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1 Introduction

Wormholes have a long and rich history in physics and the pop culture. The idea was

originally introduced by Einstein and Rosen [1]. The motivation was the description of

particles as gravitational and electromagnetic fields without singularities. Nowadays we

understand that the Einstein-Rosen bridge is just a part of the Kruskal extension of the

Schwarzschild metric and that the non-singular bridge to other universe is non-travesable.

Traversable wormholes are spacetimes that causally connect two far away regions by

means of a throat. Despite the general interest in their existence, they are still not part

of an accepted piece of knowledge within theoretical physics. This situation should change

with this letter.

Indeed, a major open problem in physics is whether wormholes can take place in

physically sensible and simple circumstances. It is well-established that asymptotically flat

gravity in four dimensions requires exotic matter fields or to go beyond General Relativity

to produce a wormhole [2, 3]. Holography [4], uses asymptotically AdS gravity to describe

a conformal field theory (and its deformations). In this context, a careful study shows

that Einstein wormholes with a boundary of positive curvature do not not exist [5]. From

the holographic point of view it is problematic to define a field theory on a manifold of

negative curvature. This is because the scalar fields in the dual field theory are conformally

coupled to the scalar curvature. Therefore, they have an effective negative squared mass,

which would spoil the stability of the system. We circunvent this dilemma by using AdS
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itself as the boundary of the wormhole. Indeed, in AdS, there are tachyonic masses that do

not introduce instabilities and the squared mass of the conformally coupled scalar fields,

although negative, is always safe in this regard [6, 7]. When picking the AdS3 boundary it

is easy to see that the bulk solution presented below is a smooth deformation in such a way

that the surfaces of constant radial coordinate are spacelike warped AdS [8]. Therefore, it

is also natural to consider wormholes where the boundary itself is warped. This is exactly

what is done in this paper.

Another major open problem in physics is to find a non-singular description of the

Big-Bang. A realization of this idea is known as bouncing cosmologies, which have been

shown to be compatible with cosmological data and a viable alternative for inflation [9].

However, before this article, no simple example of a bouncing cosmology was known with

no ad-hoc matter fields or exotic kinetic terms [10]. We use only the Einstein equations and

a positive cosmological constant. The crucial step to construct this long sought spacetime

is to allow for space anisotropies at the bounce. Notwithstanding these anisotropies we

show that, by an adequate election of the parameters in the metric, the late evolution

of the spacetime can be chosen to be exactly the everywhere homogeneous and isotropic

de Sitter spacetime. Thus, our bouncing cosmologies provide a new arena to explore the

cosmology of our Universe without the problem of the initial singularity.

The mathematics involved in our construction are fairly simple. We review some of

the most interesting geometrical ingredients in the first two sections. First, we show how

to deform AdS3 in a smooth way and without introducing closed timelike curves [8]. As

we shall see our Einstein wormhole is exactly a spacelike warped AdS spacetime at every

constant value of the radial coordinate. The boundary can be warped or not, depending

on an integration constant that controls the warping at infinity. Later we discuss how the

slicing of AdS4 by AdS3 superficially resembles a wormhole. However, the existence of

a globally defined change of coordinates from the AdS3 slicing to the sphere slicing can

be used to proof that global AdS4 has a single boundary. Then we propose an ansatz to

construct a spacetime with a (warped) AdS3 boundary. The wormhole spacetime arises thus

naturally. It is then shown that it can have either a single or two throats and an anti-throat.

The time that takes a photon to go from one boundary to the other is computed. We then

give an elegant argument on the absence of closed time like curves on the spacetime. We

compute the dual energy momentum tensor at each boundary, yielding different results.

Later we study the hologrophic stability of the system. We show that a conformally coupled

scalar field of the putative CFT have perfectly well defined dynamics and the unstability

of negatively curved boundaries considered in [5] does not arise in our case. The wormhole

solution is then embedded in a general class of metrics that contains all Einstein black hole

solutions in four dimensions. This allow us to obtain its charged and spinning form. Finally,

we make analogous considerations when the cosmological constant is positive, obtaining a

bouncing cosmology that can be de Sitter at late or early times.

2 The spacelike warped AdS3

AdS3 with radius λ can be written as

ds2
AdS3

=
λ2

4

[
− cosh2 θdt2 + dθ2 + (du+ sinh (θ) dt)2

]
, (2.1)
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where the coordinates satisfy (t, θ, u) ∈ R3. The isometry of AdS3, SO(2, 2), is broken to

SL(2,R)× R = GL(2,R) in the warped metric:

ds2
WAdS3

= γijdx
idxj =

λ2

ν2 + 3

[
− cosh2 θdt2 + dθ2 +

4ν2

ν2 + 3
(du+ sinh (θ) dt)2

]
. (2.2)

The spacetime (2.2) is a smooth manifold, free of closed timelike curves. It is a Lorentzian

version of the squashed three pseudosphere. Spacelike warped AdS3 [8], and their black

holes [11], have been extensively studied and they arise as solutions of topologically massive

gravity with graviton mass µ = 3ν
λ . There is also a pathological version of (2.2), known as

timelike warped AdS3 which does contain closed timelike curves. In this paper, we shall

only focus on the physically relevant case (2.2).

3 Wormhole-like slicing of AdS4

As is well known, it is possible to slice AdS4 in AdS3 submanifolds as follows

gαβdx
αdxβ =

`2dr2

r2 + 1
+
`2

4

(
r2 + 1

) [
− cosh(θ)2dt2 + dθ2 + (du+ sinh (θ) dt)2

]
(3.1)

where ` is the AdS4 radius, i.e.

Rαβ = − 3

`2
gαβ , (3.2)

for the metric (3.1). While this slicing seems to have a wormhole throat at r = 0 and two

disconnected boundaries at r = ±∞, this is just an artifact of the coordinates. There is

a well-known global change of coordinates that maps (3.1) to standard global AdS with a

round sphere at the boundary.

The fact that the two boundaries of (3.1) are connected has been remarked in [12],

where by performing identifications in the fixed-r manifold it was pointed out that is

possible to disconnect the two boundaries at r = ±∞. This is simply because the change of

coordinates that maps (3.1) to global AdS stop existing as a by-product of the identification.

In the next section we show how is possible to have a wormhole by resorting to geometry

instead of topology.

4 The wormhole solution

It is our interest to obtain (2.2) as the boundary of an asymptotically AdS4 Einstein space.

Hence, it is natural to propose the following ansatz

ds2 =
4`4dr2

σ2f(r)
+ g(r)

(
− cosh2 (θ) dt2 + dθ2

)
+ f(r) (du+ sinh (θ) dt)2 . (4.1)

The Einstein equations (3.2) are satisfied provided

g(r) =
`2

σ

(
r2 + 1

)
, (4.2)

f(r) =
4`2

σ2

r4 + (6− σ) r2 + `mr + σ − 3

r2 + 1
, (4.3)
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Figure 1. Here we plot the dimensionless determinant of the spatial sections with constant, (t, r)

det = f(r)g(r)σ3`−4/4 versus the r coordinate. All the plots have m` = 1. The plots are for

σ = 3.2 and σ = 4 that have a single throat (from down up) and σ = 11 with two throats and an

anti-throat. As expected, det is asymmetric unless m = 0. For a given m all curves intersect at

r = ±1 as f is independent of σ there.

Where σ and m are integration constants. We are interested in the case where f has no

real zero. An straightforward analysis shows that f never vanishes provided

12 > σ > 3 , |`m| < 2

3
√

3
(12− σ)

√
σ − 3 . (4.4)

Thus, for these ranges of the parameters, the metric functions are everywhere positive and

regular and the range of the r−coordinate is

∞ > r > −∞ . (4.5)

The Kretschmann invariant is

RµναβRµναβ =
24

`4
−

12
(
r2 − 1

) ((
r2 + 1

)2 − 16r2
) [

4 (σ − 4)2 −m2`2
]

`4 (r2 + 1)6

+
96 (σ − 4) rm

(
r2 − 3

) (
3r2 − 1

)
`3 (r2 + 1)6 . (4.6)

It is possible to see that for σ = 4 and m = 0, the spacetime is everywhere constant

curvature and coincides with (3.1). The interpretation of (2.1) as a wormhole is now

straightforward.

As shown by figure 1, the wormhole goes from having a single throat for σ ≤ 6 to have

two throats for σ > 6. The two throats must have a local maximum in between that we

call an anti-throat.

The scaled timelike coordinate `t/σ1/2 coincides with the proper time of a geodesic

observer located at r = 0 = θ. According to this observer, the time it takes for a light ray

to go from one boundary to the other is finite, which is expected since the spacetime is

asymptotically AdS4 at both asymptotic regions. The crossing time is given by

∆t =
2`2

σ

∫ +∞

−∞

dr√
f (r) g (r)

. (4.7)
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AdS

Figure 2. Crossing time ∆t as a function of the parameters 0 < ξ1 <
√

3 and 0 < ξ2 < 3− ξ21 . The

red dot corresponds to m = 0 and σ = 4, i.e. global AdS4 which does not represent a wormhole. ∆t

has a global minimum at that point (∆tmin = 2π). Outside of the AdS point the metric has two

asymptotic regions and ∆t is the time it takes to a photon to go from one asymptotic region to the

other, as seen by a geodesic observer at r = 0 = θ. As suggested in the plot, if one approaches the

boundaries of the domain on the plot (ξ1, ξ2), ∆t grows unboundedly.

To make this integral, and plot it, it is conveniente to write the metric function f(r) in

term of its roots, namely

f(r) =
4`2

σ2

(r − z1) (r − z∗1) (r − z2) (r − z∗2)

r2 + 1
, (4.8)

with σ = 2ξ2
1 + 6− ξ2 − ζ, z1 = ξ1 + I

√
ξ2, z2 = −ξ1 + I

√
ζ and ζ =

(ξ21+1)(3−ξ21−ξ2)
1+ξ21+ξ2

. f(r)

has no real zero provided ξ2 > 0 and 0 < ξ2
1 < 3− ξ2. This is the region we have plotted.

Figure 2 depicts the crossing time as a function of the parameters (ξ1, ξ2).

5 Absence of closed timelike curves

This argument is a slight generalization of the one in [13]. We note that the coordinates

(t, u, θ, r) in (4.1) provide a global covering of the manifold. A closed timelike curve satisfies

0 <
(
g(r) cosh (θ)2 − f(r) sinh (θ)2

)( dt
dτ

)2

− 2f(r) sinh (θ)
dt

dτ

du

dτ

− f(r)

(
du

dτ

)2

− g (r)

(
dθ

dτ

)2

− 1

f(r)

(
dr

dτ

)2

, (5.1)

where τ yields a good parametrization of the curve. If the curve is closed, t must come

back to its original value. Hence, there must be a point where dt
dτ = 0. Taking into account

that f and g are everywhere positive functions, it is straightforward to see that dt
dτ = 0 is

in contradiction with (5.1).
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6 Holographic renormalization

We now pass to find what is the dual energy momentum tensor associated to this spacetime.

The procedure is as follows. The action, including boundary counterterms [14, 15], is

I[g] =
1

2κ

∫
M
d4x
√
−g
[
R+

6

`2

]
+

1

κ

∫
∂M

d3x
√
−hK − 1

κ

∫
∂M

d3x
√
−h
[

2

`
+
`

2
R (h)

]
,

(6.1)

where κ = 8πG, Kµν is the extrinsic curvature of the boundary metric, hµν = gµν −NµNν

is the induced metric on the fixed r hypersurfaces and R its Ricci curvature. Nµ = δrµ
√
grr

is the outward pointing normal, where we assume that r > 0, the case with r < 0 will be

discussed below. Varying the action gives the energy momentum tensor:

κTµν = `Gµν (h)− 2

`
hµν −Kµν + hµνK . (6.2)

The boundary metric is γij = limr−→∞
1
r2
hij , and is given by (2.2) with λ2

ν2+3
= `2

σ and

ν2 = 3
σ−1 . The dual enery momentum tensor is〈

T +
ij

〉
= lim

r−→∞
rTij , (6.3)

which yields〈
T +
ij

〉
dxidxj =

`2

σκ

[
−m

2

(
− cosh2 (θ) dt2 + dθ2

)
+

4m

σ
(du+ sinh (θ) dt)2

]
. (6.4)

The wormhole spacetime is invariant under the combined changes r → −r and m→ −m.

Hence, the energy-momentum tensor for r < 0 is the same than T +
ij changing m → −m.

We note that the factor in front of the energy momentum tensor can be translated to field

theory variables `2

κ = 21/2

12π k
1/2N3/2 where we have used the standard holographic dictionary

to identify k with the level and N with the rank of the gauge groups of the ABJ(M) theory,

see for instance [16].

The bulk solution is everywhere regular. Therefore, the dual energy momentum tensor

is continuous along the boundary of the spacetime. The fact that each boundary has a

different energy momentum tensor is a physicist’s proof that the boundary is not connected.

7 Holographic stability

Let us now deal with the issue of the stability of the CFT on the boundary metric γ. The

first thing one would like to check is what happens with a simple conformally coupled scalar

field in three dimensions when propagating on this geometry. All objects in this section

are defined in terms of the metric γ. The scalar field equation is

�φ− 1

8
R [γ]φ = 0 . (7.1)

The following ansatz separates the field equation

φ = cos(ku+ ωt)H(θ) . (7.2)
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The leading order of the field equation (7.1) for large values of θ is

4σ

(
d2H

dθ2
+
dH

dθ

)
+
(
σ − 1− σ2k2 + 4σk2

)
H = 0 . (7.3)

The asymptotic form of H is then

H = φ+e
∆+

θ√
σ + φ−e

∆−
θ√
σ + . . . (7.4)

where

∆± =
−σ ±

√
σ + k2σ2 (σ − 4)

2
√
σ

. (7.5)

It can be readily noticed that for σ < 4 and large enough k the scalar field will always

develop an unstability due to the complex ∆±. For σ ≥ 4, the wormholes are stable under

scalar field fluctuations of the CFT. More details of the stability of warped AdS3 can be

found in [17].

8 The charged and spinning generalization

So far we have studied the simplest case where the wormhole is static. It is natural to

generalize the spacetime to introduce charge and spin. An educated guess lead us to

consider the Plebanski-Demianski [18] family of spacetimes in four dimensions

ds2 =
1

(q −Ap)2

[
− X(p)

1 + ξ2q2p2

(
dτ − ξq2dφ

)2
+

Y (q)

1 + ξ2q2p2

(
dφ+ ξp2dτ

)2
+
(
1 + ξ2q2p2

)( dq2

Y (q)
+

dp2

X(p)

)]
, (8.1)

with the gauge field

B = p
Q+ Pξpq

1 + ξ2q2p2
dτ + q

P −Qξpq
1 + ξ2q2p2

dφ . (8.2)

The Einstein-Maxwell equations

Rµν −
1

2
gµνR−

3

`2
gµν = 2κ

(
FµσF

·σ
ν −

1

4
gµνFαβF

αβ

)
, ∇µFµν = 0 , (8.3)

with Fµν = ∂µBν − ∂νBµ, are satisfied provided

Y = `−2 −A2ξ−2
(
Q2
T + y4

)
− y1qA+ y2q

2 + y3q
3 + y4q

4 , (8.4)

X = ξ−2
(
Q2
T + y4

)
+ y1p− y2p

2 −Ay3p
3 +

(
ξ2`−2 −A2y4

)
p4 , (8.5)

where Q2
T = κQ2 + κP 2. This solution is known to contain all spinning black holes in four

dimensions as special limits. To retrieve the wormhole we found that is necessary to set

the acceleration parameter to zero, A = 0, make the following change of coordinates

τ (t, u) = − `2

n2σ
(t+ 2εαu) , φ(t, u) =

`2

nσ

(
4u+

t

αε

)
, (8.6)

q (r) =
1

rn
, p(y) = y +

1

εα
(8.7)
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and the reparemeterization

y2 = `−2n2
(
6 + εσ + α2ε

)
, y4 = −`−2n2

(
3− α2ε2σ − 3α2ε+ σε

)
−Q2

T , (8.8)

y1 = −2n2`−2

(
−4 + α2ε− σε

)
εα

, ξ = εnα , y3 = `−1mn3 . (8.9)

Then the metric and the gauge field have a smooth α = 0 limit which exactly coincides

with the wormhole with y = sinh(θ) (4.1) provided ε = −1 and QT = 0. When QT 6= 0 the

static wormhole is charged and the α = 0 limit is well defined provided a singular gauge

transformation is substracted from the gauge field. ε controls the topology of the boundary.

For ε = 0 the boundary has no curvature and when ε = 1 the curvature is positive. It

can be seen that there are wormholes only when ε = −1, otherwise the spacetime describe

AdS solitons.

If α 6= 0 then the interpretation of the spacetime as a wormhole is less simple. The

metric is singular at r = 0 and y = −1 . At every constant radial coordinate there is a

black hole, which is regular at the r = ±∞ boundaries. The black hole flows into the bulk

through the r coordinate. Only at r = 0 a singularity is developed.

9 Bouncing cosmologies

The existence of wormholes when the cosmological constant is negative motivate us to look

for bouncing cosmologies when the cosmological constant is positive. The relevant Einstein

metric, Rαβ = 3
`2
gαβ , is now

ds2 = − 4`4dt2

σ2f(t)
+ g(t)

(
cos (θ)2 dφ2 + dθ2

)
+ f(t) (dψ + sin (θ) dφ)2 .

with g(t) = l2

σ (t2 + 1) and

f(t) =
4`2

σ2

t4 + (6− σ)t2 + µt+ σ − 3

t2 + 1
(9.1)

with exactly the same form than (4.3). Therefore, the same analysis applies here regarding

regularity. The number of bounces and anti-bounces the spacetime can have is described

by figure 1. The change of coordinates t = exp( τ` ), when σ = 4 yields for large τ

ds2 = −dτ2 +
l2

4
exp

(
2τ

`

)[
cos (θ)2 dφ2 + dθ2 + (dψ + sin (θ) dφ)2

]
+O(1) (9.2)

which is just the Friedmann-Lemâıtre-Robertson-Walker metric with spherical topology.

There is a straightforward generalization of this cosmology along the lines of the previ-

ous section.

10 Discussion

In this paper we have constructed the first geometrically non-trivial family of wormhole

solutions to four dimensional Einstein gravity with a negative cosmological constant. The

– 8 –
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hypersurfaces perpendicular to the radial coordinate are warped AdS3 spacetimes with the

warping that is running along this coordinate. The asymptotic form of the constant-r

metric can be either warped or not. The wormhole is traversable and free of closed time

like curves. We have generalized the geometry and shown that it is a special limit of the

more general charged Plebanski-Demianski spacetime. These spacetimes should now be

studied at this new light.

Wormhole geometries in four dimensional, asymptotically AdS spacetimes have re-

ceived large attention recently due to holography, see for instance [19]. The holographic

dual of a highly entangled state of two non-interacting CFTs is an eternal black hole, which

has two asymptotically AdS regions that are causally disconnected [20]. It was recently

found that the inclusion of an interaction between the two CFTs opens a throat in the

bulk which causally connects the boundaries [21], and the size of the throat increases with

the rotation in the bulk [22]. Our findings imply that such settings can also take place

in vacuum.

When the function f(r) in (4.3) have zeroes, it is possible to cut the spacetime at

the first zero and identify the coordinate u to eliminate the conical singularity at the

degeneration surface of ∂u. This procedure yields a soliton if the zero is of order one.

If the zero is of order two then one simply finds another asymptotic region in the bulk

spacetime. The interior asymptotic region yields in certain cases an RG flow. The soliton

can be thought as a new vacuum of general relativity when the conformal class of the

boundary metrics contain (warped) AdS3. These boundary conditions have been used to

holographically describe graphene [23].

The introduction of identifications in (2.2) yields warped AdS black holes [11]. It is

likely that the same identification in (4.1) yields black holes together with the flow of the

warping parameter into the radial direction.

It is worth noting that the “real-world” physical relevance of spacelike warped AdS3

stems from the fact that it arises is the near horizon geometry of the extremal Kerr black

hole [24]. This geometry seems to be locally the same than the geometry of our wormhole.

The bouncing cosmology presented in the last section yields a smooth description of

the evolution of the Universe. What is remarkable there is that it is possible to recover

an standard homogeneous and isotropic Universe for late and early times. Nowadays, the

experimental data favours a flat universe. Hence, this cosmological model would only be

compatible with the data if the spherical Universe is large enough.
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