAVmn) = γABemA enBVmn. (3.18)

4The condition ∇̊rζA + ∇̊Aζr = O(1/r) is equivalent to the strict equation ∇̊rζA + ∇̊Aζr = 0 because ζr depends
only on the angles, ζr = U(xA), and ζA is linear in r, ζA = rζA (ζi is assumed to be homogeneous since its lower
order terms in 1/r are absorbed in jij ; therefore, ζi does not depend on r but only on the angles). The condition
∇̊rζA + ∇̊Aζr = 0 yields by explicit computation ζA = ∂AU . Thus one has ζr = ∂r(rU) and ζA = ∂A(rU), i.e.,
ζi = ∂i(rU).
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To prove (3.17), we note that with ζi given by ∂i(rU) = niU + reAi ∂AU , the quantity Uij becomes

Uij = reAi e
B
j ΥAB, ΥAB = 2

(
UγAB +DADBU

)
. (3.19)

One also sees from this expression that

∂kUij =
(
−nke

A
i e

B
j − nie

A
k e

B
j − nje

A
i e

B
k

)
ΥAB + reAi e

B
j e

C
k DCΥAB . (3.20)

The conditions (3.2)–(3.9), (3.12) and (3.15)–(3.16) are our set of boundary conditions.

4. FINITENESS OF THE SYMPLECTIC STRUCTURE

We now verify the finiteness of the Hamiltonian kinetic term
∫
d3xπij∂tgij , i.e., of the symplectic

structure.
There are four terms:

∫
d3xV ij∂tUij,

∫
d3x pij∂tUij ,

∫
d3xV ij∂t jij and

∫
d3x pij∂t jij . The first

and the last terms are finite since the coefficient of the potential logarithmic divergence is in both
cases the integral over the sphere of an odd function and is therefore zero. We thus need to study
only the two terms

∫
d3x pij∂tUij and

∫
d3xV ij∂t jij .

The potential divergence in
∫
d3x pij∂tUij is

∫
d3xP ij∂tUij with P ij = (π ij)odd/r2. In view of

the form of Uij, and with the notation ηi = ∂tζ
i, this becomes

∫
d3xP ij∂tUij = 2

∫
d3xP ij∂iηj = 2

∫
d3x ∂i(P

ijηj)− 2

∫
d3x ∂i(P

ij) ηj .

The first term on the right-hand side of the second equality can be converted to a surface term,
easily verified to be finite. The second term is equal to zero thanks to (3.13).

Similarly, the potential divergence in
∫
d3xV ij∂t jij is

∫
d3xV ijHij with Hij = ∂t(hij)

even/r. In
view of the form of V ij , this becomes

∫
d3xV ijHij = 2

∫
d3x

(
∂i∂jV − δijΔ̊V

)
Hij

= Finite surface terms +
∫

d3xV
(
∂i∂jHij − Δ̊H

)
.

The second term vanishes by (3.13) so that the potentially logarithmically divergent integral∫
d3xV ij∂t jij is actually also finite.

We close this section by noting that the argument also shows that the improper gauge term∫
d3xV ij∂tUij is in fact finite without the assumption of definite parities for Uij or Vij. This can

be for instance seen by taking jij of the same form as Uij (but with a ζi of opposite parity) and pij

of the same form as V ij (but with a V of opposite parity). Since these terms satisfy the constraints
to leading order, the proof goes through.

5. INVARIANCE OF THE BOUNDARY CONDITIONS

Under a deformation of the constant time hypersurface parametrized by (ξ⊥ ≡ ξ, ξi), the canon-
ical variables transform as [12, 1]

δgij = 2ξg−1/2

(
πij −

1

2
gijπ

)
+ Lξgij , (5.1)

δπij = −ξg1/2
(
Rij − 1

2
gijR

)
+

1

2
ξg−1/2

(
πmnπ

mn − 1

2
π2

)

− 2ξg−1/2

(
πimπm

j − 1

2
πijπ

)
+ g1/2

(
ξ|ij − gijξ|m|m

)
+ Lξπ

ij (5.2)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 309 2020



134 M. HENNEAUX, C. TROESSAERT

where Lξgij and Lξπ
ij are respectively the Lie derivatives of gij and πij along the vector field ξi,

Lξgij = ξi|j + ξj|i, (5.3)

Lξπ
ij = (πijξm)|m − ξi|mπmj − ξj |mπim, (5.4)

and the vertical bar | denotes the covariant derivative with respect to the full metric gij, i.e., |i ≡ ∇i.
The boundary conditions are invariant under hypersurface deformations that behave asymptot-

ically as

ξ = bix
i + T (n) + C(b)(n) +O(r−1), (5.5)

ξi = bij x
j + Ii(n) +O(r−1), (5.6)

Ii(n) = Wi(n) + C
(b)
i (n), Wi(n) = ∂i(rW (n)) (5.7)

where bi and bij = −bji are arbitrary constants while T (n) and W (n) are arbitrary functions on
the unit sphere (ni = xi/r). The constants bi parametrize the Lorentz boosts (the corresponding
term −bix0 in ξi can be absorbed in ai at any given time), whereas the antisymmetric constants
bij = −bji parametrize the spatial rotations. The zero modes a0 and ai0 of T and W i are standard
translations. In a spherical harmonics expansion of T (xA) and W (xB), this corresponds to the
choices T (xB) ∼ a0Y

0
0 and W (xB) ∼ am0 Y 1

m but higher spherical harmonics are allowed.
The “correcting terms” C(b)(n) and C

(b)
i (n) appear only when the transformation involves a boost

(bi 
= 0). The first one is necessary for integrability of the boost charges. The second is necessary
to maintain the condition hrA = 0. Their explicit form will be given in spherical coordinates in
Subsection 6.4. Both involve the fields and are of order 1. They are linear in the boost parameters
so that C(b)(n) = 0 = C

(b)
i (n) when bi = 0.

The independent parameters of the symmetries are accordingly bi, bij , T (n) and W (n). The
boundary conditions are therefore invariant under an asymptotic algebra that has the Poincaré
algebra as a proper subalgebra. General functions T and W describe “angle-dependent” translations,
or “supertranslations.” They can involve components of both parities. The odd part of W shifts U ,
while its even part modifies hij. Similarly, the even part of T shifts V , while its odd part modifies pij .
The precise transformation rules of U and V are given in Appendix B. It turns out that only the
odd part of W and the even part of T define improper gauge transformations. The other parts are
pure gauge transformations (see the next section).

6. SURFACE TERMS AND CHARGE GENERATORS

The generator of the transformations (5.5)–(5.7) is

P grav
ξ [gij , π

ij ] =

∫
d3x (ξH + ξiHi) + Bgrav

ξ [gij , π
ij ], (6.1)

where the boundary term Bξ is determined by the method of [25], i.e., must be such that the exterior
derivative dV P

grav
ξ of P grav

ξ in field space (with (ξ, ξk) given by (5.5)–(5.7)) reduces to a bulk integral
involving only undifferentiated field variations dV gij and dV π

ij. In other words, dV Bgrav
ξ must

cancel the boundary terms generated from dV
∫
d3x (ξH + ξiHi) through the integrations by parts

necessary to bring dV P
grav
ξ to the appropriate bulk form. Given that the symplectic form Ω has the

standard bulk expression
∫
d3x dV π

ij dV gij without surface term contributions, this is equivalent to
requiring that the transformations (5.5)–(5.7) be canonical transformations, i.e., leave the symplectic
form invariant, dV iξΩ = 0 (⇔ iξΩ = −dV P

grav
ξ , see [19]).
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Explicit computations lead to the identity [25]

dV

∫
d3x (ξH + ξiHi) = Requested bulk term +Kξ

[
dV gij, dV π

ij
]

(6.2)

where

Kξ

[
dV gij , dV π

ij
]
= −

∮
Gijkl

(
ξ(dV gij)|k − ξ,k dV gij

)
d2Sl

−
∮ (

2ξk dV π
kl +

(
2ξkπjl − ξlπjk

)
dV gjk

)
d2Sl. (6.3)

Here, Gijkl is the DeWitt supermetric,

Gijkl =
√
g

(
1

2

(
gikgjl + gilgjk

)
− gijgkl

)
. (6.4)

The surface integral potentially diverges for boosts and spatial rotations, which grow linearly with r.

6.1. Divergences are absent. For the boosts, the potential divergence reads

−
∮

G̊ijkl
(
ξ∇̊k(dV Uij)− ξ,kdV Uij

)
d2Sl

because
(i) to leading order, Gijkl coincides with the DeWitt supermetric G̊ijkl for the flat metric and

the covariant derivative (dV gij)|k coincides with the covariant derivative ∇̊k(dV gij) in the
flat background; and

(ii) due to the fact that ξ is parity-odd for boosts, only the leading parity-odd component Uij

contributes.
The parity-even component drops. Since the constraints are fulfilled to leading order and ξ is

a Killing vector, the parity-odd component actually does not contribute either: Uij also drops and
the divergence is absent. This is because the integrand is an exact 2-form, which integrates to zero.
One can verify this directly by expressing the leading component of the constraint and the integral
over the 2-sphere in polar coordinates as in Subsection 6.4 below, or by observing that

∮
G̊ijkl

(
ξ∂k(dV Uij)− ξ,k dV Uij

)
d2Sl =

∫
d3x ∂l

(
G̊ijkl

(
ξ∂k(dV Uij)− ξ,k dV Uij

))
= 0

(∇̊k = ∂k in cartesian coordinates) because the integrand ∂l(G̊
ijkl(ξ∂k(dV Uij)− ξ,k dV Uij)) vanishes

on account of ∂k∂lξ = 0 and G̊ijkl∂k∂lUij = ∂i∂jUij − Δ̊U = 0. So there is no divergence in the
boost surface integral.

Similarly, the potential divergence in the angular momentum reads 2
∮
ξmδkm dV V

kl d2Sl, where
only the even component of the leading part of πij remains due to the fact that ξk is odd for spatial
rotations. But again, because the constraints are satisfied to leading order, this is actually zero as
the integral over a closed 2-surface of an exact 2-form, or equivalently,

2

∮
ξk dV V

kl d2Sl = 2

∫
d3x ∂l(ξk dV V

kl) = 0,

as can be seen by using ∂lξk + ∂kξl = 0 and ∂lV
kl = 0.

We stress that the argument needs only that the odd part of hij and the even part of π ij

satisfy the constraints to leading order. In our case where these parts are given by improper gauge
transformations, this is automatic and therefore, in fact, not an independent requirement. For the
alternative boundary conditions given in [18], this is not automatic, however, and must be imposed.
(That the constraints hold asymptotically is in any case used in proving finiteness of the symplectic
form with either set of boundary conditions.)
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6.2. Linear momentum and angular momentum. Having established that the surface
integral at infinity is finite, we must now verify that it is exact in field space (“integrable”), i.e., that
it can be written as the exterior derivative −dV Bgrav

ξ of a surface term Bgrav
ξ that we would then

add to the bulk term
∫
d3x (ξH + ξiHi).

The analysis of the boosts is a bit cumbersome and most easily carried out in spherical coor-
dinates. By contrast, the surface terms for angular momentum and supertranslations are straight-
forwardly determined already in cartesian coordinates. We start with them. Boosts are considered
after the relevant formulas are rewritten in spherical coordinates.

Angular momentum. For the angular momentum (ξ = 0, ξm = bmk x
k = O(r)), the O(1)-con-

tribution to the above surface term is

−2

∮
ξmδmk dV Π

(3)kl dSl − 2

∮
ξm

(
h
(1)
mk dV Π

(2)kl +Π(2)kl dV h
(1)
mk

)
d2Sl, (6.5)

where we have used the fact that ξl dSl = 0, and where h
(1)
mk is the O(r−1) component of hij ,

hij = h
(1)
mk +O(r−2), h

(1)
mk =

hmk(n)

r
,

while Π(2)kl and Π(3)kl are respectively the O(r−2) and O(r−3) components of πkl (in cartesian
coordinates),

πkl = Π(2)kl +Π(3)kl +O(r−4), Π(2)kl =
π kl(n)

r2
, Π(3)kl =

Π(3)kl(n)

r3
.

The surface term is clearly an exact form in field space,

dV

[
−2

∮
ξm

(
δmkΠ

(3)kl + h
(1)
mkΠ

(2)kl
)
dSl

]
. (6.6)

Therefore, adjusting the integration constant so that Minkowski space has zero angular momentum,
one finds that the surface term to be added to

∫
d3x ξiHi for rotations is

1

2
bmnM

mn, Mmn = 4

∮
x[n

(
Π(3)m]l + δm]ph

(1)
pk Π

(2)kl
)
dSl (6.7)

(with antisymmetrization of weight 1).
Supertranslations. We now consider supertranslations, generated by ξ = T and ξi = ∂i(W̃ ),

W̃ = rW . The O(1) piece of the surface integral at infinity reads then

−
∮

G̊ijklT
(
dV h

(1)
ij

)
,k
d2Sl −

∮ (
2ξk dV Π

(2)kl
)
d2Sl

and is clearly integrable since it is linear in the dV of the fields. We have dropped the term∮
G̊ijkl

(
T,k dV h

(1)
ij

)
d2Sl, which is zero since T depends only on the angles and hence T,k ∼ eAk , while

d2Sl ∼ nl so that only dV h
(1)
rA appears in that expression. But h

(1)
rA = 0.

It turns out that the improper gauge parts of h(1)ij and Π(2)kl do not contribute to the integral,
so that the surface term to be added to

∫
d3x (TH + ∂i(W̃ )Hi) reduces to

Bgrav
{T,W} =

∮
G̊ijkl T

((
h
(1)
ij

)even)
,k
d2Sl +

∮ (
2∂k(W̃ )

(
Π(2)kl

)odd)
d2Sl
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(with Bgrav
{T,W} = 0 for hij = πij = 0). It follows that only T even and W odd appear in the surface

integral.
That the improper gauge part of h

(1)
ij indeed drops from the surface integral follows from

the fact that d2Sl ∼ nl and G̊ijklnlUij,k = 0 due to the form (3.20) of Uij and the identity
G̊ijklnl(nk e

A
i eBj + nie

A
k eBj + nj e

A
i eBk ) = 0. That the improper gauge part of Π(2)kl also drops is a

consequence of (3.18), of the relation ∂k(rW ) = nkW + eAk ∂AW and of the fact that the integral∮
∂AV

A d2x of a total derivative on the sphere vanishes.
The generator of supertranslations is thus given by

Q{T,W} =

∫
d3x

(
TH+ ∂i(W̃ )Hi

)
+ Bgrav

{T,W}. (6.8)

When the constraints hold, Q{T,W} ≈ Bgrav
{T,W}, an expression that vanishes when T is odd and W is

even. This means that the transformations generated by T odd and W even are proper gauge trans-
formations that do not change the physical state of the system. By contrast, the transformations
generated by T even and W odd have generically nonvanishing charges and are truly improper gauge
transformations. For T = 1 and W = 0, we recover the ADM energy [1, 25].

The expression of the charge associated with supertranslations T in the normal direction to
the constant time hypersurfaces can be simplified by using the property

(
h
(1)
ij

)even
= r−1ninj hrr +

reAi e
B
j hAB where hrr and hAB depend only on the angles. The hAB term drops exactly as the Uij

term, and one is left with hrr only. This yields

Bgrav
{T,0} = 2

∮
d2x

√
γ T hrr. (6.9)

Lapse and shift. The lapse N and the shift Nk, which are Lagrange multipliers for the (first-
class) constraints, must be chosen so that the dynamical evolution preserves the boundary condi-
tions. This means that they can be taken to parametrize a generic asymptotic symmetry. It is
customary to take

N = 1 +O(r−1), N r = O(r−1), NA = O(r−2). (6.10)

This corresponds to slicings by hypersurfaces that become asymptotically parallel hyperplanes.
Imposing these boundary conditions on the lapse and the shift implies that we have to add to the
action the ADM energy, i.e.,

B∞ = Bgrav
{1,0} = 2

∮
d2x

√
γ hrr. (6.11)

6.3. Spherical coordinates. In order to analyze integrability of the boost charges, we go to
spherical coordinates.

Recalling that the conjugate momenta carry a density weight equal to one, one finds that the
above boundary conditions on the dynamical variables read in spherical coordinates

grr = 1 +
1

r
hrr +

1

r2
h(2)rr + o(r−2), πrr = π rr +

1

r
π(2)rr + o(r−1),

grA = λA +
1

r
h
(2)
rA + o(r−1) (λA = 0), πrA =

1

r
π rA +

1

r2
π(2)rA + o(r−2),

gAB = r2 γAB + rhAB + h
(2)
AB + o(1), πAB =

1

r2
πAB +

1

r3
π(2)AB + o(r−3).

(6.12)

Although it is absent, we have allowed here a term of order 1 in grA parametrized by hrA ≡ λA in
order to show that integrability of the boost charges is indeed guaranteed if one imposes λA = 0.
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Note that what we call here π(2)rr, π(2)rA and π(2)AB (second term in the expansion of the momenta)
was denoted by Π(3)ij before (terms of order r−3 in cartesian coordinates).

As we have seen, the leading orders of the dynamical variables are further subject to two types
of extra conditions:

(i) parity conditions;
(ii) constraint conditions.

Generalized parity conditions. Under the antipodal map xA → −xA, the above parity condi-
tions involving an improper gauge twist are

hrr is even, λA is odd, (6.13)

π rr = (π rr)odd −
√

γΔV, π rA = (πrA)even −
√

γ DAV, (6.14)

πAB = (πAB)odd +
√

γ
(
DADBV − γABΔV

)
, (6.15)

hAB = (hAB)
even + 2

(
DADBU + UγAB

)
(6.16)

with V even and U odd (Δ ≡ DCD
C). It follows from these conditions that

π rr − πA
A is odd (strictly). (6.17)

The variables hrr and π rr − πA
A play thus a special role: they are invariant under improper

gauge transformations; that is, they are invariant under supertranslations.
Constraint conditions. In order to write down the constraint conditions in polar coordinates,

it is useful to introduce a 1 + 2 radial split of the three-dimensional metric gij:

grr = λ2 + γABλ
AλB , grA = γABλ

B , gAB = γAB , (6.18)

λ = 1 + r−1λ+ r−2λ(2) + o(r−2), λA = r−2λA + r−3λ(2)A + o(r−3), (6.19)

γAB = r2 γAB + rhAB + h
(2)
AB + o(1). (6.20)

In a manner consistent with our previous conventions for barred quantities, we will use DA and DA

to respectively denote the covariant derivatives associated with γAB and γAB . The indices A,B, . . .
on bulk fields will be lowered and raised with γAB and its inverse γAB, while the same indices on
asymptotic fields will be lowered and raised with γAB and its inverse γAB. One has the dictionary

λ =
1

2
hrr, λA = γABhrB ≡ γABλB . (6.21)

The extrinsic curvature of the constant r surfaces is given by

KAB =
1

2λ

(
−∂rγAB +DAλB +DBλA

)
(6.22)

and differs from the flat space K̊AB (which blows up like r) by correction terms of order 1. We will
expand KA

B , which behaves like r−1 in flat space, as follows:

KA
B = −r−1δAB + r−2kAB + r−3k(2)AB + o(r−3), (6.23)

where the first term is the flat space value. Note that this yields

KAB = −rγAB + (kAB − hAB) + o(1) (6.24)
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so that kAB is not the coefficient of the first subleading term in the expansion of KAB (it is defined
through the expansion of KA

B). A direct computation gives

kAB =
1

2
hAB + λγAB +

1

2

(
DAλB +DBλA

)
(6.25)

from which the relationship k = h/2 + 2λ + DAλ
A follows. The (generalized) parity conditions

imply

λ is even, (6.26)

kAB = (kAB)
even +DADBU + UγAB. (6.27)

Various useful formulas on the 2 + 1 decomposition of the curvature are given in Appendix A.
A straightforward derivation using these formulas shows then that the conditions that the con-
straints should decrease faster than the anticipated rate are linear conditions on the asymptotic
fields that read

DADBk
AB −DAD

Ak = 0, π rA +DBπ
AB = 0, DADBπ

AB + πA
A = 0. (6.28)

6.4. Integrability analyzed in spherical coordinates.
Asymptotic symmetry transformations. The asymptotic symmetries preserving the boundary

conditions are generated by the vector fields (5.5)–(5.7), which read in spherical coordinates

ξ = br + T + C(b) +O(r−1), ξA = Y A +
1

r

(
DAW + CA

(b)

)
+O(r−2), (6.29)

ξr = W +O(r−1), DADBb+ γABb = 0, LY γAB = 0, (6.30)

where b(xB) and Y A(xB) describe boosts and spatial rotations, while T (xB) and W (xB) are field-
independent functions on the sphere. One has bixi = br while Y A = bmnY A

mn/2 in terms of the basis
xm∂n − xn∂m ≡ Ymn.

The “correcting” terms C(b) and CA
(b) are linear in the boosts, depend on the fields and are of

order 1. They are thus subleading with respect to rb. The term C(b) must be added to the boosts in
order to make their generator well-defined. We write it as C(b) = bF with a function F that will be
determined through the integrability requirement to be equal to −k (up to the irrelevant addition
of a multiple of λ, see below),

C(b) = bF, F = −k. (6.31)

The term CA
(b) is also a correction term that accompanies the boosts and which is necessary to

maintain the condition hrA = 0. A straightforward computation using the transformation of gij
under boosts shows that it is given by

CA
(b) =

2b√
γ
π rA. (6.32)

Using the 2 + 1 decomposition, we see that the surface term (6.3) reads in polar coordinates

Kξ

[
dV gij , dV π

ij
]
=

∮
d2x

{
−2ξi dV π

r
i + ξrπij dV gij − 2

√
γξ dV K

−√
γγBCdV γCA

(
ξKA

B +
1

λ

(
∂rξ − λD∂Dξ

)
δAB

)}
, (6.33)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 309 2020



140 M. HENNEAUX, C. TROESSAERT

an expression that can be further transformed to

Kξ

[
dV gij , dV π

ij
]
= r

∮
d2x

{
−2Y AγAB dV π

rB − 2
√

γ b dV k
}

+

∮
d2x

{
−2Y AdV

(
hABπ

rB + γABπ
(2)rB + λAπ

rr
)
− 2

(
DAW + CA

(b)

)
γAB dV π

rB

− 2WdV π
rr −

√
γ
(
bh dV k + 2(bF + T ) dV k + 2b dV k

(2)
)

+
√
γ
(
bF + T + λb+ λD∂Db

)
dV h−

√
γ bkAB dV hAB

}
+ o(r0). (6.34)

Divergences are absent—another check. The first line, proportional to r, is the potentially
linearly divergent term identified above, the coefficient of which can again be checked from (6.28)
to be actually zero. Indeed, one has

∮
d2xY AγAB dV π

rB = −
∮

d2xY AγABDC dV π
BC =

∮
d2xD(CYB) dV π

BC = 0

since Y A is a Killing vector on the sphere. Similarly,
∮ √

γ b dV k =

∮ √
γ b dV

(
k −DADBk

AB +DAD
Ak

)
=

∮ √
γ b dV (k + k − 2k) = 0 (6.35)

upon integration by parts and use of the fact that b satisfies DADBb+ γABb = 0.
The strict parity conditions are therefore not necessary to eliminate the linear divergence in

Kξ[dV gij, dV π
ij ]. One may allow a twist in the parity conditions given by an improper gauge

transformation, which automatically solves the constraints to leading order.

Angular momentum and supertranslation charges in polar coordinates. The term proportional
to Y A in the finite piece of Kξ[dV gij , dV π

ij ] leads to the angular momentum constructed previously,

1

2
bmnM

mn =

∮
d2x

{
Y A

(
4kABπ

rB − 4λγABπ
rB + 2γABπ

(2)rB
)}

, (6.36)

where we have set λA = 0 to anticipate the result of the analysis of the boosts. This term could be
kept here since it does not spoil integrability of the angular momentum. The terms proportional
to T and W yield the supertranslation charges, Bgrav

{T,W} =
∮
d2x

{
2W (π rr − πA

A) + 4T
√
γ λ

}
(where

we used the asymptotic form of the momentum constraint), and can be simplified to

Bgrav
{T,W} =

∮
d2x

{
2W odd(π rr − πA

A) + 4T even√γ λ
}

(6.37)

since π rr − πA
A is odd while λ is even. These expressions are in complete agreement with what we

found before.

Boosts. It remains to analyze the boosts, for which Kξ[dV gij , dV π
ij] reduces to

Kξ

[
dV gij , dV π

ij
]
=

∮
d2x

{
−2CA

(b)γAB dV π
rB −

√
γ
(
bh dV k + 2bF dV k + 2b dV k

(2)
)

+
√

γ
(
bF + λb+ λD∂Db

)
dV h−

√
γ b kAB dV hAB

}
+ o(r0). (6.38)
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One can rewrite this term as

Kξ

[
dV gij , dV π

ij
]
= dV

∮
d2x

{
−2

√
γ bk(2) − 1

4

√
γ b

(
h 2 + hABhAB

)
− b

2√
γ
γABπ

rAπ rB

}

+

∮
d2x

{
−
√

γ(2bF + hb) dV (2λ+DAλ
A) +

√
γ
(
λC∂Cb γ

AB − bDAλB
)
dV hAB

}

+ o(r0). (6.39)

The terms in the second line of (6.39) are not integrable without restriction. This can be seen by
computing dV Kξ. One then first notes that the term in dV hdV λ in dV Kξ reads b(2dV F + dV h)dV λ,
and this is zero only if F is taken to be equal to −h/2 + aλ, where the constant a is arbitrary. This
is the same as the expression (6.31) up to a term a′λ, but this integrable term plays no role because
it yields a vanishing integral

∮
d2x b(λ)2 = 0 since b is odd while (λ)2 is even. We can thus take it

as we please. We have set a′ = 0 for convenience. The condition λA = 0 makes the last line also
integrable. We have not studied in depth the general solution of the demand that the 1-form in field
space Kξ should be exact, but as we will discuss in the Conclusions, the condition λA = 0 makes a
lot of sense. Further support is given in Appendix C.

Taking into account these conditions, one finds explicitly for the surface term Bξ associated with
boosts (such that dV Bξ +Kξ = 0)

Bξ

[
gij , π

ij
]
=

∮
d2x

{
b
√

γ
(
2k(2) + k 2 + kABk

B
A − 6λ k

)
+ b

2√
γ
γABπ

rAπ rB

}
. (6.40)

We have again adjusted the integration constant in Bξ so that the background Minkowski solution
has zero charge.

7. BMS4 ALGEBRA—NULL INFINITY

Putting all pieces together, one finds that the asymptotic symmetries are canonical transforma-
tions generated by

P grav
ξ

[
gij , π

ij
]
=

∫
d3x (ξH + ξiHi) + Bgrav

ξ

[
gij , π

ij
]
. (7.1)

Here, the boundary term is given by the sum of the contributions found before:

Bξ

[
gij , π

ij
]
=

∮
d2x

{
Y A

(
4kABπ

rB − 4λγABπ
rB + 2γABπ

(2)rB
)
+ 2W (π rr − πA

A)

+ 4T
√

γ λ+ b
√

γ
(
2k(2) + k2 + kABk

B
A − 6λ k

)
+ b

2√
γ
γABπ

rAπ rB

}
. (7.2)

Note that the boost charge and the angular momentum involve contributions that are quadratic
in the asymptotic fields. These are absent for the strict parity conditions [25]. By making a BMS
transformation away from an “untwisted frame,” one therefore generates quadratic contributions.

The algebra is easily evaluated to be
{
P grav
ξ1

[
gij , π

ij
]
, P grav

ξ2

[
gij , π

ij
]}

= P grav
̂ξ

[
gij , π

ij
]
, (7.3)

where ξ̂ generates an asymptotic symmetry with the following parameters:

Ŷ A = Y B
1 ∂BY

A
2 + γABb1∂Bb2 − (1 ↔ 2), (7.4)

b̂ = Y B
1 ∂Bb2 − (1 ↔ 2), (7.5)
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T̂ = Y A
1 ∂AT2 − 3b1W2 − ∂Ab1D

AW2 − b1DAD
AW2 − (1 ↔ 2), (7.6)

Ŵ = Y A
1 ∂AW2 − b1T2 − (1 ↔ 2). (7.7)

Since the boosts are characterized by odd functions b, we see that the Lorentz transformations
mix T even with W odd and T odd with W even. That is, the pair (T,W ) does not form an irreducible
representation of the Lorentz group but breaks into separate Lorentz multiplets (T even,W odd) and
(T odd,W even). The multiplet (T even,W odd) generates physical (“improper”) gauge transformations
and contains the translations. The multiplet (T odd,W even) generates pure gauge transformations
that do not change the physical state of the system. The strict parity conditions eliminate the
physical transformations (T even,W odd), which is not an acceptable gauge fixing.

Modding out the trivial transformations generated by even W ’s and odd T ’s, one obtains the
algebra found in [18]. Using the results of [30], we showed in [18] that this algebra is the BMS4
algebra expressed in an unfamiliar parametrization. This was done by integrating the equations of
motion for the symmetry parameters all the way to null infinity, along the lines of [3–5, 13–15].
One finds that the odd W ’s and even T ’s combine to yield the arbitrary function of the angles
parametrizing supertranslations in the null infinity parametrization. This enables one to conclude
that the symmetry at spatial infinity is the same BMS4 as the BMS4 uncovered at null infinity.
We also note that our analysis implies the matching conditions between the values of the fields on
the future and past critical spheres (i.e., the past boundary of future null infinity and the future
boundary of past null infinity) imposed in [29]. We refer to [18, 20, 30] for the details.

8. CONCLUSIONS

We have reviewed here our work on the Hamiltonian formulation of Einstein gravity in the
context of asymptotically flat spacetimes [18–20]. The boundary conditions that we have proposed
at spatial infinity lead to consistent dynamics invariant under the BMS group, which has a nontrivial
action.

Our boundary conditions are characterized by two key features.
1. First, they involve parity conditions on the leading order of the fields, which differ from strict

parity conditions by a twist equal to an improper gauge transformation. These generalized parity
conditions make the symplectic form and the Lorentz charges finite, which was the motivation for
introducing them.

There is another way to motivate the generalized parity conditions. The Weyl tensor of generic
initial data not satisfying any parity condition develops logarithmic singularities as one goes to null
infinity, unless one imposes strict parity conditions on the Weyl tensor components [2, 23, 30]. These
strict parity conditions can be formulated, at spatial infinity, as the conditions that the electric and
magnetic components of the Weyl tensor, which are strictly invariant under proper and improper
gauge transformations, be strictly even in cartesian coordinates. Together with the parity conditions
that the BMS invariant λ (related to the mass) should be even and its BMS invariant conjugate
π rr − πA

A (related to the linear momentum) should be odd, these strict parity conditions on the
Weyl tensor imply our generalized parity conditions [20].5

Similar features are present in electromagnetism [19], as well as for 2-form gauge fields [21]. We
note, however, that convergence of the symplectic form and absence of singularities in the physical
fields do not impose parity restrictions in higher dimensions, at least for electromagnetism [22].
Preliminary investigations seem to indicate that this is also the case for gravity, and it remains to
be seen whether a consistent formulation free from parity conditions can be given for the higher
dimensional Einstein theory.

5The fact that the matching conditions of [29] follow from the generalized parity conditions is yet another moti-
vation.
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2. A second key ingredient is hrA = 0, which expresses that the expected leading order of the
mixed radial–angular components of the metric should actually be zero. This condition is sufficient
to make the boost charges integrable. One way to motivate it is given by another important
implication of this condition. As we have seen, it relates the angular part ξA of the improper
diffeomorphisms to their radial part ξr. This is what makes the BMS group emerge at spatial
infinity. A similar relationship between ξr and ξA also plays a central role in the AdS context,
where the analog of hrA = 0 is also naturally imposed [17, 9]. In Appendix C, we further study
the necessity of the condition hrA = 0. First, we investigate in greater detail the integrability
of the expression (6.39) contributing to the boost charges with the canonical symplectic structure
adopted throughout the paper, and show that while more general hrA’s are possible, they are
physically equivalent to hrA = 0. Second, we explore an alternative suggested by the analysis
of electromagnetism [19] and of the 2-form gauge field [21], in which the symplectic structure is
modified by surface terms. We find again that this option is physically equivalent to hrA = 0.

The nontrivial structure at spatial infinity results from the fact that there are physical degrees
of freedom—i.e., degrees of freedom invariant under “small” or “proper” gauge transformations—
which are not invariant under “large” or “improper” gauge transformations. The distinction between
proper and improper gauge transformations is therefore crucial. This distinction comes from the
charges, which are defined through the standard Noether procedure from the symmetries of the
action. For this to be the case, one needs a well-defined (finite) action, which is indeed invariant.
The charges are identically zero (for the given set of boundary conditions) in the case of proper
gauge transformations, or may be nonzero in the case of improper gauge transformations. The
boundary conditions play an essential role, both in the definition of symmetries (which must leave
the boundary conditions and the action invariant) and in the actual computation of the charges.

The impact of our boundary conditions on the structure of the physical states in the quantum
theory, and in particular on the role of BMS charges in the dressings of physical operators [8, 16],
is an important question, which we leave for future investigation.

Appendix A. 2 + 1 DECOMPOSITION OF THE SPATIAL GEOMETRY

Polar coordinates are denoted in this appendix by xi = (r, xA) where xA are coordinates on
the 2-sphere. We introduce the “lapse” λ and the “shift” λA adapted to the slicing of space by the
spheres of constant radius r,

γAB ≡ gAB , λA ≡ grA, λ ≡ 1√
grr

. (A.1)

In terms of these, the metric and its inverse take the form

gij =

(
λ2 + λCλ

C λB

λA γAB

)
, gij =

(
1/λ2 −λB/λ2

−λA/λ2 γAB + λAλB/λ2

)

, (A.2)

where we used γAB and its inverse γAB to raise and lower the angular indices A,B, . . . .
Introducing the extrinsic curvature of the 2-spheres KAB , we can write all the Christoffel

symbols:

KAB =
1

2λ

(
−∂rgAB +DAλB +DBλA

)
, (A.3)

Γr
AB =

1

λ
KAB, (A.4)

ΓA
BC = γΓA

BC − λA

λ
KBC , (A.5)
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Γr
rA =

1

λ

(
∂Aλ+KABλ

B
)
, (A.6)

Γr
rr =

1

λ
∂rλ+

λA

λ

(
∂Aλ+KABλ

B
)
, (A.7)

ΓA
rB = −λA

λ

(
∂Bλ+KBCλ

C
)
+DBλ

A − λKA
B , (A.8)

ΓA
rr = −λ

(
γAB +

λAλB

λ2

)
(
∂Bλ+KBCλ

C
)
− λC

(
DAλC − λKA

C

)
− λA

λ
∂rλ+ γAB∂rλB , (A.9)

where DA is the covariant derivative associated to γAB .
The Ricci tensor is given by

(3)RAB =
1

λ
∂rKAB + 2KACK

C
B −KKAB − 1

λ
DADBλ+ γRAB − 1

λ
LλKAB , (A.10)

(3)RrA = λ
(
∂AK −DBK

B
A

)
+ (3)RABλ

B , (A.11)

(3)Rrr = λ
(
∂rK − λA∂AK

)
− λ2KA

BK
B
A − λDAD

Aλ− (3)RABλ
AλB + 2 (3)RrBλ

B , (A.12)

while the Ricci scalar takes the form

(3)R =
2

λ
(∂rK − λA∂AK) + γR−KA

BK
B
A −K2 − 2

λ
DAD

Aλ. (A.13)

Appendix B. ASYMPTOTIC TRANSFORMATION OF THE FIELDS

The action of the asymptotic symmetries on the asymptotic fields can be computed from the
variation of the metric and its momentum, and is given by

δξkAB = LY kAB +DADBW +WγAB

+
b√
γ

(
πAB − γABπ

C
C

)
+

1√
γ
DA

(
bπ rCγCB

)
+

1√
γ
DB

(
bπ rCγCA

)
, (B.1)

δξλ =
b

4
√
γ
p+ Y C∂Cλ, (B.2)

δξ(π
rr − πA

A) = LY (π
rr − πA

A) +
√

γ
(
2bDCD

Cλ+ 2DCb∂Cλ+ 6bλ
)
, (B.3)

δξπ
rA = LY π

rA +
√
γ
(
DB(bk

BA) +DAbk −DAT
)
, (B.4)

δξπ
AB = LY π

AB +
√

γ
(
DADBT − γABDCD

CT
)
+ 3b

√
γ
(
kAB − γABk

)

+
√

γb
(
γABDCD

Ck +DCD
CkAB −DCD

Ak
CB −DCD

BkCA
)

+
√

γ
(
−DAbDBk −DBbDAk + γABDCbD

Ck + 2γABDDkCD∂Cb

−DAkBC∂Cb−DBkAC∂Cb+DCkAB∂Cb
)
. (B.5)

One can read from these transformation rules that the variations of the functions (U)odd and
(V )even take the following form:

δξ(U)odd = Y C∂C(U)odd − b(V )even + (W )odd, (B.6)

δξ(V )even = Y C∂C(V )even − 3b(U)odd − ∂AbD
A(U)odd − bDAD

A(U)odd + (T )even. (B.7)
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These transformations have an inhomogeneous component ((W )odd for U and (T )even for V ). It
follows that if one starts from a configuration that satisfies the untwisted parity conditions, one
generically generates a nonvanishing twist that takes exactly the prescribed form, except if one
restricts the transformation to the Poincaré algebra, in which case the twist remains zero. Invariance
of the boundary conditions under the extended set of transformations is in that sense direct.

Appendix C. MORE ON THE INTEGRABILITY CONDITIONS
OF THE BOOST CHARGES

C.1. Further study of the integrability of (6.39). We further analyze here the conditions
implied by the requirement that (6.39) should be integrable. We argue, in the symplectic framework
adopted in the paper, that the variables λA actually do not need to vanish, but that one can set
them equal to zero by a coordinate redefinition that does not affect the charges (proper gauge
transformation).

For the second term in the integrand in the second line of (6.39) to be integrable, one must have
∮

d2x
√

γ
(
dV λ

C ∂Cb γ
AB − bDA(dV λ

B)
)
dV hAB = 0. (C.1)

The even part of hAB is arbitrary, which forces the even part of λA to vanish.6 The odd part of hAB

must have the form of equation (6.16), from which it follows upon integration by parts and use of
DADBb+ γABb = 0 that

∮
d2x

√
γ
(
−DAbD

AdV Λ− bΔ dV Λ− 4b dV Λ
)
dV U = 0 (C.2)

with
Λ ≡ DA(λ

A)odd. (C.3)

For (C.2) to hold with unrestricted (odd) U ’s, one must have

−DAbD
A dV Λ− bΔ dV Λ− 4b dV Λ = 0. (C.4)

Taking for b a generic boost, one easily concludes that dV Λ should vanish. This implies that Λ
should be field-independent. The simplest choice is Λ = 0, which yields

λA = (λA)odd, DA(λ
A)odd = 0. (C.5)

Other choices with DA(λ
A)odd 
= 0 could be envisioned, but we have not investigated their consis-

tency.
We now explore the consequences of (C.5). When this condition holds, the second term in the

integrand in the second line of (6.39) is not only integrable but in fact zero, as can be seen by
making the same integration by parts. The variables λA do not contribute to the charges. One
can actually set them equal to zero by a proper gauge transformation. Indeed, if we redefine the
angles as

x′A = xA +
1

r
ζA, ζA is odd, DAζ

A = 0, (C.6)

we get
λA → λA + ζA (C.7)

6More precisely, dV (λA)even = 0, which implies that (λA)even should be field-independent. There is no field-
independent nonvanishing vector field to which (λA)even could be equated without conflicting with the symmetries,
and so we take (λA)even = 0.
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and so the form (C.5) of λA is preserved. Taking ζA = −λA sets the new λA equal to zero. This
transformation is permissible, because its charge

∮
ζAγABπ

rB (C.8)

vanishes. Indeed, given that ζA is odd, only the odd part of π rB contributes to the integral, which
becomes ∮

d2x ζA γAB π rB = −
∮

d2x
√

γ ζADAV =

∮
d2x

√
γ DAζ

A V = 0. (C.9)

C.2. Modifying the symplectic structure by a surface term. There is another option
for guaranteeing the existence of well-defined charges for the boosts, which consists in modifying
the symplectic structure by a surface term. In the analysis of the asymptotic symmetries of electro-
magnetism [19] and of the 2-form gauge fields [21], we encountered similar integrability problems
for the boost charges. In these cases, where extra restrictions on the asymptotic fields would
remove physically important symmetries, the solution proposed was to add a boundary term to the
symplectic structure. A similar approach is also available here but, as we will see below, it is again
equivalent to the solution obtained by imposing λA = 0.

The asymptotic conditions considered in this subsection are the generalized parity conditions
given in (3.2)–(3.4) and (3.7)–(3.9) together with the asymptotic constraints given in (3.12). But
we do not impose (3.15) and (3.16).

We first provide the form of the alternative solution, verify then that the boost charges are
well-defined, and comment finally on the physical equivalence with the simpler solution λA = 0.

The action is modified by the surface term

2

∮
d2xπ rAγAB∂tλ

B

involving the time derivatives of λA. It thus takes the following form (including the energy term,
since the lapse goes to 1 at infinity):

S
[
gij, π

ij , N,N i
]
=

∫
dt

{∫
d3x

(
πij∂tgij −N iHgrav

i −NHgrav)

+ 2

∮
d2x

(
π rAγAB∂tλ

B −
√

γ hrr
)}

, (C.10)

Hgrav = −√
gR+

1
√
g

(
πijπij −

1

2
π2

)
, Hgrav

i = −2∇jπ
j
i , (C.11)

N = 1 +O(r−1), N r = O(r−1), NA = O(r−2). (C.12)

The variation of the surface contribution to the kinetic term produces two apparently extra equations
of motion

∂tπ
rA = 0, ∂tλ

A = 0. (C.13)

However, as these two equations are already implied by the bulk equations of motion, the dynamics
are unchanged. As a result of the modification of the action, the symplectic structure picks up a
boundary term:

Ω =

∫
d3x dV π

ij dV gij + 2

∮
d2x dV π

rAγAB dV λ
B , (C.14)

and does not take the standard canonical “Darboux” form.
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The boundary conditions are preserved by vector fields behaving asymptotically as

ξ = rb+ F(b) +O(r−1), ξr = W +O(r−1), ξA = Y A + r−1IA +O(r−2), (C.15)

F(b) = T − bk − λC∂Cb, DADBb+ γABb = 0, DAYB +DBYA = 0. (C.16)

Compared with the BMS4 generators considered in the main text, we see that the subleading term
in ξ takes an extra contribution dependent on λA, while the subleading term in ξA is now completely
arbitrary. This is because the condition hrA = 0 is not imposed, so that the condition Wi = ∂i(rW )
of (5.7) does not arise. The corresponding transformations on the asymptotic fields λA and π rA

are given by

δξλ
A =

2b√
γ
π rA + LY λ

A +DAW − IA, (C.17)

δξπ
rA = LY π

rA +
√

γ
(
DB(bk

BA) +DAbk
)
−

√
γ DA

(
F(b) + bk + bλ+ λB∂Bb

)
. (C.18)

The action of the symmetries on the other asymptotic fields will present similar modifications, but
we will not need their explicit expressions to compute the charges.

The presence of a boundary term in the symplectic structure implies that the standard prescrip-
tion of [25] to define Hamiltonian generators must be amended to take into account the non-Darboux
form of Ω. The simplest way to work out the modification is to go back to the original definition of
a Hamiltonian generator: a well-defined generator GQ is associated to the transformation δQ if and
only if it satisfies the identity −iQΩ = dV GQ. Using the result obtained in Subsection 6.3 and the
variations (C.17) and (C.18), one can then show that the asymptotic symmetries given above, and
in particular the boosts, are Hamiltonian. Their generators are given by

Gξ =

∫
d3x (ξH + ξiHi) + Bξ, (C.19)

where the boundary term takes the form

Bξ =

∮
d2x

{
2Y A

(
hABπ

rB + γABπ
(2)rB + λAπ

rr
)
+ 2Wπ rr + 2∂AWπ rA + 2LY λ

AγABπ
rB

}

−
∮

d2x

{
− 2b√

γ
π rAγABπ

rB − 2
√

γ bk(2) − 4
√

γ Tλ− b

4

√
γ
(
h 2 + hA

Bh
B
A

)

+ 6
√

γ b λDBλ
B + 2

√
γ λD∂Dbk − 2

√
γ bDAλBkAB

+
√

γ b(DAλ
A)2 +

√
γ bDAλBD(AλB)

}
. (C.20)

The full group of asymptotic symmetries (C.15), (C.16) is thus canonically realized.
The existence of these generators does not mean, however, that the asymptotic symmetry algebra

is now bigger than BMS4. In fact, one can see that the parameter IA does not contribute to the
boundary term, which means that the associated transformation is a proper gauge transformation.
If we use this transformation to gauge fix λA = 0, the action and the generators of the BMS4 algebra
reduce to the ones we considered in the main text. As we announced earlier, the two solutions to
the integrability problem of the boost charges presented in this work, namely imposing λA = 0
or introducing a boundary term in the symplectic structure, are physically equivalent. This gives
additional support to the assumption λA = 0 made in the text.
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